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SUMMARY
Oncogenic histone lysine-to-methionine mutations block the methylation of their corresponding lysine resi-
dues on wild-type histones. One attractive model is that these mutations sequester histone methyltrans-
ferases, but genome-wide studies show that mutant histones and histone methyltransferases often do not
colocalize. Using chromatin immunoprecipitation sequencing (ChIP-seq), here, we show that, in fission
yeast, even though H3K9M-containing nucleosomes are broadly distributed across the genome, the histone
H3K9 methyltransferase Clr4 is mainly sequestered at pericentric repeats. This selective sequestration of
Clr4 depends not only on H3K9M but also on H3K14 ubiquitylation (H3K14ub), a modification deposited
by a Clr4-associated E3 ubiquitin ligase complex. In vitro, H3K14ub synergizes with H3K9M to interact
with Clr4 and potentiates the inhibitory effects of H3K9M on Clr4 enzymatic activity. Moreover, binding ki-
netics show that H3K14ub overcomes the Clr4 aversion to H3K9M and reduces its dissociation. The selective
sequestrationmodel reconciles previous discrepancies and demonstrates the importance of protein-interac-
tion kinetics in regulating biological processes.
INTRODUCTION

Recent sequencing analyses have found that histone lysine-to-

methionine mutations are associated with distinct types

of cancers. For example, more than 80% of diffuse intrinsic

pontine gliomas contain a somatic K27M mutation in histone

H3.3 or H3 (Schwartzentruber et al., 2012; Sturm et al., 2012;

Wu et al., 2012), and more than 90% of chondroblastomas and

a subset of head and neck squamous cell carcinomas contain a

K36M mutation in histone H3.3 or H3 (Behjati et al., 2013;

Papillon-Cavanagh et al., 2017). These mutations transform
This is an open access article under the CC BY-N
normal cells into tumor-like states, suggesting that they have crit-

ical roles in tumorigenesis (Chan et al., 2013a; Fang et al., 2016;

Funato et al., 2014; Lu et al., 2016; Mohammad et al., 2017).

Introducing histones containing lysine-to-methionine muta-

tions, such as H3K9M, H3K27M, and H3K36M, into mammalian

or yeast cells all reduced methylation of their corresponding

lysine residues on wild-type histones (Brumbaugh et al., 2019;

Chan et al., 2013a, 2013b; Fang et al., 2016; Herz et al., 2014;

Lewis et al., 2013; Lu et al., 2016; Mohammad et al., 2017; Piunti

et al., 2017; Sarthy et al., 2020; Shan et al., 2016; Stafford et al.,

2018; Zhang et al., 2017), suggesting that they function in a
Cell Reports 35, 109137, May 18, 2021 ª 2021 The Author(s). 1
C-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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dominant fashion and, possibly, through similar mechanisms.

Oneof themost attractivemodels throughwhich thesemutations

regulate global histone methylation is the sequestration of his-

tone methyltransferases. Such a hypothesis is supported by

interaction assays showing that K-to-M mutations enhanced

the binding between histones and their methyltransferases both

in vitro and in vivo (Bender et al., 2013; Chan et al., 2013a; Fang

et al., 2016; Jayaram et al., 2016; Justin et al., 2016; Lu et al.,

2016; Shan et al., 2016; Zhang et al., 2017). However, recent

studies of the H3.3K27Mmutation in vivo are not entirely consis-

tentwith thesequestrationmodel. For example, chromatin immu-

noprecipitation sequencing (ChIP-seq) analyses of cancer cells

expressing H3.3K27M found that, although the H3K27 methyl-

transferase PRC2 levels are higher at a set of poised enhancers

that also contains H3.3K27M, most genomic loci containing

high levels of H3.3K27M show no association with PRC2 (Fang

et al., 2018; Piunti et al., 2017; Sarthy et al., 2020). Moreover,

mass spectrometry analyses of proteins associated with

H3.3K27M-containing nucleosomes did not detect higher levels

of PRC2 than wild-type nucleosomes did (Herz et al., 2014). It

is, therefore, critical to resolve these discrepancies to better un-

derstand the function of these mutations in tumorigenesis.

We have previously established a model of the H3K9M muta-

tion in fission yeast (Shan et al., 2016). In this organism, histone

H3K9methylation is required for the formation of heterochromat-

in at repetitive DNA elements (Grewal and Jia, 2007), and there

are three copies of the histone H3 genes (hht1+, hht2+, and

hht3+) with identical protein sequences. We have generated

FLAG-tagged versions of wild-type and K9M mutant at the

endogenous hht3+ locus. Western blot analysis with a histone

H3 antibody indicates that the mutant histone is expressed at

lower levels than endogenous histone H3 is (Figure 1A). We

found that H3K9M dominantly blocks H3K9 methylation at major

heterochromatin domains (Shan et al., 2016). Moreover, the

H3K9M mutation enhances the interaction between the H3K9

methyltransferase Clr4 and histone H3 tail peptide in vitro, and

that mutation results in higher levels of Clr4 at heterochromatin

in vivo, leading to a model of H3K9M sequestering Clr4 to block

H3K9 methylation (Shan et al., 2016).

In this study, we used that fission yeast H3K9M model to

further examine whether the H3K9M mutation functions through

the sequestration of Clr4. We found that, even though the

H3K9M mutant histone is broadly distributed across the

genome, Clr4 is only sequestered at heterochromatin, suggest-

ing that additional mechanisms at heterochromatin might facil-

itate the sequestration of Clr4 by H3K9M. Clr4 associates with

an E3 ubiquitin ligase complex, composed of Cul4, Rik1, Raf1,

and Raf2 (Hong et al., 2005; Horn et al., 2005; Jia et al., 2005),

to form CLRC. CLRC ubiquitylates histone H3K14 (H3K14ub),

and H3K14ub is associated with H3K9me3 containing hetero-

chromatin, but not H3K4me3 containing euchromatin (Oya

et al., 2019; Stirpe et al., 2020). We found that mutating either

CLRC or H3K14 abolished the sequestration of Clr4 by

H3K9M. Furthermore, we show that in vitro, H3K9M

works synergistically with H3K14ub to interact with Clr4, and

H3K14ub potentiates the inhibitory effects of H3K9M. These re-

sults demonstrate that H3K14ub is critical for the sequestration

of Clr4 by H3K9M.
2 Cell Reports 35, 109137, May 18, 2021
RESULTS AND DISCUSSION

To further examine the mechanism by which H3K9M functions,

we performed ChIP-seq analyses of Hht3-K9M and Clr4 (Fig-

ure 1B). In wild-type cells, Hht3 is broadly distributed across

the genome, with the only exception being at the centromeric re-

gions, in which histone H3 is replaced with a histone-variant

CENP-A. Clr4 is mainly localized at pericentric regions, where

many repetitive elements are present and H3K9me3 levels are

high (Figure 1A). The localization pattern of Hht3-K9M is similar

to that of wild-type Hht3 (Figure 1A), indicating that the mutation

has little effect on the incorporation of histone H3 into chromatin.

