Claudia Faggian

Giulio Guerrieri

Factorization in Call-by-Name and Call-by-Value Calculi via Linear Logic

In each variant of the λ-calculus, factorization and normalization are two key-properties that show how results are computed. Instead of proving factorization/normalization for the call-by-name (CbN) and call-by-value (CbV) variants separately, we prove them only once, for the bang calculus (an extension of the λ-calculus inspired by linear logic and subsuming CbN and CbV), and then we transfer the result via translations, obtaining factorization/normalization for CbN and CbV. The approach is robust: it still holds when extending the calculi with operators and extra rules to model some additional computational features.

Two for One. Quoting Levy [20]: the existence of two separate paradigms (CbN and CbV) is troubling because to prove a certain property-such as factorization or normalization-for both systems we always need to do it twice.

Introduction

The λ-calculus is the model of computation underlying functional programming languages and proof assistants. Actually there are many λ-calculi, depending on the evaluation mechanism (for instance, call-by-name and call-by-value-CbN and CbV for short) and computational features that the calculus aims to model.

In λ-calculi, a rewriting relation formalizes computational steps in program execution, and normal forms are the results of computations. In each calculus, a key question is to define a normalizing strategy: How to compute a result? Is there a reduction strategy which is guaranteed to output a result, if any exists?

Proving that a calculus admits a normalizing strategy is complex, and many techniques have been developed. A well-known method first proves factorization [START_REF] Barendregt | The Lambda Calculus: Its Syntax and Semantics[END_REF][START_REF] Takahashi | Parallel reductions in lambda-calculus[END_REF][START_REF] Hirokawa | Leftmost Outermost Revisited[END_REF]3]. Given a calculus with a rewriting relation -→, a strategy → l ⊆-→ factorizes if -→ * ⊆→ l * • → ¬l * (→ ¬l is the dual of → l), i.e. any reduction sequence can be rearranged so as to perform first → l -steps and then the other steps. If, moreover, the strategy satisfies some "good properties", we can conclude that the strategy is normalizing. Factorization is important also because it is commonly used as a building block in the proof of other properties of the how-to-compute kind. For instance, standardization, which generalizes factorization: every reduction sequences can be rearranged according to a predefined order between redexes.

The first aim of our paper is to develop a technique for deriving factorization for both the CbN [START_REF] Barendregt | The Lambda Calculus: Its Syntax and Semantics[END_REF] and CbV [START_REF] Plotkin | Call-by-name, call-by-value and the lambda-calculus[END_REF] λ-calculi as corollaries of a single factorization theorem, and similarly for normalization. A key tool in our study is the bang calculus [START_REF] Ehrhard | The bang calculus: an untyped lambda-calculus generalizing call-by-name and call-by-value[END_REF][START_REF] Guerrieri | The bang calculus and the two Girard's translations[END_REF], a calculus inspired by linear logic in which CbN and CbV embed.

The Bang Calculus. The bang calculus is a variant of the λ-calculus where an operator ! plays the role of a marker for non-linear management: duplicability and discardability. The bang calculus is nothing but Simpson's linear λ-calculus [START_REF] Simpson | Reduction in a linear lambda-calculus with applications to operational semantics[END_REF] without linear abstraction, or the untyped version of the implicative fragment of Levy's Call-by-Push-Value [START_REF] Levy | Call-by-push-value: A subsuming paradigm[END_REF], as first observed by Ehrhard [START_REF] Ehrhard | Call-by-push-value from a linear logic point of view[END_REF].

The motivation to study the bang calculus is to have a general framework where both CbN and CbV λ-calculi can be simulated, via two distinct translations inspired by Girard's embeddings [START_REF] Girard | Linear logic[END_REF] of the intuitionistic arrow into linear logic. So, a certain property can be studied in the bang calculus and then automatically transferred to the CbN and CbV settings by translating back.

This approach has so far mainly be exploited semantically [START_REF] Levy | Call-by-push-value: Decomposing call-by-value and callby-name[END_REF][START_REF] Ehrhard | Call-by-push-value from a linear logic point of view[END_REF][START_REF] Ehrhard | The bang calculus: an untyped lambda-calculus generalizing call-by-name and call-by-value[END_REF][START_REF] Guerrieri | The bang calculus and the two Girard's translations[END_REF][START_REF] Chouquet | Taylor expansion for Call-By-Push-Value[END_REF][START_REF] Bucciarelli | The bang calculus revisited[END_REF]], but can be used it also to study operational properties [START_REF] Guerrieri | The bang calculus and the two Girard's translations[END_REF]29,[START_REF] Faggian | Lambda calculus and probabilistic computation[END_REF]. In this paper, we push forward this operational direction.

The Least-Level Strategy. We study a strategy from the literature of linear logic [9], namely least-level reduction → l , which fires a redex at minimal level-the level of a redex r is the number of ! under which the redex appears.

We prove that the least-level reduction factorizes and normalizes in the bang calculus, and then we transfer the same results to CbN and CbV λ-calculi (for suitable definitions of least-level in CbN and CbV), by exploiting properties of their translations into the bang calculus. A single proof suffices. It is two-for-one! Or even better, three-for-one.

The rewriting study of the least level strategy in the bang calculus is based on simple techniques for factorization and normalization we developed recently with Accattoli [3], which simplify and generalize Takahashi's method [START_REF] Takahashi | Parallel reductions in lambda-calculus[END_REF].

Subtleties of the Embeddings. Transferring factorization and normalization results via translation is highly non-trivial, e.g. in CPS translations [START_REF] Plotkin | Call-by-name, call-by-value and the lambda-calculus[END_REF]. This applies also to transferring least-level factorizations from the bang calculus to the CbN and CbV λ-calculi. To transfer the property smoothly, the translations should preserve levels and normal forms, which is delicate, in particular for CbV. The embedding of CbV into the bang calculus defined in [START_REF] Guerrieri | The bang calculus and the two Girard's translations[END_REF]29] does not preserve levels and normal forms (see Remark 16). As a consequence, the CbV translation studied in [START_REF] Guerrieri | The bang calculus and the two Girard's translations[END_REF]29] cannot be used to derive least-level factorization or any normalization result in a CbV setting from the corresponding result in the bang calculus.

Here we adopt the refined CbV embedding of Bucciarelli et al. [START_REF] Bucciarelli | The bang calculus revisited[END_REF] which does preserve levels and normal forms. While the preservation of normal forms is already stressed in [START_REF] Bucciarelli | The bang calculus revisited[END_REF], the preservation of levels is proved here for the first time, and it is based on non-trivial properties of the embedding.

Beyond pure. Our second aim is to show that the developed technique for the joined factorization and normalization of CbN and CbV via the bang calculus is robust. We do so, by studying extensions of all three calculi with operators (or, in general, with extra rules) which model some additional computational features, such as non-deterministic or probabilistic choice. We then show that the technique scales up smoothly, under mild assumptions on the extension.

