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Abstract

The 1-2-3 Conjecture, raised by Karoński, Łuczak and Thomason, states that almost every
graph G admits a proper 3-labelling, i.e., a labelling of the edges with 1, 2, 3 such that no
two adjacent vertices are incident to the same sum of labels. Another interpretation of this
conjecture, that may be attributed to Chartrand et al., is that almost every graph G can be
turned into a locally irregular multigraph M , i.e., with no two adjacent vertices having the
same degree, by replacing each of its edges by at most three parallel edges. In other words,
for almost every graph G there should be a locally irregular multigraph M with the same
adjacencies and having a relatively small number of edges. The 1-2-3 Conjecture, if true,
would indeed imply that there is such an M with |E(M)| ≤ 3|E(G)|.

In this work, we study proper labellings of graphs with the extra requirement that the
sum of assigned labels must be as small as possible. In other words, given a graph G, we
are looking for a locally irregular multigraph M∗ with the smallest number of edges possible
that can be obtained from G by multiplying edges. This problem is actually quite different
from the 1-2-3 Conjecture, as we prove that there is no absolute constant k such that M∗ can
always be obtained from G by replacing each edge with at most k parallel edges.

We investigate several aspects of this problem, covering algorithmic and combinatorial
aspects. In particular, we prove that the problem of designing proper labellings with minimum
label sum is NP-hard in general, but solvable in polynomial time for graphs with bounded
treewidth. We also conjecture that for almost every connected graph G there should be a
proper labelling with label sum at most 2|E(G)|, which we verify for several classes of graphs.

1 Introduction
In this work we study properties of some distinguishing labellings of graphs. We begin by giving
some useful definitions and notations. Let G = (V,E) be a graph. Throughout this work, most of
the time we denote by V and E the vertex set and edge set of a given graph. In a few cases where
ambiguities are possible, we instead denote these sets by V (G) and E(G). For a vertex v ∈ V of
G, we denote by d(v) the degree of v, that is the number of edges that are incident to v. We say
that G is regular if for each u, v ∈ V , we have d(u) = d(v). It is well known that there exists
no non-trivial simple graph that is totally irregular, meaning a simple graph for which all vertices
have different degrees. This however is not true for multigraphs, where multiple edges between
two adjacent vertices are allowed. A graph G is called locally irregular if for each uv ∈ E, we have
d(u) 6= d(v). For any additional notation on graph theory not defined here, we refer the reader
to [11].

A function ` : E 7→ {1, . . . , k} is called a k-labelling of G. By a distinguishing labelling we
mean a labelling ` that allows us to distinguish the vertices of G accord to some vertex parameter
computed from `. Note that this can equivalently be seen through the scope of graph colouring. In
this work, we are more particularly interested in proper labellings, which are defined as follows.
For any v ∈ V , let us denote by c`(v) the colour of v that is induced by `, being the sum of labels
∗Corresponding author
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assigned to the edges incident to v. That is,

c`(v) =
∑

u∈N(v)

`(vu),

where N(v) = {u ∈ V : uv ∈ E} is the neighbourhood of v. We say that ` is proper if the resulting
c` is a proper vertex-colouring of G, i.e., for every edge uv ∈ E we have c`(u) 6= c`(v). Note that a
graph admits a proper labelling if and only if it has no K2 as a component [14]. Therefore, we here
focus only on nice graphs, i.e., graphs without any component isomorphic to K2. It is clear that
for every (not necessarily proper) labelling ` of G and for every v ∈ V , we have c`(v) ≥ d(v) with
c`(v) = d(v) if and only if all edges incident to v are assigned label 1. It follows that G admits a
proper 1-labelling if and only if G is locally irregular.

The connection between the labellings of a graph G and its “regularity” has been explored by
several authors, in particular through the notion of irregularity strength of graphs, introduced
by Chartrand et al. in [10]. The irregularity strength s(G) of G is defined as the smallest k such that
G admits a k-labelling ` with the property that for every two u, v ∈ V (not necessarily adjacent),
we have c`(u) 6= c`(v). The main point for studying such labellings `, is that if, from G, we replace
each edge e by `(e) parallel edges, then we get a multigraph M that is totally irregular. Note that
building M in this way preserves the adjacencies of G, that is M has the same structure as G.
As stated earlier, no non-trivial simple graph G is totally irregular; it is thus legitimate to wonder
how to build a corresponding totally irregular multigraph M in the fashion above. In their work,
Chartrand et al. regard edge multiplications as an expensive operation and, as such, they want to
limit it as much as possible. This results in the following optimisation problem: for a given graph
G, what is the smallest k such that G can be turned into a totally irregular multigraph M by
replacing each edge with at most k parallel edges? From the labelling point of view, this smallest
k is precisely s(G).

Since the notion of total irregularity does not fit with simple graphs, as K1 is the only totally
irregular simple graph, it is legitimate to consider that this notion is too strong for simple graphs,
and instead consider weaker notions of irregularity. A few such notions have been explored in the
literature, such as the notions of highly irregular graphs [9] or locally irregular graphs [2], which we
introduced earlier. With respect to Chartrand et al.’s point of view, we note that there is again a
straight connection between proper labellings and locally irregular graphs. Namely, given a proper
labelling ` of a graph G, by replacing each edge e with `(e) parallel edges, we get a locally irregular
multigraph M with the same structure as G. As in the previous problem, one can again ask about
the smallest k such that G admits proper k-labellings. This smallest k (if any) is denoted χΣ(G).

This parameter χΣ is precisely at the heart of one of the most famous conjectures concerning
proper labellings of graphs, the so-called 1-2-3 Conjecture, introduced by Karoński, Łuczak and
Thomason in 2004 [14]. This conjecture states that for every nice graph G, we have χΣ(G) ≤ 3.
It is worth noting that there exist nice graphs G that verify χΣ(G) = 3 (for example every nice
complete graph Kn has χΣ(Kn) = 3 as shown in [8]) and thus it is meaningless to try to show
that χΣ(G) ≤ 2 holds for all graphs G. There are many results supporting the 1-2-3 Conjecture,
the most famous of which belonging to Kalkowski, Karoński and Pfender [13], stating that for any
nice graph G, we have χΣ(G) ≤ 5. Another important result shown in [14] states that the 1-2-3
Conjecture holds for nice 3-colourable graphs. However, unless a graph G is locally irregular (in
which case χΣ(G) = 1), it is not easy in general to characterise which graphs G have χΣ(G) = 2
(see [12]). Nevertheless, a “good” characterisation of nice bipartite graphs G with χΣ(G) = 3, was
provided quite recently in [20].

Minimising, however, the maximum label that is used to create a proper labelling of a graph G,
does not always guarantee that we have actually minimised the cost that corresponds to the edge
multiplications described above. For example, a 2-labelling ` that assigns label 2 to three edges
of G and label 1 to the rest is more expensive (in terms of how many edges the corresponding
multigraphs have) than a 3-labelling `′ that assigns label 3 to only one edge of G and label 1 to the
rest. The 1-2-3 Conjecture, if true, would imply that every nice graph G admits a proper labelling
where the sum of assigned labels is at most 3|E|; but it might be that, using labels with value
larger than 3, we can design better (with respect to the concerns above) proper labellings of G.
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This motivates us to introduce and study a new problem, namely the problem of finding proper
labellings that minimise the sum of the assigned labels.

Formally, for a labelling ` of a graph G, we denote by σ(`) the sum of labels assigned to the
edges of G by `. That is,

σ(`) =
∑
e∈E

`(e).

For any k ≥ 1, we denote by mEk(G) the minimum value of σ(`) over all k-labellings ` of G (if
any). That is,

mEk(G) = min {σ(`) : ` is a k-labelling of G} .

We set mE(G) = min{mEk(G) : k ≥ χΣ(G)}.
The study of the parameter mE(G) takes place in a recent series of works dedicated to better

understanding the connection between proper labellings and proper vertex-colourings of graphs.
In [1], the authors studied proper vertex-colourings of graphs that minimise the number of distinct
resulting colours. In other words, the authors are interested by proper labellings by which the
number of distinct resulting vertex colours is as close as possible to the chromatic number. Noticing
that this minimum number of distinct colours by a proper labelling is bounded above by the
minimum maximum vertex colour that can be achieved by a proper labelling, in [5] the authors
studied proper labellings where the maximum resulting vertex colour is as small as possible. In
these two works, the authors mainly showed that finding an “optimal” proper labelling is hard in
general but easy in particular graph classes, and provided results towards conjectures they have
raised on their modified notions of proper labellings.

An important point for mentioning the existence of [1] and [5] is that determining mE(G) for a
given graph G is also related to finding a proper labelling of G where the resulting vertex colours
satisfy some properties. More precisely, by a straight equivalence between edge labels and vertex
colours, see upcoming Observation 2.2, it can be established that determining mE(G) is equivalent
to finding a proper labelling of G that minimises the sum of resulting vertex colours. Thus, at least
at first glance, one could think that determining mE(G) is somewhat related to the investigations
in [1] and [5]. In Section 4.1, we actually show that this is not the case, in the sense that proper
labellings that are good for our concerns might be arbitrarily bad for those in [1] and [5], and vice
versa.

Our contributions1

In Section 2 we provide some observations that will be used throughout this work. As a warm up,
we also provide the exact value of mE(G) for easy classes of graphs G, namely complete bipartite
graphs, complete graphs and cycles.

In Section 3 we deal with the algorithmic aspects of the problem. We show that for k ∈ N,
determining mEk(G) is NP-complete when G is a planar bipartite graph. Then we provide an
algorithm that, given two integers s and k, decides in polynomial time if mEk(G) ≤ s when G
belongs to the family of graphs that have bounded treewidth.

In Section 4 we answer two different questions that deal with the particular nature of our
problem. First, in Section 4.1, we show that in general a proper k-labelling that minimises the
maximum induced colour does not minimise the sum of the labels used, and vice versa. Then, in
Section 4.2, we provide an infinite family of graphs G for which mEk(G), for every k ≥ 2, can be
arbitrarily larger than mEk+1(G). As mentioned earlier, this property justifies the study of our
problem, as it shows that just finding a proper k-labelling of G for k = χΣ(G) is not enough.

Finally, in Section 5 we study more general aspects of the problem. In particular we propose
Conjecture 5.2 stating that for every nice connected graph G, we should have mE(G) ≤ 2|E|.
We then proceed by providing upper bounds for some families of graphs, namely bipartite graphs
and trees, as well as graphs with large chromatic number, that further strengthen our belief that
Conjecture 5.2 should hold true.

1An extended abstract of this paper has been accepted in the proceedings of the 31st International Workshop on
Combinatorial Algorithms (IWOCA 2020) [4] .
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2 First observations and classes of graphs
In this warm-up section, we give some first insight into the problem of determining the parameters
mE(G) and mEk(G) for a given graph G. This is done through first observations on the problem,
and by then focusing on easy classes of graphs.

2.1 First observations and remarks
The following observation provides trivial bounds on σ(`) for a k-labelling `.

Observation 2.1. Let G be a graph and ` be a k-labelling of G. Then

|E| ≤ σ(`) ≤ k|E|.

Consequently, for any k ≥ χΣ(G), we have

|E| ≤ mEk(G) ≤ k|E|.

The following provides an obvious way for relating edge labels and vertex colours by a labelling
of a graph G, that, in general, is a convenient tool for establishing lower bounds on mE(G).

Observation 2.2. Let G be a graph and ` be a labelling of G. Then∑
e∈E

2`(e) =
∑
v∈V

c`(v).

In particular, by any labelling `, the sum
∑
v∈V c`(v) must be an even number.

In several contexts, we will make use of the following property of proper labellings in graphs
having some particular sparse structure (adjacent degree-2 vertices):

Observation 2.3. Let G be a graph with a path (v1, v2, v3, v4) such that d(v2) = d(v3) = 2. Then,
by any proper labelling ` of G, we have `(v1v2) 6= `(v3v4).

Proof. This is because c`(v2) = `(v1v2) + `(v2v3) and c`(v3) = `(v2v3) + `(v3v4). This implies we
must have `(v1v2) 6= `(v3v4) so that c`(v2) 6= c`(v3).

