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Global order routing on exchange networks

Vincent Danos!, Hamza El Khalloufi', and Julien Prat?

1 CNRS, DI ENS, PSL-ENS, INRIA
2 CNRS, CREST, Ecole polytechnique

Abstract. We propose an abstract notion of networks of exchanges with an eye to modelling
the global money market of DeFi (decentralised finance). We formalise routing and arbitrage
on such networks as convex optimisation problems. We provide bounds with closed formulas
in the specific case of Uniswap-like automated markets and a restricted form of cyclic
arbitrage. We compute the associated lower bounds on actual data derived from the
Ethereum blockchain.

1 Introduction

The global money market of DeFi (decentralised finance) allows traders to exchange assets
represented by ERC20 tokens on the Ethereum blockchain. Each money market on a specific pair
of tokens A/B can be seen as a 2-sided platform where liquidity providers transact with liquidity
consumers. There are several implementations of such platforms. Some use the traditional form of
the limit order book [1], but most use the so-called constant function automated market makers
(eg Uniswap v2 [2]) which compute prices algorithmically as a function of their current reserves
in A and B. The intense competition for liquidity and high clonability of the said platforms has
given rise to a dense and complex network (a tiny subgraph of which is shown in Fig. 5). Prior
academic work on such networks [3,1] focusses on local questions, with the exception of the recent
Ref. [7] which looks at cyclic arbitrage (about which more later). Our contribution explores two
global questions centred on liquidity consumers (also known as takers or traders).

The first question is routing: eg “Here I have a 100 ETH, how should I best convert them to
DAISs”. Unsurprisingly, direct routes may not always be best, and convex combination of routes
may dominate any particular path. Fig. 1 gives an actual example of routing a 100 ETH in order
to maximise the amount of DAIs obtained. One sees that the order is split among 7 distinct
money markets.

The second question is arbitrage (aka price consistency): eg in a given state of the network “Is
there any way I can chain operations leading to certain non-zero profit”. We define in this paper
a class of convex optimisation problems which encompasses both the global routing problem and
the arbitrage problem. We show that problems in this class always have solutions. We also show
that optimal arbitrage eliminates price inconsistencies. One can construe this result as saying
that the global network ‘learns’ a consistent set of prices under optimal arbitrage.

For both questions we introduce tractable sub-problems. Specifically, we demonstrate that
arbitraging along cycles, while sub-optimal in general can be efficiently tested and solved. This
leads to computationally cheap lower bounds on profit. For Uniswap price functions, we derive a
closed formula to compute the maximal extractible profit on any given cycle. Putting the two
results together (cyclic arbitrage detection and explicit max profit), we look at actual Ethereum
data and efficiently find lower bounds for several arbitrage opportunities. For routing we introduce
the convex subproblem where one restricts to convex combinations of a given set of independent
paths. It is possible to derive a simple algorithm for optimal convex combinations of Uniswap
price functions, which is of independent interest and that we will publish elsewhere.



Fig.1: A transfer plan using 7 distinct money markets (blue edges). Notice that a third of the
original 100 ETH travels through an indirect path.
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2 Prices, Plans, Profits

Many price functions have been considered to define prices in algorithmic exchanges. We will
use the specific Uniswap function (defined right below) to obtain closed form solutions for cyclic
arbitrage. Up to that point all our development is generic and relies only on the following abstract
definition.

Definition 1 A price function is a map f : Ry — Ry such that f(0) =0, f is monotonically
increasing, strictly concave, bounded, and continuous.

We also sometimes suppose our price functions are differentiable. It will be clear when we do.

The requirements encapsulated in Def. 1 are natural for prices: f(0) = 0 means one gets
nothing for nothing, increasing means one gets more for more, concave means returns decrease,
and boundedness expresses the fact that liquidity reserves are finite.

Notice that a (half) order-book on an A/B pair -ie a price-sorted list of discrete offers (p;, V;)
where V; is an amount of Bs and p; the unit price to pay in A to take that offer- also defines
a price function. It just happens to be piecewise affine (hence is not everywhere differentiable).
Boundedness holds whether liquidity is provided via an order book or a constant function
market-maker.