A Motivating Example.

Let us illustrate our approach on a simple case, which we will use as running example. De' Liguoro' and Piperno's CbN non-deterministic λ-calculus Λ cbn ⊕ [START_REF] De' Liguoro | Non deterministic extensions of untyped lambdacalculus[END_REF] extends the CbN λ-calculus with an operator ⊕ whose reduction models non-deterministic choice: ⊕(t, s) rewrites to either t or s. It admits a standardization result, from which if follows that the leftmost-outermost reduction strategy (noted → lo β⊕) is complete: if t has a normal form u then t → lo β⊕ * u. In [START_REF] De' Liguoro | Non-deterministic untyped λ-calculus. A study about explicit non determinism in higher-order functional calculi[END_REF], de' Liguoro considers also a CbV variant Λ cbv ⊕ , extending with an operator ⊕ the CbV λ-calculus. One may prove standardization and completeness-againfrom scratch, even though the proofs are similar.

The approach we propose here is to work in the bang calculus enriched with the operator ⊕, it is denoted by Λ !⊕ . We show that the calculus satisfies leastlevel factorization from which it follows that the least-level strategy is complete, i.e. if t has a normal form u, then t → l β ! ⊕ * u. The translation then guarantees that analogous results hold also in Λ cbn ⊕ and Λ cbv ⊕ .

The Importance of Being Modular. The bang calculus with operators is actually a general formalism for several calculi, one calculus for each kind of computational feature modeled by operators. Concretely, the reduction → consists of -→ β ! (which subsumes CbN -→ β and CbV -→ βv) and other reduction rules -→ ρ .

We decompose the proof of factorization of → in modules, by using the modular approach recently introduced by the authors together with Accattoli [4].

The key module is the least-level factorization of → β ! , because it is where the higher-order comes into play-this is done, once for all. Then, we consider a generic reduction rule -→ ρ to add to -→ β ! . Our general result is that if -→ ρ has 'good properties' and interacts well with -→ β ! (which amounts to an easy test, combinatorial in nature), then we have least-level factorization for -→ β ! ∪ -→ ρ .

Putting all together, when -→ ρ is instantiated to a concrete reduction (such as → ⊕), the user of our method only has to verify a simple test (namely Proposition 34), to conclude that -→ β ! ∪ → ⊕ has least-level factorization. In particular factorization for -→ β ! is a ready-to-use black box the user need not to worry about-our proof is robust enough to hold whatever the other rules are. Finally, the embedding automatically give least-level factorization for the corresponding CbV and CbN calculi. In Section 7, we illustrate our method on this example.

Subtleties of the Modular Extensions. In order to adopt the modular approach presented in [4] we need to deal with an important difficulty which appears when dealing with normalizing strategies and that it is not studied in [4].

A normalizing strategies select the redex to fire usually through a property such as being a least level redex or being the leftmost-outermost (shortened to LO) redex-normalizing strategies are positional.

The problem is that the-in general-if →=→ β ∪ → ρ , then → lo reduction is not the union of → lo β and → lo ρ . I.e., the normalizing strategy of the compound system is not obtained putting together the normalizing strategies of the components. Let us explain the issue on our running example → β⊕ , in the familiar case of leftmost-outermost reduction.

Example 1. Let us first consider head reduction with respect to β (written → h β) and with respect to β⊕ (written → h β⊕). Consider the term s = (II)(x ⊕ y), where I = λx.x. The subterm II (which is a β-redex) is in head position whenever we consider the reduction → β or its extension → β⊕ . So s → h β I(x ⊕ y) and s → h β⊕ I(x ⊕ y). Conversely, given t = (x ⊕ y)(II) the head position is occupied by (x ⊕ y), which is a ⊕-redex, but not a β-redex. Therefore, (II) is not the head-redex in t, neither for β nor for β⊕. Otherwise stated:

→ h β⊕ = → h β ∪ → h ⊕ .
In contrast, if we consider leftmost-outermost reduction → lo , which reduces a redex in the leftmost-outermost position, it is easy to see that

→ lo β⊕ = → lo β ∪ → lo ⊕ .
Consider again the term t = (x ⊕ y)(II). Since (x ⊕ y) is not a β-redex, (II) is the leftmost redex for → β . Instead, (II) is not the lo-redex for → β⊕ (here the leftmost redex is (x ⊕ y)). So t → lo β (x ⊕ y)I but t → lo β⊕ (x ⊕ y)I.

The least-level factorization for → β ! , → β , and → βv we prove here is robust enough to make it ready to be used as a module in a larger proof, where it may combine with operators and other rules. The key point is to define the least-level reduction from the very beginning as a reduction firing a redex at minimal level with respect to a general set of redexes (containing β ! , β or β v , respectively), so that it is "ready" to be extended with other reduction rules (see Section 4).

Proofs. All proofs are available in https://www.irif.fr/ ~giuliog/fact.pdf 2 Background in Abstract Rewriting An (abstract) rewriting system, [32, Ch. 2] is a pair (A, -→) consisting of a set A and a binary relation -→⊆ A × A (called reduction) whose pairs are written t -→ s and called steps. A -→-sequence from t is a sequence of -→-steps. As usual, → * (resp. → =) denotes the transitive-reflexive (resp. reflexive) closure of →.

A relation → is confluent if s * ← r → * t implies s → * u * ← t for some u. We say that u is →-normal (or a →-normal form) if there is no t such that u → t.

In general, a term may or may not reduce to a normal form. If it does, not all reduction sequences necessarily lead to normal form. A term is weakly or strongly normalizing, depending on if it may or must reduce to normal form. If a term t is strongly normalizing, any choice of steps will eventually lead to a normal form. However, if t is weakly normalizing, how do we compute a normal form? This is the problem tackled by normalization: by repeatedly performing only specific steps, a normal form will be computed, provided that t can reduce to any.

A strategy -→ e ⊆ -→ is a way to control that in a term there are different possible choices of reduction. A normalizing strategy for →, is a reduction strategy which, given a term t, is guaranteed to reach its →-normal form, if any exists (a key tool to show that certain terms are not →-normalizable).

Definition 2 (Normalizing and complete strategy). A reduction → e ⊆ → is a strategy for → if it has the same normal forms as →. A strategy → e for → is:

-complete if t → e * u whenever t -→ * u with u →-normal;
normalizing if every maximal → e -sequence from t ends in a normal form, whenever t -→ * u for some →-normal form u.

Note that if the strategy → e is complete and deterministic (i.e. for every t ∈ A, t → e s for at most one s ∈ A), then → e is a normalizing strategy for →.