2.2 Easy classes of graphs
In this section, we determine the value of mE(G) when G is any nice complete bipartite graph,
complete graph, or cycle. Let us recall that, for any nice complete bipartite graph Kn,m, we have
χΣ(Kn,m) = 1 if n 6= m > 1, and χΣ(Kn,m) = 2 otherwise. For every nice complete graph Kn,
we have χΣ(Kn) = 3. For every nice cycle Cn, we have χΣ(Cn) = 3 whenever n ≥ 3 is odd or
n ≡ 2 mod 4, while we have χΣ(Cn) = 2 otherwise, i.e., when n ≡ 0 mod 4. Simple proofs for these
statements can be found e.g. in [8].

Note that in all the results obtained in this section, constructing a proper labelling ` of a graph
G achieving σ(`) = mE(G) does not require the use of a label larger than χΣ(G). That is, we
here always have mEk(G) = mE(G) for k = χΣ(G). It is important to point out however that this
behaviour is not true in general (see Section 4.2).

Theorem 2.4. Let G = (A,B,E) = Kn,m be a complete bipartite graph with n+m > 2. Then:

• if n 6= m, then mE(G) = mE1(G) = nm = |E|;

• otherwise, i.e., n = m, we have mE(G) = mE2(G) = n(m+ 1) = |E|+
√
|E|.

Proof. If n 6= m, then G is locally irregular, in which case we get a proper 1-labelling when assigning
label 1 to all edges. This is best possible due to Observation 2.1. If n = m, then G is not locally
irregular, which implies that a proper labelling of G must assign a label different from 1 to some
edges. Moreover, if a labelling assigns a label different than 1 to less than n edges, then there would
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necessarily be, in both A and B, vertices incident only to edges labelled 1, thus with colour n. In
that case, ` would not be proper as some adjacent vertices would have the same colour.

This means that if n = m, a proper labelling ` of G must assign a label different from 1 to
at least n edges. This implies that mEk(G) ≥ |E| + n. We claim there is a proper 2-labelling `
achieving this lower bound, hence best possible. To obtain `, let a be any vertex of A. Assign
label 2 to all the n edges incident to a, and assign label 1 to all other edges. This labelling is
proper. Indeed c`(a) = 2n, c`(a′) = n for every a′ ∈ A \ {a}, and c`(b) = n + 1 for every b ∈ B.
Furthermore, σ(`) = |E|+ n = |E|+

√
|E|.

Theorem 2.5. Let Kn be a complete graph with n ≥ 3. Then:

• if n = 3, then mE(K3) = mE3(K3) = 6 = 2|E|;

• if n ≡ 0 mod 4 or n ≡ 1 mod 4, then mE(Kn) = mE3(Kn) = 1
2

(
n2 + (n−2)(n−1)

2 − 1
)

=
3
2 |E|;

• if n ≡ 2 mod 4 or n ≡ 3 mod 4, then mE(Kn) = mE3(Kn) = 1
2

(
n2 + (n−2)(n−1)

2

)
=
⌈

3
2 |E|

⌉
.

Proof. Throughout this proof, for any n ≥ 3, let V = {v1, . . . , vn}.
Regarding the first item, Observation 2.3 implies that a proper 3-labelling of K3 must assign

three distinct labels to the edges, and thus having {`(v1v2), `(v1v3), `(v2v3)} = {1, 2, 3} is optimal,
in which case σ(`) = 6.

Let us now focus on the second and third items. Following Observation 2.2, finding a proper
3-labelling of Kn achieving mE3(Kn) is equivalent to finding a proper 3-labelling minimising the
sum of vertex colours. Since, in Kn, all vertices have degree n − 1, and all vertex colours must
be different by a proper 3-labelling, any proper 3-labelling producing distinct vertex colours in
S1 = {n− 1, n, n+ 1, . . . , 2n− 2} would be optimal. Note, however, that when n is congruent to 2
or 3 modulo 4, such a proper 3-labelling cannot exist as, in such cases, the sum n− 1 + n+ (n+
1) + · · · + (2n − 2) of the values in S1 is odd, which cannot be achieved by a labelling (recall the
last statement of Observation 2.2). In these cases, however, any proper labelling producing distinct
vertex colours in S2 = {n− 1, n, n+ 1, . . . , 2n− 3, 2n− 1} would be optimal.

Now consider the following 3-labelling ` of Kn (n ≥ 4), already introduced in [5], to establish
what the value of mS3(Kn) is (where mS3(G) denotes the smallest maximum color over the vertices
by a proper 3-labelling of G). We label the edges of Kn through three steps. Firstly, we assign
label 1 to every edge. Secondly, we change the labels of the edges in {vivj : 1 ≤ i, j ≤ n, i +
j ≥ n + 2} to 2. Then v1 is incident to no edge labelled 2, vertex v2 is incident to one edge
labelled 2, vertex vi for 3 ≤ i ≤ b(n − 1)/2c + 1 is incident to i − 1 edges labelled 2, and vi for
b(n − 1)/2c + 2 ≤ i ≤ n is incident to i − 2 edges labelled 2. Let j = b(n − 1)/2c + 1. Note
that for every i ∈ {2, 3, . . . , j, j + 2, . . . , n}, vi is adjacent to one more edge labelled 2 than vi−1;
and that vj and vj+1 are both adjacent to j − 1 edges labelled 2 (and n− j edges labelled 1). So
cl(v1) < cl(v2) < · · · < cl(vj) = cl(vj+1) < cl(vj+2) < · · · < cl(vn) and cl(vi+1) ≤ cl(vi) + 1 for
1 ≤ i ≤ n, i.e., all vertices have different colours except vj and vj+1. Finally, to avoid the conflict
between vj and vj+1, let us increase the label of vj+1vj+2 from 2 to 3. This change induces a new
conflict between vj+2 and vj+3. Then we need to increase the label of vj+3vj+4 from 2 to 3 to
get rid of this conflict, which creates a new conflict, and so on. Formally, we change the labels of
the edges in {vj+1vj+2, vj+3vj+4, . . . , vn−1vn} to 3 if n − j is even, i.e., if n ≡ 0 mod 4 or n ≡ 1
mod 4. Otherwise, if n − j is odd and n ≡ 2 mod 4 or n ≡ 3 mod 4, then we change the labels
of the edges in {vj+1vj+2, vj+3vj+4, . . . , vn−4vn−3, vn−2vn, vn−1vn} to 3.

It can be checked that the resulting 3-labelling ` is proper, and achieves vertex colours in S1

when n is congruent to 0 or 1 modulo 4, or vertex colours in S2 when n is congruent to 2 or 3
modulo 4. As discussed above, this is best possible. Furthermore, it can easily be checked that the
elements in S1 sum up to the value claimed in the second item, and similarly for the elements in
S2 and the value claimed in the third item. This concludes the proof.

Theorem 2.6. Let n ≥ 3, and Cn be the cycle of length n. Then:

• if n ≡ 0 mod 4, then mE(Cn) = mE2(Cn) = 3
2 |E|;
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• if n ≡ 1 mod 4 or n ≡ 3 mod 4, then mE(Cn) = mE3(Cn) =
⌈

3
2 |E|

⌉
+ 1;

• if n ≡ 2 mod 4, then mE(Cn) = mE3(Cn) = 3
2 |E|+ 3.

Proof. Let us order the edges of Cn following a “clockwise direction” and define E = {e1, . . . , en}
and V = {v1, . . . , vn} such that for i < n, ei = vivi+1 and en = vnv1. Thus, for i > 0, N(vi) =
{vi−1, vi+1} and N(v1) = {v2, vn}. Recall that χΣ(Cn) = 2 for the first item and that χΣ(Cn) = 3
for the second and third items.

Claim 2.7. Let l ≤ k and ` be a k-labelling of Cn that assigns label l to at least one edge. If ` is
proper, then it assigns label l to at most b 1

2 |E|c edges if n is odd, while it assigns label l to at most
1
2 |E| − 1 edges if n ≡ 2 mod 4, and it assigns label l to at most 1

2 |E| edges if n ≡ 0 mod 4.

Proof of the claim. Let E = {e ∈ E : `(e) = l} and G = (V ′, E′) be the graph that has V ′ = {vi :
ei ∈ E} and, for i 6= j, vivj ∈ E′ if the corresponding edges ei, ej are at distance exactly 2 in Cn.
Obviously |E| = |V ′|. It follows from Observation 2.3 that if ` is a proper labelling of Cn that
maximises |E|, then |E| = |S|, where S is an independent set of G. For n odd, G is a copy of the
graph Cn. Since G is a cycle, |E| = |S| = b 1

2 |V
′|c = b 1

2 |E|c. For n ≡ 2 mod 4, let m be such that
n = 4m+2. It is clear that G contains two connected components, each one being a copy of the Cn

2

cycle. Thus, |E| = |S| = 2bn4 c = 2m = 1
2 |E| − 1. Similarly, if n = 4m, it is clear that G contains

two connected components, each one being a copy of the Cn
2
cycle. Thus, |E| = |S| = 2m = 1

2 |E|.
�

We are now ready to deal with the four values of n (modulo 4) separately:

• For the first item let ` be the following 2-labelling: `(e1) = 1, `(e2) = 1, `(e3) = 2, `(e4) =
2, `(e5) = 1, . . . , `(en) = 2. Let us assume that this ` is not proper. Then there would
exist at least two adjacent vertices vi, vi+1 such that c`(vi) = c`(vi+1). It follows that
`(vi−1) = `(vi+2) (if i = 1 then vi−1 = vn and if i = n then vi+1 = v1) which is a contradiction.
Furthermore, since n ≡ 0 mod 4, label 2 is used on exactly half the edges of Cn and thus
σ(`) = |E| + 1

2 |E| =
3
2 |E|. Moreover, this value is optimal. Indeed, assume it is not. Then,

there would exist a proper labelling `′ such that more than 1
2 |E| edges are labelled 1 by `′, a

contradiction by Claim 2.7.

• Let Cn be a cycle with n ≡ 1 mod 4. We will show that mE(Cn) = d 3
2 |E|e + 1. Let ` be a

proper labelling of Cn that assigns label 3 to only one edge. It follows from Claim 2.7 that at
most bn2 c edges of Cn are labelled 1. Actually, there are exactly bn2 c edges labelled 1: if this
was not the case, then, since only one edge of Cn is labelled 3, there would be more than bn2 c
edges labelled 2, contradicting Claim 2.7. The same holds true for the edges labelled 2. Since
n ≡ 1 mod 4 implies that there exists an m verifying n = 4m + 1, then, using this, one can
easily show that σ(`) = bn2 c+ 2bn2 c+ 3 = · · · = d 3

2 |E|e+ 1. Furthermore, let `′ be a proper
labelling of Cn that assigns label 3 to more than one edge. It is clear that if `′ is proper, then
σ(`) < σ(`′). Thus, σ(`) = mE(Cn). The following is a proper labelling ` that achieves this
optimal value: `(e1) = 1, `(e2) = 1, `(e3) = 2, `(e4) = 2, `(e5) = 1, . . . , `(en−1) = 2, `(en) = 3.

• Let Cn be a cycle with n ≡ 3 mod 4. Similarly to before, mE(Cn) = d 3
2 |E|e+1. The following

is a proper labelling ` that achieves this optimal value: `(e1) = 1, `(e2) = 1, `(e3) = 2, `(e4) =
2, `(e5) = 1, . . . , `(en−3) = 2, `(en−2) = 1, `(en−1) = 3, `(en) = 2.

• Let Cn be a cycle with n ≡ 2 mod 4 (n ≥ 6). We will show that mE(Cn) = 3
2 |E|+ 3. Indeed,

let ` be a proper labelling of Cn that assigns label 3 to only one edge. Since ` is proper, it
is obliged to assign label 1 to at most 1

2 |E| − 1 edges of Cn and label 2 to the rest. This
however would lead to ` assigning label 2 on at least 1

2 |E| edges, which is a contradiction to
Claim 2.7. Thus, ` must assign label 3 on at least two edges. Similarly to before, a labelling
that assigns label 3 to exactly two edges, label 1 to at most 1

2 |E| − 1 edges, and label 2 to
the rest of the edges, would achieve the optimal value. The following ` is one such proper
labelling: `(e1) = 1, `(e2) = 1, `(e3) = 2, `(e4) = 2, `(e5) = 1, . . . , `(en−3) = 2, `(en−2) =
2, `(en−1) = 3, `(en) = 3.
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3 Complexity aspects
In this section, we establish both a negative and a positive result on the complexity of computing
the parameter mEk(G) for some input integer k and nice graph G. More precisely:

• We first prove that determining mE2(G) is NP-complete, even when G is restricted to a
planar bipartite graph. Recall that this is contrasting with the complexity of determining
whether χΣ(G) ≤ 2 holds for a given bipartite graph G, which is a problem that can be
solved in polynomial time due to a result of Thomassen, Wu and Zhang [20].