A simple example of price function is the Uniswap one. For an A/B pair it reads:

f(@) == [B](yx)/(ve + [A]) (1)

where [A], [B] > 0 are the local reserves (or pools) in tokens A and B. The v parameter is such
that 0 <1 —+v < 1, and 1 — v represents the fee extracted by the liquidity providers for every
transaction. It is easy to see that 0 < f(z) < [B]. Hence a Uniswap pair never pays out more



than the reserve however small.® This function satisfies all the requirements of a price function as
defined above. The dual price function which specifies how many As one gets for a given amount
of Bs is obtained simply by exchanging the roles of [A], [B] (not to be confused with f~! which
specifies how many As one needs to spend to obtain a given amount of Bs).

The reserves [A], [B] are modified by every transaction and therefore induce a modification of
the price function -also known as the price impact of the transaction.*

The class of price functions is closed under: sum, composition, pre- and post-composition by
positive scalar multiplication.

Definition 2 An exchange network consists of:

- an undirected multi-graph G = (V, E), without loops
- a fixed chosen orientation for each edge e in E

- a family of price functions (fe; e € E)

We write s(e), t(e) € V for the source and target of an edge e. Hence both s and ¢ have type
E — V;and for A€V, s71(A) is the set of edges emanating from A, while t~1(A) is the set of
edges pointing to A.

Given ¢ = ey, ..., e, a simple path in G, set:

fo="Je, 00 fe

fe is a price function (by composition). The path has to be simple, else the first visit to an edge
may change the reserves, and the second one will find an updated price function. In this paper,
we only rarely consider specific update mechanisms, and almost always work with a given fixed
state of the network of abstract price functions.

An example of such a structure is a snapshot of the Uniswap network. Nodes are ERC20s,
edges are pairs with a chosen orientation. The level of reserves in each pair determines the price
function f.. In reality, the graph part also changes slowly as new nodes and pairs are added.

We now define our main object of interest:

Definition 3 A transfer plan 7 is an element of the standard cone E — R (hence convex). The
support of 7 is the subset of E where T is non-zero.

For each e, 7(e) > 0 specifies the amount of s(e) injected in the price function f,.

There are implicit restrictions in Def. 3 which are worth discussing. We do not consider sliced
orders, ie repeated swaps on the same directed edge. It is known for constant function aMMs that
slicing leads to sub-optimal plans [3]. Also, we do not consider backtracking, ie transfer plans
where an underlying edge is used twice with opposite orientations. This is because each edge is
directed.® Finally, we do not incorporate in our notion of transfer plan the very real possibility
which DeFi agents have, namely to modify the reserves (eg by depositing or withdrawing liquidity
in the various pools of aMMs) and therefore the price functions while trading. It seems unlikely
that backtracking or liquidity modifications could improve transfer plans relative to the objectives
given below, but it remains to be seen.

A plan 7 translates directly in a concrete Ethereum transaction. Because of the existence
of flash loans, at least for most liquid tokens, the order in which each elementary swaps are
performed is irrelevant. We neglect in this model gas costs and flash loan fees.

3 Actually one could redefine f as f(z) = f(co)(zf'(0))/(zf'(0) + f(00)) as f(oo) = [B] the total reserve
in [B], and f'(0) = v[B]/[A] the marginal price of A in B.

4 One could call the Uniswap price function a ‘price state machine’ as it defines a price function for
every state of its internal reserves.

® To express backtracking plans and allow sequences of swaps on e with alternating orientations, one
could use the larger cone of finite sequences E& — Zn RY.



Given (G, f) we can now define the profit map ¥ which maps a transfer plan (an E-vector),
to its resulting balance (a V-vector):

Definition 4 The profit map ¥ : ]Rf — RY derives from the data as follows:

U(r)(A) =y (7)(A) =¥ (7)(4)
Vi (T)(A) = Leer-1(a) fe(T(€))
Vo (T)(A) = Xerca1(ay T(€)

The first component ¥, (7)(A) is the amount of A returned by 7, while the second ¥_(7)(A) is
the amount of A invested by 7. The difference ¥(7)(A) is the balance change of A as a result of
executing 7 -ie the profit (which can be negative!).

We see that:
- U, ()(A) is concave, non-decreasing, bounded, differentiable (if edges are); it is only increasing
and strictly concave in those components 7, such that t(e) = A.
- ¥_(2)(A) is a linear function RY — Ry;
- ¥()(A) is a concave function bounded above by 3~ c;-1( 4y fe(00) (sum of A’s liquidities available
in the network) and ¥(0g) = Oy .