In hht3-K9M cells, Clr4 is still mainly enriched at pericentric re-

peats but with higher levels than found in wild-type cells (Fig-

ure 1B). ChIP-qPCR analyses of Clr4 and H3, using a

strain expressing FLAG-Clr4 and Hht3-GFP, confirm that Clr4

levels increase at pericentric dh repeats, but not at euchromatic

act1 locus in hht3-K9M cells (Figure 1C). Apparently, the broad

distribution of Hht3-K9M does not result in the redistribution of

Clr4 across the genome, suggesting that the intrinsic affinity be-

tween Clr4 and H3K9M alone is insufficient to sequester Clr4 on

chromatin, but additional mechanisms promote the sequestra-

tion of Clr4 at pericentric repeats by H3K9M.

The recent identification of CLRC as an E3 ubiquitin ligase of

H3K14ub and the association of H3K14ub with heterochromatin

(Oya et al., 2019; Stirpe et al., 2020) prompted us to check

whether H3K14ub promotes the sequestration of Clr4 by

H3K9M (Figure 2A). Interestingly, ChIP analyses show that Clr4

sequestration at pericentric repeats is abolished in rik1D hht3-

K9M, raf1D hht3-K9M, and raf2D hht3-K9M cells (Figure 2B),

suggesting that CLRC-mediated H3K14 ubiquitylation might

indeed contribute to the sequestration of Clr4 at pericentric re-

peats. The complete loss of Clr4 at pericentric repeats is due

to the fact that CLRC is critical for H3K9me3 and that

H3K9me3 reinforces the localization of Clr4 through the interac-

tion of H3K9me3 with the chromodomain of Clr4 (Zhang et al.,

2008).

CLRC is targeted to repetitive DNA elements through the RNA

interference (RNAi) pathway (Grewal and Jia, 2007) (Figure S1A).

ChIP analyses show that Clr4 is not sequestered at pericentric

repeats in hht3-K9M dcr1D, hht3-K9M ago1D, and hht3-K9M

chp1D cells (Figure S1B). In contrast, the sequestration of Clr4

by H3K9M is independent of Swi6 (Figure S1B), which is an

HP1 family protein essential for heterochromatin integrity but

which functions downstream of CLRC.

To further test the requirement for H3K14ub in the sequestration

of Clr4 by H3K9M, we generated an hht3-K9MK14R mutation,

which abolishes K14 ubiquitylation selectively on H3-containing

K9M. Western blot analyses show that Hht3-K9MK14R and

Hht3-K9M are expressed at similar levels (Figure 2C). ChIP ana-

lyses show that Clr4 levels at pericentric dh repeats in hht3-

K9MK14R cells are reduced to wild-type levels (Figure 2D).

We, then, further examined the effects of H3K9MK14R on het-

erochromatin function. Cells containing hht3-K9M are defective

in the silencing of an otr::ura4+ reporter gene inserted at the peri-

centric repeats, leading to the robust growth of cells on medium

without uracil and little growth on medium containing 5-FOA (flu-

oroorotic acid) (Figure 2E). These cells also lost H3K9me3 at
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Figure 1. The selective sequestration of Clr4 at pericentric repeats by H3K9M

(A) Western blot of fission yeast cell extract with a H3 antibody. A non-specific band serves as a loading control.

(B) ChIP-seq analyses of Hht3 and Clr4 levels across the fission yeast genome. H3K9me3 data are derived from Shan et al., 2016. Diagrams of the three

chromosomes are shown on top, with key positions, such as centromeres and telomeres, labeled as red circles. The region surrounding centromere I is enlarged

and shown on the right. The white box indicates CENP-A containing chromatin, and the red arrows indicate pericentric heterochromatin in which H3K9me3 and

Clr4 are enriched.

(C) ChIP analyses of FLAG-Clr4 and Hht3-GFP levels at pericentric dh repeats and act1+. Data are presented as means ± SD of three technical replicates.
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pericentric dh repeats, accompanied by the accumulation of dh

RNA transcripts (Figures 2F and 2G). In hht3-K9MK14R cells, the

silencing of otr::ura4+ is similar to that in wild-type cells (Fig-

ure 2E). Moreover, H3K9me3 levels at pericentric dh repeats

and dh RNA levels in hht3-K9MK14R cells are similar to those

in wild-type cells (Figures 2F and 2G). Furthermore, ChIP-seq

analysis shows that H3K9me3 levels are restored at all major het-

erochromatin domains in hht3-K9MK14R cells (Figure 2H). In

contrast, hht1-K14R hht3-K9M cells are still defective in the

silencing of otr::ura4+, consistent with the fact that H3K14ub

function in cis to regulate the activity of Clr4 on H3K9 (Oya

et al., 2019; Stirpe et al., 2020) (Figures S1C and S1D).

To examine the effects of H3K14ub on the interaction between

H3K9M and Clr4, we generated histone tail peptides containing

ubiquitin mimics at H3K14. We synthesized biotin-tagged his-
tone H3 tail peptides containing H3K14C and generated recom-

binant Ub-G76C. We then crosslinked the cysteines with 1,3 di-

chloroacetone (DCA) (Long et al., 2014) and purified the resulting

peptides containing ubiquitin mimics at H3K14 to homogeneity

(Figures 3A and S2). Peptide pull-down assays with recombinant

Clr4 SET domain (residue 190–490) show that H3K9MK14ub in-

teracts more strongly with Clr4 compared with H3K14C,

H3K9MK14C, or H3K14ub in the presence of S-adenosyl-methi-

onine (SAM) (Figure 3B). In addition, thermal shift assays also

show that H3K9MK14ub interacts with Clr4 in the presence of

SAM (Figure S3A), and Clr4 and H3K9MK14ub form a complex

in the presence of SAM in a gel-filtration assay (Figures S3G

and S3H). In the absence of SAM, H3K9MK14ub also results in

a thermal shift of Clr4, although the shift is smaller than that

observed in the presence of SAM (Figure S3B). In addition,
Cell Reports 35, 109137, May 18, 2021 3
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Figure 2. The requirement of CLRC-mediated H3K14ub for the sequestration of Clr4 by H3K9M at heterochromatin in vivo

(A) Schematic diagram of CLRC in regulating H3K14ub and H3K9 methylation.

(B and D) ChIP analysis of FLAG-Clr4 levels at pericentric dh repeats, normalized to act1+. Data are presented as means ± SD of three technical replicates.

(C) Western blot analysis of Hht3 and Clr4 levels. Tubulin is used as loading control.

(E) Top, schematic diagram of the otr::ura4+ reporter. Bottom, serial dilution analysis of indicated strains to measure the expression of otr::ura4+.

(F) ChIP analysis of H3K9me3 levels at pericentric dh repeats, normalized to act1+. Data are presented as means ± SD of three technical replicates.

(G) qRT-PCR analysis of pericentric dh repeats, normalized to act1+. Data are presented as mean ± SD of 3 technical replicates.

(H) ChIP-seq analyses of H3K9me3 levels across the fission yeast genome in cells expressing H3K9MK14R.

See also Figure S1.

