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ABSTRACT: The need to take into account the life cycle of ionic liquids (ILs), from the sourcing of the raw materials involved
in their synthesis to their disposal and degradation, has become paramount in the design of new IL-type molecular structures. In
the case of 1-alkyl-3-methylimidazolium salts, one of the prominent IL families, there is an increasing demand for synthetic
methods involving (i) the substitution of the petro-based alkyl derivatives by readily available bio-sourced surrogates, and (ii) the
functionalization of the alkyl tail with hetero-functional groups enabling the (bio)degradation of the IL after use. Herein, a
straightforward and industrially viable synthesis of lipidic imidazolium salts is reported, starting from different bio-sourced fatty
alcohols, including oleic, stearyl and lauryl alcohols. The procedure is based on the acrylation of the fatty alcohol, followed by the
aza-Michael addition of the imidazole group onto the acrylate moiety. Subsequent quaternization, using either methyl iodide or
methyl tosylate, provides a library of 1-alkylpropionate-3-methylimidazolium salts with various alkyl chain length (C18, C12, C11)
and incorporating different types of counter-anions (iodate, tosylate, tetrafluoroborate). These ester-containing analogs of classical
1-alkyl-3-methylimidazolium salts are all ILs, i.e., with a melting point below 100 °C. In addition, most of them exhibit a liquid
crystal behavior and can be referred to as ionic liquid crystals (ILCs). The thermal stability, as well as the phase transitions of these
ILs, have been investigated by thermogravimetric analysis and differential scanning calorimetry, respectively, while the molecular
structure into the crystalline phase and the mesophase is studied by X-ray scattering. Interestingly, ILCs featuring unsaturated alkyl
tails exhibit a low melting point, close to room temperature and the presence of the ester function is shown to provide an enhanced
stabilization of the mesophase.
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Introduction

Since their discovery in the early 19" century,! ionic liquids (ILs) have infiltrated every corner
of modern chemistry.>? Initially foreseen as an alternative to conventional organic solvents,* their

utility has now been illustrated in virtually all fields of molecular chemistry, including separation>
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and extraction> 7 technologies, organo-catalysis,!® electrochemistry,'? or even
biochemistry!# !> and material sciences.!® 17 Among the limitless structural possibilities of ILs,?
the association of 1-alkyl-3-methylimidazolium cations to weakly-coordinating anions have been
center stage over the past decades.!® !° The intrinsic asymmetry of the imidazolium cation is indeed
a key feature to obtain a liquid salt over a large temperature window.?’

Moreover, the combination of the m-m interactions of the rigid imidazolium core with the van
der Walls interactions of the flexible alkyl tail can promote the formation of mesomorphic phases,
as established by Seddon et al.?'?* Imidazolium-based ILs can indeed self-organize into liquid
crystalline mesophases,?* referred to as ionic liquid crystals (ILCs).? Interestingly, their excellent
solvating properties combined with their anisotropic ordered structures can be exploited to orient
the regio- or stereo-selectivity of common organic reactions.”® For instance, 1-dodecyl-3-
methylimidazolium chloride was used to control the exo/endo selectivity of the Diels-Alder
addition of diethyl maleate onto cyclopentadiene.?®

Despite their intriguing properties, 1-alkyl-3-methylimidazolium ILs and ILCs are still barely
used at an industrial level.?”- 2 One major limitation is their production cost compared to that of
conventional organic solvents and building blocks used in the chemical industry.?” Moreover, their

environmental impact is more questionable than initially thought.3%-33 First, imidazolium-type ILs

are usually obtained from non-renewable petroleum-based building blocks.** 3> On top of that, the



risk of environmental persistence and ecotoxicity, in case of accidental discharge or contamination,
is a noteworthy obstacle to their large-scale use.® Several studies have shown that 1-alkyl-3-
methylimidazolium ILs and ILCs are poorly biodegradable,’” and can persist in many
environmental compartments.’® Therefore, the potential benefits of their superior chemical and
thermal stability do not always balance the downsides that come along.>