Say a node A is:

- a source in T if U, (T )( )= LU (1)(A) >
- a sink if ¥, (1)(A) >0, ¥_(7)(A )=0
- an intermediate if WJF( J(A) =v_(1)(4) >

For differentiable price functions we can compute ¥’s Jacobian:
W (T +h)(A) =W (T)(A) = Xoeer-1(a)(he fi(T(€)) +0(he)) = DXoercs1(a) her
So the Jacobian matrix of ¥ of dimension V' x F is:

fi(r(e)) ifect™'(A)
JU(1)(Aye) =< —1 ife € s7H(A)
0 else

(Note that as G is loopless, no e is both in s71(A4) and t~1(A).)

As said, a transfer plan also has a side effect (here a monoid action) on the price functions
which we denote by f. —7 7(e) - fe; that is to say if f. is the price function of edge e, and the
amount 7(e) is injected in e, we write 7(e) - fe for the new price function. We also write more
generally 7-W for the new profit function induced by the execution of plan 7. We leave this action
implicit and just ask that it verifies the no-slicing property:

W(Tl —|—T2) > W(Tl) + 71 'W(Tz)

This inequality expresses the fact that no profit can be made by simply slicing a plan in two
parts. It is easy to see that Uniswap price functions satisfy no-slicing, and, therefore, so do profit
functions derived from Uniswap price functions.

We can represent some of the plans defined above in a more diagrammatic way. Fig. 1
(retrieved from the linch price aggregator web site) gave an example with a unique source ETH
and unique sink DAT and one intermediate node USDC (with zero balance). The plan 7 invests
at ETH and collects the returns at DAIL: ¥_(7)(ETH) = z, ¥ (7)(ETH) = 0; ¥_(7)(DAI) = 0,
W, (7)(DAI) = y; y can be computed as the composite function of = indicated by the diagram.

Diagrams are convenient ways to represent those plans that have only sources, sinks, and
intermediates. Every diagram gives rise to a plan. Not every plan is a diagram, but with respect
to some of the objectives functions presented in the next section, optimal ones will be.



3 Orders, routes, arbitrage

We define now a number of convex problems for transfer plans in standard form [5, §4.2.1]. In
each case we ask whether the problem is feasible and has a bounded objective function. At the
end of the section, we prove the existence of solutions for these problems (provided they are
feasible). As profit functions are not strictly concave in all coordinates, the solutions may not be
unique in general.

3.1 Smart order routing

Recall the routing question in the introduction: “what is the maximum amount of DAI I can get
for 100ETH using all aMMs and dexes available?”
This question can be recast as the forward routing problem with A # B, a € R,

max ¥(7)(B)
sor(a : A, B) = with ¥(1)(A) > —a (2)
U(r)(C)>0,C+#AB

For a plan to satisfy the constraints (aka be feasible), it should not cost more than a : A (but
could invest more), and have non-negative balance for C's which are neither A nor B. The zero
plan Op satisfies the constraints, so the problem is feasible.

An optimal 7 will have ¥(7)(A4) = —a, iff A and B are connected in G. One says the constraint
is active in this case. Indeed, pick any path ¢ from A to B in G, if there is some unspent A in 7,
ie ¥(7)(A) > —a one can push the remainder ¢’ > 0 through ¢ to obtain f,(a’) > 0 additional
Bs. Conversely, if there is no possible way to use some A to get some B, the amount of A spent
is indifferent. Likewise, the C constraints will be active for optimum 7 if connected to B.

We also see that for the routing problem to be sensible, there must be a compatibility with
the orientation of G in the sense that directed paths must exist between inputs and outputs of
the problem. Else the problem is degenerate.

As the user may have several types of tokens on hand, it makes senses to generalise the above
allowing for multiple inputs (but still one output):

max ¥(7)(B)
sor(ay : A1,...,apn : Ap, B) = with ¥(7)(4;) > —a; (3)
U(T)(C)>0,C # A;,B

What about the inverse question “what is the minimum amount of ETH I need to spend to
get 100DATI?”. This question can also recast as the backward routing problem with A # B, with
b S R+Z

max ¥(7)(A)

sor(A,b: B) = with ¥(7)(B)>b (4)
v(T)(C)>0,C#A,B
A feasible plan is one that pays > b tokens of type B and has positive balance on all C's. Differently
from the forward problem, the backward feasibility set may be empty. Suppose the only edge in G
joins A to B and b > f.(c0). No matter how much money one injects on the A side, it will never
obtain b. If the feasibility set is not empty, an optimum plan will strive to minimise the expense
in A. Note that ¥(7)(A) will be negative at optimum, unless there is an arbitrage opportunity
(which user could take, see below).