• We then prove that determining mEk(G) can be done in polynomial time whenever k is fixed
and G is a graph with bounded treewidth.

3.1 A negative result for bipartite graphs
In this section, we prove, in Theorem 3.2 below, that the problem of determining mEk(G) is
NP-complete in planar bipartite graphs G.

Let us first introduce the k-gadget, for k ≥ 2, which will be useful for proving Theorem 3.2.
To build this gadget, let us start with k − 1 stars, each having a center si with d(si) = k + 1 for
every i ∈ {1, . . . , k − 1}. For each star, pick an arbitrary edge siyi and identify all the yi’s into
a single vertex y, which is called the representative of the gadget. Finally add another vertex u,
called the root of the gadget, and join it to y via an edge. It is clear that d(u) = 1 and d(y) = k.
Each k-gadget is a tree with O(k2) edges. Let v be a vertex of a graph G, and H be a k-gadget.
The operation of adding H to G and identifying the root u of H with v is called attaching H to v.

Claim 3.1. Let G(V,C,E) be a bipartite graph and ` be any proper 2-labelling of G such that
σ(`) ≤ |E| + c, for c = |C|. Let H be any p-gadget attached to G, where p − 1 > c, forming
the graph G′. Let y be the representative of H. Let `′ be a labelling of G′ such that for all edges
e ∈ E(G), we have `′(e) = `(e). If at least one edge e of H incident to y is labelled 2 by `′, then
there are at least two edges of H that are labelled 2 by `′.

Proof of the claim. Let us suppose that at least one of the edges of H incident to y is labelled 2.
Let z ∈ V ∪ C be the vertex of G′ to which H has been attached.

Let us first assume that the edge zy is labelled 2. If y is incident to only a single edge labelled
2 (i.e., zy), then its colour is c`(y) = p + 1. Since all its p − 1 neighbours (different from z) have
degree p + 1, each of them must be incident to at least one edge labelled 2 as otherwise it would
have the same colour as y. This leads to at least p > c edges labelled 2, which is a contradiction
(observe that since σ(`) ≤ |E|+c, there are at most c edges labelled 2). Otherwise, if y has exactly
one other incident edge (different from yz) labelled 2, say the edge yw, then we are done.

Then, let us assume that `(yz) = 1. Moreover, let us assume that some edge incident to y, say
yw1 different from yz, is labelled 2. Then c`(y) ≥ p+ 1 with c`(y) = p+ 1 if yw1 is the unique edge
incident to y labelled 2. In this case, each one of the p − 2 neighbours of y (different from z and
w1) must be incident to at least one edge labelled 2, leading to at least p − 1 > c edges labelled
2, which is a contradiction. Thus c`(y) > p+ 1, which means there is at least one more edge yw2

incident to y labelled 2. �

We are now ready for proving our result.

Theorem 3.2. Let G be a nice planar bipartite graph, k ≥ 2 and q ∈ N. The problem of deciding
if mEk(G) ≤ q is NP-complete.

Proof. The problem is clearly in NP. We focus on showing it is also NP-hard. The proof is
done by reduction from Planar Monotone 1-in-3 SAT, which was shown to be NP-complete
in [17]. In this problem, a 3CNF formula F is given as input, which has clauses with exactly three
distinct variables all of which appear only positively. We say that a bipartite graph G′ = (V,C,E)
corresponds to F if it is constructed from F in the following way: for each variable xi of F add a
variable vertex vi in V and for each clause Cj of F add a clause vertex cj in C. Then the edge
vicj is added if variable xi appears in clause Cj . Furthermore, F is valid as input to the Planar
Monotone 1-in-3 SAT problem if the graph G′ that corresponds to F is planar. The question
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is whether there exists a 1-in-3 truth assignment of F ; that is a truth assignment to the variables
of F such that each clause has exactly one variable with the value true.

Observe now that we may assume that each variable appears in at least two clauses. If there
exists a variable, say xi, that belongs to a single clause C = (xi ∨ xj ∨ xk), let us add another
clause C ′ identical to C. Clearly, the obtained formula F ′ is 1-in-3 satisfiable if and only if F is.
Moreover, the graph corresponding to F ′ is planar. Indeed, consider a planar embedding of the
graph G′ \ {vi} (where vi is the vertex of G′ corresponding to xi). Clearly, vj and vk are in a
same face (since their common neighbour, corresponding to C, has degree 2 in G′ \ {vi}). The
graph obtained by adding a vertex vi (adjacent to the vertex corresponding to C) and a vertex
corresponding to C ′ (adjacent to vi, vj and vk) in this face is planar.

Let us prove the statement for k = 2. Let F be a 3CNF formula with c clauses that is given as
input to the Planar Monotone 1-in-3 SAT problem. Our goal is to construct a planar bipartite
graph G such that F is 1-in-3 satisfied if and only if mE2(G) ≤ |E(G)|+ c.

Start from G′ = (V,C,E) being the planar bipartite graph that corresponds to F , with V being
the set of the variable vertices vi and C being the set of the clause vertices cj . Note that in F , each
clause has exactly three variables but there is no bound on how many times a variable appears in
F . Thus for each vi ∈ V , we have d(vi) ≥ 2 and for each cj ∈ C, we have d(cj) = 3. It follows that
|C| = c and |V | ≤ 3c.

Proceed by modifying G′ by adding the gadgets described earlier. For each variable vertex vi
, let di be the initial degree of vi in G′. Let dv,i = (di − 1)(c+ 1) + di and dc = 3(c+ 1) + 3. For
each variable vertex vi, for all 1 ≤ j < di, attach c + 1 copies of the (dv,i + j)-gadget. On each
clause vertex cj , attach c+ 1 copies of the dc-gadget, c+ 1 copies of the (dc + 2)-gadget and c+ 1
copies of the (dc + 3)-gadget. Name the resulting graph G and observe that the degree of each
vi in G becomes equal to dv,i and the degree of each cj in G becomes equal to dc. Clearly, the
construction of G is achieved in polynomial time. Finally observe that since G′ is planar and the
attached gadgets are actually trees, G is also planar.

Let ` be a proper 2-labelling of G such that σ(`) ≤ |E(G)| + c, i.e., there are at most c edges
of G labelled 2 by `. Observe that G contains p-gadgets for p ∈ {dv,i + 1, dv,i + 2, . . . dv,i + di −
1, dc, dc + 2, dc + 3} and dv,i − 1, dc − 1 > c. Thus Claim 3.1 holds for each gadget attached to G.

Claim 3.3. For any proper 2-labelling ` of G such that σ(`) ≤ |E(G)|+ c, we have that:

• c`(vi) /∈ {dv,i + 1, dv,i + 2, . . . , dv,i + di − 1} for each variable vertex vi ∈ V ;

• c`(cj) /∈ {dc, dc + 2, dc + 3} for each clause vertex cj ∈ C.

Proof of the claim. Indeed, each variable vertex vi is adjacent to c+1 copies of the (dv,i+1)-gadget
and at most c edges are labelled 2 by `. Thus, at least one of the (dv,i+1)-gadgets, let us call it H,
that is attached to vi, has all of its edges labelled 1. Moreover, vi is adjacent to the representative
y of H which has degree d(y) = dv,i + 1. Since all the edges of H are labelled 1, the colour c`(y)
of y is dv,i + 1 and thus this colour is forbidden for vi, i.e., c`(vi) 6= dv,i + 1.

By repeating the same arguments for the (dv,i + 2)-gadgets attached to vi, we deduce that
c`(vi) 6= dv,i+2. Similarly, by considering the dc-gadgets (resp., the (dc+2)- and (dc+3)-gadgets)
attached to any clause vertex cj , we get that c`(cj) /∈ {dc, dc + 2, dc + 3}. �

Claim 3.4. Let ` be any proper 2-labelling of G such that σ(`) ≤ |E(G)|+ c. Then all edges of the
attached gadgets must be labelled 1.

Proof of the claim. Observe that for each clause vertex z ∈ C, at least one of its incident edges
must be labelled 2. If this were not the case, then c`(z) = dc, and this is not allowed due to
Claim 3.3.

Let H be a gadget attached to z, and y be the representative of H. Suppose `(yz) = 2. It
follows from Claim 3.1 that there are at least two edges of H labelled 2. Recall that the number
of edges of G that can be labelled 2 is at most c. Thus, the number of edges of G, that do not
belong to H and can be labelled 2, is at most c− 2. Furthermore, there are c− 1 clause vertices in
G that are different from z. It follows that there exists a clause vertex that has all of its incident
edges labelled 1, a contradiction. Thus, each z ∈ C must be incident to an edge wz with `(wz) = 2
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and w cannot belong to a gadget attached to z. It follows that there must be |C| = c edges of G′
labelled 2 and since σ(`) ≤ |E(G)|+ c, all the edges of the attached gadgets are labelled 1. �

It follows from Claim 3.4, that the only possible colours induced on the vertices of G′ by a
proper 2-labelling ` of G are:

• c`(vi) ∈ {dv,i, dv,i + 1, dv,i + 2, . . . , dv,i + di − 1, dv,i + di} for each variable vertex vi ∈ V ,

• c`(cj) ∈ {dc, dc + 1, dc + 2, dc + 3} for each clause vertex cj ∈ C.

The following hold due to Claim 3.3:

• For every variable vertex vi, we have c`(vi) ∈ {dv,i, dv,i + di}. Observe that c`(vi) = dv,i if
all edges of G′ adjacent to vi are labelled 1, and c`(vi) = dv,i + di if all edges of G′ adjacent
to vi are labelled 2.

• For every clause vertex cj , we have c`(cj) = dc + 1, which corresponds to two edges of G′
adjacent to cj labelled 1 and only one edge labelled 2.

We are now ready to show the equivalence between finding a 1-in-3 truth assignment φ of F
and finding a proper 2-labelling ` of G such that σ(`) = mE2(G) ≤ |E(G)|+ c. An edge vicj of G′
labelled 2 (respectively 1) by ` corresponds to variable xi bringing truth value true (respectively
false) to clause Cj by φ. Also, we know that in G′, every variable vertex vi is incident to n ≥ 1
edges, all having the same label (either 1 or 2). Accordingly, the corresponding variable xi brings,
by φ, the same truth value to the n clauses of F that contain it. Finally, in G′, every clause vertex
cj is incident to two edges labelled 1 and one edge labelled 2. This corresponds to the clause Cj
being regarded as satisfied by φ only when it has exactly one true variable.

3.2 A positive result for graphs with bounded treewidth
Given a graph G = (V,E), a tree-decomposition of G is a pair (T,X ) such that T = (V (T ), E(T ))
is a tree and X = {Xt ⊆ V | t ∈ V (T )} is a familly of subsets (called bags) of vertices of G such
that:

• V =
⋃

t∈V (T )

Xt;

• for every uv ∈ E, there exists t ∈ V (T ) with u, v ∈ Xt; and

• for every v ∈ V , the subset {t ∈ V (T ) | v ∈ Xt} induces a subtree of T .

The width of (T,X ) is equal to max
t∈V (T )

|Xt| − 1 and the tree-width tw(G) is the minimum width of

a tree-decomposition of G.
A tree-decomposition (T,X ) is nice [7] if T is rooted in r ∈ V (T ) and every node t ∈ V (T ) is

exactly of one of the following four types:

1. Leaf: t is a leaf of T and |Xt| = 1.

2. Introduce: t has a unique child t′ and there exists v ∈ V such that Xt = Xt′ ∪ {v}.

3. Forget: t has a unique child t′ and there exists v ∈ V such that Xt′ = Xt ∪ {v}.

4. Join: t has exactly two children t′, t′′ and Xt = Xt′ = Xt′′ .

It is well known that every graph G = (V,E) admits a nice tree-decomposition (T,X ) rooted in
r ∈ V (T ), that has width equal to tw(G), |V (T )| = O(|V |) and Xr = {∅} [7].

