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Abstract—Frame theory applied to source field decomposition
facilitates the decomposition of an incident plane wave into a
set of paraxial Gaussian beams. Spatial and spectral localization
properties of such beams allow to bounce them through mul-
tiple reflections when reflecting surfaces are smooth and large
enough as compared to wavelength. Gaussian beam spectral
localization also yields dramatic reduction of the number of
beams contributing to monostatic scattering cross section. An
algorithm taking advantage of those properties is presented and
applied to scattering by a set of blocks simulating an urban-like
environment, with large dimensions as compared to wavelength.
Numerical results will illustrate the method efficiency and will
be compared to Fast Iterative Physical Optics results.

Index Terms—Gaussian beam, Gabor frame, monostatic scat-
tering, Physical Optics

I. INTRODUCTION

The Monostatic Scattering Cross Section (SCS) of a given
object or environment is defined on a grid of directions γ as :

SCS(γ) = 20 log10 (robs |ϕs(γ)/ϕi(−γ)|) (1)

where ϕs(γ) is the scattered far field propagating in the
direction γ at distance robs when a PW propagating in the
opposite direction, with its field denoted ϕi(−γ), is incident
on the scattering object or environment. Calculating wave
interactions for all directions of incidence is computationally
intensive, especially when the problem is of large electrical
size, defined by the large parameter N = (kR)2 with k
being the wavenumber and R the radius of the smallest
circumscribing sphere. The number of scattering directions,
in order to ensure sufficient sampling varies as O(N) for
scattering from/into all aspect directions (2D grid), and as
O(N1/2) for scattering from/into azimuth directions only (1D
grid).

Gaussian beam shooting (GBS) is well suited for problems
involving multiple reflections, due to the spatial and spec-
tral limited extents of paraxial Gaussian beams (GB). This
method is thus a good candidate for calculations of SCS by
large environments involving internal reflections. Frame based

Fig. 1. Urban-like scattering environment.

decomposition provides full representation of incident fields in
the form of Gaussian beam summations [1]. In this work, the
simplest possible algorithm is proposed and tested, relying on
paraxial GB properties.

The second section presents the basics of the frame based
GBS method. The third one presents the application of this
method to monostatic SCS computations in urban-like scenar-
ios as presented in Fig. 1, and specific features of the proposed
algorithm. Numerical results are presented in Section IV
to illustrate the performance of the algorithm, and obtained
results are compared to Fast Iterative Physical Optics (FIPO)
[2] ones in order to determine the conditions of validity of the
proposed algorithm.

II. FRAME BASED GAUSSIAN BEAM SHOOTING

A. Gabor frames and frame decomposition

A Gabor frame in L2(R) is a set of Gaussian functions
obtained by translations of a “mother” Gaussian window in
spatial and spectral domains, and satisfying the following
oversampling property: “The product of translation steps in
spatial and spectral domain is strictly less than 2π”. This
oversampling condition is necessary and sufficient for such



a set to be complete. The mother window is given by:

w(x) =
√√

2/Le−π
x2

L2 , with L being the “width parameter”.
Planar source field distributions can be decomposed into a
two-variable Gabor frame, obtained as the product of two
Gabor frames in L2(R). Each of the frame windows of such
a frame will be denoted wµ(x, y) with µ = (m,n, p, q) ∈ Z4,
(m, p) the translation indices in spatial domain along the x
and y variables, (n, q) the corresponding translation indices
in spectral domain.

For a given planar source distribution, the set of decompo-
sition coefficients on a given Gabor frame is not unique. The
“minimum energy” set of coefficients is obtained by projection
of the source field on a “dual frame”. The dual frame windows
are proportional to the initial frame windows for high enough
oversampling, which will be the case in this work.

B. Gaussian beam shooting and bouncing

Gabor frame windows radiate in the form of Gaussian
beams. The beam axes originate at the centers of the frame
windows, defined by the (m, p) indices, and their axis direc-
tions are defined by the window spectral translations, hence by
the (n, q) indices. If the width parameter L is large enough as
compared to the wavelength, the beam is “paraxial”, which
means that its spectrum is concentrated enough around its
axis direction in order to limit divergence, at least up to a
propagation distance equal to a few times the collimation
distance b = L2/λ.