Report
ll

OPEN ACCESS
H3K14ub results in an intermediate thermal shift of Clr4 in the

absence of SAM, which is not observed in the presence of

SAM. This is likely because the combination of Clr4, H3K14ub,

and SAM results in H3K9 methylation reaction, which might

lead to the dissociation of the complex. We also noticed that

the addition of SAM alone, without peptide, results in greater

thermal stability of Clr4, which might explain why SAM is impor-

tant for binding (Figure S3C).

We further used bio-layer interferometry (BLI) to quantify the in-

teractions (Figure 3C). In the presence of SAM, the equilibrium

dissociation constant (KD) of the Clr4-SET interaction with

H3K9MK14C, H3K14ub, and H3K9MK14ub is 1.42 mM, 0.61 mM,

and 0.34 mM, respectively, whereas the KD of the Clr4 interaction

with H3K14C is below detection. Comparing H3K9MK14C with

H3K9MK14ub, kon increases from 50,770 M�1s�1 to 118,400
4 Cell Reports 35, 109137, May 18, 2021
M�1s�1, whereas koffdecreases from0.0723 s�1 to 0.0405 s�1, re-

sulting in t1/2 changes from9.6 to17.1 s.These results suggest that

thepresenceofH3K14ub increases theassociationbut decreases

the dissociation of Clr4 with H3K9M. Comparing H3K14ub and

H3K9MK14ub, the association rate kon decreases from 228,900

M�1s�1 to 118,400 M�1s�1, whereas the dissociate rate koff de-

creases from 0.1410 s�1 to 0.0405 s�1, resulting in t1/2 changes

from 4.9 to 17.1 s. These results suggest that, in the presence of

H3K14ub, it is more difficult for Clr4 to get on to H3K9M than on

to H3K9. Once Clr4 is bound to H3K9M, it is also more difficult

for Clr4 to get off.

In the absence of SAM, Clr4-SET interaction with H3K14ub is

mildly reduced (KD increased from 0.61 mM to 1.02 mM), but the

interaction between Clr4-SET and H3K9MK14ub is reduced

more dramatically (KD increased from 0.34 mM to 2.44 mM)
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Figure 3. H3K14ub enhances the interaction between Clr4 and H3K9M

(A) SDS-PAGE analysis of peptides used. The gel is stained with Coomassie blue.

(B) SDS-PAGE analysis of Clr4-SET bound to different peptides as well as the corresponding flow-through fractions. The gel is stained with Coomassie blue.

(C) BLI analyses of the interaction of Clr4-SET with different histone H3-tail peptides.

(D) ChIP analysis of FLAG-TetR-Clr4-SET levels at tetO at different time points after the addition of tetracycline, normalized to act1+. Data are presented asmeans

± SD of three technical replicates.

(E) In vitro histone methyltransferase assays using Clr4-SET, 3H-SAM, H3-tail peptide, and the indicated amounts of H3K9M or H3K9MK14ub peptides. The

reaction product is resolved by SDS-PAGE, stained with Coomassie blue (bottom), and processed for fluorography (top).

(F) In vitro histone methyltransferase assays using Clr4-SET, SAM, H3-tail peptide, and varying amounts of H3K9M or H3K9MK14ub peptides. The concentration

of methylation reaction product S-adenosyl-homocysteine (SAH) wasmeasured by luminescence levels (RLUs, relative light units) after being processed with the

MTase Glo assay kit. Data are presented as means ± SD of two technical replicates.

See also Figures S2–S4.
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(Figure S4A). SAM mainly affects the kon of Clr4-SET and

H3K9MK14ub interaction (1189,400 M�1s�1 and 23,550

M�1s�1 in the presence and absence of SAM, respectively), sug-

gesting that the presence of SAM helps Clr4 recognize the

H3K9M mutation.

To examine whether the presence of H3K9M slows down the

turnover of Clr4 on chromatin in vivo, we used a strain in which

Clr4 is targeted to 10 copies of the tetO binding sites through a

TetR-Clr4 fusionprotein (Figure 3D),which results in the formation

of a large, ectopic heterochromatin domain. This ectopic hetero-

chromatin also depends on every component of CLRC (Raguna-

than et al., 2015). ChIP analyses show that the addition of tetracy-

cline results in the quick release of Clr4 fromchromatin, withmost

TetR-Clr4 released from the tetO sites within 5 min of tetracycline

addition (Figure 3D). Inhht3-K9M cells,weobserved adelay in the

release of TetR-Clr4 (Figure 3D), suggesting that the presence of
H3K9M-containing nucleosomes, indeed, slows down the turn-

over of Clr4 on chromatin. In both hht3-K9M rik1D and hht3-

K9MK14R cells, the release of TetR-Clr4 is similar to the rate in

wild-type cells, suggesting that H3K14ub contributes to the

slow turnover of Clr4 on chromatin in hht3-K9M cells (Figure 3D).

We also examined whether the presence of H3K14ub en-

hances the inhibitory effects of H3K9MonClr4 enzymatic activity

in vitro. Using a histone methyltransferase assay with recombi-

nant Clr4 SET domain (190–490), 3H-labeled SAM as the methyl

donor, and histone H3 tail peptide as the substrate, we found

that H3K9MK14ub is a more-potent inhibitor compared with

H3K9M (Figure 3E). A non-radioactive methyltransferase assay

that measures the production of S-adenosyl-homocysteine

also confirmed that conclusion (Figure 3F).

Hydrogen/deuteriumexchange coupled tomass spectrometry

analysis shows that the interaction betweenClr4 and H3K14ub is
Cell Reports 35, 109137, May 18, 2021 5
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Figure 4. The 3FA mutation comprised the interaction between Clr4 and H3K9MK14ub and relieved the sequestration of Clr4 by H3K9M

in vivo

(A) Structure representation of Clr4 based on PDB: 6BP4 (Iglesias et al., 2018). The three residues mutated in 3FA (F256, F310, and F427), SAM, and the H3

peptide are presented as stick models. The H3 peptide is modeled based on the Dim-5-H3 complex structure (PDB: 1PEG) (Zhang et al., 2003).

(B) SDS-PAGE analysis of Clr4 or Clr4-3FA bound to H3K9MK14ub as well as the corresponding flow-through fraction. The gel is stained with Coomassie blue.

(C) BLI analysis of the interaction of Clr4-3FA H3K9MK14ub peptide.

(D) In vitro histone methyltransferase assays were performed with Clr4-SET, 3H-SAM, H3 tail peptide, and indicated amounts of H3K9M or H3K9MK14ub

peptides.

(E) In vitro histone methyltransferase assays were performedwith Clr4-SET, SAM, H3 peptide, and varying amounts of H3K9MK14ub peptides. The production of

SAH was measured by luminescence levels after being processed with MTase Glo assay kit. Data are presented as means ± SD of two technical replicates.

(F) ChIP analysis of FLAG-TetR-Clr4 levels at pericentric tetO, normalized to act1+. Data are presented as means ± SD of three technical replicates.

(G) ChIP analysis of FLAG-Clr4 levels at pericentric dh repeats, normalized to act1+. Data are presented as means ± SD of three technical replicates.

(H) A model for the selective sequestration of Clr4 by H3K9M at pericentric repeats.