Let (T,X ) be a rooted tree-decomposition (with root r) of G and t ∈ V (T ). A subtree of T
induced by t and its descendants is denoted as Tt and the corresponding subgraph of G, i.e., the
graph induced by ∪t′∈V (Tt)Xt′ , is denoted by Gt (clearly, Gr = G). For every v ∈ V (Gt), let Nt(v)
denote the neighbourhood of v in Gt, that is Nt(v) = {u ∈ V (Gt) : uv ∈ E(Gt)}. A quasi k-
labelling of Gt consists of a pair of functions (`, c), with ` : E(Gt)→ {1, . . . , k} and c : V (Gt)→ N,

9



such that c is a proper vertex-colouring of Gt, for every v ∈ V (Gt)\Xt we have c(v) = c`(v), and for
every v ∈ V (Xt) we have c(v) ≥ c`(v). Intuitively, the notion of quasi k-labelling is a generalisation
of proper k-labellings that allows us to further modify the labels (and thus the induced colours)
of the edges of Xt if this is needed in order to extend a proper k-labelling of Gt into a proper
k-labelling of Gt′ , where t′ is the parent of t in T . Finally, let st(`) =

∑
e∈E(Gt)

`(e).
Observe that every proper k-labelling `′ of G induces a quasi k-labelling of Gt. For every

e ∈ E(Gt) and v ∈ V (Gt), let `(e) = `′(e) and c(v) = c`′(v). The pair (`, c) is a quasi k-labelling
of Gt. Indeed, since (T,X ) is a tree-decomposition of G, for every internal node t of T , Xt is a
separator between Gt −Xt and G− V (Gt). Put differently, there are no edges between vertices of
Gt −Xt and G − V (Gt). Furthermore, if r is such that Xr = ∅, then a quasi k-labelling of Gr is
a proper k-labelling of G. Indeed, it is true (by definition) that a quasi k-labelling of Gr differs
from a proper k-labelling only on the vertices of Xr and since Xr = ∅ and Gr = G the observation
follows.

Theorem 3.5. Let k ≥ 2 and tw ≥ 1 be two fixed integers. Given a nice graph G = (V,E) with
|V | = n and an integer s, the problem of deciding whether mEk(G) ≤ s holds can be solved in
polynomial time if G belongs to the family of graphs that have width at most tw (and in linear time
if G is additionally of bounded maximum degree).

Proof. Let us start by giving some definitions. Let ∆ = ∆(G) denote the maximum degree of
G. For every t ∈ V (T ), let |Xt| = wt, |E(G[Xt])| = qt, Xt = {v1, . . . , vwt} and E(G[Xt]) =
{e1, . . . , eqt} (to simplify the notation, we will simply denote qt and wt by q and w respectively).
Let Ft = {1, . . . , k}q×{1, . . . , k∆}w×{0, . . . , k∆}w and (L,FC,CB) ∈ Ft, where L = {l1, . . . , lq},
FC = {f1, . . . , fw} and CB = {b1, . . . , bw}. The labels we “intent” to assign to the edges of Xt

are in L, the “final colours” induced by these labels on the vertices of Xt are in FC, and in CB
we can find the contribution to these colours that come “from below” (meaning the part of these
final colours that are due to edges between Xt and Gt − Xt). Furthermore, for X ′t ⊆ Xt with
X ′t = {u1, . . . , uw′} (where w′ ≤ w), let FC|X′t = {f ′1, . . . , f ′w′} be defined by setting, for each
j ∈ {1, . . . , w′}, f ′j = fij where uj = vij (L|X′t and CB|X′t are defined similarly).

Moreover, a quasi labelling (`, c) of Gt is said compatible with (L,FC,CB) ∈ Ft if, for each
i ∈ {1, . . . , q} and j ∈ {1, . . . , w}, we have that `(ei) = li, c(vj) = fj , and bj =

∑
x∈Nt(vj)\Xt

`(vjx).
This implies that, for all i ∈ {1, . . . , q} and j ∈ {1, . . . , w},∑

z∈Nt(vj)

`(zvj) = bj +
∑

z∈N(vj)∩Xt,ei=vjz

li ≤ c(vj) = fj .

Among all quasi labellings compatible with (L,FC,CB), let us denote as (`∗, c∗) one such com-
patible labelling that minimises the sum of the labels assigned by `∗. That is, for any t ∈ V (t), we
have st(`∗) ≤ st(`) for every quasi labelling ` compatible with (L,FC,CB). Let αt(L,FC,CB) =
st(`

∗). In essence, for each possible (L,FC,CB) ∈ Ft, we have that αt(L,FC,CB) is equal to the
sum of the labels of an optimal (in terms of sum of labels) quasi labelling (`∗, c∗) of Gt that is com-
patible with (L,FC,CB). Note that not all (L,FC,CB) ∈ Ft admit compatible quasi labellings.
If (L,FC,CB) ∈ Ft has no compatible quasi labelling, then we set αt(L,FC,CB) =∞.

Finally, let us set

Table(t) = ((L,FC,CB,αt(L,FC,CB)))(L,FC,CB)∈Ft

being the table associated to each t ∈ V (T ). Note that

|Table(t)| = O
(
kq(k∆ + 1)2w

)
= O

(
k(tw(G)+1)2(k∆ + 1)2tw(G)+2

)
,

since q ≤
(

tw(G)+1
2

)
= O((tw(G) + 1)2) and w ≤ tw(G) + 1. Furthermore, since r is such that

Xr = ∅, then αr = αr(∅, ∅, ∅) is equal to the sum of an optimal proper k-labelling of Gr and thus
Table(r) = ((∅, ∅, ∅, αr)), where αr = mEk(G). All that remains to be done is to compute this
Table(t) for every t ∈ V (t). We present a dynamic-programming algorithm that performs this
computation bottoms up; that is, starting from the leaves of T and progressing towards r. The
computation depends on the type of t.

10



Let t be a leaf node. Recall that |Xt| = 1 and thus there are no edges in Xt. For every
y ∈ {1, . . . , k∆} and (L,FC,CB) ∈ Ft, the αt(L,FC,CB) entry of Table(t) is defined as:

αt(L,FC,CB) =

{
0, if (L,FC,CB) = (∅, {y}, {0});
∞, otherwise.

Let t be an introduce node and t′ be its unique child. Set w = |Xt′ |, and let v be such that
Xt = Xt′ ∪ {v} = {v1, . . . , vw, vw+1 = v}. Moreover, let E(Xt) = {e1, . . . , eq, eq+1, . . . , eq+h},
where E(Xt′) = {e1, . . . , eq}. Essentially, the set {eq+1, . . . , eq+h} contains the edges between v
and the other vertices of Xt. By induction, we can assume that Table(t′) is already computed. Let
us show how to compute Table(t). Let

(L = (l1, . . . , lq+h), FC = (f1, . . . , fw+1), CB = (b1, . . . , bw+1)) ∈ Ft.

There is a quasi labelling of Gt compatible with (L,FC,CB) only if the following three (easily
computable) conditions are satisfied:

• The final colour fw+1 that corresponds to v is not in conflict with the final colours that
correspond to the neighbours of v in Xt. That is, for each j ∈ {1, . . . , w} such that vj ∈
Nt(v) ∩Xt, we have fw+1 6= fj .

• Since v is introduced in Xt, we have Nt(v) \Xt = ∅ and, as a consequence, c(v) cannot have
any contribution coming from Gt \Xt. That is bw+1 = 0.

• The colour of each vertex in Gt cannot exceed the final colour that corresponds to it. That
is, for every vi ∈ Xt, we must have

bi +

q+h∑
j=1

ljIi,j ≤ fi,

where Ii,j =

{
1, if there is w ∈ N(vi) ∩Xt such that wvi = ej ;

0, otherwise.

If one of these three conditions is not satisfied, then αt(L,FC,CB) =∞. Otherwise, let us set

αt(L,FC,CB) = αt′(L|Xt′ , FC|Xt′ , CB|Xt′ ) +

q+h∑
j=q+1

lj .

Following the above process, the element ((L,FC,CB), αt(L,FC,CB)) is added to Table(t) for
every (L,FC,CB) ∈ Ft.

Let t be a forget node and t′ be its unique child. Set w = |Xt|, and let v be such that
Xt′ = Xt ∪ {v} = {v1, . . . , vw, vw+1 = v}. Moreover, let E(Xt′) = {e1, . . . , eq, eq+1, . . . , eq+h},
where E(Xt) = {e1, . . . , eq}. By induction, we can assume that Table(t′) is already computed. Let
us show how to compute Table(t).

Let (L,FC,CB) ∈ Ft. Let Γt′ be the subset of Ft′ that consists of all (L′, FC ′, CB′) ∈ Ft′
such that (L,FC,CB) = (L′|Xt , FC

′|Xt , CB
′|Xt) (i.e., (L,FC,CB) must be the restriction to Xt

of some (L′, FC ′, CB′) ∈ Ft′) and such that f ′w+1 = b′w+1 +
∑

q+1≤j≤q+h
l′j . The latter condition

allows to respect the property of quasi labellings. Since v ∈ Gt −Xt, the “colour" that it received
so far (with a contribution of b′w+1 from the vertices in Gt′ −Xt′) plus the labels l′q+1, . . . , l

′
q+h of

its incident edges in Xt′ must equal its “final" colour f ′w+1. Finally, let

αt(L,FC,CB) = min
γ∈Γt′

αt′(γ).

Following the above process, the element ((L,FC,CB), αt(L,FC,CB)) is added to Table(t) for
every (L,FC,CB) ∈ Ft.
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Let t be a join node, t′ and t′′ be its two children, with Xt = Xt′ = Xt′′ = {v1, . . . , vw}
and E(Xt) = E(Xt′) = E(Xt′′) = {e1, . . . , eq}. By induction, we can assume that Table(t′) and
Table(t′′) have already been computed. Let us show how to compute Table(t).

Let (L,FC,CB) ∈ Ft. Let Γt be the set of pairs ((L,FC,CB′), (L,FC,CB′′)) such that
(L,FC,CB′) ∈ Ft′ and (L,FC,CB′′) ∈ Ft′′ such that CB = CB′ + CB′′ (meaning that for each
j ∈ {1, . . . , w} we have bj = b′j + b′′j , where bj ∈ CB, b′j ∈ CB′ and b′′j ∈ CB′′). Then, let

αt(L,FC,CB) = min
((L,FC,CB′),(L,FC,CB′′))∈Γt

αt′(L,FC,CB
′) + αt′′(L,FC,CB

′′)−
q∑
i=1

li.

Following the above process, the element ((L,FC,CB), αt(L,FC,CB)) is added to Table(t) for
every (L,FC,CB) ∈ Ft.

In all cases, it can be shown by induction that αt(L,FC,CB) 6= ∞ if and only if there is a
quasi labelling of Gt compatible with (L,FC,CB), and, moreover, that if αt(L,FC,CB) 6= ∞,
then it is the minimum sum of the edge labels among all quasi labellings of Gt compatible with
(L,FC,CB).

4 Particular behaviours of the problem
In this section, we study some behaviours of the problem of determining mEk(G) for some integer
k and nice graph G. We start by establishing that there is no systematic relationship between the
proper labellings we are interested in and those considered in [1] and [5]. We then prove that, in
general, using large labels might be needed for designing proper labellings ` verifying σ(`) = mE(G).
This actually remains true in cases where G is a tree.

4.1 Minimising the maximum colour versus minimising the sum of labels
As described in the introductory section, quite recently the authors of [5] investigated proper
labellings that minimise the maximum resulting vertex colour. The formal definitions are as follows.
For a given graph G and a labelling ` of G, let mS(G, `) denote the maximum vertex colour c`(v)
induced by ` over all vertices v of G. For a given k ≥ χΣ(G), let mSk(G) denote the smallest value
of mS(G, `) over all proper k-labellings of G. Now, the main parameter of interest is mS(G), which
is defined as the minimum value of mSk(G) over all values of k ≥ χΣ(G).

As established in Observation 2.2 determining mE(G) for a nice graph G can equivalently be
seen as finding a proper labelling of G that minimises the sum of resulting vertex colours. Thus, one
could think that maybe mE(G) is a good approximation of mS(G), or vice-versa. In this section,
we show that this is actually not the case.

The next result shows that, when constructing a proper labelling ` of a graph G with mS(G, `) =
mS(G), we might have σ(`) being arbitrarily far from mE(G). In other words, minimising the
maximum colour does not imply minimising the sum of labels. This actually remains true for
trees.

Theorem 4.1. There exist nice trees T with arbitrarily large maximum degree ∆ ≥ 2 for which,
for any proper labelling ` achieving mS(T, `) = mS(T ), we have mE(T, `) = mE(T ) + ∆− 2.

Proof. Consider the following tree T with maximum degree ∆ ≥ 2. We start from a vertex v with
∆ neighbours u1, . . . , u∆, each of which is adjacent to ∆− 1 leaves. In other words, all neighbours
of v have degree ∆, and all other vertices are leaves at distance exactly 2 from v.