Definition 3 (Factorization). Let (A, -→) be a rewriting system with → = → e ∪ → i . The relation → satisfies e-factorization, written Fact(→ e , → i), if

Fact(→ e , → i) : (→ e ∪ → i) * ⊆ → e * • → i * (Factorization)
Proving Normalization. Factorization provides a simple technique to establish that a strategy is normalizing.

Lemma 4 (Normalization [3]). Let → = → e ∪ → ¬e , and → e be a strategy for →. The strategy → e is complete for → if the following hold:

1. Persistence: If t → ¬e t ′ then t ′ is not normal. 2. Factorization: t -→ * u implies t → e * • → ¬e * u.
The strategy → e is normalizing for → if it is complete and:

3. Uniformity: all weakly → e -normalizing terms are strongly → e -normalizing.

A sufficient condition for uniform normalization and confluence is the following:

Property 5 (Newman [25]) A reduction is quasi-diamond if (t 1 ← t → t 2) implies (t 1 = t 2 or t 1 → u ← t 2 for some u). If → is quasi-diamond then → is uniformly normalizing and confluent.
Proving Factorization. Hindley [START_REF] Hindley | The Church-Rosser Property and a Result in Combinatory Logic[END_REF] first noted that a local property implies factorization. Let → = → e ∪ → i . We say that → i strongly postpones after → e , if

SP(→ e , → i) : → i • → e ⊆ → e * • → i = (Strong Postponement)
Lemma 6 (Hindley [START_REF] Hindley | The Church-Rosser Property and a Result in Combinatory Logic[END_REF]). SP(→ e , → i) implies Fact(→ e , → i).

Strong postponement can rarely be used directly, because several interesting reductions-including β-reduction-do not satisfy it. However, it is at the heart of Takahashi's method [START_REF] Takahashi | Parallel reductions in lambda-calculus[END_REF] to prove head factorization of -→ β , via the following immediate property that can be used also to prove other factorizations (see [3]).

Property 7 (Characterization of factorization) Factorization Fact(→ e , → i) holds if and only if there is a reduction

• → i such that • → i * = → i * and SP(→ e , • → i).
The core of Takahashi's method [START_REF] Takahashi | Parallel reductions in lambda-calculus[END_REF] is to introduce a relation ⇒ i , called internal parallel reduction, which verifies the hypotheses above. We will follow a similar path in Section 6.1, to prove least-level factorization.

Compound systems: proving factorization in a modular way. In this paper, we will consider compound systems that are obtained by extending the λ-calculus with extra rules to model advanced features.

In an abstract setting, let us consider a rewrite system (A, →) where → = → ξ ∪ → ρ . Under which condition → admits factorization, assuming that both → ξ and → ρ do? To deal with this question, a technique for proving factorization for compound systems in a modular way has been introduced in [4]. The approach can be seen as an analogous for factorization of the classical technique for confluence based on Hindley-Rosen lemma [START_REF] Barendregt | The Lambda Calculus: Its Syntax and Semantics[END_REF]: if → ξ , → ρ are e-factorizing reductions, their union → ξ ∪ → ρ also is, provided that two local conditions of commutation hold. and→

Lemma 8 (Modular factorization [4]). Let

→ ξ = → e ξ ∪ → i ξ and → ρ = → e ρ ∪ → i ρ be e-factorizing relations. Let → e := → e ξ ∪ → e ρ ,
i := → i ξ ∪ → i ρ . The union → ξ ∪ → ρ fulfills factorization Fact(→ e , → i) if the following swaps hold → i ξ • → e ρ ⊆ → e ρ • → * ξ and → i ρ • → e ξ ⊆ → e ξ • → * ρ (Linear Swaps)
The subtlety here is to set → e ξ and → e ρ so that → e = → e ρ ∪ → i ρ . As already shown in Section 1, when dealing with normalizing strategies one needs extra care.

λ-calculi: CbN, CbV, and bang

We present here a generic syntax for λ-calculi, possibly containing operators. All the variants of the λ-calculus we shall study use this language. We assume some familiarity with the λ-calculus, and refer to [START_REF] Barendregt | The Lambda Calculus: Its Syntax and Semantics[END_REF][START_REF] Hindley | Introduction to Combinators and Lambda-Calculus[END_REF] for details. Given a countable set Var of variables, denoted by x, y, z, . . . , terms and values (whose sets are denoted by Λ O and Val, respectively) are defined as follows: Terms are identified up to renaming of bound variables, where abstraction is the only binder. We denote by t{s/x} the capture-avoiding substitution of s for the free occurrences of x in t. Contexts (with exactly one hole •) are generated by the grammar below, and c t stands for the term obtained from the context c by replacing the hole with the term t (possibly capturing free variables).

t, s, r ::= v | ts | o(t 1 , . . . , t k) Terms: Λ O v ::= x | λx.
c ::= • | tc | ct | λx.c | o(t 1 , . . . , c, . . . , t k) Contexts: C
Let ρ be a binary relation on Λ O ; we call it ρ-rule and denote it also by → ρ , writing t → ρ t ′ rather than (t, t ′) ∈ ρ. A ρ-reduction step -→ ρ is the contextual closure of ρ. Explicitly, t -→ ρ t ′ holds if t = c r and t ′ = c r ′ for some context c with r → ρ r ′ . The term r is called a ρ-redex. The set of ρ-redexes is denoted by R ρ .

Given a set of rules Rules, the relation →= ρ -→ ρ (ρ ∈ Rules) can equivalently be defined as the contextual closure of →= ρ → ρ .

Call-by-Name and Call-by-Value λ-calculi

Pure CbN and Pure CbV λ-calculi. The pure call-by-name (CbN for short) λcalculus [START_REF] Barendregt | The Lambda Calculus: Its Syntax and Semantics[END_REF][START_REF] Hindley | Introduction to Combinators and Lambda-Calculus[END_REF] is (Λ, → β), the set of terms Λ together with the β-reduction → β , defined as the contextual closure of the usual β-rule, which we recall in (1) below.

The pure call-by-value (CbV for short) λ-calculus [START_REF] Plotkin | Call-by-name, call-by-value and the lambda-calculus[END_REF] is the set Λ endowed with the reduction -→ βv , defined as the contextual closure of the β v -rule in [START_REF] Accattoli | An Abstract Factorization Theorem for Explicit Substitutions[END_REF].

CbN: (λx.t)s → β t{s/x} (1) CbV: (λx.t)v → βv t{v/x} with v ∈ Val (2)
CbN and CbV λ-calculi. A CbN (resp. CbV) λ-calculus is the set of terms endowed with a reduction -→ which extends → β (resp. → βv).

In particular, the applied setting with operators (when O = ∅) models in the λ-calculus richer computational features, allowing o-reductions as the contextual closure of o-rules of the form o(t 1 , . . . , t k) → o s.