See also Figures S3 and S4.
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mediated by a hydrophobic surface of Clr4 that includes residues

F256, F310, and F427 (Stirpe et al., 2020) (Figure 4A). We gener-

ated a recombinant Clr4 SET domain containing the F256A,

F310A, and F427A mutations (3FA). That mutation strongly

reduced the interaction between Clr4 and H3K14ub and has little

effect on the structure of Clr4 (Stirpe et al., 2020). Peptide pull-

down assays, thermal-shift assays, and BLI, all demonstrate

that the 3FA mutation strongly reduces the interaction between

Clr4 and H3K9MK14ub, either in the presence or in the absence

of SAM (Figures 4B, 4C, S3D–S3F, S4B, and S4C). In addition,

in vitro histone methyltransferase assays show that the 3FA

mutant is less sensitive to H3K9MK14ub compared with that of
6 Cell Reports 35, 109137, May 18, 2021
wild-typeClr4 (Figures 4Dand4E), suggesting that the interaction

ofClr4withH3K14ub is critical for the inhibitory effects ofH3K9M.

To test the effects of 3FA on the sequestration of Clr4 by H3K9M

in vivo, we generated a strain expressing TetR-Clr4-3FA. ChIP

analyses show that TetR-Clr4-3FA is quickly released from the

tetO locus in both wild-type and hht3-K9M cells (Figure 4F), sug-

gesting that Clr4-3FA is not sequestered by H3K9M. We also

used a strain expressing Clr4-3FA at its endogenous chromo-

somal locus. In hht3-K9M cells, the sequestration of Clr4-3FA

mutant at pericentric repeats is abolished compared with that

of wild-type Clr4 (Figure 4G). Again, the complete loss of Clr4-

3FA at pericentric repeats is likely due to the requirement of
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H3K9me3 for the stable association of Clr4 at those regions,

given the effect of Clr4-3FA on H3K9me3 in vivo (Stirpe et al.,

2020). These results demonstrate that reducing the interaction

between Clr4 and H3K9MK14ub decreases the inhibitory effects

of H3K9MonClr4 enzymatic activity and compromises the ability

of H3K9M to sequester Clr4 on chromatin.

Altogether, our results suggest that the affinity between Clr4

and H3K9M is low, thus H3K9M by itself is insufficient to

sequester Clr4 on chromatin. At heterochromatin regions,

CLRC catalyzes the H3K14ub, which increases the affinity of

Clr4 to the H3 tail and enhances its enzymatic activity. H3K9M

synergizes with H3K14ub to interact with Clr4, leading to the se-

lective sequestration of Clr4 at heterochromatin. In euchromatin

regions, the absence of H3K14ub coupled with the lower kon of

Clr4 to H3K9M prevents Clr4 sequestration by H3K9M due to

the reduced ability of Clr4 to load on to H3K9M-containing nucle-

osomes (Figure 4H). In addition, our BLI data also highlights the

importance of protein-protein interaction kinetic properties,

which can be masked by affinity measurements, in regulating

biological processes.

One of the key discrepancies regarding the methyltransferase

sequestration model is in the case of H3.3K27M, in which most

foci with high levels of H3.3K27M show little enrichment of the

H3K27 methyltransferase PRC2 (Piunti et al., 2017). Although

the reason for such a discrepancy is complex (Fang et al.,

2018; Sarthy et al., 2020; Stafford et al., 2018), we speculate

that additional mechanisms at defined genomic locations might

change the kinetic properties of PRC2-H3.3K27M interactions,

leading to sequestration of PRC2 at selective loci. Indeed, in

H3.3K27M-expressing cells, PRC2 is sequestered at poised en-

hancers (Fang et al., 2018), and the H3.3K27M-PRC2 interac-

tions can be modulated by the presence of H3K27me3 (Diehl

et al., 2019; Stafford et al., 2018). In addition, although

H3K27M enhances the interaction between PRC2 and the H3

tail peptide, it has a minor role in the interaction between

PRC2 and the nucleosome (Wang et al., 2017), which is consis-

tent with the idea that H3K27M alone is insufficient to sequester

PRC2. Interestingly, structural analysis shows that the associa-

tion of PRC2 with nucleosome is regulated by JARID2-AEBP2

and H2AK119ub (Kasinath et al., 2021). It would be interesting

to examine whether H2AK119ub promotes the sequestration of

PRC2 by H3K27M, similar to the effects of H3K14ub on the

sequestration of Clr4 by H3K9M.

Similar to CLRC in fission yeast, the Neurospora crassa H3K9

methyltransferase Dim-5 and mammalian H3K9 methyltransfer-

ase SUV39H1 also associate with CUL4-based E3 ubiquitin

ligase complexes (Lewis et al., 2010; Yang et al., 2015). In both

organisms, CUL4, its adaptor protein DDB1, and the associated

DCAFs (DDB1 and CUL4-associated factors) are also required

for H3K9 methylation (Higa et al., 2006; Lewis et al., 2010; Xu

et al., 2010; Zhao et al., 2010). Although mammalian CUL4-

DDB1 complex ubiquitylates histone H3 in vitro (Wang et al.,

2006), it remains to be determined whether CUL4-DDB1 ubiqui-

tylates H3K14. H3K14ub stimulates the activity of mammalian

H3K9 methyltransferase SUV39H1 in vitro (Stirpe et al., 2020),

suggesting that the cross-talk between H3K14ub and

H3K9me3 might be conserved. H3K14ub is detected by mass

spectrometry analysis of mammalian histones (Kim et al.,
2011). Therefore, it would be interesting to further examine

whether the crosstalk between H3K14ub and H3K9me is

conserved in higher organisms in vivo and howH3K14ub is regu-

lated during biological processes.

STAR+METHODS

Detailed methods are provided in the online version of this paper

and include the following:

d KEY RESOURCES TABLE

d RESOURCE AVAILABILITY
B Lead contact

B Materials availability

B Data and code availability

d EXPERIMENTAL MODEL AND SUBJECT DETAILS

d METHOD DETAILS

B Serial dilution analyses

B Chromatin immunoprecipitation (ChIP) analyses

B ChIP-seq

B ChIP-seq of H3K9me3 in hht3-K9MK14R cells

B RNA analyses

B Western blot analyses

B Generation of peptides containing H3K14ub mimics

B Protein expression and purification

B Peptide binding assays

B Thermal shift assay

B Biolayer interferometry

B In vitro histone methyltransferase assays

d QUANTIFICATION AND STATISTICAL ANALYSIS

SUPPLEMENTAL INFORMATION

Supplemental information can be found online at https://doi.org/10.1016/j.

celrep.2021.109137.

ACKNOWLEDGMENTS

We thank Danesh Moazed, Kaushik Ragunathan, and Tingting Yao for strains

and plasmids; JiaWei for help with thermal shift assay; andmembers of the Jia

laboratory for discussions and comments on the manuscript. This work was

supported by NIH grants R35GM126910 to S.J., R35GM118093 to L.T., and

R01GM098943 to F.Q., and an American Cancer Society research scholar

grant RSG-16-041-01-DMC to F.Q.