If a Gaussian beam is incident on a planar surface, and
if its footprint down to an arbitrarily small threshold level,
is not intersecting the surface edges, it is transformed as if
incident on an infinite planar surface. Its reflection is then
easily represented via its plane wave spectrum transformation.
If the beam is paraxial, the reflection operator is considered as
well approximated by its value along the incident beam axis
direction. Thanks to these properties, each beam radiated by a
frame window is reflected in the form of a beam radiated by an
“image frame” window defined in an “image plane”. Bouncing
beams consists of determining image frames corresponding to
successive reflections, and which source windows are reflected
along each succession of reflecting surfaces or “path”.

III. APPLICATION TO MONOSTATIC SCATTERING

A. GBS initialization and approximations

Decomposition coefficients of a plane wave on a Gabor
frame in a given source plane can be derived in analytical
form, by “projection” on frame windows, in the spectral
domain, of the translated delta distribution corresponding to
the plane wave direction of propagation. In order to test the
validity of the simplest possible GBS algorithm, we shall use
these coefficients to initialize the GBS algorithm from source
frames defined on the sides of the smallest parallelepipedic
box containing the scattering environment.

Beams are issued from frames defined in planes containing
a box side. If beam origins are on a wall, beams are con-
sidered as reflected by the wall. If their origin is between
two buildings, beams are launched into the environment, and

bounced on internal walls. The same approximation is used
inside the environment, considering that beams with their axes
impinging on a given wall are reflected by this wall, even if
their field along the edge is not negligible. If the beam axes do
not impinge on a wall, the beams are considered as propagating
in free space.

These approximations greatly simplify the algorithm, and
contribute to minimize the computation time. Diffraction ef-
fects caused by environment discontinuities along building
corners are however not accurately accounted for. Source fields
on walls or between buildings are not correctly represented.
The smaller the window width parameter L, the less inaccurate
the initial field representation, yet the smaller the beam colli-
mation distance, and hence the more diverging the beam, and
the more inaccurate the approximation for beam propagation
and bouncing inside the environment. Numerical tests are thus
necessary to define the range of validity of this fast and simple
algorithm.

B. Algorithm and beam elimination

The algorithm is divided into two parts. The first one leads
to a “beam transfer matrix”: each source beam contributing
to monostatic scattering is transformed into an image beam
multiplied by a product of paraxial reflection operators. The
final result is thus given, for each exterior box side, by a list
of µ indices of source beams, associated with the information
about the “path” followed by the beam (number of reflections
or final reflection coefficient, final image plane).

Not all source beams contribute to monostatic scattering.
For a beam to contribute, the opposite of at least one of
the directions included in the source beam spectrum must
belong to the spectrum of the final beam emerging from the
environment. This condition leads to elimination of most of
the beams.

The second part of the algorithm performs field calculation
for all directions in a grid of scattering directions. To this
end, for each of these directions the algorithm goes through
a loop on all possibly contributing source windows, i.e. with
their spectrum containing the opposite of this direction. Each
of these beams is transformed into a scattered beam, and it
will contribute to monostatic scattering only if the considered
scattering direction is included in the spectrum of this scat-
tered beam. This new condition, again related to the spectral
localization of Gaussian beams, leads to a reduction of the
number of beam field calculations.

IV. NUMERICAL RESULTS

A. GBS computations

Test scenarios will involve different numbers of blocks, with
hard boundary surfaces. Incident waves will be considered as
scalar, which simplifies the algorithm without consequence on
the conclusions which can be drawn from the test computa-
tions. We present here results for the 2×2 “buildings” scenario
of Fig. 1. “Building” height and sides are respectively of length
H = 24 m and S = 25 m. The “street” width is W = 20 m.
Frequencies of interest should be high enough to make the



Fig. 2. Monostatic SCS for λ =0.1 m.

problem computationally intensive, and difficult to address by
Physical Optics. SCS is computed for a grid of azimuthal
directions (half-circle).