So far the objectives only concern one output. To generalise to multi-output plans, we can set
a reference price p € RY and use it to scalarise the problem [5, §4.7.4].
For a € Ry, ¥ < 0y, we define:

max (p,¥(7))
sor(p,a : A) = with W_( )(A) <a (5)

w(r) = vo

Here a feasible plan must invest no more than a : A, and respect an overall budget limit ).
Hence there is always the zero plan.

3.2 Arbitrage
On to the price consistency problem:

_ max ¥(7)(A)
arb(4) = Gith w(r) > 0 (6)
A feasible plan is any that results in a non-negative balance for all tokens. It is feasible as
Op satisfies constraints. The optimal value will therefore also be non-negative. Of course the
interesting question is qualitatively whether there is a non-zero solution, and quantitatively how
to compute it. As above one can prove that any solution will activate the constraints ¥(7)(B) =0
for B # A.

As in the routing problem, one can scalarise the multi-output version of this problem by
maximising (p, ¥ (7)) under the free-lunch constraint ¥(7) > Oy

Assuming that ¥ satifies no-slicing:

Proposition 1 The arbitrage problem (6) is idempotent.

Proof: Let 77, 73 be two successive optimal plans. We compute:
V(i +73) Znat V(1) + 71 - ¥(15) 20

where recall 7 - ¥ is the profit function after the execution of 7. The sum 7 + 75 represents
the fused plan. The first inequality is the no slicing condition defined earlier (joining orders
on the same edge is always better). By definition, both terms on the rhs of this inequality are
positive, and, therefore, so is the lhs. In other words 77 + 75 is feasible. It also follows that
V(1 4+ 15) > ¥(77), and, therefore, by optimality of 7f, it must be that 73 = 0. O

In the differentiable case it is enough to look near the zero plan to detect non-zero arbitrage.

Proposition 2 There is a non-zero solution to the arbitrage problem iff there exists € > Og, such

that J&(0)(€) > 0 with at least one coordinate J¥(0)(e)(A) > 0.

Proof: The if part is clear. The only if part follows from the fact that ¥ is concave. To see this
pick a 7 (not necessarily optimal) such that ¥(7)(A) > 0, and choose ¢ € (0, 1):

U(tr) =v((1 —t)0g +tr) > (1 — t)¥(0p) + t¥ (1) = t¥(7)

where we use the fact that ¥ is concave (in each argument) and ¥(0g) = Oy .
By definition of the Jacobian:

w(tr) = JE(0)(tr) + o([|t]l1)



It follows that for ¢ > 0 small enough, J¥(0)(e)(A) > 0, with e = ¢t7. O

The criterion implies that at least one ¢, > 0. Keep in mind that the arbitrage may be very
small (see lower bound examples later). The criterion says nothing about its magnitude; it merely
gives a direction € in the cone of plans in which to look for one.

Using the expression obtained earlier for J(¥), we can rephrase the criterion as follows:

Corollary 1 Problem (6) has a non-zero solution iff there is € € ]Rf such that for all A€ V:

Zeerl(A) Ji(0)ee > Ee/esﬂ(A) €e’
and for at least one A the inequality is strict.

For concrete price functions such as Uniswap’s with derivatives at zero which are 0-homogenous
in the reserves, a rescaling of these reserves by a positive coefficient leaves the criterion invariant.

3.3 Existence
Except for problem (5), problems considered so far have the following form:

max h(¥(1))
with (1) > 1o (7)

with b : RY — R a continuous function, ¢y < Oy.

Proposition 3 The feasible set C = {7 | ¥(7) > 1o} of problem (7) is compact and non-empty
in RY ; therefore problem (7) has solutions.

Proof:

First C' is non-empty as O is in C.

Second C = NA¥(7)(A) " 1ho(A), 00) is closed in RE, as ¥(7)(A) is continuous.

