
HAL Id: hal-03456144
https://hal.science/hal-03456144

Submitted on 8 Dec 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A critical review on the implementation of static data
sampling techniques to detect network attacks

Suzan Hajj, Rayane El Sibai, Jacques Bou Abdo, Jacques Demerjian,
Christophe Guyeux, Abdallah Makhoul, Dominique Ginhac

To cite this version:
Suzan Hajj, Rayane El Sibai, Jacques Bou Abdo, Jacques Demerjian, Christophe Guyeux, et al.. A
critical review on the implementation of static data sampling techniques to detect network attacks.
IEEE Access, 2021, 9, pp.138903 - 138938. �10.1109/ACCESS.2021.3118605�. �hal-03456144�

https://hal.science/hal-03456144
https://hal.archives-ouvertes.fr

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2021.3118605, IEEE Access

Date of publication xxxx 00, 0000, date of current version xxxx 00, 0000.

Digital Object Identifier 10.1109/ACCESS.2017.DOI

A critical review on the implementation
of static data sampling techniques to
detect network attacks
SUZAN HAJJ 1, RAYANE EL SIBAI2, JACQUES BOU ABDO3, JACQUES DEMERJIAN 4,
CHRISTOPHE GUYEUX5, ABDALLAH MAKHOUL6, AND DOMINIQUE GINHAC 7
1Université de Bourgogne Franche-Comté, Dijon, France
2Computer Science Department, Faculty of Sciences, Al Maaref University, Beirut, Lebanon (e-mail: rayane.elsibai@mu.edu.lb)
3University of Nebraska at Kearney, USA (e-mail: bouabdoj@unk.edu)
4LaRRIS, Faculty of Sciences, Lebanese University, Fanar, Lebanon (e-mail: jacques.demerjian@ul.edu.lb)
5Femto-ST Institute, UMR CNRS 6174, Université de Bourgogne Franche-Comté, Besançon, France (e-mail: christophe.guyeux@univ-fcomte.fr)
6Femto-ST Institute, UMR CNRS 6174, Université de Bourgogne Franche-Comté, Besançon, France (e-mail: abdallah.makhoul@univ-fcomte.fr)
7Université de Bourgogne Franche-Comté, Dijon, France (e-mail: dominique.ginhac@ubfc.fr)

Corresponding author: Rayane El Sibai (e-mail: rayane.elsibai@mu.edu.lb).

ABSTRACT Given that the Internet traffic speed and volume are growing at a rapid pace, monitoring the
network in a real-time manner has introduced several issues in terms of computing and storage capabilities.
Fast processing of traffic data and early warnings on the detected attacks are required while maintaining
a single pass over the traffic measurements. To palliate these problems, one can reduce the amount of
traffic to be processed by using a sampling technique and detect the attacks based on the sampled traffic.
Different parameters have an impact on the efficiency of this process, mainly, the applied sampling policy
and sampling ratio. In this paper, we investigate the statistical impact of sampling the network traffic and we
quantify the amount of deterioration that the sampling process introduces. In this context, an experimental
comparison of existing sampling techniques is performed based on their impact on several well-known
statistical measures.

INDEX TERMS Data sampling, Data streams, Intrusion Detection System (IDS), Statistical analysis.

I. INTRODUCTION
With the emergence of new technologies and applications,
the speed and volume of Internet traffic are increasing
very rapidly. Current businesses’ needs require develop-
ing of advanced information networks integrating various
technologies such as distributed storage systems, encryp-
tion/decryption mechanisms, remote and wireless access, etc.
Consequently, Internet service providers and network man-
agers are encouraged to better understand network behavior
through the analysis and monitoring of traffic inside the net-
work. Hence, the need for network-based security systems,
such as Intrusion Detection Systems (IDSs) [1].

IDSs play an important role in ensuring network security,
as they observe user activity on the network and detect
any security violation. Usually, Intrusion Prevention Systems
(IPSs) can be used at first to ensure the safety of the net-
work and protect it from attacks. For instance, a firewall
can be used to manage access inside a private network. It
prevents end-users inside a protected network from sending
or receiving messages forbidden by the predefined network

security policy, without any capability of detecting anomalies
or any specific pattern among the network traffic data [2].
As the network becomes more complex, the more exploitable
and vulnerable it will be to attacks. Network attacks can be
caused by external intruders attempting to access the net-
work, or from legitimate users trying to misuse their granted
permissions and to gain more privileges for which they are
not authorized. Such abnormal activities are manifested by
higher consumption of network resources and many unde-
sired requests overloading it. For instance, the main objective
of the DoS attack is to deny end-users from benefiting from
network-provided services [3].

The success of an IDS is challenged by the network’s
implementation flaws and the complexity of the attacks,
where it also has to deal with the availability and hetero-
geneity of the traffic data sources to find malicious behaviors.
IDSs’ performance is another challenge, as real-time network
monitoring requires very fast processing and inspection of
network traffic. The amount of data generated in the network
represents thus a major problem. When the traffic is huge, the

VOLUME 4, 2016 1

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2021.3118605, IEEE Access

Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

IDS will be unable to inspect every arriving packet.
As defined by the Institute of Electrical and Electronics

Engineers (IEEE), the Internet of Things (IoT) is a collection
of sensors that form a network connected to the Internet. IDSs
designed for IoT environments should be implemented on
programmable devices, such as FPGAs, to facilitate adapta-
tion to IoT environments. Confidentiality, integrity, and avail-
ability are three important security concepts for applications
and services in intelligent IoT-based environments. The im-
plementation of a robust security mechanism in IoT systems
depends on the security strength of IoT devices, which in turn
depends on several factors, such as power, memory, hard-
ware, software, choices design, etc. These present security
challenges in IoT systems and impact the performance of the
IDS [4]. Collaboration between IoT devices and the router to
shift the compute load from resource-constrained IoT devices
to the resource edge router is necessary to increase network
lifespan and reduce intrusion detection time.

Since intrusion detection is the process of monitoring
the network and detecting the attacks, the data exchanged
over the network and coming from different sources such as
cell phones, computers, etc., as well as all network activity,
have to be measured and processed by the IDS. This latter
detects anomalies and sends security alerts to the network
administrator as soon as an attack is detected [5]. However,
the extensive applications of high-speed Internet make it im-
possible to adopt traditional packet measuring and processing
technologies of network traffic. In fact, these technologies are
not scalable to high-speed networks. The largest obstacles in
high-speed networks are the huge volume of traffic data to
deal with, and the rate at which information accumulates [6].

Real-time and fast processing of traffic data is required:
the analysis time of an IP packet must be shorter than the
packets’ inter-arrival time while maintaining a single pass
over the traffic data. Also, early warnings on the detected
attacks and their sources must be triggered, requiring, thus,
a highly scalable IDS with architecture, storage, and com-
puting capabilities and resources able to support very high
throughput. The reason for the inability of current solu-
tions to detect intrusions in high-speed networks is the high
cost of using traditional network monitoring schemes. These
schemes measure the network parameters of every packet
that passes through the network, making it challenging to
monitor the behavior of a large number of users in high-
speed networks. To keep track of the huge volume of network
traffic, one of the possible solutions is to increase the storage
and computing resources of the IDS by distributing network
packets to multiple IDSs [7], [8]. However, these solutions
are expensive.

Applying traditional Machine Learning (ML) approaches
in IoT environments may not be suitable because are of
the computing and energy constraints of IoT devices. In
fact, ML algorithms have complexity issues such as memory
complexity, computation, etc. They also lack scalability and
are limited to low-dimensional problems. Therefore, using
traditional ML approaches is not suitable in such environ-

ments with limited resources. As for intelligent IoT devices,
the detection of anomalies and intrusions requires real-time
data processing, however, traditional ML approaches are
not designed to handle real-time data streams. In addition,
ML algorithms assume that the entire data is available for
processing during the learning phase, which is not true for
IoT data. This poses many challenges when traditional ML
approaches have to process a huge amount of data, especially,
when the data dimensionality is high [9]. This discussion is
applicable for security-related functions in IoT where real-
time data is processed to identify anomalies, intrusions, etc.
Due to these limitations, it is important to combine ML
with streaming solutions, such as sampling algorithms. It is,
therefore, necessary to filter this data on the fly and store only
those that are relevant by carrying out summaries (samples)
before applying ML algorithms.

A. DATA SAMPLING
To address the issues presented above, and help the IDS
process the information gathered during the data fusion from
the routers, switches, firewalls, etc., network packets may be
sampled where the router inspects every n-th packet using a
sampling technique, and then, records its associated features
[10]. Thus, intrusions will be detected based on the sampled
data instead of the entire traffic, as shown in Figure 1.
Therefore, the IDS can benefit from the available computing
and storage resources to analyze the network traffic. The
challenge is to prevent the intrinsic loss of information dur-
ing the sampling process which will lead to low detection
accuracy. Over the years, different sampling strategies were
investigated in the literature to improve attack detection ac-
curacy. Researchers proposed a variety of static and dynamic
sampling algorithms for network traffic reduction. With static
sampling algorithms, traffic measurements are sampled either
periodically or randomly at a specific predefined interval or
using a specific rule. Using a static sampling algorithm to
reduce the network traffic volume reduces the bandwidth and
storage requirements, making this type of sampling algorithm
very efficient. In their turn, dynamic sampling algorithms,
also called adaptive sampling algorithms, used different sam-
pling intervals and/or rules to sample the data. In this paper,
we will focus on static sampling algorithms.

Selecting a sample of packets from the entire traffic is
a challenging task. For instance, if malicious packets are
not selected by the sampling algorithm, the attack may not
be detected, as the IDS only analyzes the sampled traffic.
Therefore, an efficient sampling algorithm must ensure the
sampling of the packets that carry a malicious payload.
Previous research studies showed that the sampling process
can affect, skew, and also distort the anomaly detection
metrics and detection rates [11]–[13]. Therefore, choosing
an appropriate sampling algorithm and sampling interval that
provides a good representation of the overall and original
traffic is very important and delicate in case a sampling
process is to be applied.

In recent years, the field of sampling network traffic has

2 VOLUME 4, 2016

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2021.3118605, IEEE Access

Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

FIGURE 1: Packets sampling of network traffic.

been widely explored by the research community, which has
led to the publication of numerous works and benchmarking
papers. In this light, several studies examined the impact of
data sampling. Mai et al. [13] evaluated in their work the
effect of sampling the traffic of high-speed IP-backbone net-
works on the intrusions’ detection results, especially, on the
port scans and volume anomaly detection. Different sampling
algorithms were used to sample the traffic packets. [14], [15]
also assessed the impact of packets sampling on anomalies’
detection results. Roudiere et al. [16] evaluated the accuracy
of AATAC detector in detecting DDoS attacks over sampled
traffic. Different sampling policies were used to sample the
traffic. Bartos et al. [17] studied the effect of traffic sampling
on anomaly detection, and proposed a new adaptive flow-
level sampling algorithm to enhance the accuracy of the
sampling process. Silva et al. [18] introduced a framework
to evaluate the impact of packets sampling. They discussed
the performance of each sampling algorithm and proposed a
set of metrics that allows the accurate evaluation of each sam-
pling technique in producing a representative sample of the
original traffic. Brauckhoff et al. [11] used traces containing
the Blaster worm to assess the accuracy of different anomaly
detection and data sampling algorithms.

B. PROBLEM DEFINTION AND MOTIVATION
Nowadays, deploying IDSs inside companies is a common
practice to prevent and/or mitigate both internal and external
attacks. However, with the restricted bandwidth of network
links, and the limited storage and computing resources of the
IDSs, it has become difficult to efficiently monitor and man-
age the network. A possible solution to handle this problem is
to apply a sampling strategy to decrease the amount of traffic
to be processed. Current research studies are investigating
which sampling policy and which parameters provide the best
compromise in terms of IDS performance (response time)
while having a high attack detection rate.