Now consider a proper labelling ` of T that minimises the maximum colour, i.e., mS(T, `) =
mS(T ). Since T has adjacent vertices with degree ∆, we have mS(T, `) ≥ ∆ + 1. One possible
way to attain mS(T, `) = ∆ + 1 is to have all edges incident to v being labelled 1, and, for each
ui, to have exactly one incident edge going to a leaf being labelled 2 and all other ∆− 2 incident
edges being labelled 1. Indeed, we get c`(v) = ∆ 6= ∆ + 1 = c`(ui) for every i ∈ {1, . . . ,∆}.
Actually, this is the only way to have mS(T, `) = ∆ + 1, because if we label the edges incident to
v so that c`(v) = ∆ + 1, then it is easy to see that the vertex ui such that `(vui) = 2 would get
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(a) {c`1 (u2), c`1 (u3)} = {8, 9}.
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(b) {c`2 (u2), c`2 (u3)} = {9, 10}.

Figure 1: The only proper 2-labellings `1 (left) and `2 (right) of the T2 gadget, used in the
construction illustrated in Figure 2. The induced colours for each labelling are represented as
integers in the corresponding vertices. Vertex u1 is called the root of the gadget. Wiggly edges are
edges that could be labelled either 1 or 2.

c`(ui) ≥ ∆ + 2 to avoid a colour conflict between v and ui. Therefore, there is only one general
way to label (actually 2-label) T so that mS(T, `) = mS(T ) = ∆ + 1, and we note that the number
of edges labelled 2 by ` is exactly ∆ (one for each ui). Thus mE(T, `) = |E|+ ∆.

Observe now that regardless of the value of ∆, the 2-labelling `∗ of T where `∗(vu1) = `∗(vu2) =
2 and all other edges are labelled 1 is proper. This is because we get c`∗(v) = ∆ + 2, c`∗(u1) =
c`∗(u2) = ∆+1 and c`∗(ui) = ∆, for i ∈ {3, . . . ,∆}. Thus, mE(T ) ≤ mE2(T ) ≤ mE(T, `∗) = |E|+2
and the difference between σ(`) and σ(`∗) then gets arbitrarily large as ∆ grows larger.

The next result shows that the converse is also true: a proper labelling that minimises the sum
of labels does not necessarily minimise the maximum colour as well.

Theorem 4.2. There exist nice graphs G with arbitrarily large maximum degree ∆ ≥ 12 for which,
for any proper 2-labelling ` achieving σ(`) = mE2(G), we have mS(G, `) = mS(G) + ∆.

Proof. In [5] is exhibited a spreading gadget Gf (a slight modification of the graph depicted in
Figure 2) with one input (the edge u1u2) and two outputs (the edges u9u10 and u12u13), that are
pending edges that must all be assigned the same label (which can be either 1 or 2) by any proper
2-labelling (see Section 4.4 in [5] for details). Having a closer look at Gf, we note that, regarding
our minimisation problem, it has the following property:

Claim 4.3. Let ` be a proper 2-labelling of Gf achieving σ(`) = mE2(Gf). Then ` assigns label 2
to the input and two outputs of Gf.

Proof of the claim. As mentioned above, the proper 2-labellings of Gf are of two kinds: those `1
assigning label 1 to the input and two outputs, and those `2 assigning label 2 to the input and two
outputs. Such labellings `1 and `2 are as described in Figure 2 (a) and (b), respectively (see [5]).
In particular, it is important to mention that the solid edges in the figures must be labelled as
illustrated (up to symmetry), while the only sources of freedom we have are the labels assigned to
the wiggly edges, which can each freely be chosen to be 1 or 2.

Let us now determine the minimum sum of labels assigned by these proper labellings:

• For a proper 2-labelling `1 of Gf assigning label 1 to the input and two outputs, we note, as
illustrated in Figure 2 (a), that u5 and u6 must get colour 10, which is possible only if the
two copies of T2 attached to u5 and u6 are labelled as in Figure 1 (a). Indeed, assuming that
one of these copies of T2, say the one attached to u5, is labelled as in Figure 1 (b), would
mean that c`1(u5) = c`1(u3) = 10, and thus `1 would not be a proper labelling. The vertex
u7 must get colour 11, which is not prevented by any of the two ways of labelling the copy
of T2 attached to it. Thus, for `1 to minimise the sum of labels, the copies of T2 attached
to u5 and u6 must be labelled as in Figure 1 (a), and the copy of T2 attached to u7 must
be labelled as in Figure 1 (a) as well (as the sum of labels in the labelling of Figure 1 (b) is
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(b) Input is labelled 2.

Figure 2: The only proper 2-labellings of the spreading gadget Gf. A triangle marked as “T2”
indicates that a copy of the T2 gadget (depicted in Figure 1) is attached via its root vertex. That
is, u5 (resp., u6 and u7) is identified to the root of one copy of T2. The induced colours for each
labelling are represented as integers in the corresponding vertices. Wiggly edges are edges that
could be labelled either 1 or 2.

larger). All wiggly edges should be assigned label 1. In total, a minimum `1 assigns label 1
to 40 edges and label 2 to 25 edges, and thus σ(`1) = 90.

• By similar arguments, we deduce that, by a proper 2-labelling `2 of Gf assigning label 2
to the input and two outputs, the copies of T2 attached to u5 and u6 should be labelled as
depicted in Figure 1 (b), while the copy of T2 attached to u7 should be labelled as depicted
in Figure 1 (a) (in particular, the two labellings of T2 depicted in Figure 1 comply with u7

having colour 7). Again, the wiggly edges should be labelled 1. In total, a minimum `2
assigns label 1 to 42 edges and label 2 to 23 edges, and thus σ(`2) = 88.

Thus, a proper 2-labelling ` of Gf achieving σ(`) = mE2(Gf) must assign label 2 to the input and
two outputs. �

Now consider the graph operation consisting in taking two copies G1 and G2 of Gf, and
identifying the input of G1 and one output of G2 (so that the two degree-1 vertices do not get
identified together). Thus, if u1

i and u2
i (for 1 ≤ i ≤ 13) denote the vertices of G1 and G2

respectively, in Gf we can either have u1
9u

1
10 = u2

1u
2
2 or u1

12u
1
13 = u2

1u
2
2. As described in [5], this

results in a graph G with one input and three outputs such that, for every proper 2-labelling, the
input and three outputs must all be assigned the same label (which can be either 1 or 2). By
repeating this operation with more and more copies of Gf, we can come up with a graph G1/2

with one input and arbitrarily many outputs that must all be assigned the same label (either 1 or
2) by a proper 2-labelling. So there are, essentially, two groups of proper 2-labellings of G1/2: those
`1 assigning label 1 to the input and all outputs, and those `2 assigning label 2 to the input and
all outputs. Clearly, a proper 2-labelling ` of G1/2 verifying σ(`) = mE2(G1/2), when restricted to
any constituting copy of Gf in G1/2, should also be minimum in terms of sum of assigned labels.
From Claim 4.3, we thus deduce that a proper 2-labelling ` of G1/2 achieving σ(`) = mE2(G1/2)
must assign label 2 to the input and all outputs, i.e., must belong to the `2 group mentioned above.
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Figure 3: The auxiliary graph A(2, 2)

In particular, the difference between the sum of labels of a minimum `1 and the sum of labels of a
minimum `2 gets larger as the number of copies involved in the construction of G1/2 gets larger.

Now let G be the graph obtained as follows. Consider the graph G1/2 with ∆ outputs (for
any ∆ ≥ 12), and identify the degree-1 vertices of these ∆ outputs to a single vertex o∗ (with
maximum degree ∆, as it can be checked from Figures 1 and 2 that all other vertices of G1/2 have
degree at most 6). Note that a proper 2-labelling of G is also proper for G1/2, since vertices of
degree 1 cannot be involved in conflicts. Also, a proper 2-labelling of G1/2 must be proper in G as
well, since o∗ has degree at least 12 while all its neighbours have degree 2. By these arguments,
a proper 2-labelling ` of G verifying σ(`) = mE2(G) must thus be one of these proper 2-labellings
`2 assigning label 2 to the input and all outputs. Such an `2 verifies c`2(o∗) = 2∆. On the other
hand, a proper 2-labelling `1 assigning label 1 to all outputs verifies c`1(o∗) = ∆. Thus, a proper
2-labelling ` of G verifying σ(`) = mE2(G) will make o∗ get colour 2∆, while there are proper
2-labellings by which o∗ gets colour ∆. Note in particular that by our choice of ∆, vertex o∗ must
indeed be the vertex with the largest colour, as its degree is at least 12, all other vertices have
degree at most 6, and we are only assigning labels 1 and 2.

4.2 Using larger labels can be arbitrarily better
In this section, we present, for any k ≥ 3, a construction for a tree Tk such that mE2(Tk) =
mE3(Tk) = mE4(Tk) = · · · = mEk(Tk) and mEk+1(Tk) < mEk(Tk). In other words, for these trees
Tk we need to consider larger labels to design a proper labelling ` achieving mE(Tk, `) = mE(Tk).

Let us first introduce the auxiliary graph A(α, β) (for α ≥ 2 and β ≥ 0), which will serve as
the building block for Tk. This auxiliary graph is a tree and is built recursively as follows: for any
α∗ ∈ N, define A(α∗, 0) as a leaf. For any β > 0, A(α, β) is a tree of height β, rooted in a vertex r
that has α children. For each 1 ≤ i ≤ α, let ci be the corresponding child of r; each ci is the root of
a A(α+ i, β−1) tree and thus d(ci) = α+ i+1 (since each ci has α+ i children of its own as well as
an edge connecting him with his parent). Note that d(ci) ∈ D(α) = {α+ 2, . . . , 2α+ 1} and that,
for i 6= j, we have d(ci) 6= d(cj) (and thus all the values of D(α) are used exactly once). Finally,
we say that A(α, β) is represented by r. The auxiliary graph A(2, 2) is illustrated in Figure 3.

Let us also define the pending auxiliary graph that corresponds to A(α, β) as P (α, β) = (V,E),
where V = V (A(α, β))∪ {v} and E = E(A(α, β))∪ vr; in essence P (α, β) is A(α, β) with an extra
vertex v connected to r. We say that P (α, β) is pending from v. Observe that P (α, β) is locally
irregular and thus the labelling ` that assigns label 1 to every one of its edges is proper and verifies
mE(P (α, β), `) = |E|.

Lemma 4.4. Let β ∈ N∗ and α ≥ 2. Let ` be a proper α-labelling of the pending auxiliary graph
P (α, 2β) pending from v. Let u,w ∈ V (P (α, 2β)) such that 1 ≤ dist(u, v) ≤ 2 and w is the parent
of u. If `(uw) > 1, then mE(P (α, 2β), `) ≥ |E|+ β.

Proof. Let us prove the claim for the case where dist(u, v) = 2 and u is the root of the A(α+1, 2β−1)
subtree and w = r (similar arguments hold for the other cases) and let us first assume that uw
is the only edge of P (α, β) that has label more than 1, say `(uw) = α′ where 2 ≤ α′ ≤ α. It
follows that c`(u) = α + α′ + 1 and that α + 3 ≤ c`(u) ≤ 2α + 1. Since all edges of P (α, 2β)
except uw are labelled 1, each child y of u has c`(y) = d(y). Moreover, since u is the root of the
A(α+ 1, 2β − 1) tree, each one of the α+ 1 children of u has a unique degree in the set D(α+ 1).
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But D(α + 1) = {α + 3, . . . , 2α + 2} and c`(u) ∈ D(α + 1). It follows that there exists a child
of u that has, by `, the same colour as u. Thus ` must assign a label different from 1 to at least
one more edge of P (α, β), and the argument can be repeated at least β times (since the height of
T (α, 2β) is 2β + 1), leading to ` having to assign a label different than 1 to at least β edges. The
exact value of mE(P (α, 2β), `) = |E|+ β is reached if each time the argument is repeated, α′ = 2
and the next edge that gets assigned label 2 is at distance 2 from the previous ones.

Theorem 4.5. For every k ≥ 2, there exists a nice graph Tk such that mEk+1(Tk) < mEk(Tk).