Suppose C is not bounded. Pick a sequence 7,, € C such that ||7,]|cc > n, and e, € F such
that ||7n]lcc = Tn(en). As E is finite, there must a subsequence of e, which is constant and
equal to some ey with source A. Let 7/, be the associated subsequence of plans. By construction
7] (€g) = 0.

For general reasons, we have:

W (7)(A) < X fe(o0) = 7(eo)

hence ¥(7),)(A) — —oo which contradicts the budget constraint ¥(7)(A4) > g(A).
As h o ¥ is continuous, the second point follows. (I

4 Lower bounds

The problems considered in the preceding section may have solutions, but the proof hardly tells
us how to find them. In this section, we add new feasibility constraints and derive simpler and
tractable subproblems which will give lower bounds to the original ones.

In the appendix we further specialise to Uniswap’s price functions and obtain closed formulas.



4.1 Routing on independent paths

Let us return to the forward routing problem with source A and target B. Fix (¢;; 0 < i < n)
a family of independent paths in G from A to B with underlying edge and node sets £ C E,
V' C V, and strictly concave price functions.

We restrict the forward A/B routing problem (2) by restricting plans to have their support
included in E’. This subproblem is again convex, evidently. All nodes C € V' \ {A, B} have
non-negative balance by definition, but we have noticed already that optimal solutions of the
original problem satisfy ¥ (7*)(C) = 0 (C's are intermediates). This leads us to an alternative and
equivalent formulation of the subproblem:

e A= G ©

with A,, the simplex of dimension n — 1, where n is the number of support paths. The quantity
t; represents the fraction of the original budget a allocated to path ¢;.

Write ¥, (t) := >, ¢i(tia) for the new objective function.

For any convex combination u +v =1, u,v > 0:

A

Uo(u(ts, ... tn) +0(51,...,50)) = >_; fo. (uti +vs;)a)

= >, fg,(utia + vs;a)

> Yo ufe,(tia) + 32, vfe,(sia)
u Zz fd%‘ (tia‘) +v 21 f¢i (Sla’)
wWy(ty, ... tn) + 0¥, (51,...,5n)

hence ¥, is stricly concave, as the ¢;s are.
We have proved that for any choice of a family of paths:

Proposition 4 The restricted forward routing problem (8) has a unique solution t*; moreover,
its optimum is a lower bound to that of the unrestricted forward routing problem (2).

Not every plan can be expressed as a sum of independent paths. There seems to be a natural
intermediate and possibly tractable subproblem, where one maximises over diagrams. This is a
larger subproblem as is evident from the example Fig. 1 which is not a sum of independent paths
(because of the last USDC/DATI leg). Extending this proposition to diagrams would improve the
lower bound. However, it is unclear how to do this as diagrams (say with one source, and one
sink) do not form a convex subset of the plans.

4.2 Arbitraging simple cycles

Let us return to the arbitrage problem (6) with source A. Similarly to the routing problem, we
restrict the arbitrage one. Specifically, we ask for plans which are supported by a given simple
cycle going through A. The restricted problem is still convex as are all subproblems based on
restriction on the support. Also, it is clear that the original problem has solutions that are not
supported by a cycle, so this approach will only provide lower bounds, in general.

Let ¢ be a directed cycle in G. One needs only to direct edges in the cycle all in one direction
or the other. As constraints will be active for solutions of the subproblem, we have an alternative
and equivalent formulation:

arb(a : A, ¢) = si)}i ?éaﬂ)@: “ 9)



Note that fs(a) — a is the profit function associated to the unique plan 7 with 7(e) = a for the
only edge e in ¢ with source A, which induces a zero profit at every other node of the cycle.
The only optimisation variable is now a. As fy is a strictly concave price function:

Proposition 5 The cyclic arb subproblem has a unique solution (possibly trivial).
The arbitrage criterion simplifies to:
Proposition 6 The cyclic arbitrage problem (9) has a non-zero solution iff:
f3(0) = Tleey fe(0) > 1

Using the argument of the proof of Prop. 2, one can show that the set of as such that fy(a) > a
is a compact interval of the form [0, ag]. The solution is somewhere in between and is non-trivial
iff 0 < ayp-

5 Cyclic arbitrage: the Uniswap case

Consider again the Uniswap graph, where nodes are ERC20 tokens, edges are pairs of reserve
pools with fees 0 < 1 — v <« 1 (possibly different in each direction). As above the reserves of an
A/ B edge are written [A], [B] and we define the ratio pap = [B]/[A] -so that the marginal price
of Ain B is yappas.