A sampling policy aims to provide an estimation of a
metric of interest from a set of data while reducing the
processing cost. This is achieved by selecting a subset of
data called "sample" and estimating the metric of interest
from this subset. The sampling strategy specifies how the
subset of data is selected [19]. More specifically, the packets
sampling process aims to construct a sample of data on which
future analysis tasks will be carried out. Different parameters
affect the efficiency of the sampling and the precision of the
estimation of the traffic characteristics, mainly the sampling
strategy and the sampling rate. Thus, given the original set of

packets, the most difficult task is to select the right sampling
policy and the relevant parameters.

Packet sampling is involved in large network monitoring,
management, and engineering tasks. It serves to provide
a dynamic overview of the network by providing detailed
information that can be exploited to infer various estimates,
statistics, and aggregates of the traffic. These include the
number of packets, the size of packets, the interarrival delays
and protocols of packets, the traffic flows, etc. which can be
eventually used to detect particular network problems.

As stated by El Sibai et al. [20], A sampling algorithm can
be qualified according to the following metrics: (1) Single-
pass over the data: since it is almost impossible to store all the
traffic packets for further processing, any sampling algorithm
must be able to construct the sample by making only one pass
over the data. (2) Memory consumption: the sample size af-
fects also the sample quality. The size is usually proportional
to the size of the traffic and it depends on the used sampling
ratio. The higher the sampling ratio, the higher the accuracy
of the sample, but the bigger its size. (3) Skewing ability:
a sample must represent the entire network traffic. With the
probabilistic sampling methods, all the packets are sampled
with the same probability. However, in some cases, some
packets should have a higher probability of being sampled
(depending on their values, arrival time, etc.). One way to do
this is to associate weights to packets and to sample them
according to their relative weights. (4) Complexity: due to
the high traffic arrival rate, a low complexity is needed to de-
crease the execution time of sampling. In many applications,
packet sampling can be used to provide accurate results while
reducing data processing costs. It can be used for controlling
network congestion, detecting broken links, misconfigured
devices, and rouge network servers. Packet sampling can be
also used to verify the quality of service in the network,
to build trends, and forecast bandwidth and other resource
requirements.

Packets sampling is a class of data sampling techniques
that consider packets as basic elements. Therefore, all the
packets observed are considered as the original data set and
the selected packets are representing the sample. The target
sample size is affected usually by the sampling interval, also
denoted as the sampling ratio. However, with some sampling
algorithms, the obtained sample size can deviate from the
target one. The sampling decision of a packet can be of three
types: count-based, time-based, and content-based. With the
count-based sampling strategies, the sampling decision of a
packet is based on its position in the sequence of packets
called stream. With the time-based sampling strategies, the
sampling decision is based on the packet arrival time. Finally,
with the content-based sampling strategies, the sampling
decision is based on the packet’s content. Content-based
sampling strategies are also called filtering algorithms and
are outside the scope of this work.

VOLUME 4, 2016 3

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2021.3118605, IEEE Access

Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

C. OBJECTIVE AND CONTRIBUTIONS
The aim of this study is to check whether summarized (sam-
pled) are sufficient to detect attacks in high-speed networks.
We aim at quantifying the robustness of the traffic character-
istics under different sampling strategies. The sampling pro-
cess selects some traffic items from the whole received traffic
based on the used sampling policy and chosen sample size.
Thus, sampling is considered to be an approximate method
of measurement. Since in the sampled dataset many packets
are not sampled, the traffic distribution of sampled data may
deviate from the distribution and statistical characteristics of
the original traffic. Taking these sampled data as the input
of any attack detection algorithm will inevitably affect the
accuracy of the detection algorithm.

An effective sampling policy selects a subset of packets
with which the statistical parameters of the traffic can be
estimated accurately. In this context, we focus in this work on
the statistical impact of packet sampling on traffic analysis.
The sampling techniques are evaluated and compared in
terms of the similarity between the results of the aggregation
query evaluated on the original traffic and the sampled one.
By building a sample of the traffic and performing offline
analysis of the sampled packets, several statistical metrics
gathered from sampled traffic and non-sampled traffic can be
measured and compared to assess the level of degradation
introduced by the sampling process. This study is initiated
with a survey of sampling algorithms. Then, the experimental
comparison of all these sampling methods is performed.

Recently published benchmarks, cited in Table 1, focus
on the most traditional sampling algorithms. However, none
of these works have thoroughly reviewed all data sampling
approaches, their impact on detecting a variety of attacks, and
the behavior and robustness of the features under different
sampling strategies. Even if it is well known that the sam-
pling distorts the statistics measures, it was surprising that
few studies have explored how the network characteristics
estimation varies according to the used sampling method,
sample size, etc. and how this affects statistical inference
from these data.

Pescape et al. [14] considered as a list of traffic character-
istics. Two statistical metrics to assess feature distortions are
used, "Hellinger" for similarities and "Fleiss Chi-Square" for
classification. The intersection of the chosen characteristics
sets in each database separately formed a robust final feature
set. Various sampling techniques are applied to assess the
robust feature set. Results showed that sampling techniques
have a slight impact on reducing the degradation behavior of
the anomaly detection process and that the characteristics of
many packets are most affected by distortion. Data sampling
depends on the method of measuring the data. Therefore,
sampling is subject to a certain variance in the total traffic
distribution that affects the accuracy of the anomaly detection
results. To deal with this problem, Pan et al. [21] suggested
a method of measuring packet sampling based on the IP
flow. The sampling rate is variable and depends on the arrival
process sequence of the IP flow at both packet and flow levels

and the flow size. Subsequently, the sampling probability
is adjusted based on the number of unlike samples in the
stream. Two evaluation metrics are used, RMSE to measure
volume anomalies in the size of the IP stream and the hit
detection rate to measure the sequence of variance in the
stream. The results showed that for a sample rate of 1%,
the proposed solution detected 27 out of 30 of worm and
DDoS attacks, while traditional random sampling only de-
tected three. Singh et al. [22] studied the statistical impact of
data sampling on traffic analysis by calculating the statistical
parameters for unsampled data set and then for sampled data.
Subsequently, a comparative analysis of the unsampled and
sampled data sets was performed. The following sampling al-
gorithms were used to sample the data: Simple Random Sam-
pling (SRS), Systematic sampling, and under-over sampling.
The following attributes from the NSL KDD dataset were
considered: duration, src_bytes, dst_bytes, wrong_fragment,
num_compromised, num_file_ creations, and srv_count. The
statistical parameters used to compare the network char-
acteristics before and after sampling were: the mean, the
range including the minimum and maximum values for each
attribute, and the standard deviation showing the distribution
of the network. Silva et al. [18] developed a data sampling
framework based on a multi-layered design. The framework
selects the characteristics and sampling technique according
to the measurement task. The implementation of the frame-
work is based on a sampling taxonomy that determines the
granularity, the selection scheme, and the selection trigger.

A comparison between the above papers and our work is
summarized in Table 1.

In this paper, the impact of sampling is studied in terms
of well-known statistical metrics, such as the mean, standard
deviation, median, etc. from the perspective of determining
the characteristics of the traffic before and after sampling.
Our main objective is to provide an up-to-date survey of static
sampling algorithms and evaluate the data sampling impact
on network traffic analysis. Different sampling algorithms
and a variety of parameters are considered during our study.
Our contributions in this paper can be summarized as follows.
(1) Presenting an exhaustive survey of existing data stream
sampling algorithms, (2) Elaborating on the following critical
question: Given the network traffic, what are the suitable
sampling policy and parameters to apply to reduce the net-
work volume? (3) Evaluating the behavior and robustness of
various features characterizing the network, under different
sampling strategies and parameters, (4) Finding out which
attacks are more robust to the sampling process, (5) Finding
out whether there exists a family of features which is more
robust to the sampling process, and (6) Exposing, based on
the obtained results, the research challenges and possible
solutions to handle them.

D. SUMMARY AND OUTLINE
The rest of the paper is organized as follows. Section I-B
discusses the motivation and introduces the contribution of
our work. This section also shows the difference between

4 VOLUME 4, 2016

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2021.3118605, IEEE Access

Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

TABLE 1: Comparison of this work and similar recent works, where C1 shows if the benchmark evaluated all existing sampling
algorithms, C2 represents if the benchmark studied the suitable sampling policy and parameters to apply to reduce the network
volume, C3 depicts if the benchmark presented an exhaustive survey of existing data stream sampling algorithms, C4 shows if
the benchmark evaluated the impact of sampling on different types of attack, C5 shows if the benchmark studied the impact of
sampling on the behavior of different features, C6 shows if the benchmark compared the performance of different sampling
techniques with respect to their accuracy, and C7 shows if the benchmark evaluated the statistical measures that assess
distortion caused by sampling on traffic with unsampled ones.

Reference Year C1 C2 C3 C4 C5 C6 C7

Pescape et al. [14] 2010 3 3 7 7 3 3 3

Pan et al. [21] 2012 3 3 7 3 7 7 3

Singh et al. [22] 2014 3 3 7 7 3 3 3

Silva et al. [18] 2015 3 3 7 7 7 3 3

This paper 2021 3 3 3 3 3 3 3

our work and existing ones. Section II presents a survey of
existing sampling algorithms. Section III elaborates on the
experimental approach and methodology that we will apply
in our work. Section IV illustrates and discusses the obtained
results. Finally, Section V concludes the paper.

II. TAXONOMY OF PACKETS SAMPLING POLICIES
In high-speed networks, network traffic arrives continuously,
at a high rate. The IDS receiving this traffic may not be able
to store them exhaustively, and/or have sufficient computing
resources to process them rapidly. Thus, processing high-
speed network traffic requires minimizing the volume of
traffic by building, storing, and maintaining a sample of this
traffic. An efficient sample should be able to answer, approx-
imately, to any query regardless of the period investigated.
The literature shows that most sampling techniques share the
following main components: sampling function, the temporal
aspect of packets, windowing model, and sample size [19].
Classifying and evaluating sampling policies according to
these components is a very important step for reaching better
sampling accuracy.

In the following, Figure 2 presents our taxonomy that frag-
ments the sampling policies into the four components: sam-
pling function, the temporal aspect of packets, windowing
model, and sample size. Table 2 classifies existing sampling
policies according to the proposed taxonomy.
• Sampling function: it identifies the policy defining

which packets will be added to the sample. This policy
may follow a static approach or a dynamic one. A static
approach can be either deterministic or random.

• Temporal aspect of packets: it can be physical or logical
(sequential). The physical aspect depicts the arrival time
of the packet, the logical aspect describes the index of
the packet in the traffic stream.

• Windowing model: sampling techniques use windowing
models and divide the traffic into successive windows
to limit the number of packets to be analyzed. There
are two main windowing models: fixed and sliding

[23]. Using a fixed window, the window boundaries
are absolute. The traffic stream is partitioned into non-
overlapping windows and the offset between two con-
secutive windows is equal to the number of packets
in the window. Using the sliding window model, the
window boundaries are updated over time: when a
new packet arrives, it will be added to the window
and the oldest one will be removed. In this case, the
shift between two consecutive windows is less than the
window size, most often equals 1. In this benchmark,
two types of estimations will be considered: total traffic
statistics and instantaneous traffic statistics estimation.
With the total traffic statistics estimation, the overall
traffic behavior is predicted. The traffic stream is di-
vided into successive fixed (non-overlapping) windows,
then, the sample of the traffic stream is constructed by
combining all the sub-samples built over all the fixed
windows. The network behavior is analyzed based on
the final sample. However, with the instantaneous traffic
statistics estimation, the sample is built over the most
recent packets of the stream. Thus, the network behavior
is analyzed over each sliding window, along the mea-
surement process. In our work, the sampling policies
used to estimate the overall traffic statistics are called
"non-stream sampling algorithms", while the sampling
policies used to estimate instantaneous traffic statistics
are called "stream sampling algorithms".