Example 9 (Non-deterministic λ-calculus). Let O = {⊕} where ⊕ is a binary operator; let → ⊕ be the contextual closure of the (non-deterministic) rule below:

⊕(t 1 , t 2) → ⊕ t 1 and ⊕ (t 1 , t 2) → ⊕ t 2
The non-deterministic CbN λ-calculus

Λ cbn ⊕ = (Λ ⊕ , → β⊕) is the set Λ ⊕ with the reduction → β⊕ = -→ β ∪ → ⊕ . The non-deterministic CbV λ-calculus Λ cbv ⊕ = (Λ ⊕ , → βv⊕) is the set Λ ⊕ with the reduction → βv⊕ = -→ βv ∪ → ⊕ .

Bang calculi

The bang calculus [START_REF] Ehrhard | The bang calculus: an untyped lambda-calculus generalizing call-by-name and call-by-value[END_REF][START_REF] Guerrieri | The bang calculus and the two Girard's translations[END_REF] is a variant of the λ-calculus inspired by linear logic. An operator ! plays the role of a marker for duplicability and discardability. Here we allow also the presence of operators other than !, ranging over a set O. So, terms and contexts of the bang calculus (denoted by capital letters) are:

T, S, R ::= x | λx.T | T S | !T | o(T 1 , . . . , T k) Terms: Λ !O C ::= • | λx.C | T C | CT | !C | o(T 1 , . . . , C, . . . , T k) Contexts: C !
Terms of the form !T are called boxes and their set is denoted by !Λ !,O . When there are no operators other than ! (i.e. O = ∅), the sets of terms, boxes and contexts are denoted by Λ ! , !Λ ! and C ! , respectively. This syntax can be expressed in the one of Section 3, where ! is an unary operator called bang.

The pure bang calculus. The pure bang calculus (Λ ! , → β !) is the set of terms Λ ! endowed with reduction -→ β ! , the closure under contexts in C ! of the β ! -rule:

(λx.T) !S → β ! T {S/x} (3)
Intuitively, in the bang calculus the bang-operator ! marks the only terms that can be erased and duplicated. Indeed, a β-like redex (λx.T)S can be fired by → β ! only when its argument S is a box, i.e. S = !R: if it is so, the content R of the box S (and not S itself) replaces any free occurrence of x in T . 3A proof of confluence of β ! -reduction -→ β ! is in [START_REF] Guerrieri | The bang calculus and the two Girard's translations[END_REF].

Notation 10 We use the following notations to denote some notable terms.

CbN and CbV translations into the bang calculus

Our motivation to study the bang calculus is to have a general framework where both CbN [START_REF] Barendregt | The Lambda Calculus: Its Syntax and Semantics[END_REF] and CbV [START_REF] Plotkin | Call-by-name, call-by-value and the lambda-calculus[END_REF] λ-calculi can be embedded, via two distinct translations. Here we show how these translations work. We extend the simulation results in [START_REF] Guerrieri | The bang calculus and the two Girard's translations[END_REF]29,[START_REF] Bucciarelli | The bang calculus revisited[END_REF] for the pure case to the case with operators (Proposition 13).

Following [START_REF] Bucciarelli | The bang calculus revisited[END_REF], the CbV translation defined here differs from [START_REF] Guerrieri | The bang calculus and the two Girard's translations[END_REF]29] in the application case. Section 5 will show why this optimization is crucial.

CbN and CbV translations are two maps (•

) n : Λ O -→ Λ !O and (•) v : Λ O -→ Λ !O ,
respectively, translating terms of the λ-calculus into terms of the bang calculus:

x n := x (λx .t) n := λx .t n (o(t 1 , . . . , t k)) n := o(t n 1 , . . . , t n k) (ts) n := t n !s n ; x v := !x (λx .t) v := !(λx.t v) (o(t 1 , . . . , t k)) v := o(t v 1 , . . . , t v k) (ts) v := T s v if t v = !T (ι t v)s v otherwise.
Example 12. Consider the λ-term ω := δδ: then, δ n = ∆, δ v = !∆ and ω n = ∆ !∆ = ω v (δ and ∆ are defined in Notation 10). The λ-term ω is diverging in CbN and CbV λ-calculi, and so is ω n = ω v in the bang calculus, see Remark 11.

For any term t ∈ Λ O , t n and t v are just different decorations of t by means of the bang-operator ! (recall that ι = λx.x). The translation (•) n puts the argument of any application into a box: in CbN any term is duplicable or discardable. On the other hand, only values (i.e. abstractions and variables) are translated by (•) v into boxes, as they are the only terms duplicable or discardable in CbV.

As in [START_REF] Guerrieri | The bang calculus and the two Girard's translations[END_REF]29], we prove that the CbN translation (•) n (resp. CbV translation (•) v) from the pure CbN (resp. CbV) λ-calculus into the bang calculus is sound and complete: it maps β-reductions (resp. β v -reductions) of the λ-calculus into β !reductions of the bang calculus, and conversely β ! -reductions -when restricted to the image of the translation -into β-reductions (resp. β v -reductions). The same holds if we consider any o-reduction for operators.

In the simulation, -→ d denotes the contextual closure of the rule:

ι !T → d T (this is nothing but (λx.x)!T → β ! T) (4) Clearly, -→ d ⊆ -→ β ! (Remark 11). We write T ։ d S if T -→ * d S
1. CbN soundness: If t -→ β t ′ then t n -→ β ! t ′ n . If t -→ o t ′ then t n -→ o t ′ n . CbN completeness: If t n -→ β ! S then S = t ′ n and t -→ β t ′ , for some t ′ ∈ Λ O . If t n -→ o S then S = t ′ n and t -→ o t ′ , for some t ′ ∈ Λ O . 2. CbV soundness: If t -→ βv t ′ then t v -→ β ! -→ = d t ′ v with t ′ v d-normal. If t -→ o t ′ then t v -→ o -→ = d t ′ v with t ′ v d-normal. CbV completeness: If t v -→ β ! ։ d S then t v -→ β ! -→ = d S with S = t ′ v and t -→ βv t ′ , for some t ′ ∈ Λ O . If t v -→ o ։ d S then t v -→ o -→ = d S with S = t ′ v and t -→ o t ′ , for some t ′ ∈ Λ O .
Example 14. Let t = ((λz.z)x)y and t ′ = xy. Then t -→ β t ′ while t n = ((λz.z

)!x)!y -→ β ! x !y = t ′ n ; and t -→ βv t ′ while t v = (ι((λz.!z)!x))!y -→ β ! (ι !x)!y -→ d x !y = t ′ v .

The least-level strategy

The bang calculus Λ ! has a natural normalizing strategy, issued by linear logic (where it was first used in [9]), namely the least-level reduction. It reduces only redexes at least level, where the level of a redex R in a term T is the number of boxes ! in which R is nested.