5.1 Closed formulas for arbitrage

To simplify notations we consider triangular cycles on tokens A, B and C.
We have a profitable triangular arbitrage if:

Swap b Swap Swap
C

ag ay, with ag < aq
We can specialise the arbitrage criterion of the main text as follows:

Lemma 1 (cyclic arbitrage): A triangular cycle is arbitrage-free iff:

YapvBcYCA < papppcpca < (YapyBcyca) ! (10)

Although we have already proven this result, it is instructive to redo the proof in this special case,
as composition of Uniswap price functions can be computed explicitely. Specifically, we have:

PCA
PCBPBA i_i_ PCBPBA + pcB + 1
YcavBcYap a0 ' vcaveclAlap ' vcalBlsc [Clca

a; =

To have a non-zero arbitrage we need to have ag < ay:

o — PCA >a
1= TpcBpBa 1 PCBPBA + pcB I 1 0
YCAYBCYAB Qo YcavsclAlas YcalBlsc [Clca

Equivalently:

YABYBCYCAPABPBCPCA — 1
YAB + YBCYABPAB + YCAYBCYABPABPBC
[Alas [Blsc [Clca

0<ag<




which can always be achieved by choosing ag small enough, provided yapYpcycapapcpca > 1,
and the conclusion follows.[]

One sees that arbitrage can only exist in one orientation of the cycle.

In case of no fees, (yap = YBc = vca = 1), in order for the triangular cycle to be arbitrage-
free, we need to have papppcpca = 1, meaning that the product of marginal prices should be
equal to 1. In the presence of fees the no-arbitrage zone is ‘thicker’ so to speak.

The explicit calculation shows that the arbitrage condition itself is homogeneous (invariant
under a rescaling of the reserves). Next, we compute the max extractable profit and will se that
the actual reserve sizes do matter.

(a) In red arbitrageable cycles among all existing cycles.

WETH

(b) Isolated arbitrageable cycles.

Fig. 2: Example of arbitrageable cycles in Uniswap.

Proposition 7 In case of the existence of a triangular arbitrage, we obtain the following:

10



— The optimal input af that mazimises the arbitrage profit is:

YCAYBCYABPABPBCPCAAQ

—agp)
YAB YBCYABPAB YCAYBCYABPABPBC
([A]AB + [Blsc + [Clca Jao +1

max(a; — ag) = max(
ag ag

VYcaVYBcYaBpPABPBCPCA — 1 1
YAB + YBCYABPAB + YCAYBCYABPABPBC ( )
[Alas [Blsc [Clca

ap =

— The optimal output a] that maximises the arbitrage profit obtained from this arbitrage
operation 1s:

o = YCAYBCYABPABPBCPCA — \/YCAYBCYABPABPBCPCA

1 YAB | YBCYABPAB | YCAYBCYABPABPEC (12)
[Alas [Blsc [Clca
— The mazximum profit obtained from this arbitrage operation is:
—1)2
Profit* = at — af = (VYcavBcYABPABPBCPCA — 1) (13)

YAB + YBCYABPAB + NYCAYBCYABPABPBC
[Alas [Blsc [Clca

The above results can be obtained by straightforward computations. There are few things
worth observing. If one rescales each reserves by a coefficient A > 0, the arbitrage profit is also
multiplied by the same coefficient. In other words the max arbitrage profit is homogeneous of
degree 1 in the size of the reserves.

Closed formulas for max profit for Uniswap price functions give explicit lower bounds on
optimal values for the corresponding original problems. One would also think that lifting solutions
of the subproblems may give good initialisers to the original ones.

If there is an arbitrage, the arbitrageur can choose to start from any origin of the cycle. One
may wonder whether the relative variation of the arbitrageur’s portfolio depends on this choice.

Proposition 8 If the external prices of the tokens present in the cycle do not change before and
after the execution, then the maximum profit is independent from the origin.