AUTHOR CONTRIBUTIONS

C.-M.S. and S.J. conceived the project; C.-M.S., S.J., F.Q., and L.T. designed

experiments; and C.-M.S., J.K.-K., J.W., K.B., Y.S., H.C., and S.J. performed

experiments. J.-X.Y. performed the ChIP-seq data analysis, A.S. and T.S. pro-

vided the clr4-3FA yeast strain and shared information before publication, and

Z.Z. and C.L. provided antibodies. S.J., F.Q., L.T., P.L.N., and G.L. supervised

the research. S.J wrote the paper with input from all authors.

DECLARATION OF INTERESTS

The authors declare no competing interest.

Received: November 4, 2020

Revised: March 5, 2021

Accepted: April 24, 2021

Published: May 18, 2021
Cell Reports 35, 109137, May 18, 2021 7

https://doi.org/10.1016/j.celrep.2021.109137
https://doi.org/10.1016/j.celrep.2021.109137


Report
ll

OPEN ACCESS
REFERENCES

Behjati, S., Tarpey, P.S., Presneau, N., Scheipl, S., Pillay, N., Van Loo, P.,

Wedge, D.C., Cooke, S.L., Gundem, G., Davies, H., et al. (2013). Distinct

H3F3A and H3F3B driver mutations define chondroblastoma and giant cell tu-

mor of bone. Nat. Genet. 45, 1479–1482.

Bender, S., Tang, Y., Lindroth, A.M., Hovestadt, V., Jones, D.T., Kool, M., Za-

patka, M., Northcott, P.A., Sturm, D., Wang, W., et al. (2013). Reduced

H3K27me3 and DNA hypomethylation are major drivers of gene expression

in K27M mutant pediatric high-grade gliomas. Cancer Cell 24, 660–672.

Brumbaugh, J., Kim, I.S., Ji, F., Huebner, A.J., Di Stefano, B., Schwarz, B.A.,

Charlton, J., Coffey, A., Choi, J., Walsh, R.M., et al. (2019). Inducible histone K-

to-M mutations are dynamic tools to probe the physiological role of site-spe-

cific histone methylation in vitro and in vivo. Nat. Cell Biol. 21, 1449–1461.

Chan, K.M., Fang, D., Gan, H., Hashizume, R., Yu, C., Schroeder, M., Gupta,

N., Mueller, S., James, C.D., Jenkins, R., et al. (2013a). The histone H3.3K27M

mutation in pediatric glioma reprograms H3K27 methylation and gene expres-

sion. Genes Dev. 27, 985–990.

Chan, K.M., Han, J., Fang, D., Gan, H., and Zhang, Z. (2013b). A lesson learned

from the H3.3K27Mmutation found in pediatric glioma: a new approach to the

study of the function of histone modifications in vivo? Cell Cycle 12, 2546–

2552.

Diehl, K.L., Ge, E.J., Weinberg, D.N., Jani, K.S., Allis, C.D., and Muir, T.W.

(2019). PRC2 engages a bivalent H3K27M-H3K27me3 dinucleosome inhibitor.

Proc. Natl. Acad. Sci. USA 116, 22152–22157.

Fang, D., Gan, H., Lee, J.H., Han, J., Wang, Z., Riester, S.M., Jin, L., Chen, J.,

Zhou, H., Wang, J., et al. (2016). The histone H3.3K36M mutation reprograms

the epigenome of chondroblastomas. Science 352, 1344–1348.

Fang, D., Gan, H., Cheng, L., Lee, J.H., Zhou, H., Sarkaria, J.N., Daniels, D.J.,

and Zhang, Z. (2018). H3.3K27M mutant proteins reprogram epigenome by

sequestering the PRC2 complex to poised enhancers. eLife 7, e36696.

Funato, K., Major, T., Lewis, P.W., Allis, C.D., and Tabar, V. (2014). Use of hu-

man embryonic stem cells to model pediatric gliomas with H3.3K27M histone

mutation. Science 346, 1529–1533.

Grewal, S.I., and Jia, S. (2007). Heterochromatin revisited. Nat. Rev. Genet. 8,

35–46.

Herz, H.M., Morgan, M., Gao, X., Jackson, J., Rickels, R., Swanson, S.K., Flo-

rens, L., Washburn, M.P., Eissenberg, J.C., and Shilatifard, A. (2014). Histone

H3 lysine-to-methionine mutants as a paradigm to study chromatin signaling.

Science 345, 1065–1070.

Higa, L.A., Wu, M., Ye, T., Kobayashi, R., Sun, H., and Zhang, H. (2006). CUL4-

DDB1 ubiquitin ligase interacts with multiple WD40-repeat proteins and regu-

lates histone methylation. Nat. Cell Biol. 8, 1277–1283.

Hong, E.J., Villén, J., Gerace, E.L., Gygi, S.P., and Moazed, D. (2005). A cullin

E3 ubiquitin ligase complex associates with Rik1 and the Clr4 histone H3-K9

methyltransferase and is required for RNAi-mediated heterochromatin forma-

tion. RNA Biol. 2, 106–111.

Horn, P.J., Bastie, J.N., and Peterson, C.L. (2005). A Rik1-associated, cullin-

dependent E3 ubiquitin ligase is essential for heterochromatin formation.

Genes Dev. 19, 1705–1714.

Iglesias, N., Currie, M.A., Jih, G., Paulo, J.A., Siuti, N., Kalocsay,M., Gygi, S.P.,

and Moazed, D. (2018). Automethylation-induced conformational switch in

Clr4 (Suv39h) maintains epigenetic stability. Nature 560, 504–508.

Jayaram, H., Hoelper, D., Jain, S.U., Cantone, N., Lundgren, S.M., Poy, F., Al-

lis, C.D., Cummings, R., Bellon, S., and Lewis, P.W. (2016). S-adenosyl methi-

onine is necessary for inhibition of the methyltransferase G9a by the lysine 9 to

methionine mutation on histone H3. Proc. Natl. Acad. Sci. USA 113, 6182–

6187.

Jia, S., Kobayashi, R., and Grewal, S.I. (2005). Ubiquitin ligase component

Cul4 associates with Clr4 histone methyltransferase to assemble heterochro-

matin. Nat. Cell Biol. 7, 1007–1013.

Justin, N., Zhang, Y., Tarricone, C., Martin, S.R., Chen, S., Underwood, E., De

Marco, V., Haire, L.F., Walker, P.A., Reinberg, D., et al. (2016). Structural basis
8 Cell Reports 35, 109137, May 18, 2021
of oncogenic histone H3K27M inhibition of human polycomb repressive com-

plex 2. Nat. Commun. 7, 11316.

Kasinath, V., Beck, C., Sauer, P., Poepsel, S., Kosmatka, J., Faini, M., Toso, D.,

Aebersold, R., and Nogales, E. (2021). JARID2 and AEBP2 regulate PRC2 in

the presence of H2AK119ub1 and other histone modifications. Science 371,

eabc3393.

Kim,W., Bennett, E.J., Huttlin, E.L., Guo, A., Li, J., Possemato, A., Sowa, M.E.,

Rad, R., Rush, J., Comb, M.J., et al. (2011). Systematic and quantitative

assessment of the ubiquitin-modified proteome. Mol. Cell 44, 325–340.