Fig. 2 presents the monostatic SCS computed at the 0.1 m
wavelength with the simple GBS algorithm presented in the
previous sections. The frame window width parameter L was
taken equal to 40λ = 4 m, and the frame oversampling was of
2 along each Cartesian variable in a given plane. With these
parameters, the initial number of frame windows, before beam
elimination, is of the order of 107. Beam elimination in the first
part of the algorithm (“beam transfer matrix” computation)
reduces the number of contributing source frame windows
to about 104. Finally, 103 beams or less are contributing to
scattered field into a given direction.

Results obtained for direct reflection by one of the exterior
“walls” can be compared to an analytical solution. Fig. 3
presents such a comparison at the 0.01 m wavelength. Re-
flection occurs on the wall surface where the incident field is
decomposed into frame windows, hence incident and reflected
fields, for each initial frame window, are in the same plane,
and there is no beam propagation. Thus, the smaller the frame
window width parameter L, the more accurate the result, as
mentioned in section III-A. This is confirmed by Fig. 3, where
larger frame window width visibly leads to underestimating
diffraction effects, as can be seen in sidelobe computation.

B. Comparison with Fast Iterative Physical Optics results

We present results obtained at wavelengths not smaller
than 7 cm, and for a simplified scenario involving only a
maximum number of two reflections, as shown in Fig. 4, in
order to make the problem amenable to Fast Iterative Physical
Optics (FIPO). Fig. 5 compares FIPO and GBS results for
directions scattered by faces 1 of both buildings. As observed
in the previous comparison, GBS fits better to FIPO results for
smaller values of L. The conclusion is that in case of multiple
internal reflections GBS accuracy will be sufficient only at
higher frequencies, for beams to be paraxial yet keeping
sufficiently small footprints on “building walls”, and limited
enough transverse extent when propagating in “streets”.

Fig. 3. Comparison of GBS result with analytical sinc solution, for two
different L parameter values.

Fig. 4. Simplified scenario.

Fig. 6 compares FIPO and GBS results at λ = 10 cm, for
directions scattered after two reflections, either by Building 1
face 2 then Building 2 face 1, or vice versa.

C. Computation time variation with problem size

The monostatic SCS of the 2×2 “buildings” scenario of
Fig. 1 is computed by our GBS algorithm first at 0.1 m
wavelength, with the same frame parameters as in Fig. 2,
then at 0.01 m wavelength (ten times smaller), with the same
oversampling parameter, but with different choices for the L
parameter value. The various cases are listed in Table I, and
corresponding CPU times indicated, as well as their variation
with the parameter N , which is multiplied by 100. The number
of scattering directions was multiplied by 10, i.e. O(N1/2),
in order to keep the same sampling of the azimuth angles.
The CPU time at the 0.1 m wavelength was less than 2 s for
10000 scattering directions, with ≈ 0.3 s only devoted to the
first part of the algorithm (beam transfer), the rest of the time
being devoted to field computation.

As can be seen in the table, variation of CPU time with
problem size is highly dependent of the choice of L. Keeping



Fig. 5. Comparison between FIPO and GBS results at λ = 7 cm, for scattering
in directions close to the normal to building faces 1.

Fig. 6. Comparison between FIPO and GBS results at λ = 10 cm, in
directions scattered through two reflections.

the same L value maintains the same CPU time, for a single
scattering direction, for both wavelengths. Assuming that the
GB width parameter is small enough as compared to walls
and street dimensions, and that, at the lowest frequency of
interest, the collimation distance is large enough to ensure
beam collimation through all internal reflections, this choice
is clearly the best one.

V. CONCLUSION

This work aims at testing the ability of a simple frame
based GBS method to compute monostatic SCS of large envi-
ronments involving multiple internal reflections. The method
is clearly well suited for environments composed of planar
surfaces, and first accuracy tests are encouraging. Testing the

TABLE I
GBS CPU TIMES AT λ = 0.01 M, FOR VARIOUS L VALUES, VERSUS CPU

TIME AT λ = 0.1 M

L(m) vs 0.1 m case L = 4 m CPU time (s) CPU time vs N

4 same L 11.3 O(N1/2)
1.2 same b (isodiffracting) 205 ≈ O(N)
0.8 611
0.4 same L/λ 3884 > O(N3/2)

method accuracy in cases when it would really be useful
(problems with more internal reflections at higher frequencies)
is a challenge as such problems can hardly be addressed by
methods with reference accuracy.
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