Proof: We position ourselves from an arbitrageur perspective. We suppose as above that
the cycle is a triangle to simplify the notations. We also suppose that the arbitrageur possesses
in her/his portfolio a sufficient quantities of tokens A, B and C, greater than af, b§ and cf
respectively. Initially, we also assume the existence of an external liquid market where the
arbitrageur can exchange its tokens against a reference token R (it can be euros or a stable coin
for example).

We suppose the existence of arbitrage, let X be one of A, B, C, x the optimal input quantity
that maximises the arbitrage profit and p% the price of X in R.

We can express the value in R of the portfolio part containing X before and after the arbitrage
execution (Vj}, and V%, respectively), as follows:

Vj%f) = xépﬁo and Vé = x*{pﬁl
The percentage variation in the value of the portfolio part containing X is given by:

X X *
A= Vie — Vor _
=~ x —f*ﬂ'px—l
Vor To R

where Tpx = pgl / p%fo measures the change of price of X before and after the arbitrage.
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From the preceding proposition we have:

*

] _ YCAYBCYABPABPBCPCA — /YCAYBCYABPABPBCPCA

. =

x VYcAYBCYABPABPBCPCA — 1

Hence we can derive explicitly the relative change in wealth of the optimal arbitrageur:

A = \/YABYBCYCAPABPBCPCAT,X — 1

which is positive if pgl > pﬁo, and, if prices stay the same, is indeed independent of the choice of
the origin X. O

5.2 Some empirical results

As of the 15th of December 2020, Uniswap contained 26139 pairs (WETH being connected to
more than 12365 tokens) and more than 965 triangular cycles. We analyzed the data obtained
from Etherum blockchain from block 11299400 to 11360599 (from 21/11/2020 to 30/11/2020) for
the 200 most liquid pairs. We selected 11 triangular cycles that generated the maximum profits
per block during this period on Uniswap:

WETH, AKRO, USDC]
WETH, DAI, HEGIC]
WETH, sUSD, BASED]

[

[

|

[WETH, DAL USDC]
[WETH, DAL USDT]
[USDT, USDC, TOMOE]
[
[
[
[

WETH, USDT, USDC]
WETH, WBTC, USDC]

For each block we look for arbitrageable triangular cycles. Once detected, we compute the
maximum profit per cycle and per block during the whole period. We plot the maximum profit
(measured in USD) per block for each of the 11 selected triangular cycles. One can see that some
of the optimal arbitrage profits disappear instantly (ie have a one block life time). Others last
longer. A key difference with Ref. [7] is coverage. Their data covers Uniswapv2 for a much longer
larger period of time and does not look for prediction of cyclic arbitrage on restricted set of
tokens, as we do, but for detection thereof. And indeed, their findings show larger actual profits
than the potential ones which our small scale data experiment predicts.

6 Conclusions

We have represented a class of global routing problems on networks of money markets as convex
optimisation problems on a suitable domain of transfer plans. We have shown that feasible problems
in this class have solutions (maybe not unique). We have also built tractable subproblems which
allow one to find efficiently lower bounds to the original problems.

Preliminary data analysis shows the presence of non-trivial cyclic arbitrage opportunities (see
appendix), and a fortiori general ones. There is also evidence of substantial gains from non-trivial
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HEGIC/DAI DAI/WETH WETH/HEGIC

AKRO/USDC USDC/WETH WETH/AKRO

|
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(a) [WETH, AKRO, USDC]. (b) [WETH, DAL, HEGIC].
e loshla Lh. 4 R ] ] . i J J\MJ*‘—.&M
(c) WETH, sUSD, BASED]. (d) [WETH, USDC, TOMOE].

USDT/DAT DAI/WETH WETH/USDT

USDC/DAL DAI/WETH WETH/USDC

— KL L

/
5 /'/
I
- I\ | S I | S .

(e) [WETH, DAI, USDC]. (f) [WETH, DAI, USDT].

Fig. 3: Maximum profit (USD) per cycle and per block.

routing (Fig. 1). So there is undeniably a practical interest in solving exactly or approximately,
and efficiently, these global problems. All the more so if liquidity continues to fragment in DeFi,
increasing the complexity of optimal routing. Substantial liquidity migrations on DeFi’s money
markets have happened, and it is unclear if and when liquidity will aggregate.