Langmead, B., and Salzberg, S.L. (2012). Fast gapped-read alignment with

Bowtie 2. Nat. Methods 9, 357–359.

Lewis, Z.A., Adhvaryu, K.K., Honda, S., Shiver, A.L., Knip, M., Sack, R., and

Selker, E.U. (2010). DNA methylation and normal chromosome behavior in

Neurospora depend on five components of a histone methyltransferase com-

plex, DCDC. PLoS Genet. 6, e1001196.

Lewis, P.W., M€uller, M.M., Koletsky, M.S., Cordero, F., Lin, S., Banaszynski,

L.A., Garcia, B.A., Muir, T.W., Becher, O.J., and Allis, C.D. (2013). Inhibition

of PRC2 activity by a gain-of-function H3 mutation found in pediatric glioblas-

toma. Science 340, 857–861.

Lock, A., Rutherford, K., Harris, M.A., Hayles, J., Oliver, S.G., Bähler, J., and

Wood, V. (2019). PomBase 2018: user-driven reimplementation of the fission

yeast database provides rapid and intuitive access to diverse, interconnected

information. Nucleic Acids Res. 47 (D1), D821–D827.

Long, L., Furgason, M., and Yao, T. (2014). Generation of nonhydrolyzable

ubiquitin-histone mimics. Methods 70, 134–138.

Lu, C., Jain, S.U., Hoelper, D., Bechet, D., Molden, R.C., Ran, L., Murphy, D.,

Venneti, S., Hameed, M., Pawel, B.R., et al. (2016). Histone H3K36 mutations

promote sarcomagenesis through altered histone methylation landscape. Sci-

ence 352, 844–849.

Mohammad, F., Weissmann, S., Leblanc, B., Pandey, D.P., Højfeldt, J.W.,

Comet, I., Zheng, C., Johansen, J.V., Rapin, N., Porse, B.T., et al. (2017).

EZH2 is a potential therapeutic target for H3K27M-mutant pediatric gliomas.

Nat. Med. 23, 483–492.

Oya, E., Nakagawa, R., Yoshimura, Y., Tanaka, M., Nishibuchi, G., Machida,

S., Shirai, A., Ekwall, K., Kurumizaka, H., Tagami, H., and Nakayama, J.I.

(2019). H3K14 ubiquitylation promotes H3K9 methylation for heterochromatin

assembly. EMBO Rep. 20, e48111.

Papillon-Cavanagh, S., Lu, C., Gayden, T., Mikael, L.G., Bechet, D., Karam-

boulas, C., Ailles, L., Karamchandani, J., Marchione, D.M., Garcia, B.A.,

et al. (2017). Impaired H3K36 methylation defines a subset of head and neck

squamous cell carcinomas. Nat. Genet. 49, 180–185.

Piunti, A., Hashizume, R., Morgan, M.A., Bartom, E.T., Horbinski, C.M.,

Marshall, S.A., Rendleman, E.J., Ma, Q., Takahashi, Y.H., Woodfin, A.R.,

et al. (2017). Therapeutic targeting of polycomb and BET bromodomain pro-

teins in diffuse intrinsic pontine gliomas. Nat. Med. 23, 493–500.

Ragunathan, K., Jih, G., andMoazed, D. (2015). Epigenetics. Epigenetic inher-

itance uncoupled from sequence-specific recruitment. Science 348, 1258699.

Ramı́rez, F., Ryan, D.P., Gr€uning, B., Bhardwaj, V., Kilpert, F., Richter, A.S.,

Heyne, S., D€undar, F., and Manke, T. (2016). deepTools2: a next generation

web server for deep-sequencing data analysis. Nucleic Acids Res. 44 (W1),

W160–W165.
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KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies

Anti-flag M2 affinity gel Sigma Cat# A2220; RRID:AB_10063035

Anti-Tublin Keith Gull lab N/A

Mouse Anti-Green Fluorescent Protein

(GFP) Monoclonal Antibody

Covance Cat# MMS-118P-500; RRID:AB_291290

Mouse monoclonal anti-FLAG Sigma Cat#F3165; RRID:AB_259529

Chemicals, peptides, and recombinant proteins

2,20-Dithiobis(5-nitropyridine)(DCA) Sigma-Aldrich Cat#158194

5-Fluoroorotic Acid Monohydrate (FOA, 5-

FOA)

US Biological Cat#F5050

D-biotin Sigma-Aldrich Cat#2031

EN3HANCE Perkin Elmer Cat#6NE9701

Formaldehyde, 37% solution Sigma Cat#F8775

H3K14C-biotin, H3K9MK14C-biotin

peptides

Biomatik Custom

Hygromycin B Gold Biotechnology Cat#H-270-10

Isopropyl-1-thio-D-galactopyranoside

(IPTG)

Fisher Bioreagents Cat#BP1755

MNase Thermo Fisher Scientific Cat#88216

Phenol-chloroform-isoamyl alcohol mixture Sigma Cat#77617

Proteinase K Invitrogen Cat#10005393

RNAase A Thermo Fisher Scientific Cat#EN0531

S-Adenosyl methionine (SAM) Sigma Cat#A7007

Sodium deoxycholate Sigma-Aldrich Cat#D6750

SYPRO orange Invitrogen Cat#S6650

Tris (2-carboxyethyl) phosphine

hydrochloride

(TCEP)

Aldrich Cat#C4706

3H-SAM Perkin Elmer Cat#NET155H250UC

Critical commercial assays

Power SYBR Green RNA-to-CT one-step

Kit

Thermo Fisher Scientific 4389986

MasterPure yeast RNA purification kit Epicenter MPY03100

Maxima SYBR Green qPCR Master Mix ThermoFisher Scientific K0223

Avidin agarose column Thermo Scientific 20228

Talon metal affinity resin TakaraBio USA 635501

MTase-Glo Methyltransferase Assay kit Promega V7601

Deposited data

Sequencing Data This paper GSE159192

Experimental models: Organisms/strains

S. pombe, see Table S1 Jia Lab Strains N/A

Oligonucleotides

Primer: qPCR at act1+, Forward:

GGTGGTATGAAGCCGTTGAT

This paper N/A

Primer: qPCR at act1+, Reverse:

AGTGCTAACGCTGTGTGTGG

This paper N/A

(Continued on next page)
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REAGENT or RESOURCE SOURCE IDENTIFIER

Primer: qPCR at dh, Forward:

AATGACAAAGGTGCCGAATC

This paper N/A

Primer: qPCR at dh, Reverse:

CGTTGAATGTTGTTGCTTTCA

This paper N/A

Primer: qPCR at tetO, Forward:

AATGACAAAGGTGCCGAATC

This paper N/A

Primer: qPCR at tetO, Reverse:

CTTCCCTGCCTATCGACAAC

This paper N/A

Software and algorithms

Picard tools v2.0.1 Broad Institute, MIT https://broadinstitute.github.io/picard/

Trimmomatic v0.35 Max Planck Institute of Molecular

Plant Physiology

http://www.usadellab.org/cms/?

page=trimmomatic

ForteBio Data analysis ForteBio v10.0.1.6

Samtools v1.2 Wellcome Trust Sanger Institute http://samtools.sourceforge.net/

GATK v3.5 Broad Institute, MIT https://github.com/broadinstitute/gatk/

releases

Bwa v0.7.12-r1039 Wellcome Trust Sanger Institute http://bio-bwa.sourceforge.net

Bedtools v2.25.0 University of Utah https://bedtools.readthedocs.io/en/latest/
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Lead contact
Further information and request for resources and reagents should be directed to andwill be fulfilled by the Lead contact, Songtao Jia

(songtao.jia@columbia.edu).