Least-level reduction is easily extended to a general bang calculus (Λ !O , -→). The level of a redex R is then the number of boxes ! and operators o in which R is nested; intuitively, least-level reduction fires a redex which is minimally nested.

Below, we formalize the reduction in a way that is independent of the specific shape of the redexes, and even of specific definition of level one chooses. The interest of least-level reduction is in the properties it satisfies. All our developments will rely on such properties, rather than the specific definition of least level.

In this section, →= ρ -→ ρ , for ρ ∈ Rules a set of rules. We write R = ρ R ρ for the set of all redexes.

Least-level reduction in bang calculi

The level of an occurrence of redex R in a term T is a measure of its depth. Formally, we indicate the occurrence of a subterm R in T with the context C such that C R = T . Its level then corresponds to the level ℓ(C) of the hole in C. The definition of level in a bang calculus Λ !O is formalized as follows.

ℓ(•) = 0 ℓ(λx.C) = ℓ(C) ℓ(CT) = ℓ(C) ℓ(T C) = ℓ(C) ℓ(!C) = ℓ(C) + 1 ℓ(o(. . . , C, . . .)) = ℓ(C) + 1 (5)
Note that the level increases by 1 in the scope of !, and of any operator o ∈ O.

A reduction step T -→ ρ S is at level k if it fires a ρ-redex at level k; it is least-level if it reduces a redex whose level is minimal.

The least level ℓℓ(T) of a term T expresses the minimal level of any occurrence of redexes in T ; if no redex is in T , we set ℓℓ(T) = ∞. Formally Definition 15 (Least-level reduction). Let → = ρ → ρ (ρ ∈ Rules) and R = ρ R ρ the set of redexes. Given a function ℓ(-) from contexts into N:

-The least level of a term T is defined as

ℓℓ(T) := inf{ℓ(C) | T = C R for some R ∈ R} ∈ (N ∪ {∞}). 4 (6)
-A ρ-reduction step T -→ ρ S is: 1. at level k, written T -→ ρ:k S, if T := C R -→ ρ C R ′ =: S and ℓ(C) = k. 2. least-level, written T → l ρ S, if T -→ ρ:k S and k = ℓℓ(T). 3. internal, written T → ¬l ρ S, if T -→ ρ:k S and k > ℓℓ(T). -Least-level reduction is → l = ρ → l ρ (ρ ∈ Rules). -Internal reduction is → ¬l = ρ → ¬l ρ (ρ ∈ Rules). Note that → = → l ∪ →
¬l . Note also that the definition of least level of a term depends on the set R = ρ R ρ of redexes associated with →. 5 Normal Forms. It is immediate that → l ⊂→ is a strategy for →. Indeed, → l and → have the same normal forms because if M has a →-redex, it has a redex at least-level, i.e. it has a → l -redex.

Remark 16 (Least level of normal forms). Note that ℓℓ(T) = ∞ if and only if

T is →-normal, because ℓ(C) ∈ N for all contexts C.
A good least-level reduction. The beauty of least-level reduction for the bang calculus, is that it satisfies some elegant properties, which allow for neat proofs, in particular monotonicity and internal invariance (in Definition 17). The developments in the rest of the paper rely on such properties, and in fact will apply to any calculus whose reduction → has the properties described below.

Definition 17 (Good least-level).

A reduction → has a good least-level if:

1. Monotonocity: T → S implies ℓℓ(T) ≤ ℓℓ(S).

Internal invariance: T →

¬l S implies ℓℓ(T) = ℓℓ(S). Point 1. states that no step can decrease the least level of a term. Point 2. says that internal steps cannot change the least level of a term. Therefore, only leastlevel steps may increase the least level. Together, they imply persistence: only least-level steps can approach normal forms.

Property 18 (Persistence) If → has a good least-level, then T → ¬l S implies S is not →-normal.
The pure bang calculus (Λ ! , → β !) has a good least-level; the same holds true when extending the reduction with operators.

Proposition 19 (Good least-level of bang calculi). Given

Λ !O , let → = → β ! ∪ → O ,
where each o ∈ O has a redex of shape o(P 1 , . . . , P k). The reduction → has a good least-level. 4 Recall that inf ∅ = ∞, when ∅ is seen as the empty subset of N with the usual order. 5 We should write ℓℓ R (T), lR and → l R ρ, but we avoid it for the sake of readability.

Least-level for a bang calculus: examples.

Let us examine more closely least-level reduction for a bang calculus (Λ !O , -→).

For concreteness, we consider

Rules = {β ! , o | o ∈ O}, hence the set of redexes is R = R β ! ∪ R O ,
where R O is a set of terms of shape o(P 1 , . . . , P k).

We observe that the least level ℓℓ(T) of a term T ∈ Λ !O can easily be defined in a direct way, inductively.

-

ℓℓ(T) = 0 if T ∈ R = R β ! ∪ R O , -otherwise: ℓℓ(x) = ∞ ℓℓ(λx.T) = ℓℓ(T) ℓℓ(!T) = ℓℓ(T)+1 ℓℓ(T S) = min{ℓℓ(T), ℓℓ(S)} Example 20 (Least level of a term). Let R ∈ R β ! . If T 0 := R (!R), then ℓℓ(T 0) = 0. If T 1 := x!R then ℓℓ(T 2) = 1. If T 2 := o(x, y)!R then ℓℓ(T 2) = 0, as o(x, y) ∈ R o .
Intuitively, least-level reduction fires a redex that is minimally nested, where a redex is any subterm whose form is in R = R β ! ∪ R O . Note that least-level reduction can choose to fire one among possibly several redexes at minimal level.

Example 21. Let us revisit Example 20 with

R = (λx.x)!z ∈ R β ! (R → β ! z). Then T 1 := x !R → l β ! x !z but T 0 := R (!R) → l R !z and similarly T 2 := o(x, y) !R → l β ! o(x, y)!z. Observe also that o(x, R) → l β ! o(x, z). Example 22. Let R = (λx.x)!z. Two least-level steps are possible in (λz.R)!R: (λz.R)!R → l β ! (λx.x)!R, and (λz.R)!R → l β ! (λz.z)!R. But (λz.R)!R → l β ! (λz.R)!z.

Least-level for CbN and CbV λ-calculi

The definition of least-level reduction in Section 4.1 is independent from the specific notion of level that is chosen, and also from the specific calculus. The idea is that the reduction strategy persistently fires a redex at minimal level, once such a notion is set.

Least-level reduction can indeed be defined also for the CbN and CbV λcalculi, given an opportune definition of level. In CbN, we count the number of nested arguments and operators containing the occurrence of redex. In CbV, we count the number of nested operators and unapplied abstractions containing the redex, where an abstraction is unapplied if it is not the right-hand side of an application. Formally, an occurrence of redex is identified by a context (as explained in Section 4.1), and we define the following ℓ CbN (•) and ℓ CbV (•) functions from C to N, the level in CbN and CbV λ-calculi.