• Sample size: The sample size is most often proportional
to the length of the traffic and depends on the sam-
pling ratio. The higher the sampling rate, the higher
the accuracy of the sample, nevertheless, this requires
more computational resources. Notice that some sam-
pling policies have a fixed and bounded sample size
independent of the sampling ratio. In this work, and
without loss of generality, all the algorithms will be
adapted to give a sample with a ratio-dependent size.

In the following, we discuss in detail each one of these

VOLUME 4, 2016 5

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2021.3118605, IEEE Access

Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

FIGURE 2: Taxonomy of sampling policies.

TABLE 2: Classification of static sampling policies.

Sampling
policy

Sampling
function

Temporal
aspect

Windowing
model

Sample
size

Deterministic Random Physical Logical Fixed Sliding Fixed
Ratio-
dependent

SRSFW 3 3 3 3

SRSSW 3 3 3 3

DETFW 3 3 3 3

DETSW 3 3 3 3

Chain-sample 3 3 3 3

Chain+ 3 3 3 3

Stratified 3 3 3 3

Systematic 3 3 3 3

Reservoir 3 3 3 3

Backing 3 3 3 3

Priority 3 3 3 3

Random Pairing 3 3 3 3

WRS-N-P 3 3 3 3

WRS-N-W 3 3 3 3

StreamSamp 3 3 3 3

sampling policies.

A. SIMPLE RANDOM SAMPLING (SRS) OVER A
SLIDING WINDOW (SRSSW)
The SRS algorithm [24] aims to construct a random sample.
It samples packets randomly and all packets have the same
probability p of being sampled. SRS can be with replacement
and without replacement. When applying the SRS with re-
placement, the sample will contain redundant packets since
each packet may be selected at least once. However, with the
SRS without replacement, each packet can be sampled only
once. In this study, we are concerned with the SRS without
replacement.

B. SIMPLE RANDOM SAMPLING (SRS) OVER A FIXED
WINDOW (SRSFW)
The SRS without replacement algorithm can be also applied
to build a sample over a fixed window. This is done by con-
structing a sample over each window of the traffic stream and
removing the samples constructed on the former windows.

To sample k packets from a window of size n, each packet is
selected with a probability p equal to the sampling ratio k/n.
This step must be repeated until the selection of k distinct
packets [20].

C. DETERMINISTIC SAMPLING OVER A FIXED/SLIDING
WINDOW
The deterministic algorithm is a non-probabilistic sampling
algorithm that constructs a sample without randomness. It
consists of constructing a sample of size k by selecting one
packet from every x packet of the traffic stream. Assuming
that the traffic stream consists of packets with an always-
increasing index, to construct a sample of distinct packets
among the n most recent packets of the traffic, and given the
sampling ratio p, each 1/x packet is sampled. The value of
x is equal to 100/p. For instance, if p equals 20%, then, the
value of x will be equal to 100/20 = 5, and thus, every 1/5
packet will be selected exactly. The selection of one packet
from every x packets depends on the packet index. If the
packet index equals α × n/k where α is a positive integer,

6 VOLUME 4, 2016

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2021.3118605, IEEE Access

Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

the packet will be selected.

D. SYSTEMATIC SAMPLING
Let k be the sample size and n the window size, the system-
atic sampling algorithm partitions the traffic into x groups,
each of size x = n/k. Thereafter, it selects a random value
j ∈ [1, x] and adds the packets at the following indexes to the
sample: j, j + x, j + 2x, j + 3x, etc. [24].

The deterministic and systematic sampling algorithms
have several advantages, the samples are easy to be built
and they are faster more than the SRS algorithm. However,
the drawback of these algorithms is that the sample lacks
randomness. The packets are periodically sampled. If the
periodicity of the traffic stream is close to the size of the
sample k, the constructed sample will be skewed and not
representative of the original traffic.

E. STRATIFIED SAMPLING
The Stratified sampling algorithm [24] divides the traffic into
homogeneous subgroups and then, builds, randomly, a sam-
ple from each subgroup. Compared to the SRS, the stratified
sampling algorithm enhances the sampling accuracy since it
ensures a high level of representativity of the whole traffic.
Using the stratified sampling algorithm is beneficial in many
cases, especially, when it is required to highlight a specific set
of packets within the traffic. Stratified sampling can also be
applied to ensure the representation of extreme or rare groups
of packets in the sample.

F. WEIGHTED RANDOM SAMPLING WITHOUT
REPLACEMENT
An effective sample must represent the whole traffic stream.
However, this requirement may not be satisfied: some packets
may be over-sampled or under-sampled. Consequently, the
statistical information inferred from the constructed sample
will not be reliable. To deal with the lack of representative-
ness of some packets in the sample, a correction of the sample
is needed. This can be done using the Weighted Random
Sampling (WRS) algorithm by sampling each packet with a
probability based on the packet’s weight [25], [26].

Efraimidis et al. [25], [26] proposed two WRS algorithms.
WRS-N-P adds each element ek to the sample with a prob-
ability proportional to the weight wk of the element, as
follows:

pk =
α× wk∑k

i=1 wi

(1)

where α is the sample size.
In turn, WRS-N-W adds each packet ek to the sample with

a probability proportional to the item’s weightwk and relative
to the weights of the non sampled items. The sampling
probability pk is calculated as follows:

pk =
wk∑

i∈v−S wi
(2)

where S represents the sample.

G. RESERVOIR SAMPLING
The Reservoir sampling algorithm [27], [28] retains a uni-
form and random sample of a fixed size of k from the whole
stream. At first, the algorithm selects the first k received
elements of the stream and adds them to the sample. Subse-
quently, when a new element arrives, it will be sampled with
a probability p = k/i, where i is the index of the element in
the stream, and an element will be removed from the sample
randomly.

H. BACKING SAMPLING
The Backing sampling [29], [30] samples the data as follows:
at first, the first k elements of the stream are added to the
sample. Thereafter, a random number of elements is skipped
and the next element is added to the sample with a proba-
bility equal to k/n. Another random number of elements is
ignored, and so forth.

I. CHAIN-SAMPLE
The Chain-sample algorithm [31] provides, at any time, a
random sample of size k selected from the last elements of
the stream. It constructs a sample containing one element
selected from the last sliding window of the stream. At first,
the algorithm samples one element from the first window
with a probability equal to min(i,n)

n , where n is the window
size, and i is the index of the element in the window. Once
selected, a successor’s index j is chosen at random for the ith

element from the elements with indexes ∈ [i+1, i+n]. When
the element with index j arrives at the window, a random
successor will be also chosen for it. When the element with
index i comes out of the window, it will be removed from the
sample and substituted by its successor j. To build a sample
containing k > 1 elements, all the previous steps must be
repeated k times.

J. CHAIN+ SAMPLING
To build a sample containing k elements, the Chain+ sam-
pling algorithm [32] builds one sample of size k instead of
constructing and maintaining k independent samples each
of size equal to 1. The algorithm samples each element in
the first sliding window with a probability equal to min(i,n)

n ,
where n is the window size and i is the index of the element
in the window, if and only if it is not present in the sample.
This process is repeated until sampling k distinct elements.

K. PRIORITY SAMPLING
Babcock et al. [31] introduced the Priority sampling algo-
rithm that constructs and maintains a random sample over
a physical sliding window. To construct a sample contain-
ing one element, the priority sampling algorithm assigns a
random priority p ∈ [0, 1] for each element, then selects
the element with the highest priority in the sliding window.
To construct a sample containing k elements, the process
must be repeated k times. In the old version of the prior-
ity sampling algorithm, the weights are assigned randomly

VOLUME 4, 2016 7

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2021.3118605, IEEE Access

Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

without inspecting the arrival time of the element. Also, this
algorithm suffers from all the problems of the Chain-sample
algorithm. These problems will be presented in Section IV.
Therefore, in this work, we implemented the new version
of the Priority sampling algorithm proposed by [33]. The
modified version of the Priority sampling algorithm alters the
traditional algorithm by assigning the weights to the packets
according to their arrival time, their contents, and their impact
on the sample accuracy.

L. RANDOM PAIRING SAMPLING
The Random Pairing (RP) sampling algorithm [34], [35]
constructs and retains a random sample over the most recent
sliding window of the stream. To achieve this, three values
are calculated on each window: the number of expired ele-
ments present in the sample, denoted by c1, the number of
expired elements not present in the sample, denoted by c2,
and the number of all expired elements, denoted by d. When
a sampled element expires, it will be deleted from the sample.
Each new element is added to the sample based on the value
of d. If d = 0, sampling the new element will follow the
Reservoir sampling algorithm [28]. However, if d > 0, the
new element will be added to the sample with a probability
equal to c1

c1+c2
.

M. STREAMSAMP
StreamSamp [36] algorithm is a progressive sampling tech-
nique based on the Simple Random Sampling algorithm.
Once received, stream elements are sampled with a prede-
fined sampling ratio. When the sample size is reached, the
sample will be stored with an order equal to 0, and a second
sample of the same size will be constructed, and so on. As the
number of stream elements increases, the amount of samples
of order 0 also increases. When this number exceeds a certain
limit, StreamSamp merges the two old samples of order 0 into
a single sample by performing a simple random sampling of
rate p = 0.5. The new sample obtained is of order 1, and so
on.

A comparison of the presented algorithms is provided by
Table 3.

III. METHODOLOGY
This paper focuses on studying existing static sampling tech-
niques. The efficiency of a sampling policy depends on its
capability to balance its precision with the computational
resources required. This work investigates the statistical ef-
fect of sampling the traffic stream and the execution time
needed to sample the traffic. Our methodology consists of
using the sampling algorithms presented in in this paper to
summarize a real traffic dataset. This allows us to under-
stand the behavior of these algorithms. In order to quantify
the distortion introduced by the sampling procedures, we
consider comparing different statistical metrics. The overall
quantification of statistical changes between sampled and
unsampled traffic is defined by the Overall Statistic (OS)
calculated as follows [37], [38]:

OS =
|(µ0 − µ)|

µ0
+
|(med0 −med)|

med0
+
|(std0 − std)|

std0
(3)

where µ0 is the real average value estimated before sam-
pling the traffic, µ is the estimated average value of a traffic
calculated after sampling, med0 and med are the median
values of a traffic parameter being estimated for the before
and after sampling respectively, and std0 and std are the
standard deviation values of the traffic estimated before and
after sampling respectively.

Our experiment in Section IV can be thus summarized as
follows:
• Scenario 1 - Without sampling: In this scenario, the

mean, standard deviation, and median of the unsampled
dataset are calculated.

• Scenario 2 - With sampling: In this scenario, the mean,
standard deviation, median, and OS are calculated based
on the sampled data. Different sampling strategies with
different parameters will be considered. The computa-
tional resources and execution time needed for sampling
are also calculated. In the end, a comparative analysis of
both scenarios is carried out.

The dataset used in this work is the NSL-KDD [39] which
has been developed to enhance the KDD CUP 99 dataset.
The main concern with the KDD CUP 99 is the huge num-
ber of duplicate records in the training and testing subsets,
which leads to inaccurate intrusion detection results [39].
In the NSL-KDD dataset, all the redundant records have
been removed. The obtained dataset contains about 150K
records divided into training and testing subsets. The NSL-
KDD dataset consists of 41 attributes and includes 22 attack
types.

IV. EXPERIMENTS AND RESULTS
In this section, we investigate the impact of different sam-
pling policies and sampling rates to measure the distortion
introduced by the sampling process. We aim at isolating a set
of features that are more robust (less distorted) to sampling.
The specs of our machine are RAM: 8 GB, System disk: 450
GB, and processor: 2.7 GHz Intel Core i7.

A. COMPUTATIONAL RESOURCES
The traffic scenario used to evaluate the sampling policies
is the training set of the NSL-KDD dataset which consists of
125.974 records with a size of 18.662 MBytes. The computa-
tional resources of packets sampling techniques are analyzed
according to the execution time which depicts the time spent
in summarizing the traffic. A higher sampling ratio leads to
more packets selected. Thus, intuitively, the computational
resources of sampling algorithms should be proportional
to the sampling rates. The execution times of non-stream
and stream policies presented in this paper are evaluated in
Figures 3 and 4 respectively, based on the sampling ratio
and window size (for stream sampling algorithms).