Materials availability
The materials generated in this study is available upon request and will be shared without restriction.

Data and code availability
The accession number for the RNA-seq, MNase-seq, and ChIP-seq data reported in this paper are GEO: GSE159192.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

A list of yeast strains used is provided in Table S1. Yeast strains containing hht3-K9MK14R or hht1-K14Rwere generated by a PCR-

based module method. All other strains were published or constructed through genetic crosses.

METHOD DETAILS

Serial dilution analyses
For serial dilution plating assays, ten-fold dilutions of a mid log-phase culture were plated on the indicated medium and grown for

3 days at 30�C.

Chromatin immunoprecipitation (ChIP) analyses
Log-phase yeast cells grown at 30�C were incubated at 18�C for 2 hours and then fixed for 30 minutes in 3% freshly made formal-

dehyde. The cells were pelleted and washed with PBS (phosphate-buffered saline) before resuspended in ChIP lysis buffer (50 mM

HEPES-KOH, pH 7.5, 140 mMNaCl, 1% Triton X-100, 0.1% Deoxycholate). Ice cold glass beads were added and the mixtures were

vigorously disrupted in a beadbeater. The lysates were collected and subjected to sonication to reduce chromatin size to 500-1000

base pairs (bp). The cleared cell lysates were incubated with Flag-agarose beads (Sigma) overnight at 4�C. The beads were then

washed with ChIP lysis buffer twice, ChIP lysis buffer containing 0.5 M NaCl, Wash buffer (10 mM Tris, pH 8.0, 250 mM LiCl,

0.5% NP-40, 0.5% Deoxycholate, 1 mM EDTA), and TE (50 mM Tris pH 8.0, 1 mM EDTA). The bound chromatin fragments were

eluted with TES (50 mM Tris pH 8.0, 1 mM EDTA, 1% SDS), and the crosslinking was reversed by incubating at 65�C overnight.

The protein DNAmixture was then subjected to proteinase K treatment and phenol:chloroform extraction before the DNAwas precip-

itated by ethanol.
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For TetR-Clr4 release, tetracycline was added to log-phase cultures at 30�C to a final concentration of 10 mM and samples were

taken at 5, 10, and 20 minutes, fixed with 3% freshly made formaldehyde for 30 minutes at 18�C.
Quantitative real-time PCR (qPCR) was performed with Maxima SYBR Green qPCR Master Mix (Fermentas) in a StepOne Plus

Real-Time PCR System (Applied Biosystems). DNA serial dilutions were used as templates to generate a standard curve of ampli-

fication for each pair of primers, and the relative concentration of the target sequence was calculated accordingly. An act1 fragment

was used as a reference to calculate the enrichment of ChIP over the whole-cell extract (WCE) for each target sequence. A list of DNA

oligos used is provided in the Key resources table.

ChIP-seq
DNA samples were prepared according to TruSeq ChIP sample preparation guide (Illumina) and sequenced on the Illumina HiSeq

2500 system by 100-bp paired-end sequencing. The raw reads were trimmed by Trimmomatic (v0.35) to remove remaining adaptor

contaminants and low-quality regions. The trimmed reads were aligned to the S. pombe reference genome (Ensembl assembly

version: ASM294v2.29) by bwa (v0.7.12-r1039) (http://bio-bwa.sourceforge.net/). The read-mapping files were further processed

by Samtools (v1.2) picard-tools (v2.0.1) (http://broadinstitute.github.io/picard/) andGATK (v3.5) for indexing, sorting, PCR duplicates

removal, and local-realignment around Indels. The per-based mapping depth was calculated by bedtools (v2.25.0) and the sliding

window analyses were further performed using a 100-bp window size and 50-bp step size. ChIP-seq data is available at GEO:

GSE159192.

ChIP-seq of H3K9me3 in hht3-K9MK14R cells
Log-phase yeast cells were crosslinked with 1% formaldehyde for 20 minutes with shaking at room temperature, followed by 5 mi-

nutes quenching with 125mM glycine. Cells were harvested, washed with PBS (phosphate-buffered saline) and flashfrozen with

liquid nitrogen. The thawed pellet was washed and then resuspended in ChIP lysis buffer (50 mM HEPES-KOH, pH 7.5,

140 mM NaCl, 1% Triton X-100, 0.1% Deoxycholate, 1mM PMSF). Ice-cold glass beads were added and the mixtures were vigor-

ously disrupted in a bead-beater with four 30 s rounds. The lysates were collected and NP buffer was added (10 mM Tris, pH 7.4,

1 M sorbitol, 50 mM NaCl, 5 mM MgCl2, 1 mM CaCl2). MNase was added to the reaction and the reactions were incubated at 37�C
for 20 minutes. MNase amount was titrated empirically so that the chromatin was digested to yield mainly mono- and di-nucleo-

somes. The reaction was stopped by the addition of 0.5 M EDTA, and the tubes were placed on ice. 5X ChIP lysis buffer was added

to the reaction, mixed by short vertexing, and the tubes were incubated on ice for 30 minutes. The reactions were then cleared by

centrifugation at 16,000 x g for 10 minutes. A small fraction of the cleared supernatant was reserved as input and the rest was used

for immunoprecipitation. The protocols for immunoprecipitation, reverse-crosslinking, and DNA precipitation are the same as in the

previous ChIP section. The precipitated DNA was treated with RNAase A (EN0531, Thermo Fisher Scientific) for 1 hour at 37�C.
DNA concentration was determined with the Qubit dsDNA HS Assay Kit (Q33230, Thermo Fisher Scientific). 1-5 ng of ChIP and

input DNA were used for library construction using the NEBNext Ultra II DNA Library Prep Kit for Illumina (E7645, NEB). Libraries

were pooled and sequenced with single-end sequencing on a NextSeq500/550 at the JP Sulzberger Genome Center at Columbia

University.

Sequencing reads were de-multiplexed and aligned to the S. pombe reference genome (ASM294v2), obtained from Pombase

(Lock et al., 2019) with Bowtie2 using default parameters (Langmead and Salzberg, 2012). Genome-wide coverage was calculated

with deepTools2 (Ramı́rez et al., 2016) and normalized to counts per million (CPM). The coverage plot was visualized with IGV (Rob-

inson et al., 2011). ChIP-seq experiments were performed in duplicates for each genotype.