Greener synthetic pathways to environmentally benign ILs have been envisaged. One solution
is to use building blocks obtained from renewable resources.®> 44! To access lipidic 1-alkyl-3-
methylimidazolium ILs,***’ the group of Davis et al. used long alkyl chains that are readily
available from an abundant and cheap renewable feedstock: vegetable oils. The resulting ILs were
shown to display thermotropic and/or lyotropic mesophases.*® Interestingly, the phase transition
temperatures could be tuned as a function of the number of unsaturation of the lipidic tail.** The
synthesis of lipidic 1-alkyl-3-methylimidazolium IL(C)s is based on the direct addition of 1-
methylimidazole onto the alkyl halide derived from the corresponding fatty alcohol.*? They have
been used as separating phase in chromatography processes*» > 4% and as electrolytes in
supercapacitors and memory devices.* 0

IL(C)s eco-persistence, the other facet of their deleterious impacts on the environment, has been
intensively addressed as well.>! Scammels et al. paved the way to the rational design of IL(C)s
with enhanced biodegradability®?->¢ by incorporating an hydrolyzable ester moiety into the alkyl
tail of 1-alkyl-3-methylimidazolium cations.> The esters functions enable an enzymatic hydrolysis
step, initiating a pathway to further breakdown products. In particular, Scammels et a/. measured
a 100% increase of the biological degradation of I1-(propylacetate)-3-methylimidazolium
octylsulfate, as compared to its ester-free counterparts, namely, 1-butyl-3-methylimidazolium

octylsulfate.>® For this reason, 1-(alkylacetate)-3-methylimidazolium were considered as potential



organogelators for personal care preparations, and as biodegradable solvents for the chemical
industry.>” 38 They are usually obtained through the addition of 1-methylimidazole onto a-
bromoalkylesters,* % as first reported by Bodor et al. in 1980.%°

Interestingly, the reconsideration of the life cycle of imidazolium-type ILs, from the sourcing of
the raw materials used for their synthesis to their disposal and degradation, is related to the
functionalization of their N-alkyl substituents. In the above-mentioned examples, Davis et al.
introduced unsaturation by using bio-based building blocks, while Scammels et al. inserted esters
to promote the biodegradation of the ILs. In other words, the reduction of ILs’ environmental
impact has become a driving force behind the conception of new imidazolium salts.

In this context, here we report a novel and straightforward synthetic method for the preparation
of imidazolium-type ILs featuring a bio-sourced alkyl tail and incorporating an ester function.
Saturated and monounsaturated fatty alcohols of various length were functionalized with an
acrylate function and grafted onto the imidazolium core, following an approach based on the
Michael addition of imidazole onto the acrylate function. The resulting ILs are fully characterized
in terms of chemical and thermal properties. For those exhibiting a liquid crystalline behavior, an
in-depth characterization of their mesophase was carried out using X-ray scattering. The results
are compared with those of more conventional 1-alkyl-3-methylimidazolium IL(C)s. Our new
platform features close-to-room temperature IL(C)s that are air and moisture stable on a wide
temperature range, while exhibiting a heat-induced degradation for lower temperatures ([200 °C —
250 °C] than benchmark ILs. This higher susceptibility for thermal degradation is attributed to the
presence of the ester functionality in their molecular structure.®! These bio-based and high added-
value chemicals have a great potential in processing technologies and in material science, in virtue

of their ionic structure and mesomorphism, respectively.



Results and Discussion

Synthesis of 1-(alkylpropionate)-3-methylimidazolium IL(C)s, [Cx:yE) ImMe]X

A Synthesis of ester-contaning lipidic imidazolium-based IL(C)s
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Scheme 1: (A) Synthesis of lipidic imidazolium ILs containing an ester function via — a — the
functionalization of fatty alcohols (1) with an acrylate function followed by — b — the Michael
addition of imidazole onto the fatty acrylates (2) and — ¢ — the quaternization of the ester-containing
lipidic imidazole (3) with pTsOMe or Mel to yield the corresponding paratoluenesulfonate or

iodate ILs (4). The iodate ILs were converted into tetrafluoroborate equivalents (5) via anion



metathesis with AgBF4 — d. (B) Chemical structure of the fatty alcohols used in this study, (C) List

of the synthesized ionic liquids.