8 VOLUME 4, 2016

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2021.3118605, IEEE Access

Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

TABLE 3: Advantages and weaknesses of data streams sampling algorithms.

Sampling Algorithm Advantages Weak Points
Simple Random
(SRSFW [20] and
SRSSW [24])

The sample is accurate, convenient, and
representative of the entire stream

Biased sample in case of periodicity in the
data stream
No skewing ability

Deterministic (DETFW
and DETSW) [24], [20]

It provides a sample with an exact size
The sample is representative of the entire
stream
when no periodicity is displayed

Biased sample in case of periodicity in the
data stream
No skewing ability

Chain-sample [31] It provides a sample with an exact size Redundant data in the sample
No skewing ability

Chain+ [32]
It provides a representative sample with an
exact size
without duplication

No skewing ability

Stratified [24]

The use of this algorithm is beneficial
when it is desired to high-
light a specific subgroup
within the data and ensure its presence in
the sample
This algorithm is also used to represent the
smallest, extreme or
rare subgroups of the data in the sample

Unbounded sample size
No policy to choose the sample size
No skewing ability

Systematic [24]

The sample is easy to be built
The sampling process is fast and accurate
since
sampled data are spread over the entire
stream

Unbounded sample size
Biased sample in case of data stream peri-
odicity
No skewing ability

Reservoir [27], [28]
This algorithm is simple and suitable for
streaming environments it is executed in
one pas

Recent elements have less chance of being
sampled
No skewing ability

Backing [29], [30]
This algorithm is suitable for
streaming environments it is executed in
one pas

Performs several passes over the data
No skewing ability

Priority [31] It provides a sample with an exact size No policy for the determination and revi-
sion of the weights

Random Pairing [34],
[35]

The algorithm builds and maintains a uni-
form sample
of fixed size

No skewing ability

StreamSamp [36] The algorithm maintains a sample of a
fixed size

No policy for the determination and revi-
sion of the weights

Figures 3 and 4 confirm the relation between the sampling
ratio and computational resources. Since each sampling pol-
icy selects the data samples differently, different computa-
tional resources are required by each sampling algorithm,
even with the same sampling rate.

Results in Figure 3 show that the deterministic and system-
atic sampling algorithms have the lowest execution time. Re-
garding the SRSFW and stratified sampling algorithms, the
sample may contain duplicated elements. This redundancy
happens when the sampling rate is > 0.1, it arises when an
element is sampled many times in the same jumping window.
This problem becomes more serious when the values k
(sample size) and n (window size) are close to each other.
In order to deal with the redundancy problem, and to sample
exactly k distinct elements from each window, the sampling
process on each window should be repeated until an element

is selected which is not present in the sample. This process
adds significant overhead in terms of runtime, mainly, when
the values of k and n are close to each other.

Figure 5 shows the collision rate of the SRSFW and
stratified sampling algorithms and the theoretical probability
of collision for sampling k elements from a window of size
n. Different sampling rates k/n are used. The window size
is fixed to 10 packets. The theoretical probability of collision
Pcollision is computed as follows:

Pcollision = 1−PSelecting k distinct items = 1− n!

nk(n− k)!
(4)

Figure 5 shows that when the sampling ratio (k/n) is
equal to 50%, 30% of the packets in the constructed sample
are redundant, which will greatly affect the accuracy of the

VOLUME 4, 2016 9

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2021.3118605, IEEE Access

Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

FIGURE 3: Execution time of non-stream sampling algorithms.

FIGURE 4: Execution time of stream sampling algorithms, using a window size = 10.

sample. Thus, the need to remove the duplicated elements.
Figure 5 and Equation 4 show that for a given sampling
ratio, when the values of k and n increase, the collision rate
also increases. Figure 5 also shows that the collision rate
of the SRSSW algorithm is a little bit higher than that of
the stratified sampling algorithm. In fact, with the stratified
sampling algorithm, each packet in the traffic stream must be
added to a subgroup before sampling. After the subgroups are
formed, some elements of each subgroup are selected. Thus,
the collision rate will be lower. Due to this process, building
the sample using the stratified sampling algorithm is more
expensive than with the SRSWF algorithm.

Figure 4 shows the execution time of the stream sampling
algorithms described in this paper. The window size is fixed
to 10 packets. Results show that, like the SRSFW, the exe-
cution time of the SRSSW increases when the sample size
k and the sliding window size n are close to each other,

mainly, when the value of k/n is close to 1. This problem
also occurs because of the redundancy issue that arises when
the sampling rate is > 0.1. Like the SRSFW algorithm,
and in order to avoid duplication in the sample, the SRSSW
selection process is repeated until an element is selected
which is not present in the current sample. Therefore, a con-
siderable additional cost in terms of execution time is added,
mainly, when the value of k/n is high. Even if the SRSSW
and Chain+ sampling algorithms use very similar sampling
procedures, results in Figure 4 show that the difference in
execution time for these two algorithms increases as k/n
increases, and becomes clearer when k/n is > 0.5. In fact,
the Chain+ sampling algorithm minimizes the collision rate
to be equal to that of k/n = k/n − 0.5 when k/n is > 0.5,
as proven in [32], which decreases the execution time of this
algorithm. One can also notice that the priority and chain-
sample algorithms have almost the same execution time.

10 VOLUME 4, 2016

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2021.3118605, IEEE Access

Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

FIGURE 5: Collision rate of the SRSFW and stratified sampling algorithms.

Figure 6 presents the execution time of the stream sam-
pling algorithms for various sampling rates and sliding win-
dow sizes. Three window sizes are considered: 10, 100,
and 1000. The results show a clear trade-off between the
execution time of all these algorithms and the window size:
the execution time becomes longer for a larger window. In
fact, varying the window size leads to different sample sizes
and, therefore, to different computational requirements, even
with the same sampling rate. For instance, to sample 20% of
the most recent traffic leads to a data volume equal to 2/10,
20/100, and 200/1000 for a window size equal to 10, 100,
and 1000 respectively, the required execution time using the
SRSSW is 88, 95, and 111 milliseconds respectively. This
behavior is observed for all stream sampling policies. It is
also observed that there is a stabilization of the execution
time for the DETSW algorithm, as shown in Figure 7. This al-
gorithm has the less variation in the execution time whatever
is the sampling ratio, while the SRSSW exhibits the highest
variation.

B. ESTIMATING TOTAL TRAFFIC STATISTICS

Several monitoring and management activities are carried
out using the measurement of the network. Therefore, and
despite the importance of reducing the execution time of
the sampling process, the sampling policy should describe
the behavior of the network accurately. In this section, we
analyze and compare the ability of each sampling policy in
providing accurate estimations regarding the traffic charac-
teristics.

Our work in this section consists of reducing the size of the
traffic using all the sampling policies described previously
and then, evaluating the statistical measures of the traffic. Our
benchmarking study considers the accuracy of the sampling
process regarding the unsampled (original) traffic stream,
while also comparing each sampling policy with the others.

All sampling policies are evaluated on their ability to provide
samples that accurately represent traffic behavior.

The methodology we adopt in this section is to sample the
NSL-KDD traffic using all the sampling techniques described
previously and then, calculate several statistical measures
to assess the accuracy of the sampling estimates for the
unsampled traffic while comparing each sampling policy
with the others. To achieve this goal, the mean, standard
deviation, and median of traffic stream are estimated before
and after sampling, as shown in Figures 8 and 9. The sam-
pling accuracy is also evaluated through the Overall Statistic
(OS), which represents the relative error of the estimated
mean, median, and standard deviation regarding those of the
original traffic, as detailed Section III.

Table 4 presents the most important numeric features of the
NSL-KDD dataset that can be used to detect the DoS, Probe,
R2L, and U2R attacks, according to Ao et al. [40].

1) DoS attack
Figures 10.c, 11.c, and 12.c show the variation of the OS
metric based on the estimated mean, standard deviation, and
median values of features 5, 7, and 8 using sampled data.
Different non-stream sampling policies and various sampling
rates ∈ [10, 90] are considered. Results in these figures
show that, whatever is the non-stream sampling policy used,
the level of distortion introduced by the sampling process
decreases significantly when the sampling ratio increases. In
fact, when the interval in which packets are sampled from the
network increases, significant periods of network activity will
be considered by the sampling process. Results also show
that, for a given sampling strategy, the estimated OS metric
for features 7 and 8 does not vary significantly when the
sampling ratio is ∈ [70, 90]. For feature 5, the variation of
the OS metric is small when the sampling ratio is ∈ [80, 90].
All these results demonstrate that sampling fewer packets
(less than 90%) does not lead to less accurate estimation.

VOLUME 4, 2016 11

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2021.3118605, IEEE Access

Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

FIGURE 6: Execution time of stream sampling algorithms for different window sizes.

FIGURE 7: Variation of the execution time of stream sampling algorithms, using a window size equal 10.

TABLE 4: Relevant features for each attack type in the NSl-KDD dataset.

Attack Features names Features numbers
DoS source bytes, land, wrong fragment 5, 7, 8
Probe source bytes, srv error rate, diff srv rate, src port rate 5, 28, 30, 36
R2L destination bytes, failed logins, count, dst host error rate 6, 11, 23, 39
U2R root shell, srv count, src port rate 14, 24, 36

FIGURE 8: Traffic statistics estimation for unsampled data.

FIGURE 9: Traffic statistics estimation for sampled data.

Thus, there is a possibility to save computational resources
by collecting fewer packets and achieving a high sampling

12 VOLUME 4, 2016

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2021.3118605, IEEE Access

Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

accuracy.
Figures 10, 11, and 12 show in detail the accuracy of

the estimated mean, standard deviation, and median of the
features 5, 7, and 8, according to the sampling strategy and
sampling ratio.

Results in Figure 10 show that when the sampling ratio is
∈ [80, 90], the accuracy of the mean and standard deviation
metrics is approximately the same and very close to the real
mean and standard deviation values of the unsampled traffic.

Figure 11 shows that for a sampling ratio ∈ [60, 90], the
level of distortion introduced by the sampling process using
the deterministic and systematic sampling is null. Also, for a
given sampling ratio less than 50%, the estimation accuracy
of all the algorithms is highly variable. Results also show that
the WRS-N-W is the worst sampling strategy since it gives
the highest OS value whatever is the sampling ratio.

According to Figures 11.c, one can notice that like feature
5, and for a sampling ratio ∈ [60, 90], the level of distortion
introduced by the sampling process using the deterministic
and systematic sampling is null. For a given sampling ratio
less than 50%, the estimation accuracy of all the algorithms
is also highly variable.

According to Figure 12.c, one can notice that like features
5 and 7, and for a sampling ratio ∈ [60, 90], the level
of distortion introduced by the sampling process using the
deterministic and systematic sampling is null. For a given
sampling ratio less than 50%, the estimation accuracy of all
the algorithms is highly variable. Results also show that the
SRSFW and WRS-N-W are the worst sampling strategies
since they give the highest OS value whatever is the sampling
ratio.

Based on the above discussion, one can conclude that to
estimate the values of features 5, 7, and 8 needed to detect
the DoS attack, the best sampling strategy, and sampling ratio
to apply in order to achieve the lowest distortion level is
the deterministic/systematic sampling with a sampling ratio
equal to 60%. Since the deterministic and systematic strate-
gies require the lowest execution time and computational
resources also, there is a possibility to save computational
resources by collecting fewer packets and achieving a very
high sampling accuracy when using these strategies.