ℓ CbN (•) = 0 ℓ CbV (•) = 0 ℓ CbN (λx.c) = ℓ CbN (c) ℓ CbV (λx.c) = ℓ CbV (c) + 1 ℓ CbN (ct) = ℓ CbN (c) ℓ CbV (ct) = ℓ CbV (c ′) if c = λx.c ′ ℓ CbV (c) otherwise ℓ CbN (tc) = ℓ CbN (c) + 1 ℓ CbV (tc) = ℓ CbV (c) ℓ CbN (o(. . . , c, . . .)) = ℓ CbN (c) + 1 ℓ CbV (o(. . . , c, . . .)) = ℓ CbV (c) + 1
In both CbN and CbV λ-calculi, the least level of a term (denoted by ℓℓ CbN (•) and ℓℓ CbV (•)) and least-level and internal reductions are given by Definition 15 (replace ℓ(•) with ℓ CbN (•) for CbN and ℓ CbV (•) for CbV).

In Section 5 we will see that the definitions of CbN and CbV least level are not arbitrary, but induced by the CbN and CbV translations defined in Section 3.3.

Embedding of CbN and CbV by level

Here we refine the analysis of the CbN and CbV translations given in Section 3.3, by showing two new results: translations preserve normal forms (Proposition 23) and least-level (Proposition 26), back and forth. This way, to obtain least-level factorization or least-level normalization results, it suffices to prove them in the bang calculus. The translation transfers the results into the CbN and CbV λcalculi (Theorem 27). We use here the expression "translate" in a strong sense: the results for CbN and CbV λ-calculi are obtained from the corresponding results in the bang calculus almost for free, just via CbN and CbV translations.

Preservation of normal forms. The targets of the CbN translation (•) n and CbV translation (•) v into the bang calculus can be characterized syntactically. A fine analysis of these fragments of the bang calculus (see [?] for details) proves that both CbN and CbV translations preserve normal forms, back and forth.

Proposition 23 (Preservation of normal forms

). Let t, s ∈ Λ and o ∈ O. 1. CbN: t is β-normal iff t n is β ! -normal; t is o-normal iff t n is o-normal. 2. CbV: t is β v -normal iff t v is β ! -normal; t is o-normal iff t v is o-normal.
By Remark 16, Proposition 23 can be seen as the fact that CbN and CbV translations preserve the least-level of a term, back and forth, when the least-level is infinite. Actually, this holds more in general for any value of the least-level.

Preservation of levels. We aim to show that least-level steps in CbN and CbV λ-calculi correspond to least-level steps in the bang calculus, back and forth, via CbN and CbV translations respectively (Proposition 26). This result is subtle, one of the main technical contributions of this paper.

First, we extend the definition of translations to contexts. The CbN and CbV translations for contexts are two functions (•) n : C -→ C ! and (•) v : C -→ C ! , respectively, mapping contexts of the λ-calculus into contexts of the bang calculus:

• n = • • v = • (λx.c) n = λx.c n (λx.c) v = !(λx.c v) (o(t1, ..., c, ..., t k)) n = o(t n 1 , ..., c n , ..., t n k) (o(t1, ..., c, ..., t k)) v = o(t v 1 , ..., c v , ..., t v k) (ct) n = c n !(t n) (ct) v = C t v if c v = !C (ι c v)t v otherwise (tc) n = t n !(c n) ; (tc) v = T c v if t v = !T (ι t v)c v otherwise.
Note that CbN (resp. CbV) level of a context defined in Section 4.3 increases by 1 whenever the CbN (resp. CbV) translation for contexts add !. Thus, CbN and CbV translations preserve, back and forth, the level of a redex and the least-level of a term. Said differently, the level for CbN and CbV is defined in Section 4.3 so as to enable the preservation of level via CbN and CbV translations.

Lemma 24 (Preservation of level via CbN translation).

For contexts:

For any context c ∈ C, one has ℓ CbN (c) = ℓ(c n). 2.
(t) = ℓℓ(t n).

Lemma 25 (Preservation of level via CbV translation).

1. For contexts: For any context c ∈ C, one has ℓ CbV (c) = ℓ(c v).

For reduction:

For any term t ∈ Λ O : t -→ βv:k s if and only if t v -→ β ! :k -→ = d:k s v ; and t -→ o:k s if and only if t v -→ o:k -→ = d:k s v , for any o ∈ O. 3. For least-level of a term: For any term t ∈ Λ O , one has ℓℓ CbV (t) = ℓℓ(t v).
From the two lemmas above it follows that CbN and CbV translations preserve least-level and internal reductions, back and forth.

Proposition 26 (Preservation of least-level and internal reductions).

Let t be a λ-term and o ∈ O.

1. CbN least-level: t → l β s iff t n → l β ! s n ; and t → l o s iff t n → l o s n . 2. CbN internal: t → ¬l β s iff t n → ¬l β ! s n ; and t → ¬l o s iff t n → ¬l o s n . 3. CbV least-level: t → l βv s iff t v → l β ! → l d = s v ; and t → l o s iff t v → l o → l d = s v . 4. CbV internal: t → l βv s iff t v → ¬l β ! → ¬l d = s v ; and t → l o s iff t v → ¬l o → ¬l d = s v .
As a consequence, least-level reduction induces factorization in CbN and CbV λ-calculi as soon as it does in the bang calculus. And, by Proposition 23, it is a normalizing strategy in CbN and CbV as soon as it is so in the bang calculus.

Theorem 27 (Factorization and normalization by translation). Let

Λ cbn O = (Λ O , → β ∪ → O) and Λ cbv O = (Λ O , → βv ∪ → O). 1. If Λ !O admits least-level factorization Fact(→ l , → ¬l), then so do Λ cbn O and Λ cbv O . 2. If Λ !O admits least-level normalization, then so do Λ cbn O and Λ cbv O .
A similar result will hold also when extending the pure calculi with a rule → ρ other than → o , as long as the translation preserves redexes.

Remark 28 (Preservation of least-level and of normal forms.). Preservation of normal form and least-level is delicate. For instance, it does not hold with the definition CbV translation (•) v in [START_REF] Guerrieri | The bang calculus and the two Girard's translations[END_REF]29]. There, the translation t = rs ∈ Λ would be t v = (ι !(r v))s v and then Proposition 23 and Proposition 26 would not hold: ι !(r v) is a β ! -redex in t v (see Remark 11) and hence t v would not be normal even though so is t, and ℓℓ(t v) = 0 even though ℓℓ CbV (t) = 0. This is why we defined two distinct case when defining (•) v for applications, akin to [START_REF] Bucciarelli | The bang calculus revisited[END_REF].