Proof. Let k ≥ 2 and let us describe the construction of Tk = (V,E). For 0 ≤ j ≤ k − 1, let
P (k + j, 2(k + 1)) be the auxiliary graph pending from vj that corresponds to an auxiliary graph
A(k+j, 2(k+1)) (represented by a vertex rj) and let u, v be two vertices connected by the edge uv.
The tree Tk is the graph that is produced by identifying v with each one of the vj . Observe that
since rj represents A(k+j, 2(k+1)), each rj has d(rj) = k+j+1 in Tk and that the height of Tk is
2(k+ 1) + 1. Also observe that in Tk, since N(v) = {r0, . . . , rk−1, u}, we have d(v) = k+ 1 = d(r0).

Claim 4.6. There exists a proper (k + 1)-labelling ` of Tk such that σ(`) = |E|+ k.

Proof of the claim. Note that Tk is almost locally irregular. Indeed, let w be a non-leaf vertex
of Tk different from r1, v and u, and let x be its parent. If d(w) = d + 1, then d + 1 > d(x) (by
construction) and w has d children, each one having degree at least d+2. In fact, the only adjacent
vertices that have the same degree are v and r0.

Let ` be the (k + 1)-labelling of Tk that assigns label k + 1 to the edge uv and label 1 to the
remaining edges of Tk. Then c`(v) = 2k+ 1 and, for each 0 ≤ i ≤ k− 1, we have d(rj) ∈ [k+ 1, 2k]
and thus there is no conflict between the colour of v and that of its children. It follows that ` is a
proper (k + 1)-labelling for Tk and σ(`) = |E|+ k. �

Let `′ be any proper k-labelling of Tk. It suffices to show that σ(`′) > |E|+ k. Note that, since
d(v) = d(r0) = k + 1 and `′ is proper, there must exist vertices w, y, with w ∈ N(r0) \ {v} and
y ∈ N(v) \ {u, r0}, such that at least one of the edges uv, r0w or vy has to have a label different
from 1. Let `′(uv) = l with 2 ≤ l ≤ k and assume that this is the only edge of Tk that has a
label different from 1. Then c`′(v) = k + l and k + l ∈ {k + 2, . . . , 2k}. Recall that for every
0 ≤ j ≤ k − 1, vertex rj has d(rj) = k + j + 1 and thus d(rj) ∈ {k + 1, . . . , 2k}. Besides, since
uv is the only edge with a label different from 1, we have c`′(rj) = d(rj). It follows that there
exists a j ∈ {0, . . . , k − 1}, such that c`′(rj) = c`′(v) leading to `′ not being proper. Thus, there
must exist another edge u′v′ (with, say, u′ being the parent of v′) that is assigned a label different
from 1 by `′. Note that u′ is either rj or v. This edge, however, belongs to P (q, 2(k + 1)) (for
some q ∈ {k, . . . , 2k − 1}) and we have that 1 ≤ dist(v′, v) ≤ 2. It follows from Lemma 4.4 that
mE(Tk) ≥ |E| + k + 1. The cases where r0w or vy are assigned a label different from 1 follow by
applying directly Lemma 4.4.

Observe that the height of Tk can be controlled by changing the β value of the pending auxiliary
graphs that form it. Furthermore, for α ≥ 2 and β, β′ ∈ N∗ with β < β′, it follows from Lemma 4.4
that mE(T (α, 2β)) < mE(T (α, 2β′)), where T (α, 2β) denotes the graph Tk formed by α pending
auxiliary graphs of height 2β. This proves the following corollary:

Corollary 4.7. For every k ≥ 2, there exists a graph Tk such that mEk+1(Tk) is arbitrarily smaller
than mEk(Tk).

5 Bounds
Observation 2.1 establishes that, for any nice graph G, in general mE(G) should be expressed as a
function of |E|. To date, the best result towards the 1-2-3 Conjecture, due to Kalkowski, Karoński
and Pfender [13], states that χΣ(G) ≤ 5 holds for every nice graph G. It implies the following:

Theorem 5.1 ([13]). For every nice graph G, we have mE(G) ≤ mE5(G) ≤ 5|E|.
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Of course, the upper bound in Theorem 5.1 is immediately improved for every nice graph G
for which we can beat the upper bound of Kalkowski, Karoński and Pfender. In particular, let us
recall that χΣ(G) ≤ 3 whenever χ(G) ≤ 3 (see [14]), which implies that mE(G) ≤ mE3(G) ≤ 3|E|
holds here. Recently, Przybyło proved in [18] that χΣ(G) ≤ 4 whenever G is regular, which implies
that mE(G) ≤ mE4(G) ≤ 4|E| holds. More results of this sort can be found e.g. in the survey [19]
by Seamone.

More generally, the 1-2-3 Conjecture, if true, would imply that, for every nice graph G, we
even have mE(G) ≤ mE3(G) ≤ 3|E|. A natural question to wonder is whether there exist graphs
G for which mE(G) is close to this theoretical upper bound 3|E|. Recall that, already, we have
mE(G) ≤ mE2(G) ≤ 2|E| whenever χΣ(G) ≤ 2. The fact that we are not aware of graphs G with
χΣ(G) = 3 needing a lot of 3’s in all proper 3-labellings leads us to suspect that even the following
conjecture might be true.

Conjecture 5.2. For every nice graph G, we have mE(G) ≤ 2|E|.

Conjecture 5.2 holds true for all graphs G with χΣ(G) ≤ 2, recall Observation 2.1. Experi-
mentation via computer programs led us to observe that, actually, it might even be true that the
equality mE(G) = 2|E| holds if and only if G is K3 or C6, recall Theorems 2.5 and 2.6. However,
these cases are very peculiar, due to the small number of edges these two graphs have.

Throughout this section, we provide weaker results towards Conjecture 5.2 for graphs with
given chromatic number, we verify Conjecture 5.2 for bipartite graphs, and we prove a stronger
result in the particular case of trees.

5.1 Graphs with large chromatic number
Towards Conjecture 5.2, we provide a general bound on mE(G) being a function of the chromatic
number χ(G). In particular, the bound we get is better than that in Theorem 5.1, and even better
than the conjectured one in Conjecture 5.2, for dense enough graphs.

In the upcoming proofs, we make use of arguments that are fairly common in this field (see
e.g. [1, 6, 8, 14, 15, 16, 20]), based on label modifications along walks with certain parity length.
Recall that a walk in a graph is a path in which vertices and/or edges might be repeated. A walk
is said closed if it starts and ends at a same vertex. We say a path is even (odd, respectively) if it
is of even length (odd length, respectively).

The next results are for graphs that are not bipartite. Results dedicated to bipartite graphs
will be provided in the next section.

Theorem 5.3. Let G = (V,E) be a nice connected graph with chromatic number k = χ(G) at
least 3. Then, we have mE(G) ≤ mEk+1(G) ≤ |E|+ k|V |.

Proof. Since k ≥ 3, we have that G is not a bipartite graph. It follows that there exists an odd
cycle C in G. Let H be the subgraph of G constructed according the following procedure: start by
H = C. Then, iteratively, for each vertex v ∈ V \ V (H) such that there exists a vertex h ∈ V (H)
with vh ∈ E, add v to V (H) and vh to E(H). Repeat this process until V (H) = V . In the end,
H will contain only one cycle, the cycle C, and simple paths that lead to all the vertices of G that
do not belong to C. Observe that for each e ∈ E(C), the subgraph H − e is a spanning tree of G.
Thus |E(H)| = |V (G)|.

Let G′ = G ∪ S0, where S0 = ∅, and Si ⊆ V (G′), for 1 ≤ i ≤ k, be the k stable sets induced
by a proper vertex-colouring c of G′ (i.e. if v ∈ Si then c(v) = i). We are going to construct a
(k + 1)-labelling ` on the edges of G′ such that σ(`) ≤ |E(G′)|+ k|V (G′)|. Let us start by having
` assigning label 1 to all edges of G′. At this point, the colour of every vertex is exactly its degree.
For each 0 ≤ i ≤ k, let S∗i = {v ∈ Si|c`(v) = i mod k + 1} (obviously S∗0 = ∅). Our goal is to
modify ` so that for each i, we have S∗i = Si, from which it follows that c` is a proper vertex-
colouring of G′. Aiming at reaching that conclusion, note that, modulo k+ 1, we can equivalently
have ` assigning labels 0, . . . , k instead.

Let v∗ ∈ V (G′) such that d(v) = d mod k + 1. Since c`(v∗) = d(v∗), it follows that v∗ ∈ S∗d .
Free to relabel the stable sets induced by c, we may assume that d is such that Sd−1 = ∅. For
each v ∈ Si \ S∗i , we define Po(v) = (v∗, ho1, . . . , h

o
n, v) and Pe(v) = (v∗, he1, . . . , h

e
m, v) to be an
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odd and an even walk, respectively, following the edges of H, that connect v∗ and v (thus n is
an even number and m is an odd number). These walks are sure to exist because H contains the
odd cycle C. We modify ` to a labelling `′ as follows. We traverse Po(v) from one end to the
other, and, as going along, alternate between removing 1 mod k + 1 and adding 1 mod k + 1 from
the labels of the traversed edges. Thus `′(v∗ho1) = `(v∗ho1) − 1 mod k + 1, `′(ho1h

o
2) = `(ho1h

o
2) +

1 mod k + 1, . . . , `′(honv) = `(honv) − 1 mod k + 1. We perform similar modifications as traversing
Pe(v) from one end to the other. Thus `′(v∗he1) = `(v∗he1) + 1 mod k + 1, `′(he1h

e
2) = `(he1h

e
2) −

1 mod k + 1, . . . , `′(hemv) = `(hemv) − 1 mod k + 1. These modifications do not affect the colours
of the internal vertices of Po(v) and Pe(v). We perform these modifications one after the other.
That is, if we start by modifying Po(v), then we continue by modifying Pe(v), next with modifying
Po(v), and so on. Each time we modify Po(v) or Pe(v), the colour of v is reduced by 1 mod k + 1
and if we alternate between modifying Po(v) and Pe(v), then the colour of v∗ stays the same.

Let v ∈ Si \ S∗i . We alternate between modifying Po(v) and Pe(v) until c`′(v) = i mod k + 1.
Then me move on to modifying another vertex v′ ∈ Si′ \ S∗i′ (i is not necessarily different from i′).
If the last modification for v was on Po(v), then we start with modifying Pe(v′) and once more we
proceed by alternating between modification on Pe(v′) and Po(v′) and vice versa.

It is clear that once the above process is finished, for each v 6= v∗ and i, we have v ∈ Si if
and only if c`′(v) = i mod k + 1. Also, if the total number w of modifications done is even, then
c`′(v

∗) = d mod k + 1 and if w is odd, then c`′(v
∗) = d − 1 mod k + 1. In any case, and since

before the modifications we had Sd−1 = ∅, the vertex-colouring c`′ of G is proper. Note that this
remains true when turning all labels 0 into k+ 1, so that `′ is a proper (k+ 1)-labelling as desired.
Recall also that the modifications are done on the edges of H and |E(H)| = |V (G)|. In the worst
case, all the edges of H are labelled k + 1 by `′ and thus mE(G, `′) ≤ |E|+ k|V |.

In most proof contexts making use of the walk-switching procedure described in the proof of
Theorem 5.3, there are favourable situations in which the bound can be further reduced. The next
result illustrates that fact.

Theorem 5.4. Let G = (V,E) be a nice connected graph with odd chromatic number k = χ(G) at
least 3. Then, we have mE(G) ≤ mEk(G) ≤ |E|+ (k − 1)|V |.

Proof. Let H be the subgraph of G as it was defined in the proof of Theorem 5.3 and Si be the
stable sets induced by a proper vertex-colouring c of G. Our goal is to reach, by `, the desired
colours modulo k. Under that assumption, we can here assign labels 0, . . . , k − 1 instead. Once
more, we start with ` assigning label 1 to all edges of G. For each 1 ≤ i ≤ k, let S∗i = {v ∈ Si |
c`(v) = i mod k}.

For each v ∈ Si \ S∗i , let Pv be an odd-length closed walk of H that contains v. Again
the existence of Pv is guaranteed because of C. We proceed by modifying the labels of Pv: we
alternate between adding 1 (modulo k) and removing 1 (modulo k) from the labels of consecutive
edges of Pv. Since Pv is a closed walk of odd length, exactly two consecutive edges (not necessarily
distinct) will have to be altered in the same way (i.e., either they are both incremented by 1 or
reduced by 1 modulo k). The modification is done so that these two edges have v as a common
vertex. Let `′ be the modified ` and let us assume that the labels of the edges of H that are
adjacent to v are both incremented by 1 modulo k (symmetric arguments hold for the other case).
Clearly c`′(v) = c`(v) + 2 mod k and since k is odd, by repeating this process the desired value
c`′(v) = i mod k is eventually reached.