In this work, a new family of lipidic imidazolium IL(C)s is synthesized, starting from readily
available and bio-sourced fatty alcohols. The synthetic approach is inspired by works reported by
Li et al. regarding the synthesis of ester-containing imidazolium salts (Scheme 1A).%? The
synthesis first involves the reaction of the fatty alcohol, Cx:;-OH (1), with acryloyl chloride, to
quantitatively afford the corresponding fatty acrylates, 2. Different types of fatty alcohols, Cx:)-
OH, were used, x being the total number of carbon atoms in the fatty chain and y the total number
of unsaturations (Scheme 1B). In the case of Ci2:0-OH and Cis:0-OH, the corresponding acrylates,
namely, dodecylacrylate (Ci2:.0-acrylate) and octadecylacrylate (Cis.o-acrylate), respectively, were
directly obtained from commercial resources and used as received. Methyl acrylate (Ci.0-acrylate)
was used as a short-chain reference in order to examine the distinctive features arising from the
fatty analogs.

The aza-Michael addition of imidazole onto the acrylates was then performed in chloroform. The
resulting 1-(alkylpropionate)-imidazoles are noted Cix:yEmIm (3), where E indicates the presence
of an ester bond in-between the aromatic core of the imidazole (Im) and the fatty chain (Cx.y), and
m is the number of carbon atoms in-between Im and E. Herein, for the whole series, m = 2.
CxyE(2)Im were purified by column chromatography over silica, with the exception of Cis:1E(2)Im,
which was purified by recrystallization. All compounds were isolated with very good yields (~
85%). They were then quaternized using two strong electrophiles, namely, methyl iodide and
methyl p-toluenesulfonate, to yield iodide and p-toluenesulfonate (pTsO) 1-(alkylpropionate)-3-

methylimidazolium ILs (4), denoted as [CxyEImMe]l and [CiyE2)ImMelpTsO, respectively.



The reactions were nearly quantitative. The last step to access the tetrafluoroborate analogs,
[CxyEImMe]BFa4, (5), was achieved by anion metathesis between [CxyE(2ImMe]l and silver
tetrafluoroborate, AgBF4. All the IL(C)s were obtained with an overall yield higher than 80%
relatively to the alcohol precursors (1). The library of IL(C)s thus synthesized is summarized in
Scheme 1C. Their 'H and '3C NMR spectra are available in the supplementary information
(Figures S1 to S20). The structural integrity of these novel compounds was further confirmed by
high-resolution mass spectrometry (HRMS) of the ion couples (see supplementary information).
The high-resolution mass spectra in the positive ion mode are available in Figures S21 to S32. This
new synthetic strategy is competitive with the more conventional synthesis of lipidic 1-alkyl-3-
methylimidazolium ILs, [Cy,ImMe]X (ester-free), reported earlier.** Moreover, the yields
obtained exceed those of the synthesis of ester-containing lipidic 1-(alkylacetate)-3-

methylimidazolium ILs, [CxyE(HImMe]X, according to the protocol of Bodor et al.®°

Hereafter, the thermal and structural properties of the synthesized [CxyE)ImMe]X IL(C)s are
reported and compared with those of more conventional [CiyImMe]X and [CiyEnImMe]X

IL(C)s.

DSC of [Cx:yE)ImMe] X IL(C)s

Prior to DSC measurements, all the ILs were characterized by thermogravimetric analysis under
air and nitrogen atmospheres (see supplementary information; Table S1 and Figures S33 to S47).
The temperature onset of the thermal degradation of the [CiyE(@2ImMe]X ILs are found to be
approximately 50 °C smaller than those of [Cx;,ImMe]X analogs.?*> %3 Advantageously, it has been

proven that a higher susceptibility to thermal degradation correlates with a higher biodegradability



in the case of ester-containing [CiyEnImMe]X ILs.”® However, the biodegradation of
[CxyEImMe]X ILs synthesized in this work has not been evaluated. Given their structural
analogy with [Ci,E(nImMe]X ILs, as well as their susceptibility to heat-induced degradation, it is

very likely that they exhibit high biological degradation as well.
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Figure 1: Differential scanning calorimetry (10 °C min™!, Al Pan) traces of the cooling (T!, upper
curve) and second heating (TT, lower curve) for (a) [C1:0E2)ImMe]pTsO, (b) [Ci2:0E)ImMe]pTsO

and (c) [Cis:0E(2)ImMe]pTsO.