2) Probe attack
Figures 10.c, 13.c, 14.c, and 15.c show the variation of the OS
metric based on the estimated mean, standard deviation, and
median values of features 5, 28, 30, and 36 using sampled
data while considering different non-stream sampling poli-
cies and various sampling rates ∈ [10, 90]. Results show that
whatever is the non-stream sampling policy used, the level of
distortion introduced by the sampling process does not vary
significantly when the sampling ratio is ∈ [70, 90]. Results
also show that for a given sampling strategy the estimated
OS metric for feature 28 does not vary significantly when the
sampling ratio is ∈ [60, 90]. For feature 5, the variation of
the OS metric is small when the sampling ratio is ∈ [80, 90].
All these results show that sampling fewer packets will not

lead to a less precise estimate. Thus, there is a possibility to
save computational resources by collecting fewer packets and
achieving a high sampling accuracy.

3) R2L attack
Figures 16.c, 17.c, 18.c, and 19.c show the variation of the OS
metric based on the estimated mean, standard deviation, and
median values of features 6, 11, 23, and 39 using sampled
data while considering different non-stream sampling poli-
cies and various sampling rates ∈ [10, 90]. Results also show
that whatever is the non-stream sampling policy used, the
level of distortion introduced by the sampling process does
not vary significantly when the sampling ratio is ∈ [70, 90].

4) U2R attack
Figures 20.c, 21.c, and 15.c show the variation of the OS
metric based on the estimated mean, standard deviation, and
median values of features 14, 24, and 36 using sampled data
while considering different non-stream sampling policies and
various sampling rates ∈ [10, 90]. Results also show that
whatever is the non-stream sampling policy used, the level
of distortion introduced by the sampling process does not
vary significantly when the sampling ratio is ∈ [70, 90]. The
comparison of the different sampling algorithms shows that
in general, the sampling precision is high and less variable
when the sampling ratio is ∈ [50, 90].

C. ESTIMATING INSTANTANEOUS TRAFFIC STATISTICS
A common way to understand the traffic behavior is to esti-
mate the traffic statistics instantaneously, in a time interval.
Thereby, the accuracy in estimating the traffic behavior over
time is analyzed through instantaneous mean, median, stan-
dard deviation, and OS metric constantly calculated along the
measurement process.

1) DoS attack
Figures 22.c, 23.c, and 24.c show the variation of the OS
metric based on the estimated mean, standard deviation, and
median values of features 5, 7, and 8 using sampled data.
Different stream sampling policies, various sampling rates
∈ [10, 90], and various window sizes are considered. Re-
sults in these figures show that the Chain-sample algorithm
has the highest OS value, whatever is the sampling rate
(∈ [20%, 90%]) and window size, and the performance of
this algorithm in terms of the OS value decreases when the
sampling rate increases or/and when the window is large. It
is because of the bad quality of the constructed sample since
the number of collisions will increase when the value of k/n
increases. One can also notice that for a sampling rate equal
to 10% and window size equal to 10, the OS value of the
Chain-sample algorithm is very close to that of the SRSSW
algorithm since the collision rate, in this case, is equal to 0%.
When the sampling rate increases, or when the window size
increases, the collision rate will be higher, thus, leading to a
higher OS metric.

VOLUME 4, 2016 13

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2021.3118605, IEEE Access

Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

(a) Standard deviation and median estimation

(b) Mean estimation (c) OS metric.

FIGURE 10: Statistical metrics estimation of feature 5 using non-stream sampling policies.

14 VOLUME 4, 2016

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2021.3118605, IEEE Access

Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

(a) Standard deviation and median estimation

(b) Mean estimation (c) OS metric.

FIGURE 11: Statistical metrics estimation of feature 7 using non-stream sampling policies.

VOLUME 4, 2016 15

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2021.3118605, IEEE Access

Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

(a) Standard deviation and median estimation

(b) Mean estimation (c) OS metric.

FIGURE 12: Statistical metrics estimation of feature 8 using non-stream sampling policies.

16 VOLUME 4, 2016

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2021.3118605, IEEE Access

Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

(a) Standard deviation and median estimation

(b) Mean estimation (c) OS metric.

FIGURE 13: Statistical metrics estimation of feature 28 using non-stream sampling policies.

VOLUME 4, 2016 17

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2021.3118605, IEEE Access

Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

(a) Standard deviation and median estimation

(b) Mean estimation (c) OS metric.

FIGURE 14: Statistical metrics estimation of feature 30 using non-stream sampling policies.

18 VOLUME 4, 2016

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2021.3118605, IEEE Access

Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

(a) Standard deviation and median estimation

(b) Mean estimation (c) OS metric.

FIGURE 15: Statistical metrics estimation of feature 36 using non-stream sampling policies.

VOLUME 4, 2016 19

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2021.3118605, IEEE Access

Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

(a) Standard deviation and median estimation

(b) Mean estimation (c) OS metric.

FIGURE 16: Statistical metrics estimation of feature 6 using non-stream sampling policies.

20 VOLUME 4, 2016

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2021.3118605, IEEE Access

Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

(a) Standard deviation and median estimation

(b) Mean estimation (c) OS metric.

FIGURE 17: Statistical metrics estimation of feature 11 using non-stream sampling policies.

VOLUME 4, 2016 21

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2021.3118605, IEEE Access

Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

(a) Standard deviation and median estimation

(b) Mean estimation (c) OS metric.

FIGURE 18: Statistical metrics estimation of feature 23 using non-stream sampling policies.

22 VOLUME 4, 2016

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2021.3118605, IEEE Access

Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

(a) Standard deviation and median estimation

(b) Mean estimation (c) OS metric.

FIGURE 19: Statistical metrics estimation of feature 39 using non-stream sampling policies.

VOLUME 4, 2016 23

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2021.3118605, IEEE Access

Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

(a) Standard deviation and median estimation

(b) Mean estimation (c) OS metric.

FIGURE 20: Statistical metrics estimation of feature 14 using non-stream sampling policies.

24 VOLUME 4, 2016

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2021.3118605, IEEE Access

Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

(a) Standard deviation and median estimation

(b) Mean estimation (c) OS metric.

FIGURE 21: Statistical metrics estimation of feature 24 using non-stream sampling policies.

VOLUME 4, 2016 25

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2021.3118605, IEEE Access

Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

Figures 22, 23, and 24, and Tables 5, 6, and 7 show that
for all the stream algorithms, except the DETSW the Chain-
sample algorithms, the window size has no considerable
impact on the OS value of features 5, 7, and 8. changing
the window size does not change the OS value. This can be
explained by the fact that the elements are selected in a deter-
ministic manner. Regarding the Chain-sample algorithm, the
OS value increases when the value of the window increases
because of the collision problem. Results also show that the
OS value of the priority sampling algorithm is almost zero
when the sampling rate is ∈ [60, 90]. Results also show that
the OS value of the DETSW algorithm is stable and very
close to 0 when the sampling ratio is ∈ [60%, 90%].

Results in Figure 22 show that while for all the stream
algorithms the OS value reaches almost its minimum when
the sampling rate is equal 90%, the OS value’s variation
according to the sampling ratio is dependent on the sampling
policy. For instance, for the SRSSW, Chain+, Reservoir, and
RP sampling algorithms, the minimum OS value is achieved
when the sampling rate is equal to 80%. For the Backing
algorithms, it is achieved for a sampling rate equal to 60%.
For the StreamSamp algorithm, it is achieved for a sampling
rate equal to 70%.

Results in Figure 23 show that while for all the stream
algorithms the OS value reaches almost its minimum when
the sampling rate is equal 90%, the OS value’s variation
according to the sampling ratio is dependent on the sam-
pling policy. For instance, for the SRSSW, Chain+, and RP
sampling algorithms, the minimum OS value is achieved
when the sampling rate is equal to 80%. For the Reservoir
algorithm, it is achieved for a sampling rate equal to 60%.
For the Backing algorithm, it is achieved for a sampling rate
equal to 20%. For the StreamSamp algorithm, it is achieved
for a sampling rate equal to 30%.

Results in Figure 24 show that while for all the stream
algorithms the OS value reaches almost its minimum when
the sampling rate is equal 90%, the OS value’s variation
according to the sampling ratio is dependent on the sampling
policy. For instance, for the SRSSW and Chain+ sampling
algorithms, the minimum OS value is achieved when the
sampling rate is equal to 70%. For the Reservoir and Stream-
Samp algorithms, it is achieved for a sampling rate equal to
80%. For the Backing algorithm, it is achieved for a sampling
rate equal to 30%. For the RP algorithm, it is achieved for a
sampling rate equal to 60%.

As a conclusion, Table 8 shows the stream sampling poli-
cies and the corresponding sampling rates (∈ [10%, 80%])
that can be used to achieve low OS values for features 5, 7,
and 8.

2) Probe attack
Figures 22, 25, 26, 27, and Tables 5, 9, 10, and 11 show that
for all the stream algorithms, except the DETSW the Chain-
sample algorithms, the window size has no considerable
impact on the OS value for features 5, 28, 30, and 36.
Regarding the DETSW, the OS value remains the same when

the window size changes. This can be explained by the fact
that the elements are selected in a deterministic manner. Re-
garding the Chain-sample algorithm, the OS value increases
when the value of the window increases. Results also show
that the OS value of the priority sampling algorithm is almost
zero when the sampling rate is ∈ [60, 90].

Results in Figures 22, 25, 26, and 27 show that the OS
value of the priority sampling algorithm is almost zero when
the sampling rate is ∈ [60, 90]. Results also show that the OS
value of the DETSW and priority algorithms is stable when
the sampling ratio is ∈ [60%, 90%].

Results in Figure 25 show that while for all the algorithms
the OS value reaches almost its minimum when the sampling
rate is equal 90%, the OS value’s variation according to
the sampling ratio is dependent on the sampling policy. For
instance, for the SRSSW and Chain+ sampling algorithms,
the minimum OS value is achieved when the sampling rate
is equal to 70%. For the Reservoir and RP algorithms, it is
achieved for a sampling rate equal to 80%. For the Backing
and StreamSamp algorithms, it is achieved for a sampling
rate equal to 40%.

Results in Figure 26 show that while for all the algorithms
the OS value reaches almost its minimum when the sampling
rate is equal 90%, the OS value’s variation according to
the sampling ratio is dependent on the sampling policy. For
instance, for the SRSSW, Chain+, and StreamSamp sampling
algorithms, the minimum OS value is achieved when the
sampling rate is equal to 80%. For the Reservoir algorithm, it
is achieved for a sampling rate equal to 40%. For the Backing
algorithm, it is achieved for a sampling rate equal to 60%. For
the RP it is achieved for a sampling rate equal to 70%.

Results in Figure 27 show that while for all the algorithms
the OS value reaches almost its minimum when the sampling
rate is equal 90%, the OS value’s variation according to
the sampling ratio is dependent on the sampling policy. For
instance, for the SRSSW and Chain+ sampling algorithms,
the minimum OS value is achieved when the sampling rate
is equal to 70%. For the Reservoir algorithm, it is achieved
for a sampling rate equal to 80%. For the Backing and
StreamSamp algorithm, it is achieved for a sampling rate
equal to 50%. For the RP it is achieved for a sampling rate
equal to 40%.

As a conclusion, Table 12 shows the stream sampling poli-
cies and the corresponding sampling rates (∈ [10%, 80%])
that can be used to achieve low OS values for features 5, 28,
30, and 36.

3) R2L attack
Figures 28, 29, 30, and 31, and Tables 13, 14, 15, and 16
show that for all the stream algorithms, except the DETSW
the Chain-sample algorithms, the window size has no consid-
erable impact on the OS value for features 6, 11, 12, and 39.
Regarding the DETSW, the OS value remains the same when
the window size changes. This can be explained by the fact
that the elements are selected in a deterministic manner. Re-
garding the Chain-sample algorithm, the OS value increases

26 VOLUME 4, 2016

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2021.3118605, IEEE Access

Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

(a) Window size = 10 (b) Window size = 100

(c) Window size = 1000

FIGURE 22: Statistical metrics estimation of feature 5 using stream sampling policies.

TABLE 5: Variation of the OS value of feature 5 for stream algorithms for different window sizes.