RNA analyses
Total cellular RNA was isolated from log-phase cells using MasterPure yeast RNA purification kit (Epicenter) according to the man-

ufacturer’s protocol. qRT-PCR analyses were performed with Power SYBR�Green RNA-to-CT 1-Step Kit (Thermo Fisher Scientific)

in a StepOne Plus Real-Time PCR System (Applied Biosystems). RNA serial dilutions were used as templates to generate a standard

curve of amplification for each pair of primers, and the relative concentration of the target sequence was calculated accordingly. An

act1 fragment served as a reference to normalize the concentration of samples. The concentration of each target gene in wild-type

cells was arbitrarily set to 1 and served as a reference for other samples. A list of DNA oligos used is provided in STAR Methods.

Western blot analyses
Cell lysates were prepared by lysing yeast cells with a beadbeater in ChIP lysis buffer. The lysates were sonicated for a total of 10 mi-

nutes to fragment chromatin. The cleared lysates were mixed with 2xSDS loading dye and resolved by SDS-PAGE. Western blot an-

alyses were performed with Flag (Sigma), GFP (Covance), and Tubulin antibodies.

Generation of peptides containing H3K14ub mimics
Histone H3 tail peptides with a C-terminal biotinylated lysine, H3K14C (residues 1–21, ARTKQTARKSTGGCAPRKQLAGGK-biotin)

and H3K9MK14C (ARTKQTARMSTG GCAPRKQLAGGK-biotin) were synthesized by Biomatik. Recombinant 6xHis tagged Ub-

G76Cwas purified from E.coli using Talon beads according to manufacturer’s protocol (Takara). Peptides and Ub-G76Cwere mixed

in a buffer of 50mMBorate pH 8.1, 2mMTCEP to a final concentration of 200 mMpeptide and 100 mMUb. Themixture was incubated
e3 Cell Reports 35, 109137, May 18, 2021
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at 37�C for 30minutes and cool on ice for additional 30minutes. Freshly made DCAwas added to a final concentration of 100 mMand

the mixture was incubated on ice for 1 hour. The reaction is quenched by the addition of 5 mM mercaptoethanol.

The reaction mixture was first purified with an ULTRA-15ml centrifugal filter (10KDa cutoff, Amicon) to remove unreacted peptides

and self-ligated peptides, and then further purifiedwith Avidin agarose column (ThermoScientific). The columnwaswashedwith PBS

first, and then blocked with Biotin Blocking/Elution Buffer (2 mM D-biotin in PBS). After washing with Regeneration buffer (0.1M

glycine, pH 2.8) and PBS, samples were loaded onto the column, and the column was then washed with PBS. H3K14ub mimics

were eluted with Regeneration buffer.

Protein expression and purification
The SET domain of recombinant Clr4 (residues 190-490) and the 3FAmutant were cloned into a pET28a vector. The expression plas-

mids were transformed into Rosetta cells and protein expression was induced using 0.15mM isopropyl-1-thio-D-galactopyranoside.

After incubation overnight at 16C, the cells were harvested and resuspended in lysis buffer (50mMsodiumphosphate, 300mMNaCl,

pH 7.0), supplemented with 2 mM b-mercaptoethanol and lysed with ultrasonication. The lysate was incubated with Talon metal af-

finity resin (Takara Bio USA) and thenwashedwith lysis buffer containing 15mM imidazole. Bound protein was eluted with lysis buffer

containing 150 mM imidazole.

Peptide binding assays
Protein binding assays were performed by incubating recombinant proteins with biotinylated histone peptides in binding buffer

(10mM Tris, 150 mM NaCl, 1mM EDTA, 1mM DTT, 10 mM SAM, 0.05% NP-40) for one hour at 30�C. Streptavidin beads were added

to isolate biotinylated peptide and associated proteins. The beads were washed four times in binding buffer. The proteins bound to

the beads were resolved by SDS-PAGE and stained with Coomassie blue.

Thermal shift assay
The thermal stability of the SET domain of clr4 with ligands was analyzed at various temperatures using theMx3005 PReal-Time PCR

system (Stratagene). Purified Clr4-SET or Clr4-SET-3FA mutant (3 mM) protein was incubated with 20 mM of H3K14C peptide,

H3K9MK14C, H3K14ub, or H3K9MK14ub, in the presences of 150 mMof SAM. All assays were performed in duplicate for each sam-

ple and contained final concentrations of 50 mM Tris (pH 8.0), 1 mM EDTA and 0.5 mM DTT. Reactions were first incubated at room

temperature for 10 minutes, then on ice for 10 minutes, and mixed with the fluorescence dye (SYPRO orange; Invitrogen). The tem-

perature was increased from 25 to 99 �C in 1 �C intervals over a 75-min period. Fluorescence values for each curve were normalized

to the maximum and the minimum of the curve.

Biolayer interferometry
BLI analyseswereperformed inblack 96-well plates (greinerbio-one,Germany) onanOctetRED96 instrument (ForteBio,USA). Prior to

use, biosensorswere soaked in assaybuffer (1XPBS, 0.01%NP-40, 0.5mMDTT, and0.2 ug/mlBSA) for 10min. BLI assays consisted

of six steps, all performed in the assay buffer: initial baseline (30 s), loading (120 s), and quenching (120 s), baseline (60 s), association

(30 s), and dissociation (90 s). Each biotinylated peptide (3 mg/ml) was immobilized on the Streptavidin biosensor tip during the loading

step. Toquench free streptavidin, 4mg/ml of biocytin (Sigma), abiotin analog,wasused.During theassociation step, analyte (Clr4-SET

WT or 3FA mutant) at various concentrations was diluted into the assay buffer. Biotinylated-peptide-loaded sensors itself was

measured as a control to subtract from experimental values before data processing. Sensorgrams were fit using global/1:1 binding

model by ForteBio Data analysis version 10.0.1.6, from which the equilibrium dissociation constant (Kd) and association (kon) and

dissociation (koff) rate constants were calculated. To measure the interaction in the presence of SAM, the assay buffer in all steps

was supplied with 10 mM SAM.

In vitro histone methyltransferase assays
Histone methyltransferase assays were performed with recombinant Clr4 SET domain (25 nM), histone H3 tail peptide (residue 1-21)

(1 mM) in histone methyltransferase buffer (10 mM Tris, pH 8.0, 1 mM EDTA, 1 mM DTT, 2 mM SAM) containing 3H-SAM (400 nM) for

30 minutes at 25�C. The samples were resolved by SDS-PAGE and subjected to Coomassie staining to visualize the proteins and

then treated with EN3HANCE (Perkin Elmer) to visualize labeled substrates.

For non-radioactive histone methyltransferase assays, recombinant Clr4 SET domain (50 nM) were incubated histone H3 tail pep-

tide (residue 1-21) (10 mM) in histonemethyltransferase buffer (10mMTris, pH 8.0, 1mMEDTA, 1mMDTT, 10 mMSAM) for 60minutes

at 25�C. The production of SAH was measured by the MTase-Glo Methyltransferase Assay kit according to the manufacture’s pro-

tocol. Luminescence was measured using a Synergy Neo2 Microplate reader (BioTek Instruments).

QUANTIFICATION AND STATISTICAL ANALYSIS

For ChIP-qPCR, qRT-PCR, and HMTase assays, data are presented asmean ± SDwith the number of technical replicates indicated.
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