The DSC curves of [CxyE()ImMe]pTsO are shown in Figure 1 for (x:y) = (1:0), (12:0), (18:0).
With the exception of (x:y) = (18:0), the cooling ramps of the salts do not exhibit any crystallization
peak. This is due to the marked tendency of [Cx;yE2)ImMe]pTsO to supercool and to form a glass
before crystallizing.?> For this reason, the heating ramps of [Cr.0E)ImMe]pTsO and
[C12:0E)ImMe]pTsO are characterized by a strong exothermic peak, as a result of their cold
crystallization, followed by an intense endothermic melting peak. In contrast,
[Cis:0E2)ImMe]pTsO does not exhibit any cold crystallization peak, proving that the crystallization
was completed upon cooling. The temperatures and the enthalpy of transitions — 7 for the glass
transition, 7 and AH» for the melting point, and 7. and AH. for the crystallization (or cold
crystallization when applicable) — are reported in Table 1. Ty is found to slightly increase with x,

the length of the alkyl tail. A similar observation was reported for a series of [CxyImMe]X ILs.??

Crystallization Melting LC—11 I-LCe
Anion, T, AH, AH,

[X] (x:y) (oé) o T(LC)h AIi(LC)h T(LC)c A[—I(LC)c
T. (°C) (k] mol- T, (°C) (kJ mol °C) (kJ lmol °C) (kJ lmol

l) l) ) )

[pTs0] (1:0) 21 420 26 66 27 - : - 3

(11:0) 37 250 31 46/58/65 35 - ; ; ]

(11:1)  -41 320 23 48 24 - ) ] ]




[BF4]

(12:0) 29 030 30 70 38 78 031 77
(18:0) - 40° 54 81 55 172 055 170
(18:1) 43 24" 9 33 9 148 095 146
(1:0) 35 - : - i - - i
(11:0) - -16°(7%(35%  18(9)(6) 84 45 123 042 122
(L1 - 7 27 45 35 ; ; 34
12:0) - 220 39 63 45 164  0.64 163
(18:0) - 56/47¢ 62 81 63 =200 NA 200
(18:1) 45 5 3 29/34° 37 5200 NA 200
(11:0) 21  -59(2%(26Y) 15(4(&5) 64 45 107 037 106
(12:0)  -19 1% (40 18 (18) 3 41 144 059 144

0.32

0.73

0.90

0.41

0.17

0.70

NA

NA

0.36

0.58

Table 1: Thermal data from DSC thermograms of IL(C)s synthesized in this work. The transition
temperatures are measured from the peak maximum for the first order transitions (crystallization,
melting and clearing point) and the transition midpoints for the glass transitions. * Regular
crystallization during the cooling cycle, ° cold crystallization during the heating cycle, © transition
with multiple peaks, ¢ liquid crystal to isotropic liquid transition (heating ramp), ¢ isotropic liquid

to liquid crystal transition (cooling ramp).

In the case of [Ci2:0E)ImMe]pTsO and [Cis:0E@)ImMe]pTsO, pre-melting and post-melting
peaks of smaller enthalpy are also visible upon heating. The small pre-melting peak can be ascribed
to a change of conformation of Cx, within the crystal lattice during heating.** As for the post-
melting peak, it is attributed to a transition from a liquid crystal (LC) to an isotropic liquid, also

referred to as the clearing point. This was confirmed by polarized optical microscopy (POM)
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imaging, as well as small angle X-ray scattering (SAXS) measurements (see discussion hereafter).
The reverse transition, i.e., from the isotropic liquid to the LC, is also visible upon cooling. The
temperature and the enthalpy of these transitions — 7iz¢n and AHwcn for the heating ramp and
Twoe and AHo)e for the cooling ramp — are also reported in Table 1. Clearly, Twon ~ Tiec)e and
AHwon ~ AH o) for the whole series. Unless otherwise specified, the rest of the discussion will

be focused on the LC to isotropic liquid transition, i.e., Tzon and AHc)» which will be noted Tzc

and AHc.
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Figure 2: Schematic phase diagram for [CroE@ImMe]pTsO IL(C)s showing the melting
temperature, 7» (half-filled circle), and clearing temperature, 7ic (half-filled diamond), as

measured on the heating cycle of the corresponding DSC thermograms.