SRSSW Chain Chain+ DETSW Reservoir Backing Priority RP StreamSamp
n = 10 0.899 2.027 0.720 0.643 0.741 0.540 0.568 0.766 0.772
n = 100 0.826 2.376 0.626 0.643 0.982 0.540 0.665 1.045 0.693

n = 1000 0.773 2.865 0.638 0.643 0.825 0.534 0.634 0.976 0.730
OS Average 0.833 2.422 0.661 0.643 0.849 0.538 0.622 0.929 0.732

TABLE 6: Variation of the OS value of feature 7 for stream algorithms for different window sizes.

SRSSW Chain Chain+ DETSW Reservoir Backing Priority RP StreamSamp
n = 10 0.382 1.530 0.332 0.298 0.674 1.117 0.210911657 0.629 0.607
n = 100 0.687 2.552 0.657 0.298 0.929 1.117 0.280 0.925 0.388

n = 1000 0.866 3.381 0.826 0.298 0.710 1.117 0.437 0.757 0.598
OS Average 0.645 2.488 0.605 0.298 0.771 1.117 0.309 0.770 0.531

TABLE 7: Variation of the OS value of feature 8 for stream algorithms for different window sizes.

SRSSW Chain Chain+ DETSW Reservoir Backing Priority RP StreamSamp
n = 10 0.201 0.568 0.181 0.122 0.207 0.406 0.138 0.269 0.239
n = 100 0.260 0.606 0.240 0.122 0.194 0.4184 0.073 0.181 0.133

n = 1000 0.193 0.432 0.183 0.122 0.146 0.404 0.138 0.111 0.185
OS Average 0.218 0.535 0.202 0.122 0.182 0.409 0.116 0.187 0.186

TABLE 8: Lowest achieved OS values according to the stream policies and sampling rates, for DoS attack features.

Sampling PolicyFeature SRSSW Chain Chain+ DETSW Reservoir Backing Priority RP StreamSamp
80% 10% 80% 60% 80% 60% 60% 80% 70%5 0.137 1.245 0.067 0.0004 0.171 0.318 0 0.421 0.104
80% 10% 80% 60% 60% 20% 60% 80% 30%7 0.197 2.06 0.161 0.0002 0.264 0.574 0 0.446662 0.070885
70% 10% 70% 60% 80% 30% 60% 60% 80%8 0.047 0.455 0.028 0.0006 0.076 0.101 0 0.068 0.048

VOLUME 4, 2016 27

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2021.3118605, IEEE Access

Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

(a) Window size = 10 (b) Window size = 100

(c) Window size = 1000

FIGURE 23: Statistical metrics estimation of feature 7 using stream sampling policies.

(a) Window size = 10 (b) Window size = 100

(c) Window size = 1000

FIGURE 24: Statistical metrics estimation of feature 8 using stream sampling policies.

28 VOLUME 4, 2016

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2021.3118605, IEEE Access

Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

(a) Window size = 10 (b) Window size = 100

(c) Window size = 1000

FIGURE 25: Statistical metrics estimation of feature 28 using stream sampling policies.

TABLE 9: Variation of the OS value of feature 28 for stream algorithms for different window sizes.

SRSSW Chain-sample Chain+ DETSW Reservoir Backing Priority RP StreamSamp
n = 10 0.013 0.088 0.009 0.008 0.011 0.006 0.009 0.020 0.021
n = 100 0.0122 0.065 0.007 0.008 0.0154 0.006 0.009 0.020 0.027

n = 1000 0.010 0.083 0.006 0.008 0.017 0.006 0.012 0.016 0.017
OS Average 0.011 0.079 0.007 0.008 0.014 0.006 0.010 0.019 0.022

TABLE 10: Variation of the OS value of feature 30 for stream algorithms for different window sizes.

SRSSW Chain-sample Chain+ DETSW Reservoir Backing Priority RP StreamSamp
n = 10 0.014 0.275 0.012 0.020 0.020 0.030 0.020 0.024 0.020
n = 100 0.036 0.497 0.029 0.020 0.020 0.029 0.014 0.031 0.013

n = 1000 0.029 2.829 0.026 0.020 0.028 0.030 0.019 0.028 0.038
OS Average 0.026 1.200 0.023 0.020 0.022 0.030 0.018 0.027 0.024

TABLE 11: Variation of the OS value of feature 36 for stream algorithms for different window sizes.

SRSSW Chain-sample Chain+ DETSW Reservoir Backing Priority RP StreamSamp
n = 10 0.021 0.891 0.018 0.015 0.0177 0.067 0.018 0.023 0.023
n = 100 0.025 1.475 0.015 0.015 0.024 0.069 0.021 0.025 0.022

n = 1000 0.021 2.471 0.015 0.015 0.029 0.069 0.016 0.017 0.025
OS Average 0.022 1.612 0.016 0.015 0.024 0.068 0.019 0.022 0.023

TABLE 12: Lowest achieved OS values according to the stream policies and sampling rates, for Probe attack features.

Feature Sampling Policy
SRSSW Chain-sample Chain+ DETSW Reservoir Backing Priority RP StreamSamp

80% 10% 80% 60% 80% 60% 60% 80% 70%5 0.137 1.245 0.067 0.0004 0.171 0.318 0 0.421 0.003

28 70% 10% 70% 60% 80% 40% 60% 80% 40%
0.002 0.037 0.002 0.0001 0.001 0.002 0 0.008 0.002

30 80% 10% 80% 60% 40% 60% 60% 70% 80%
0.01043 2.935 0.014 0.0001 0.007 0.02127 0 0.009 0.003

36 70% 10% 70% 60% 80% 50% 60% 40% 50%
0.007 2.463 0.014 0.00004 0.003 0.0193 0 0.003 0.008

VOLUME 4, 2016 29

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2021.3118605, IEEE Access

Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

(a) Window size = 10 (b) Window size = 100

(c) Window size = 1000

FIGURE 26: Statistical metrics estimation of feature 30 using stream sampling policies.

(a) Window size = 10 (b) Window size = 100

(c) Window size = 1000

FIGURE 27: Statistical metrics estimation of feature 36 using stream sampling policies.

30 VOLUME 4, 2016

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2021.3118605, IEEE Access

Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

when the value of the window increases. Results also show
that the OS value of the priority sampling algorithm is almost
zero when the sampling rate is ∈ [60, 90]. Results also show
that the backing sampling algorithm presents the highest OS
value whatever is the sampling ratio.

Results in Figures 28, 29, 30, and 31 show that the OS
value of the priority sampling algorithm is almost zero when
the sampling rate is ∈ [60, 90]. Results also show that the OS
value of the DETSW and priority algorithms is stable when
the sampling ratio is ∈ [60%, 90%].

Results in Figure 28 show that while for all the algorithms
the OS value reaches almost its minimum when the sampling
rate is equal 90%, the OS value’s variation according to
the sampling ratio is dependent on the sampling policy. For
instance, for the SRSSW and Chain+ sampling algorithms,
the minimum OS value is achieved when the sampling rate is
equal to 70%. For the Reservoir and Backing algorithms, it
is achieved for a sampling rate equal to 60%. For the RP and
StreamSamp algorithms, it is achieved for a sampling rate
equal to 80%.

Results in Figure 29 show that while for all the algorithms
the OS value reaches almost its minimum when the sampling
rate is equal 90%, the OS value’s variation according to
the sampling ratio is dependent on the sampling policy. For
instance, for the SRSSW, Chain+, and Backing sampling
algorithms, the minimum OS value is achieved when the
sampling rate is equal to 60%. For Reservoir sampling, it
is achieved for a sampling rate equal to 80%. For the RP
and StreamSamp sampling algorithms, it is achieved for a
sampling rate equal to 70%.

Results in Figure 30 show that while for all the algorithms
the OS value reaches almost its minimum when the sampling
rate is equal 90%, the OS value’s variation according to
the sampling ratio is dependent on the sampling policy. For
instance, for the SRSSW, Chain+, and Reservoir sampling
algorithms, the minimum OS value is achieved when the
sampling rate is equal to 80%. For the Backing sampling,
it is achieved for a sampling rate equal to 50%, for the RP
sampling, it is achieved for a sampling rate equal to 60%, for
the StreamSamp sampling, it is achieved for a sampling rate
equal to 70%.

Results in Figure 31 show that while for all the algorithms
the OS value reaches almost its minimum when the sampling
rate is equal 90%, the OS value’s variation according to
the sampling ratio is dependent on the sampling policy. For
instance, for the SRSSW, Chain+, and StreamSamp sampling
algorithms, the minimum OS value is achieved when the
sampling rate is equal to 70%. For Reservoir and RP sam-
pling algorithms, it is achieved for a sampling rate equal to
80%. For the Backing sampling, it is achieved for a sampling
rate equal to 30%.

As a conclusion, Table 17 shows the stream sampling poli-
cies and the corresponding sampling rates (∈ [10%, 80%])
that can be used to achieve low OS values for features 6, 11,
23, and 39.

4) U2R attack
Figures 32, 33, 27, and Tables 18, 19, and 11 show that for all
the stream algorithms, except the DETSW the Chain-sample
algorithms, the window size has no considerable impact on
the OS value for features 14, 24, and 36. Regarding the
DETSW, the OS value remains the same when the window
size changes. This can be explained by the fact that the
elements are selected in a deterministic manner. Regarding
the Chain-sample algorithm, the OS value increases when the
value of the window increases. Results also show that the OS
value of the priority sampling algorithm is almost zero when
the sampling rate is ∈ [60, 90]. Results also show that the
backing sampling algorithm presents the highest OS value
whatever is the sampling ratio.

Results in Figures 32, 33, and 27 show that the OS value
of the priority sampling algorithm is almost zero when the
sampling rate is ∈ [60, 90]. Results also show that the OS
value of the DETSW and priority algorithms is stable when
the sampling ratio is ∈ [60%, 90%].

Results in Figure 32 show that while for all the algorithms
the OS value reaches almost its minimum when the sampling
rate is equal 90%, the OS value variation according to the
sampling ratio is dependent on the sampling policy. For in-
stance, for the SRSSW, Chain+, and RP sampling algorithms,
the minimum OS value is achieved when the sampling rate is
equal to 80%. For the StreamSamp algorithm, it is achieved
for a sampling rate equal to 50%. For the Reservoir and
Backing sampling, it is achieved for a sampling rate equal
to 70%.

Results in Figure 33 show that while for all the algorithms
the OS value reaches almost its minimum when the sampling
rate is equal 90%, the OS value variation according to the
sampling ratio is dependent on the sampling policy. For in-
stance, for the SRSSW, Chain+, and RP sampling algorithms,
the minimum OS value is achieved when the sampling rate is
equal to 70%. For the Reservoir and StreamSamp algorithm,
it is achieved for a sampling rate equal to 80%. For the
Backing, it is achieved for a sampling rate equal to 50%.

As a conclusion, Table 20 shows the stream sampling poli-
cies and the corresponding sampling rates (∈ [10%, 80%])
that can be used to achieve low OS values for features 14, 24,
and 36.

VOLUME 4, 2016 31

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2021.3118605, IEEE Access

Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

(a) Window size = 10 (b) Window size = 100

(c) Window size = 1000

FIGURE 28: Statistical metrics estimation of feature 6 using stream sampling policies.

TABLE 13: Variation of the OS value of feature 6 for stream algorithms for different window sizes.

SRSSW Chain-sample Chain+ DETSW Reservoir Backing Priority RP StreamSamp
n = 10 0.155 1.624 0.132 0.286 0.311 0.574 0.202 0.273 0.327
n = 100 0.376 2.698 0.353 0.286 0.343 0.575 0.182 0.356 0.340

n = 1000 0.263 3.568 0.240 0.286 0.277 0.572 0.182 0.244 0.354
OS Average 0.265 2.630 0.242 0.286 0.310 0.574 0.189 0.291 0.341

TABLE 14: Variation of the OS value of feature 11 for stream algorithms for different window sizes.