Least-level factorization via bang calculus

We have shown that least-level factorization in a bang calculus Λ !O implies leastlevel factorization in the corresponding CbN and CbV calculi, via forth-and-back translation. The central question now is how to prove least-level factorization for a bang calculus: the rest of the paper is devoted to that.

Overview. Let us overview our approach by considering O = {o}, and

→ = → β ! ∪ → o . Since by definition → l =→ l β ! ∪ → l o (and → ¬l = → ¬l β ! ∪ → ¬l o
), Lemma 8 states that we can decompose least-level factorization of → in three modules:

1. prove l-factorization of → β ! , i.e. → * β ! ⊆ → l β ! * • → ¬l β ! 2. prove l-factorization of → o , i.e. → o * ⊆ → l o * • → ¬l o
3. prove the two linear swaps of Lemma 8.

Please note that the least level for both → l β ! and → l o is defined with respect to the redexes

R = R β ! ∪ R o , so to have → l =→ l β ! ∪ → l o .
This addresses the issue we mentioned in Example 1. Clearly, points 2. and 3. depend on the specific rule → o . However, the beauty of a modular approach is that point 1. can be established in general: we do not need to know → o , only the shape of its redexes R o . In Section 6.1 we provide a general result of l-factorization for → β ! (Theorem 29). In fact, we shall show a bit more: the way of decomposing the study of factorization that we have sketched, can be applied to study least-level factorization of any reduction → = → β ! ∪ → ρ , as long as → has a good least-level.

Once (1.) is established (once and for all), to prove factorization of a reduction → β ! ∪ → o we are only left with (2.) and (3.). In Section 6.3 we show that the proof of the two linear swaps can be reduced to a single, simple test, involving only the → o step (Proposition 34). In Section 7, we will illustrate how all elements play together on a concrete case, applying them to non-deterministic λ-calculi.

Factorization of → β! in a bang calculus

We prove that → β ! -reduction factorizes via least-level reduction (Theorem 29). The result holds for a definition of → l β ! (as in Section 4) where the set of redexes R is R β ! ∪ R o -this generalization has essentially no cost, and allows us to use Theorem 29 as a module in the factorization of a larger reduction.

We prove factorization via Takahashi's Parallel Reduction method [START_REF] Takahashi | Parallel reductions in lambda-calculus[END_REF]. We define a reflexive reduction ⇒ ¬l β ! (called parallel internal β ! -reduction) which satisfies the conditions of Property 7, i.e.

⇒ ¬l β ! * = → ¬l β ! * and ⇒ ¬l β ! • → l β ! ⊆→ l β ! * • ⇒ ¬l β ! .
The tricky point is to prove We first introduce ⇒ β ! :n (the parallel version of -→ β ! :n), which fires simultaneously a number of β ! -redexes at level at least n (and ⇒ β ! :∞ does not reduce any β ! -redex: T ⇒ β ! :∞ S implies T = S).

⇒ ¬l β ! • → l β ! ⊆→ l β ! * • ⇒ ¬l β ! We
x ⇒ β ! :∞ x T ⇒ β ! :n T ′ λx.T ⇒ β ! :n λx.T ′ T ⇒ β ! :m T ′ S ⇒ β ! :n S ′ T S ⇒ β ! :min{m,n} T ′ S ′ T ⇒ β ! :n T ′ !T ⇒ β ! :n+1 !T ′ T ⇒ β ! :n T ′ S ⇒ β ! :m S ′ (λx.T)!S ⇒ β ! :0 T ′ {S ′ /x}
The parallel internal β ! -reduction ⇒ ¬l β ! is the parallel version of → ¬l β ! , which fires simultaneously a number of β ! -redexes that are not at minimal level. Formally,

T ⇒ ¬l β ! S if T ⇒ β ! :n S with n = ∞ or n > ℓℓ(T). Theorem 29 (Least-level factorization of → β !). Assume →=→ β ! ∪ → ρ has good least-level in Λ !O . Then: T -→ * β ! S implies T → l β ! * • → ¬l β ! * S.
Corollary 30 (Least-level factorization in the pure bang calculus). In the pure bang calculus

(Λ ! , -→ β !), if T -→ * β ! S then T → l β ! * • → ¬l β ! * S.

Pure calculi and least-level normalization

Least-level factorization of → β ! implies in particular least-level factorization for → β and → βv . As a consequence, least-level reduction is a normalizing strategy for all three pure calculi: the bang calculus, the CbN, and the CbV λ-calculi.

The pure bang calculus. → l β ! is a normalizing strategy for → β ! . Indeed, it satisfies all ingredients in Lemma 4. Since we have least-level factorization (Corollary 30)), same normal forms, and persistence

(Proposition 19), → l β ! is a complete strategy for → β ! : If N is β ! -normal and M → * β ! N, then M → l β ! * N.
We already observed (Example 22) that the least-level reduction → l β ! is nondeterministic, because several redexes at least level may be available. Such nondeterminism is however inessential, because → l β ! is uniformly normalizing.

Lemma 31 (Quasi-Diamond). In (Λ ! , -→ β !), the reduction → l β ! is quasi-diamond (Property 5), and therefore uniformly normalizing.

Putting all the ingredients together, we have (by Lemma 4):

Theorem 32 (Least-level normalization). In the pure bang calculus → l β ! is a normalizing strategy for → β ! .

Theorem 32 means not only that if T is β ! -normalizable then T can reach its normal form by just performing least-level steps, but also that performing whatever least-level steps eventually leads to the normal form, if any.

Pure CbV and CbN λ-calculi. By forth-and-back translation (Theorem 27) the least-level factorization and normalization results for the pure bang calculus immediately transfers to the CbN and CbV setting.

Theorem 33 (CbV and CbN least-level normalization).

-CbN: In (Λ, → β), → l β is a normalizing strategy for → β .

-CbV: In (Λ, → βv), → l βv is a normalizing strategy for → βv .

Least-level Factorization, Modularly.

As anticipated at the beginning of this section, we can use Theorem 29 also as part of the proof of factorization for a more complex calculus. We now introduce one more useful tool: a simple test to establish least-level factorization of a reduction → β ! ∪ → ρ (where → ρ is a new reduction added to → β !). We shall give an example of its use in Section 7 (see the proof of Theorem 36).

The test embodies Lemma 8, and the fact that we already know (once for all) that → β ! factorizes via → l β ! . It turns out that the proof of the two linear swaps can be reduced to a single, simple test, which only involves the → ρ step.

Proposition 34 (Test for modular least-level factorization). Let → ρ be the contextual closure of a rule → ρ , and assume → = (→ β ! ∪ → ρ) has a good least-level. Then → factorizes via → l = (→ l β ! ∪ → l ρ) if the following hold:

→ ¬l β ! • → ρ ⊆ → ρ • → * β ! .
Note that, as usual, at point (1.) the least level is defined w.r.t. R = R !β ∪R ρ .