The clearing temperature, 7zc, shows a larger dependence on the alkyl chain length than the

melting point. For instance, 7.c varies from 78 °C for [Ci2:0E2)ImMe]pTsO to 173 °C for
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[Cis:.0E@)ImMe]pTsO, while Ty varies from 70 °C to 81 °C for the same compounds. This is well
illustrated by plotting a basic phase diagram representing the variations of 7,» and T.c as a function
of x (Figure 2). One can note the expansion of the temperature range of the LC mesophase, AT_,;,
= Trc — Tw (Eq. 1), from AT.,;, = 8 °C for [Ci2z0EQImMe]pTsO to AT.,;, = 92 °C
[Ci18:0E2)ImMe]pTsO. This is mostly due to the increase of van der Waals interactions, as observed
for classical [CxyImMe]X ILs.?!2* The whole series of [CxyE2)ImMe]X IL(C)s were analyzed by
DSC (see Table 1 and Figures S48 to S61). It is noteworthy that all the salts are low melting point
crystals, with 7, < 100 °C. In that sense, they are consistent with the common definition of ionic
liquids, i.e., molten salts with melting point lower than 100 °C. Some of these IL(C)s exhibit
convoluted thermograms with both regular crystallization upon cooling, and cold crystallization
upon heating.

When considering the influence of the number of unsaturation into the lipidic tail (the y
parameter), a significant decrease of the transition temperatures is observed for
[Cis:1E)ImMe]pTsO (Tm = 33 °C; Trc = 148 °C), as compared to [Cis:0E)ImMe]pTsO (Tm = 81
°C; Trc = 173 °C). Data related to [Cis:1E2)ImMe]pTsO were added in the phase diagram of
[CxoEImMe]pTsO (Figure 2) to better illustrate the effect of the unsaturation. Both the melting
and the clearing transitions are substantially impacted with a stronger effect on the melting
temperature, AT» =48 °C, as compared to the clearing temperature, A7.c =25 °C. The introduction
of a cis double bond results in a “kinked ” tail structure, reducing the molecular packing efficiency
both in the solid and the LC phases. Interestingly, the melting temperature of the resulting
[Cis:1E)ImMe]pTsO (Tm = 33 °C) is very close to room temperature. Incorporation of an
unsaturation into the alkyl chain of common non-mesomorphic [Cx:ylmMe]X ILs was first reported

by Davis et al. as a strategy to obtain room temperature lipidic ILs.** Our results demonstrate that
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this strategy is also relevant for the modulation of the clearing temperature of lipidic ILCs. More
interestingly, the unsaturated ILC, [Cis:1E2)ImMe]pTsO, exhibits a wider mesophase, AT._,; =
115 °C, than its fully saturated counterparts, [Cis.0E2)ImMe]pTsO, AT._,;, =92 °C.

With the result obtained for [Ci1:0E(2ImMe]X and [Cii:1E2)ImMe]X, it is possible to evaluate
the influence of the unsaturation located at the end of the lipidic tail. Thus, the 7 value decreases
from 84 °C for [Cii:0E)ImMe]l to 45 °C for [CinEoImMe]l (AT» = 39 °C). Furthermore,
[Ci1:1E2)ImMe]l exhibits an isotropic-to-LC transition upon cooling, for a temperature below its
melting point, Tic)c = 34 °C (Figure S56). The mesophase is not observed upon heating, i.e., direct
transition from crystal to isotropic liquid. This is characteristic of a metastable monotropic LC
phase.?> By opposition, all other ILCs investigated in this study are enantiotropic, i.e. they exhibit
thermodynamically stable LC phases, both upon heating and cooling. Considering the influence of
the terminal unsaturation on 7wxzce, a significant decrease is observed, from 123 °C for
[Cir:0EImMe]l to 34 °C for [Cir:1E)ImMe]l (AT o = 89 °C). These results demonstrate that a
subtle change in the conformation of the lipidic tail dramatically impact the phase transition of our
bio-based ILCs.