SRSSW Chain+ DETSW Reservoir Backing Priority RP StreamSamp
n = 10 0.065 0.047 0.049 0.098 0.173 0.031 0.099 0.098

n = 100 0.037 0.021 0.049 0.058 0.185 0.066 0.100 0.061
n = 1000 0.074 0.056 0.049 0.074 0.187 0.066 0.076 0.040

OS Average 0.059 0.041 0.049 0.077 0.182 0.054 0.092 0.066

TABLE 15: Variation of the OS value of feature 23 for stream algorithms for different window sizes.

SRSSW Chain+ DETSW Reservoir Backing Priority RP StreamSamp
n = 10 0.012 0.008 0.015 0.020 0.108 0.018 0.012 0.018
n = 100 0.032 0.028 0.015 0.050 0.092 0.038 0.069 0.031

n = 1000 0.0207 0.019 0.015 0.030 0.107 0.038 0.015 0.035
OS Average 0.021 0.018 0.015 0.0335 0.102 0.0315 0.0327 0.0284

TABLE 16: Variation of the OS value of feature 39 for stream algorithms for different window sizes.

SRSSW Chain+ DETSW Reservoir Backing Priority RP StreamSamp
n = 10 0.022 0.018 0.019 0.033 0.027 0.027 0.018 0.019

n = 100 0.018 0.017 0.019 0.029 0.027 0.018 0.022 0.029
n = 1000 0.021 0.019 0.019 0.013 0.032 0.018 0.027 0.020

OS Average 0.020 0.0187 0.019 0.025 0.028 0.021 0.022 0.023

32 VOLUME 4, 2016

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2021.3118605, IEEE Access

Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

(a) Window size = 10 (b) Window size = 100

(c) Window size = 1000

FIGURE 29: Statistical metrics estimation of feature 11 using stream sampling policies.

(a) Window size = 10 (b) Window size = 100

(c) Window size = 1000

FIGURE 30: Statistical metrics estimation of feature 23 using stream sampling policies.

VOLUME 4, 2016 33

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2021.3118605, IEEE Access

Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

(a) Window size = 10 (b) Window size = 100

(c) Window size = 1000

FIGURE 31: Statistical metrics estimation of feature 39 using stream sampling policies.

TABLE 17: Lowest achieved OS values according to the stream policies and sampling rates, for R2L attack features.

Feature Sampling Policy
SRSSW Chain-sample Chain+ DETSW Reservoir Backing Priority RP StreamSamp

6 70% 10% 70% 60% 60% 60% 60% 80% 80%
0.066 3.092 0.097 0.0003 0.099 0.058 0 0.105 0.109

11 60% 10% 60% 60% 80% 60% 60% 70% 70%
0.014 2.198 0.014 0.0006 0.0199 0.055 0 0.039 0.007

23 80% 10% 80% 60% 80% 50% 60% 60% 70%
0.006 2.719 0.002 0.0003 0.002 0.009 0 0.004 0.005

39 70% 10% 70% 60% 80% 30% 60% 80% 70%
0.002 2.525 0.0015 0.0006 0.008 0.021 0 0.0111 0.009

TABLE 18: Variation of the OS value of feature 14 for stream algorithms for different window sizes.

SRSSW Chain+ DETSW Reservoir Backing Priority RP StreamSamp
n = 10 0.136 0.113 0.199 0.084 0.273 0.153 0.293 0.154

n = 100 0.253 0.109 0.199 0.183 0.243 0.166 0.389 0.074
n = 1000 0.159 0.150 0.199 0.194 0.266 0.064 0.178 0.145

OS Average 0.183 0.124 0.199 0.154 0.261 0.128 0.287 0.124

TABLE 19: Variation of the OS value of feature 24 for stream algorithms for different window sizes.

SRSSW Chain+ DETSW Reservoir Backing Priority RP StreamSamp
n = 10 0.075 0.064 0.015 0.081 0.182 0.059 0.100 0.073
n = 100 0.092 0.078 0.015 0.048 0.164 0.042 0.026 0.060

n = 1000 0.050 0.046 0.015 0.032 0.186 0.085 0.02807163 0.042
OS Average 0.072 0.062 0.015 0.054 0.177 0.062 0.051 0.058

TABLE 20: Lowest achieved OS values according to the stream policies and sampling rates, for U2R attack features.

Feature Sampling Policy
SRSSW Chain-sample Chain+ DETSW Reservoir Backing Priority RP StreamSamp

14 80% 10% 80% 60% 70% 70% 60% 80% 50%
0.075 2.112 0.049 0.0006 0.071 0.093 0 0.069 0.088

24 70% 10% 70% 60% 80% 50% 60% 70% 80%
0.006 2.104 0.001 0.0004 0.011714 0.059 0 0.010 0.005

36 70% 10% 70% 60% 80% 50% 60% 40% 50%
0.007 2.463 0.014 0.00004 0.003 0.0193 0 0.0030 0.008

34 VOLUME 4, 2016

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2021.3118605, IEEE Access

Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

(a) Window size = 10 (b) Window size = 100

(c) Window size = 1000

FIGURE 32: Statistical metrics estimation of feature 14 using stream sampling policies.

(a) Window size = 10 (b) Window size = 100

(c) Window size = 1000

FIGURE 33: Statistical metrics estimation of feature 24 using stream sampling policies.

VOLUME 4, 2016 35

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2021.3118605, IEEE Access

Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

V. CONCLUSION AND OPEN RESEARCH CHALLENGES
In this paper, we investigated the statistical impact of network
traffic sampling to quantify the amount of deterioration that
the sampling process introduces with respect to non-sampled
traffic. By performing an off-line analysis of the NSL-
KDD dataset, we carried out an experimental comparison
of existing sampling techniques and studied their impact on
several well-known statistical measures to assess the level
of degradation introduced by sampling. Different sampling
policies were evaluated, and different features and attacks
were considered.

Our study suffers from the following limitations:

• Without loss of generality, in our work, we evaluated
the performance of sampling algorithms on intrusion
detection using the NSl-KDD database. However, there
are other data sets, such as CAIDA [41], CIDDS [42],
etc. In our future work, we aim to consider data from
other modern networks or even real networks.

• Features preprocessing and feature selection process
should be conducted in advance of intrusion detection.
Since the network traffic is enormous, analysis and
intrusion detection become difficult. On the other hand,
there could be a relation between the network charac-
teristics. Some of these features may even be redundant
or irrelevant. Thus, it is necessary to reduce the volume
of traffic data to be processed and analyzed through a
feature selection process. This process identifies the rel-
evant characteristics of the traffic that leads to improved
performance of the IDS. In this work, we referred to
many recent studies to determine the appropriate fea-
tures of each form of attack. We plan in our future
work to study different feature selection algorithms to
determine the most precise one, and therefore, to select
the most relevant features for each attack.

• The NSL-KDD database contains about 150K records
divided into training and testing subsets. It consists of 41
attributes and includes 22 attacks types. These attacks
are of four categories: DoS, probe, R2L, and U2R. In
our future work, we aim to test the impact of sampling
on the detection of many other types of network attacks.

Knowing the traffic parameters, a convenient sampling
algorithm with calculated compromise (accuracy vs. compu-
tational cost) can be configured and fine-tuned accordingly.
Several open issues that would benefit from further studies
can be identified.

• Static vs. dynamic packets sampling. The sampling ratio
impacts directly the accuracy of the built sample [43],
[44]. Static packets’ sampling algorithms have been
used for many years. With these algorithms, all items are
somehow selected randomly, except for the determin-
istic sampling, with a predefined sampling ratio. Nev-
ertheless, given the dynamic nature of network traffic,
static sampling cannot guarantee the estimation accu-
racy and is, thus, poorly suited for network monitoring.
During periods of idle activity or low network loads,

a long sampling interval provides sufficient accuracy
at minimal overhead. However, bursts of high activity
require shorter sampling intervals to accurately measure
network status at the expense of increased sampling
overhead. To preserve the accuracy and provide accurate
estimations, the sampling policy should adapt to the net-
work state. It is worth noting that network devices have
certain limits in terms of resources available for sam-
pling. Some network devices might even stop sampling
during traffic bursts. To address these issues, adaptive
sampling algorithms can be designed and applied to dy-
namically adjust the sampling interval and optimize the
sampling and traffic classification accuracy. Dynamic
sampling algorithms have dynamic sampling rates, this
allows them to control the accuracy of the sample by
controlling the number of measurements to be sampled.
A decision here should be taken in advance to adjust the
sampling ratio, before network traffic change.

• On-the-fly learning. High-speed network traffic is dy-
namic and volatile thus a responsive packets sampling
algorithm is vital for robust and timely anomaly de-
tection. For a sampling algorithm to be responsive,
fast traffic features learning is a prerequisite. Fast and
accurate on-the-fly features learning is an open chal-
lenge to be studied especially with the adequacy of
data mining (such as time series) and artificial intelli-
gence algorithms for this task. In this context, various
prediction and forecasting techniques could be used to
predict network traffic and any potential change in its
characteristics.

• Weighted Sampling Algorithm. As the benchmarking
results showed, not all features are equal in predicting
anomalies. Some features are more sensitive to change
thus can be used as an early warning for potential
anomalies. Additionally, not all packets are equal. De-
signing a multi-feature weighted sampling algorithm
can benefit from sensitivity and accuracy if successfully
configured.

• Data Quality. The arriving packets can be contaminated
(delayed, distorted, etc.) or even lost before reaching
the IDS. This is very frequent in the case of network
congestion, noisy channels, and unstable changes to the
network topology. The missing data can be very random
and sporadic, resulting in very distorted measurements
by the IDS, following the survivor bias. Studying the
impact of missing data or more generally data quality is
also an open issue.

REFERENCES
[1] Mohamed Faisal Elrawy, Ali Ismail Awad, and Hesham FA Hamed.

Intrusion detection systems for iot-based smart environments: a survey.
Journal of Cloud Computing, 7(1):1–20, 2018.

[2] Nathan Tuck, Timothy Sherwood, Brad Calder, and George Varghese.
Deterministic memory-efficient string matching algorithms for intrusion
detection. In IEEE INFOCOM 2004, volume 4, pages 2628–2639. IEEE,
2004.

[3] Mohammad Masdari and Marzie Jalali. A survey and taxonomy of dos

36 VOLUME 4, 2016

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2021.3118605, IEEE Access

Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

attacks in cloud computing. Security and Communication Networks,
9(16):3724–3751, 2016.

[4] Giampaolo Bovenzi, Giuseppe Aceto, Domenico Ciuonzo, Valerio Per-
sico, and Antonio Pescapé. A hierarchical hybrid intrusion detection
approach in iot scenarios. In GLOBECOM 2020-2020 IEEE Global
Communications Conference, pages 1–7. IEEE, 2020.

[5] Ankit Thakkar and Ritika Lohiya. A survey on intrusion detection system:
feature selection, model, performance measures, application perspective,
challenges, and future research directions. Artificial Intelligence Review,
pages 1–111, 2021.

[6] Shigang Chen and Klara Nahrstedt. An overview of quality of service
routing for next-generation high-speed networks: problems and solutions.
IEEE network, 12(6):64–79, 1998.

[7] Michele Colajanni and Mirco Marchetti. A parallel architecture for stateful
intrusion detection in high traffic networks. In Proc. of the IEEE/IST
Workshop on” Monitoring, attack detection and mitigation”(MonAM
2006), Tuebingen, Germany, 2006.

[8] Matthias Vallentin, Robin Sommer, Jason Lee, Craig Leres, Vern Paxson,
and Brian Tierney. The nids cluster: Scalable, stateful network intrusion
detection on commodity hardware. In International Workshop on Recent
Advances in Intrusion Detection, pages 107–126. Springer, 2007.

[9] Giuseppe Aceto, Domenico Ciuonzo, Antonio Montieri, and Antonio
Pescapé. Mobile encrypted traffic classification using deep learning: Ex-
perimental evaluation, lessons learned, and challenges. IEEE Transactions
on Network and Service Management, 16(2):445–458, 2019.