Case study: non-deterministic λ-calculi

To show how to use our framework, we apply the set of tools which we have developed on our running example. We extend the bang calculus with a nondeterministic operator, then considering (Λ !⊕ , → β ! ⊕) where → β ! ⊕ = (→ β ! ∪ → ⊕), and → ⊕ is the contextual closure of the (non-deterministic) rules:

o(P, Q) → ⊕ P o(P, Q) → ⊕ Q (7

Conclusions and Related Work

The combination of translations (Theorem 27), l-factorization for → β ! (Theorem 29), and modularity (Proposition 34), give us a powerful method to analyze factorization in various λ-calculi that extend the pure CbN and CbV calculi. The main novelty is transferring the results from a calculus to another via translations.

We chose to study least-level reduction as a normalizing strategy because it is natural to define in the bang calculus, and it is easier to transfer via translations to CbN and CbV calculi than leftmost-outermost. Since leftmost-outermost is the most common normalizing strategy in CbN, it is worth noticing that leastlevel normalization implies leftmost-outermost normalization (and vice-versa). This is an easy consequence of the-easy to check-fact that their union is quasi-diamond (and hence, again, uniformly normalizing). A proof of least-level normalization lends a proof also of leftmost-outermost normalization. Related Work. Many calculi inspired by linear logic subsumes CbN and CbV, such as [START_REF] Benton | A term calculus for intuitionistic linear logic[END_REF][START_REF] Benton | Linear logic, monads and the lambda calculus[END_REF][START_REF] Della Rocca | Lambda calculus and intuitionistic linear logic[END_REF][START_REF] Maraist | Call-by-name, call-by-value, call-by-need and the linear lambda calculus[END_REF] (other than the ones already cited). We chose the bang calculus for its simplicity, which eases the analysis of the CbN and CbV translations.

Least-level reduction is studied for linear-logic-based calculi in [START_REF] Terui | Light affine lambda calculus and polynomial time strong normalization[END_REF][START_REF] Accattoli | An Abstract Factorization Theorem for Explicit Substitutions[END_REF] and for linear logic proof-nets in [9,[START_REF] Pagani | The conservation theorem for differential nets[END_REF]. Least-level factorization and normalization for the pure CbN λ-calculus is studied in [3].

ι

 := λx.x δ := λx.xx I := λx.!x ∆ := λx.x !x. Remark 11 (Notable terms). The term I = λx.!x plays the role of the identity in the bang calculus: I !T -→ β ! !(x{T /x}) = !T for any term T . Instead, the term ι = λx.x, when applied to a box !T , opens the box, i.e. returns its content T : ι !T -→ β ! x{T /x} = T . Finally, ∆ !∆ -→ β ! ∆ !∆ -→ β ! . . . is a diverging term. A bang calculus. A bang calculus (Λ !O , -→) is the set Λ !O of terms endowed with a reduction -→ which extends -→ β ! . In this paper we shall consider calculi where -→ contains -→ β ! and o-reductions -→ o (o ∈ O) defined from o-rules of the form o(T 1 , . . . , T k) → o S, and possibly other rules. So, → = ρ -→ ρ (ρ ∈ Rules), with Rules ⊇ {!β, o | o ∈ O}. We set → O = o∈O → o .

 and S is d-normal. Proposition 13 (Simulation of CbN and CbV). Let t ∈ Λ O and o ∈ O.

 adapt the proof technique in [3]. All details are in [?]. Here we just give the definition of ⇒ ¬l β ! .

 1. l-factorization of → ρ : → * ρ ⊆ → l ρ * • → ¬l ρ * 2. → ρ is substitutive: R → ρ R ′ implies R{Q/x} → ρ R ′ {Q/x}.3. Root linear swap:

 t Values: Val where o ranges over a set O of function symbols called operators, each one with its own arity k ∈ N. If the operators are o 1 , . . . , o n , the set of terms is indicated as Λ o1...on . When the set O of operators is empty, the calculus is called pure, and the sets of terms is denoted by Λ. Otherwise, the calculus is applied.

 For reduction: For any term t ∈ Λ O : t -→ β:k s if and only if t n -→ β ! :k s n ; and t -→ o:k s if and only if t n -→ o:k s n , for any o ∈ O. 3. For least-level of a term: For any term t ∈ Λ O , one has ℓℓ CbN

)

 First step: non-deterministic bang calculus. We analyze Λ !⊕ . We use our modular test to prove least-level factorization for Λ !⊕ : if→ * β ! ⊕ U then T → l β ! ⊕ * • → ¬l β ! ⊕ *U . By Lemma 4, an immediate consequence of the factorization result is that the least-level strategy is complete, i.e. if U is normal:T → * β ! ⊕ U implies T → l β⊕ * U .Second step: CbN and CbV non-deterministic calculi. By translation, we have for free, that the analogous results hold in Λ cbn ⊕ and Λ cbv ⊕ , as defined in Example 9. So, least-level factorization holds for both calculi, and moreover-CbN completeness: in Λ cbn ⊕ , if u is normal: t → * β⊕ u implies t → l β⊕ * u. -CbV completeness: in Λ cbv ⊕ , if u is normal: t → * βv⊕ u implies t → l βv ⊕ * u.What do we really need to prove? The only result we need to prove is leastlevel factorization of → β ! ⊕ . Completeness then follows by Lemma 4 and the translations will automatically take care of transferring the results.To prove factorization of → β ! ⊕ , most of the work is done, as l-factorization of → β ! is already established; we then use our test (Proposition 34) to extend → β ! with → ⊕ . The only ingredients we need are substitutivity of ⊕ (which is an obvious property), and the following easy lemma.Lemma 35 (Roots). Let ρ ∈ {β ! , ⊕}. If T → ¬l ρ P → ⊕ S then T → ⊕ • → = ρ S.Theorem 36 (Least-level factorization).1. In (Λ !⊕ , -→), Fact(→ l , → ¬l) holds for → = → ⊕ ∪ → β ! . 2. Least-level factorization holds in (Λ cbn ⊕ , → ⊕ ∪ → β),and in (Λ cbv ⊕ , → ⊕ ∪ → βv). . 1. It is enough to verify the hypotheses of Proposition 34. 2. It follows from Theorem 27 and Theorem 36.1. ⊓ ⊔

	Proof

Syntax and reduction rule of the bang calculus follow[START_REF] Guerrieri | The bang calculus and the two Girard's translations[END_REF], which is slightly different from[START_REF] Ehrhard | The bang calculus: an untyped lambda-calculus generalizing call-by-name and call-by-value[END_REF]. Unlike[START_REF] Guerrieri | The bang calculus and the two Girard's translations[END_REF] (but akin to[29]), here we do not use ι (aka der) as a primitive, since ι and its associated rule → d can be simulated, see Remark 11 and (4).