Eventually turn all 0’s into k’s. In the worst case, `′ assigns label k on each one of the |V | edges
of H. Thus mE(G, `′) ≤ |E|+ (k − 1)|V |.

5.2 Bipartite graphs
In this section, we prove Conjecture 5.2 for nice bipartite graphs. It turns out, however, that we
are not aware of many bipartite graphs G for which mE3(G) reaches exactly 2|E|. To go further,
we both improve the upper bound in particular contexts, and exhibit constructions of connected
bipartite graphs G with large value of mE2(G), that are legitimate candidates for having mE(G)
large. Throughout this section, it is worth keeping in mind that determining mE2(G) for a given
bipartite graph G is NP-complete by Theorem 3.2.
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(a) (b)

(c) (d)

Figure 4: Constructing an odd multi-cactus through several steps, from the red-green C6 (a). Red-
green paths with length at least 5 congruent to 1 modulo 4 are being repeatedly attached onto
green edges through steps (b) to (d). Solid edges are red edges. Wiggly edges are green edges.

5.2.1 Conjecture 5.2 for nice bipartite graphs

Since, according to [14], nice bipartite graphs G verify the 1-2-3 Conjecture and some of them even
verify χΣ(G) = 3, they can be classified into three classes B1, B2 and B3 where, for each i ∈ {1, 2, 3},
the set Bi contains exactly the connected bipartite graphs G with χΣ(G) = i. Note that B1 contains
the locally irregular bipartite graphs G, each one of which verifies mE1(G) = |E|. The graphs G
of B2 admit proper 2-labellings, and, for these, by Observation 2.1 we have mE2(G) ≤ 2|E|. So, in
order to prove Conjecture 5.2 for nice bipartite graphs, we only need to focus on the graphs of B3.

The graphs of B3 were characterized by Thomassen, Wu and Zhang in [20], who proved that
these graphs are exactly the so-called odd multi-cacti, which are the graphs that can be obtained
at any step of the following procedure (see Figure 4 for an illustration):

• Start from a cycle with length at least 6 congruent to 2 modulo 4 whose edges are properly
coloured with red and green (i.e., no two adjacent edges have the same colour).

• Consider a green edge uv and join u and v via a new path of length at least 5 congruent
to 1 modulo 4 whose edges are properly coloured with red and green, where both the edge
incident to u and the edge incident to v are red.

It is worth mentioning that odd multi-cacti are 2-degenerate and 2-connected. Also, they are
bipartite, and both of their parts have odd size. It can also be noted that for every green edge uv,
we have d(u) = d(v), and no two green edges share ends. In [8], it was actually shown that any
nice bipartite graph with a part of even size does not belong to B3:

Lemma 5.5 ([8]). Let G = (U, V,E) be a connected bipartite graph. If |U | is even, then χΣ(G) ≤ 2.
Furthermore, G admits proper 2-labellings where all vertices of U have odd colour while all vertices
of V have even colour.

We are now ready to prove our main result in this section.

Theorem 5.6. For every nice connected bipartite graph G, we have mE(G) ≤ mE3(G) ≤ 2|E|.
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Proof. Since the statement holds for G ∈ B1 ∪B2, as explained earlier, we can assume G ∈ B3, i.e.,
G is an odd multi-cactus with bipartition (U, V ) (where both |U | and |V | are odd). If G is a cycle
with length at least 6 congruent to 2 modulo 4, then the result follows from Theorem 2.6. Thus,
we may assume that ∆(G) ≥ 3, i.e., some path attachments were made to build G starting from
an original cycle.

Let us consider the last green edge xy to which a path P = (x, v1, . . . , v4k, y) was attached
in the construction of G, where k ≥ 1. Recall that d(x) = d(y) ≥ 3 by construction. Consider
G′ = G − {v1, v2, v3}. Assuming v1, v3 ∈ U and v2 ∈ V , the bipartition of G′ is (U ′, V ′) =
(U \ {v1, v3}, V \ {v2}). This means that |V ′| is even. By Lemma 5.5, there is a proper 2-labelling
`′ of G′ such that all vertices of U ′ have even colour while all vertices of V ′ have odd colour. Since
x ∈ V ′, the colour c`′(x) is odd, and thus at least 3 since dG′(x) ≥ 2. Similarly, v4 ∈ V ′, so the
colour c`′(v4) is odd, and it is precisely 1 since dG′(v4) = 1.

We now extend `′ to a proper 3-labelling ` of G, by assigning label 1 to v1v2, label 2 to xv1 and
v3v4, and label 3 to v2v3. This way:

• c`(x) and c`(v4) remain odd;

• c`(v1) = 3 < 5 ≤ c`(x);

• c`(v3) = 5 > 3 = c`(v4);

• c`(v2) = 4 6∈ {c`(v1), c`(v3)} = {3, 5}.

For these reasons, it should be clear that ` is indeed proper. We additionally note that label 3
is actually assigned only once by `, to v2v3. Furthermore, ` assigns label 1 at least once, e.g. to
v1v2. From this, it follows that σ(`) ≤ 2|E|.

As mentioned earlier, the only connected bipartite graph G verifying mE(G) = 2|E| we are
aware of, is C6. Due to the small number of edges of C6, this case looks quite pathological. In
particular, it is natural to wonder whether Theorem 5.6 can be improved in general, when excluding
C6. We investigate this concern in what follows.

5.2.2 Lower bounds for some bipartite graphs

Our main result in this section is that, in general, for a nice connected bipartite graph G it is not
possible to lower mE2(G) below the 3

2 |E| barrier. Put differently, there exist connected bipartite
graphs for which label 2 must be assigned to at least half of the edges by any proper 2-labelling.
This is a consequence of the following more general result, which is of independent interest.

Theorem 5.7. Let G be any nice connected graph, and let H be a graph obtained from G by
subdividing every edge e exactly ne times, where ne = 4ke + 3 for some ke ≥ 0. Then χΣ(H) = 2.
Furthermore, mE2(H) = 3

2 |E(H)|.

Proof. For every edge e = uv of G, let us denote by Pe the corresponding path of length 4(ke + 1)
in H. Note that H has many adjacent 2-vertices, so χΣ(H) > 1. Also, H is bipartite with
bipartition (X,Y ), where w.l.o.g. X contains all vertices of G. Now let ` be the 2-labelling of H
obtained by considering every edge e = uv of G, and assigning labels 2, 1, 1, 2, 2, 1, 1, . . . , 1, 1, 2 to
the consecutive edges of Pe as going from u to v. Then ` is proper since all vertices in X have even
colour, while all vertices in Y have odd colour. The last part of the claim follows from the fact
that for every edge e of G, in any labelling ` of H every two edges of Pe being at distance 2 apart
must receive distinct labels (recall Observation 2.3). Due to the length of Pe, this implies that the
sum of the labels assigned to its edges is at least 3

2 |E(Pe)|. Thus, σ(`) ≥ 3
2 |E(H)|.

Corollary 5.8. There exist infinitely many connected bipartite graphs G ∈ B2 with various struc-
ture verifying mE2(G) = 3

2 |E|. This remains true for trees.

Proof. This follows from Theorem 5.7. The last part of the statement is because any subdivision
of a tree is clearly a tree itself.
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In particular through experimentation via computer programs, we also managed to come up
with the following construction yielding connected bipartite graphs G for which mE2(G) slightly
exceeds 3

2 |E|. These graphs can be constructed as follows. Let x, y ≥ 4 be any two integers
congruent to 0 modulo 4. The graph H(x, y) is the graph obtained by starting from the disjoint
union of a cycle C with length x and a cycle C ′ with length y, by adding an edge joining any vertex
of C and any vertex of C ′. Note that H(x, y) has odd size.

Theorem 5.9. Let x, y be any two integers congruent to 0 modulo 4, with x, y ≥ 4. Then, we have
mE2(H(x, y)) =

⌈
3
2 |E(H(x, y))|

⌉
.

Proof. We begin by showing the following claim:

Claim 5.10. Let G be obtained from a cycle C with length x at least 4 congruent to 0 modulo 4 by
adding an edge from any vertex v of C to a new pending vertex u. Then, by any proper 2-labelling
` of G, exactly half of the edges of G must be labelled 2. Furthermore, either:

• `(vu) = 1 and c`(v) = 5, or

• `(vu) = 2 and c`(v) can be either of 4, 5, 6.

Proof of the claim. Let us denote by v0, . . . , vx−1 the successive vertices of C, where v0 = v.
Because d(vi) = 2 for every i ∈ {1, . . . , x − 1}, recall, according to Observation 2.3, that, by any
proper 2-labelling ` of G, we must have `(v0v1) 6= `(v2v3) 6= `(v4v5) 6= · · · 6= `(vx−2vx−1) (and thus,
by the length of x, we have `(v0v1) 6= `(vx−2vx−1)), and similarly `(v1v2) 6= `(v3v4) 6= `(v5v6) 6=
· · · 6= `(vx−1v0) (and thus `(v1v2) 6= `(vx−1v0)). So there are essentially three ways for ` to be
designed:

• If `(v0v1) = `(v0vx−1) = 1, then `(v1v2) = `(vx−1vx−2) = 2, and c`(v1) = c`(vx−1) = 3. In
that case, so that c`(v0) 6= 3, we must have `(v0u) = 2 in which case c`(v0) = 4.

• If `(v0v1) = `(v0vx−1) = 2, then `(v1v2) = `(vx−1vx−2) = 1, and c`(v1) = c`(vx−1) = 3. In
that case, we can either have `(v0u) = 1 in which case c`(v0) = 5, or `(v0u) = 2 in which
case c`(v0) = 6.

• If `(v0v1) = 1 and `(v0vx−1) = 2, then `(v1v2) = 1 and `(vx−1vx−2) = 2, and c`(v1) = 2
and c`(vx−1) = 4. In that case, so that c`(v0) 6= 4, we must have `(v0u) = 2 in which case
c`(v0) = 5.

This concludes the proof. �

Let G = H(x, y), and ` be a proper 2-labelling of G. Let H1, H2 be the two connected compo-
nents resulting from the removal of the unique bridge uv of G, and G1 and G2 be the subgraphs
H1 + uv and H2 + uv, respectively, of G (where, say, G1 contains the cycle C1 with length x, and
G2 contains the cycle C2 with length y). Applying Claim 5.10 onto G1 and G2 and the restric-
tion of ` to these graphs, we deduce that we cannot have `(uv) = 1 as otherwise we would have
c`(u) = c`(v) = 5, a contradiction. So we must have `(uv) = 2. Furthermore, still by Claim 5.10,
exactly half of the edges of C1 must be labelled 2 by `, and similarly exactly half of the edges of
C2 must be labelled 2. It yields that σ(`) = d 3

2 |E(H(x, y))|e. Note that ` does exist, since G is not
an odd multi-cactus (due to the presence of the bridge uv). In particular, the edges of C1 and C2

can be 2-labelled in such a way that c`(u) and c`(v) are two distinct values in {4, 5, 6}.

5.2.3 Improved upper bounds

As shown previously, it seems that, in general, for nice connected bipartite graphs the bound in
Theorem 5.6 might not be optimal. Following our investigations in the previous section, we believe
that perhaps the following could be the right direction to investigate:

Conjecture 5.11. There is an absolute constant c ≥ 1 such that, for every nice connected bipartite
graph G ∈ B2, we have mE2(G) ≤ 3

2 |E|+ c.
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It is worth pointing out that a proper 2-labelling ` of a graph G where σ(`) is about 3
2 |E|

is actually a 2-labelling where the number of assigned 1’s is about the same as the number of
assigned 2’s. Thus, Conjecture 5.11 can be sort of related to the notion of equitable proper labellings
of graphs, which were introduced in [3] and are proper labellings where, for every two assigned
labels i, j, the number of edges assigned label i differs by at most 1 from the number of edges
assigned label j. Regarding Conjecture 5.11, it can be observed that mE2(G) ≤ 3

2 |E|+ 1 holds for
every graph G admitting an equitable proper 2-labelling. The additive c term is naturally reduced
from 1 to 0 when G has even size. Among other results, the authors in [3] proved that nice bipartite
complete graphs and forests admit equitable proper 2-labellings.

Towards Conjecture 5.11, in this section our aim is to improve Theorem 5.6 further for the
bipartite graphs of B2. First off, we point out that the theoretical upper bound in Theorem 5.6
cannot be reached for a bipartite graph in B2.