[10] Paul D Amer and Lillian N Cassel. Management of sampled real-time
network measurements. In [1989] Proceedings. 14th Conference on Local
Computer Networks, pages 62–63. IEEE Computer Society, 1989.

[11] Daniela Brauckhoff, Bernhard Tellenbach, Arno Wagner, Martin May,
and Anukool Lakhina. Impact of packet sampling on anomaly detection
metrics. In Proceedings of the 6th ACM SIGCOMM conference on
Internet measurement, pages 159–164. ACM, 2006.

[12] Jianning Mai, Ashwin Sridharan, Chen-Nee Chuah, Hui Zang, and Tao
Ye. Impact of packet sampling on portscan detection. IEEE Journal on
Selected Areas in Communications, 24(12):2285–2298, 2006.

[13] Jianning Mai, Chen-Nee Chuah, Ashwin Sridharan, Tao Ye, and Hui Zang.
Is sampled data sufficient for anomaly detection? In Proceedings of the 6th
ACM SIGCOMM conference on Internet measurement, pages 165–176.
ACM, 2006.

[14] Antonio Pescapé, Dario Rossi, Davide Tammaro, and Silvio Valenti. On
the impact of sampling on traffic monitoring and analysis. In 2010 22nd
International Teletraffic Congress (lTC 22), pages 1–8. IEEE, 2010.

[15] Hu Zhang, Jun Liu, Wenli Zhou, and Shuo Zhang. Sampling method
in traffic logs analyzing. In Intelligent Human-Machine Systems and
Cybernetics (IHMSC), 2016 8th International Conference on, volume 1,
pages 554–558. IEEE, 2016.

[16] Gilles Roudière and Philippe Owezarski. Evaluating the impact of traffic
sampling on aatac’s ddos detection. In Proceedings of the 2018 Workshop
on Traffic Measurements for Cybersecurity, pages 27–32, 2018.

[17] Karel Bartos, Martin Rehak, and Vojtech Krmicek. Optimizing flow
sampling for network anomaly detection. In 2011 7th international
wireless communications and mobile computing conference, pages 1304–
1309. IEEE, 2011.

[18] João Marco C Silva, Paulo Carvalho, and Solange Rito Lima. A modular
sampling framework for flexible traffic analysis. In 2015 23rd International
Conference on Software, Telecommunications and Computer Networks
(SoftCOM), pages 200–204. IEEE, 2015.

[19] Rayane El Sibai. Sampling, qualification and analysis of data streams.
PhD thesis, Sorbonne Université; Université libanaise, 2018.

[20] Rayane El Sibai, Yousra Chabchoub, Jacques Demerjian, Raja Chiky,
and Kablan Barbar. A performance evaluation of data streams sampling
algorithms over a sliding window. In 2018 IEEE Middle East and North
Africa Communications Conference (MENACOMM), pages 1–6. IEEE,
2018.

[21] Qiao Pan, Huang Yong-feng, and Zeng Pei-feng. Reduction of traffic sam-
pling impact on anomaly detection. In 2012 7th International Conference
on Computer Science & Education (ICCSE), pages 438–443. IEEE, 2012.

[22] Raman Singh, Harish Kumar, and RK Singla. Analyzing statistical effect
of sampling on network traffic dataset. In ICT and Critical Infrastructure:
Proceedings of the 48th Annual Convention of Computer Society of India-
Vol I, pages 401–408. Springer, 2014.

[23] Rayane El Sibai, Yousra Chabchoub, Jacques Demerjian, Zakia Kazi-
Aoul, and Kablan Barbar. Sampling algorithms in data stream environ-

ments. In 2016 International Conference on Digital Economy (ICDEc),
pages 29–36. IEEE, 2016.

[24] William Cochran. Sampling Techniques. John Wiley & Sons, 1977.
[25] Pavlos S Efraimidis and Paul G Spirakis. Weighted random sampling with

a reservoir. Information Processing Letters, pages 181–185, 2006.
[26] Pavlos S Efraimidis. Weighted random sampling over data streams. In

Algorithms, Probability, Networks, and Games, pages 183–195. Springer,
2015.

[27] A Ian McLeod and David R Bellhouse. A convenient algorithm for
drawing a simple random sample. Journal of the Royal Statistical Society.
Series C (Applied Statistics), pages 182–184, 1983.

[28] Jeffrey S Vitter. Random sampling with a reservoir. ACM Transactions on
Mathematical Software (TOMS), pages 37–57, 1985.

[29] Phillip B Gibbons, Yossi Matias, and Viswanath Poosala. Fast incremental
maintenance of approximate histograms. In VLDB, volume 97, pages
466–475, 1997.

[30] Phillip B Gibbons, Yossi Matias, and Viswanath Poosala. Fast incremental
maintenance of approximate histograms. ACM Transactions on Database
Systems (TODS), pages 261–298, 2002.

[31] Brian Babcock, Mayur Datar, and Rajeev Motwani. Sampling from a
moving window over streaming data. In Proceedings of the thirteenth
annual ACM-SIAM symposium on Discrete algorithms, pages 633–634,
2002.

[32] Rayane El Sibai, Yousra Chabchoub, Jacques Demerjian, Zakia Kazi-
Aoul, and Kabalan Barbar. A performance study of the chain sampling
algorithm. In 2015 IEEE Seventh International Conference on Intelligent
Computing and Information Systems (ICICIS), pages 487–494. IEEE,
2015.

[33] Rayane El Sibai, Jacques Bou Abdo, and Jacques Demerjian. A new
Priority Sampling Algorithm for the Internet of Things. 2021.

[34] Rainer Gemulla, Wolfgang Lehner, and Peter J Haas. A dip in the reser-
voir: Maintaining sample synopses of evolving datasets. In Proceedings
of the 32nd international conference on Very large data bases, pages 595–
606. VLDB Endowment, 2006.

[35] Rainer Gemulla. Sampling algorithms for evolving datasets. PhD thesis,
Technischen Universitat Dresden Fakultat Informatik, 2008.

[36] Baptiste Csernel, Fabrice Clerot, and Georges Hébrail. Datastream clus-
tering over tilted windows through sampling. Knowledge discovery from
data streams, page 127, 2006.

[37] Aboagela Dogman, Reza Saatchi, and Samir Al-Khayatt. An adaptive
statistical sampling technique for computer network traffic. In 2010
7th International Symposium on Communication Systems, Networks &
Digital Signal Processing (CSNDSP 2010), pages 479–483. IEEE, 2010.

[38] Aboagela Dogman and Reza Saatchi. Multimedia traffic quality of service
management using statistical and artificial intelligence techniques. IET
Circuits, Devices & Systems, 8(5):367–377, 2014.

[39] Mahbod Tavallaee, Ebrahim Bagheri, Wei Lu, and Ali A Ghorbani. A
detailed analysis of the kdd cup 99 data set. In 2009 IEEE Symposium on
Computational Intelligence for Security and Defense Applications, pages
1–6. IEEE, 2009.

[40] Sio-Iong Ao, Mahyar Amouzegar, and Burghard B Rieger. Intelligent
Automation and Systems Engineering, volume 103. Springer Science &
Business Media, 2011.

[41] Paul Hick, Emile Aben, Kc Claffy, and Josh Polterock. The caida ddos
attack 2007 dataset, 2007.

[42] Markus Ring, Sarah Wunderlich, Dominik Grüdl, Dieter Landes, and
Andreas Hotho. Flow-based benchmark data sets for intrusion detection.
In Proceedings of the 16th European Conference on Cyber Warfare and
Security. ACPI, pages 361–369, 2017.

[43] Jonathan Jedwab, Peter Phaal, and Bob Pinna. Traffic estimation for the
largest sources on a network, using packet sampling with limited storage.
Hewlett-Packard Laboratories, Technical Publications Department, 1992.

[44] Baek-Young Choi and Zhi-Li Zhang. Adaptive random sampling for traffic
volume measurement. Telecommunication Systems, 34(1-2):71–80, 2007.

VOLUME 4, 2016 37

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2021.3118605, IEEE Access

Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

SUZAN HAJJ is a PhD student at University
of Bourgogne - Franche-Comté (UBFC), France.
She received her Master’s Degree in Engineer-
ing from the Lebanese University in 2000. Her
main research interests include Intrusion Detec-
tion Systems, Data Streams Pre-Processing, and
Deep Learning.

RAYANE EL SIBAI received her master degree in
software engineering from the Antonine Univer-
sity, Beirut, Lebanon, in 2014. She obtained her
Ph.D. degree in computer sciences from the Pierre
and Marie Curie - Sorbonne University, Paris,
France, in 2018. Currently, she is an instructor
at Al Maaref University, Beirut, Lebanon. Her
research interests include Data streams processing,
Data summarization, Anomaly detection, and Data
quality.

JACQUES BOU ABDO is an interdisci-
plinary researcher with expertise in cybersecu-
rity, blockchain, recommender systems, machine
learning and network economics. Dr. Bou Abdo
currently serves as assistant professor of cyber sys-
tems at University of Nebraska at Kearney. Previ-
ously, Dr. Bou Abdo served as assistant professor
of computer science at Notre Dame University.
He also served as Fulbright visiting scholar at
the University of Kentucky. Dr. Bou Abdo is the

founder of 2 technology startups specialized in cybersecurity and rural
entrepreneurship. Dr. Bou Abdo holds a Ph.D. in Communication Engineer-
ing and Computer Science with emphasis on cybersecurity from Sorbonne
University where he received the highest distinctions. He also holds a Ph.D.
in Management Sciences from Paris-Saclay University.

JACQUES DEMERJIAN is a Full Professor of
Computer Science and the director of LaRRIS
(Laboratoire de Recherche en Réseaux, Infor-
matique et Sécurité) research laboratory at the
Faculty of Sciences at the Lebanese University
(LU), Lebanon. He received his PhD degree in
Network and Computer Science from TELECOM
ParisTech-France in 2004. He has published more
than seventy scientific articles in international
journals / conferences / books chapters. His main

research interests include Body Sensor Network, Intrusion Detection System
and Mobile Cloud Computing. He is an IEEE Senior Member.

CHRISTOPHE GUYEUX obtained the agréga-
tion in mathematics in 2001 and he defended his
thesis in computer science at the University of
Franche-Comté in 2010. He was recruited as an
assistant professor in 2011, then as a Full Pro-
fessor in 2014, same university. His work initially
was about computer security and wireless sensor
networks and is now focusing on artificial intel-
ligence and bioinformatics. He has authored 90
international peer-reviewed journals and as many

conference proceedings.

ABDALLAH MAKHOUL is a full professor in
Computer Science at University of Bourgogne -
Franche-Comté (UBFC), France. He received the
PhD degree in computer science from the Univer-
sity of Franche-Comté (UFC), France, in 2008.
From 2009 to 2019, he has been an Associate
Professor with the University of Franche-Comté.
He is a member of the DISC department (depart-
ment of computer science and complex systems)
of FEMTO-ST Institute, France. He is the head

of the research team OMNI (Optimization, Mobility and NetworkIng). His
research focuses upon the following areas: distributed algorithms, Internet
of things, programmable matter, e-health monitoring and real-time issues in
wireless sensor networks. He has been a TPC chair and member of several
networking conferences and workshops and guest editor and reviewer for
several international journals. He participated in several national and inter-
national research projects.

DOMINIQUE GINHAC received his Master’s
Degree in Engineering (1995) followed by a Ph.D
in Computer Vision (1999) from Univ. Clermont
Auvergne (France). He then joined Univ. Bour-
gogne as an assistant professor (2000) and was
promoted to Full Professor of Computer Vision in
2009. He was head of the Le2i lab from 2016 to
2019. He has recognized expertise in embedded
computer vision, computational imaging, and real-
time image processing. Recently, he has become

interested in deep learning on the edge applied to the analysis of human
activities. He has authored 40 international peer-reviewed journals and over
100 conference proceedings.

38 VOLUME 4, 2016