One limitation of our approach is that the problems before and after executing a given plan
are related but here we do not exploit that information. So there is room for designing on-line
versions of the above problems of which the amortised cost could be vastly improved - compared
to resolving anew the problem at each update. A minimal way to exploit that relation would be
to use a former optimum as initial data for a new gradient descent on the updated problem.

Also we have ignored gas fees as well as the uncertainty generated by the asynchrony inherent
on blockchain-based smart contracts: the state of the world at the time the problem is solved,
may be very different from the state at the time the corresponding instructions are executed. It
would be interesting to include both aspects of this uncertainty (gas costs and asynchrony) in the
problem for more robustness.
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USDT/TOMOE TOMOE/USDC USDC/USDT USDT/TOMOE TOMOE/WETH WETH/USDT

(a) [USDT, USDC, TOMOE]. (b) [WETH, USDT, TOMOE].

USDT/USDC USDC/WETH WETH/USDT USDT/YFV YFV/WETH WETH/USDT

(c) [WETH, USDT, USDC]. (d) [WETH, USDT, YFV].

WBTC/USDC USDC/WETH WETH/WBTC

S A ‘/Z'"/\' M L‘ M

(e) [WETH, WBTC, USDC].

Fig. 4: Maximum profit (USD) per cycle and per block.
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A The Uniswap graph

Fig. 5 proposes a view of the global Uniswap money market [2] restricted the top 64 ERC20
tokens and their 283 Uniswap pairs. It is worth stressing that the actual graph of interest for
routing and arbitrage is far more complex as it includes many more automated market makers
(sometimes with considerable liquidity) as well as other forms of decentralised exchanges.
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Fig. 5: The top 64 ERC20s (in market cap) and their pairs on Uniswapv2: there is an edge between
two nodes if there exists a Uniswap pair between them (Nov 2020).

B Some empirical results

As of the 15th of December 2020, Uniswap contained 26139 pairs (WETH being connected to
more than 12365 tokens) and more than 965 triangular cycles. We analyzed the data obtained
from Etherum blockchain from block 11299400 to 11360599 (from 21/11/2020 to 30/11/2020) for
the 200 most liquid pairs. We selected 11 triangular cycles that generated the maximum profits
per block during this period on Uniswap:

[WETH, AKRO, USDC]
[WETH, DAL, HEGIC]
[WETH, sUSD, BASED]
[WETH, USDC, TOMOE]
[WETH, DAI USDC]
[WETH, DAL USDT]
[USDT, USDC, TOMOE]
[WETH, USDT, TOMOE]
[WETH, USDT, USDC]
[WETH, WBTC, USDC]
[WETH, USDT, YFV]
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For each block we look for arbitrageable triangular cycles. Once detected, we compute the
maximum profit per cycle and per block during the whole period. We plot in Figure 7 the
maximum profit (measured in USD) per block for each of the 11 selected triangular cycles. One
can see that some of the optimal arbitrage profits disappear instantly (ie have a one block life
time). Others last longer.

(a) [WETH, AKRO, USDC]. (b) [WETH, DAI, HEGIC].

‘TOMOE/USDC USDC/WETH WETH/TOMOE

SUSD/$BASED SBASED/WETH WETH/sUSD

.L}\.LA_AL.L.IJ__AJLL..LJ..—_.._L | L e

(c) [WETH, sUSD, BASED]. (d) [WETH, USDC, TOMOE].

USDC/DAL DAI/WETH WETH/USDC

(e) WETH, DAI, USDC]. (f) [WETH, DAI, USDT).

Fig. 6: Maximum profit (USD) per cycle and per block.
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(a) [USDT, USDC, TOMOE]. (b) [WETH, USDT, TOMOE].

USDT/USDC USDC/WETH WETH/USDT

USDT/YFY YFV/WETH WETH/USDT

(c) WETH, USDT, USDC]. (d) [WETH, USDT, YFV].

WBTC/USDC USDC/WETH WETH/WBTC

b

(e) [WETH, WBTC, USDC].

Fig. 7: Maximum profit (USD) per cycle and per block.

17



	Introduction
	Prices, Plans, Profits
	Orders, routes, arbitrage
	Smart order routing
	Arbitrage
	Existence

	Lower bounds
	Routing on independent paths
	Arbitraging simple cycles

	Cyclic arbitrage: the Uniswap case
	Closed formulas for arbitrage
	Some empirical results

	Conclusions
	The Uniswap graph
	Some empirical results