Observation 5.12. For every graph G ∈ B2, we have mE2(G) < 2|E|

Proof. By definition of B1, B2 and B3, since G 6∈ B1 the graph G is not locally irregular. Now, if
mE2(G) = 2|E|, then the only proper 2-labelling of G is the one assigning label 2 to all edges. For
such a labelling to be proper, G must have no two adjacent vertices having the same degree. So G
must be locally irregular, a contradiction.

In particular contexts, better bounds can be obtained by adapting the arguments from the
proof of Theorem 5.3 in a particular way.

Theorem 5.13. Let G = (U, V,E) be a nice connected bipartite graph where |U | is even. Then,
we have mE2(G) ≤ |E|+ |V | − 1.

Proof. Let us denote by Ue (Uo, respectively) the set of vertices of U having even (odd, respectively)
degree in G, and similarly by Ve (Vo, respectively) the set of vertices of V having even (odd,
respectively) degree in G. Note that either |Ue| and |Vo| must have the same parity, or |Uo| and
|Ve| must have the same parity. This is because, otherwise, since |U | is even and |U | = |Ue|+ |Uo|,
the sizes |Ue| and |Uo| must have the same parity, we would get that also |Ve| and |Vo| have the same
parity. From this, we would deduce that

∑
u∈U d(u) 6≡

∑
v∈V d(v) mod 2, which is not possible.

Without loss of generality, we may assume that Ue and Vo have the same parity, thus that
|Ue| + |Vo| is even. Our aim now, is to design a 2-labelling of G where all vertices in U get odd
colour while all vertices in V get even colour. Such a labelling will obviously be proper. To that
aim, we proceed as follows. Let us start with assigning label 1 to all edges of G. This way, at
this point the colour of every vertex is exactly its degree; so all vertices in Uo and Ve verify the
desired colour property, while all vertices in Ue and Vo do not. To fix these vertices, we consider
any spanning tree T of G. We now repeatedly apply the following fixing procedure: we consider
any two vertices x and y of Ue ∪Vo that remain to be fixed, and flip (i.e., turn the 1’s into 2’s, and
vice versa) the labels of all edges on the unique path in T from x to y. This way, note that only
the colours of x and y are altered modulo 2. Since |Ue| + |Vo| is even, there are an even number
of vertices to fix, and, by flipping labels along paths of T , we can fix the colour of all vertices in
Ue ∪ Vo. This results in a 2-labelling ` of G, with the desired properties, which is thus proper.

Note now that ` assigns label 2 only to a subset of the edges of T . Since T has |V (G)| − 1
edges, the result follows.

Note for instance that, for a graph G, we have |E|+ |V | − 1 ≤ 3
2 |E| as soon as |E| ≥ 2|V | − 2.

As notable consequences, this implies that a connected bipartite graph G ∈ B2 with a part of even
size verifies mE2(G) ≤ 3

2 |E| as soon as G has minimum degree at least 4, or more generally when
the graph is dense enough.

The same result also holds when G is bipartite and cubic (in which case χΣ(G) = 2, by definition
of odd multi-cacti), from a more general argument:

Observation 5.14. Let G be a connected regular graph with χΣ(G) = 2. Then, we have mE(G) ≤
mE2(G) ≤ 3

2 |E|.
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Proof. Let ` be a proper 2-labelling of G. Since G is regular, the edges labelled 1 by `, and similarly
the edges labelled 2, must induce a locally irregular subgraph of G. Then the 2-labelling `′ of G
obtained by turning all 1’s into 2’s, and vice versa, is also proper. Now there is one of ` and `′ that
assigns label 2 to at most half of the edges, and the conclusion follows.

Slight modifications of the proof of Theorem 5.13 also yield the desired result for certain bipar-
tite graphs that are Hamiltonian.

Observation 5.15. Let G = (U, V,E) be a Hamiltonian bipartite graph where |U | is even. Then,
we have mE(G) ≤ mE2(G) ≤ 3

2 |E|.

Proof. Just mimic the proof of Theorem 5.13, but repair pairs of defective vertices of G along
a Hamiltonian cycle C = (v0, . . . , vn−1, v0), matching each of them, say, with the next defective
vertex in the ordering of C. If this fixing process turns more than half of the edges to 2, then,
instead, repair pairs of vertices around C matching each of them with the previous defective vertex
in the ordering (which is equivalent to flipping the labels along C).

5.3 Trees
Our main result here is that for every nice tree T , we have mE2(T ) ≤ 3

2 |E|, which cannot be
lowered in general, due to Corollary 5.8. Still, it confirms Conjecture 5.11 for nice trees. Let us
recall that it was proved in [3] that nice forests admit equitable proper 2-labelling. This directly
implies our result below for trees with even size, while it does not for trees with odd size (as a
2-labelling where the number of assigned 2’s is one more than the number of assigned 1’s does not
fulfil our claim).

Theorem 5.16. For every nice tree T , we have mE2(T ) ≤ 3
2 |E|.

Proof. The proof is by induction on the number of branching vertices of T , where by branching
vertex we mean any vertex of degree at least 3. The base case is when T has no branching vertex,
i.e., when ∆(T ) ≤ 2. In that case, T is a path. Let us here consider the 2-labelling ` of T obtained
by assigning labels 1, 1, 2, 2, 1, 1, 2, 2, . . . as traversing the edges from an end-vertex to the second
one. It is easy to see that ` is proper. Indeed, recall first that degree-1 vertices cannot be involved
in a colour conflict. Furthermore, for two adjacent 2-vertices u, v to have the same colour, the
edge incident to u different from uv must be assigned the same label as the edge incident to v
different from uv (recall Observation 2.3). Since, by `, no two edges at distance 2 get assigned
the same label, this implies that no colour conflict arises. Lastly, since 1’s and 2’s are assigned
by pairs starting from a pair of 1’s, it should be clear that ` assigns more 1’s than 2’s. Thus,
mE2(T ) ≤ σ(`) ≤ 3

2 |E|.

We now focus on the general case. That is, we now assume that T has branching vertices, and
every nice tree with fewer branching vertices verifies the claim. Let us root T at some degree-1
vertex r. In the usual way, this defines a (virtual) orientation of T , where every vertex v of T but
r has a unique parent (unique neighbour of v that is closer to r), all vertices v but the leaves have
children (neighbours of v that are farther from r), and more generally all vertices v but the leaves
have descendants (vertices where their unique shortest path to r passes through v). By a deepest
branching vertex of T , we refer to a branching vertex whose all descendants are not branching
vertices, i.e., they have degree at most 2.

Let us consider a deepest branching vertex v of T . Then v is adjacent to its parent w and there
are k ≥ 2 hanging paths P1, . . . , Pk attached to v. Note that some of the Pi’s may be of length 1
in case some of the children of T are leaves. Let T ′ be the tree obtained from T by removing the
edges of P1, . . . , Pk (i.e., all their vertices different from v). If T ′ is just an edge, then T is actually
a subdivided star. If T is a star with at least two leaves, then it is locally irregular and we can
assign label 1 to all edges. Otherwise, when T is a subdivided star different from a star, then,
without loss of generality, P1 has length at least 2. We then change the root r to be the degree-1
vertex of P1 so that, now, we can assume that T ′ indeed is not an edge.

Thus, we can assume that T ′ is not just an edge. Since T ′ has less branching vertices than T ,
by the induction hypothesis there is a proper 2-labelling `′ of T ′ verifying mE(T ′, `′) ≤ 3

2 |E(T ′)|.
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We wish to extend `′ to the edges of P1, . . . , Pk, thus to a 2-labelling ` of T . To that aim, we
consider the following two extension schemes for extending `′ to the edges of one Px of the Pi’s:

• 1-extension: We assign labels 1, 1, 2, 2, 1, 1, 2, 2, . . . to the consecutive edges of Px, as they
are traversed going from v to the degree-1 vertex of Px.

• 2-extension: We assign labels 2, 1, 1, 2, 2, 1, 1, 2, 2, . . . to the consecutive edges of Px, as they
are traversed going from v to the degree-1 vertex of Px.

Note that whenever Px has length not congruent to 1 modulo 4, the number of assigned 1’s is
always at least the number of assigned 2’s by both 1-extensions and 2-extensions. More precisely,
if Px has length congruent to 1 modulo 4, then the number of 2’s by a 2-extension is one more than
the number of 1’s, and vice versa by a 1-extension. Recall also that 1-vertices cannot be involved
in colour conflicts. Furthermore, for two adjacent 2-vertices x, y to have the same colour, the edge
incident to x different from xy must be labelled the same way as the edge incident to y different
from xy. From this, we deduce that when extending `′ to the edges of the Pi’s via 1-extensions
and 2-extensions, we must just make sure that 1) the colour of v does not get equal to the colour
of its parent w, and 2) the colour of v does not get equal to the colour of one of its children.

We note that the second type of colour conflict cannot actually occur. Indeed, note that by
a 1-extension of Px, the neighbour of v in Px, unless it has degree 1 (in which case it cannot be
in conflict with v), gets colour 2, while, by a 2-extension, it gets colour 3. Since v is a branching
vertex with k ≥ 2 children, thus of degree k + 1, when performing 1-extensions and 2-extensions
to the Pi’s, vertex v gets colour precisely k + 1 ≥ 3 if only 1-extensions are performed, and colour
at least k + 2 ≥ 4 if at least one 2-extension is performed.

Thus, we just need to find a combination of 1-extensions and 2-extensions to the Pi’s so that
no colour conflict involving v and its parent w arises. Also, we need to make sure that the number
of assigned 1’s is at least the number of assigned 2’s. If one of the Pi’s has length not congruent
to 1 modulo 4, then we choose it as P1. Otherwise, if they all have length congruent to 1 modulo
4, then we choose any Pi as P1.

We first perform 1-extensions only, i.e., to all Pi’s. If the colour of v gets different from that
of w, then we are done. Otherwise, when performing a 2-extension to P1 and a 1-extension to all
other Pi’s, the colour of v gets bigger, thus getting different from the colour of w. This results in
the desired extension ` to all edges of T .

Let us conclude by noting that the number of 1’s assigned by ` is at least the number of assigned
2’s. This is because mE2(T ′, `′) ≤ 3

2 |E(T ′)|, and, as mentioned earlier, by 1-extensions to the Pi’s
the number of assigned 1’s is at least the number of assigned 2’s. By 2-extensions, this is true when
performed on paths of length not congruent to 1 modulo 4. By our choice of P1, if P1 has length
congruent to 1 modulo 4, then so do all Pi’s. In that precise case, the number of 2’s assigned to
the edges of P1 is one bigger than the number of assigned 1’s, but this is compensated by the fact
that, in P2, the number of assigned 1’s is one bigger than the number of assigned 2’s. Thus we
additionally have σ(`) ≤ 3

2 |E(T )|, as desired.

6 Conclusion
In this work, we have studied proper labellings of graphs with the additional requirement that we
want the sum of assigned labels to be as small as possible. Our interests were guided by both
straight questions, such as determining mE(G) for a given graph G, as well as more fundamental
ones, such as the difference, in general, between mEk(G) and mEk′(G) for k 6= k′. We have also
investigated the complexity of finding “optimal” labellings.

We quickly ran into Conjecture 5.2, which seems rather natural when knowing that the 1-2-3
Conjecture seems to be a more than plausible conjecture and that graphs, in general, seem to need
only a few 3’s to design proper 3-labellings. We believe it would be interesting to further study this
point in the future, as Conjecture 5.2 stands as the main open problem regarding our investigations
in the current paper. It would also be interesting to progress towards its refinement for bipartite
graphs, Conjecture 5.11. A way to progress towards answering both questions could be to exhibit
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families of connected (possibly bipartite) graphs G for which mE(G) is “large”, i.e. larger than the
quantity in Theorem 5.9.

Regarding our algorithmic results in Section 3, we note that they all deal, for a given graph
G, with the parameter mEk(G) (for some k), and not with the more general parameter mE(G).
This is mainly because, as indicated by Theorem 4.5, in general there is no absolute constant that
bounds, for all graphs G, the smallest k such that mE(G) = mEk(G). In particular, even for a
graph G of bounded treewidth, although we can determine mEk(G) in polynomial time for any k
(due to our algorithm in Theorem 3.5), running multiple iterations of our algorithm to determine
mE(G) is not feasible in polynomial time. Thus, we leave the following problem open even for the
seemingly simplest case:

Question 6.1. What is the complexity of determining mE(T ) for a given tree T?
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