Regarding the influence of the counter-anion, X, the melting temperature varies as follow:
[pTsO] ~ [I] > [BFa4]. This result is in line with the general rule stating that mismatching in ion
size, shape and symmetry results in lower melting points.®® For X = I and X = BF4, the melting
point increases with the length of the fatty tail for even values of x. The case of [Ci1:0E(2)ImMe]X,
where x = 11, reveals a pronounced odd-even effect. Indeed, for both X =1 and X = BF4, the
melting point of [Ci1:.0E2)ImMe]X is 20 °C higher than for [Ci2:0E2)ImMe]X. Regular n-alkanes
with an odd number of carbon atoms are known for their lower abilities to pack into ordered

periodic crystalline structures, and thus lower melting points, in comparison to n-alkanes with an
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even number of carbon atoms.% Herein, coupling the lipidic tail to the imidazolium core results in
the opposite trend, i.e. [Cx0E@2)ImMe]X ILs, where x is an odd number, exhibit higher packing

ability and higher melting points. A similar trend was reported for ester-free [CrolmMe]X ILs.??
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Figure 3: Temperature ranges for the crystal (red), liquid crystal (orange) and isotropic liquid
(blue) phases for [Ci2:0E2)ImMe]X where X = pTsO, I, and BF4. The melting, 7, and the clearing,
TLc, temperatures used in this diagram are obtained from the heating cycle of the corresponding

DSC thermograms.

It is worth noting that 7.c values vary in a different order than 7, values. For 7ic, the counter-
anion effect is as follow: [I] > [BF4] > [pTsO]. Figure 3 shows the temperature windows of the
different phases observed for [Ci2:0E(2)ImMe]X (X = I, BF4 and pTsO). The temperature span of
the mesophase, AT_,; (cf- Eq. 1), is the smallest for X = pTsO (AT._,;, = 8°C). For both X =1 and

X = BF4, larger mesophases are observed, with AT._,; ~ 40 °C. For a given cation, AT._,; is
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generally dependent on the ability of the anion to build an extended hydrogen bonding network
within the ionic sublayers.? In particular, it has been observed that halide anions (Cl- and Br-)
develop strong hydrogen bonding networks with the acidic hydrogen atom in C2-position of the
imidazolium ring. Halogen containing anions, such as BF4", can develop similar interactions, but
to a less extent, due to the lower charge density on each halide (i.e., F).% For these reasons, the
mesophase stability, AT._,;, decreases in the order [Cl] ~ [Br] > [BF4]. To our knowledge, there
are no data available for [Cx:olmMe]X ILCs where X = I. Due to the lower overall anion charge
density of I, AT_,; is expected to decrease, as compared to the chloride and bromide counterparts.
Hence, it is not surprising that [Ci20E2)ImMe]l and [Ci2:0E2)ImMe]BFs exhibit a similar
mesophase stability (AT, ~ 40 °C). In the case of [Ci2:0E)ImMe]pTsO, the very small
temperature window of the mesophase (AT._,; ~ 8 °C) is probably a consequence of the bulkiness
of the pTsO anion, combined with the poor ability of the sulfonate head-group to develop oriented
hydrogen bonds with the acidic proton of the imidazolium core.

In order to gain more insight into the role played by the ester linkage, the DSC data collected for
[CxyE0ImMe]X were compared with the background literature for [Cx.yImMe]X. In particular, the
thermal properties of [Cr.olmMe]BF4, for x varying from 1 to 18, were extensively studied by
Seddon et al.?? In the case of [C12:0E()ImMe]BF4 (T = 43 °C and Trc = 144 °C), both melting and
clearing points are in-between those reported for [Ci4:.0ImMe]BF4 (7 = 42 °C and Tr.c = 129 °C)
and [Cis:olmMe]BF4 (7' = 55 °C and Tr.c = 148 °C).

By taking a closer look, [Ci2:0E2)ImMe]BFs and [Ci4:.0lmMe]BF4, whose total number of CH2
units into the lipidic tail is identical, exhibit the same melting temperature. However, the clearing
point of [Ci2:0E()ImMe]BF4 is much closer to that of [Cis.ollmMe]BF4. Furthermore, the

mesophase of [Ci2:0E2)ImMe]|BF4, AT._,; ~101 °C, is broader than that of [Cis.0lmMe]|BF4, AT,
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~93 °C, and [Cia:0lmMe]BF4, AT._,; ~ 87 °C. These results strongly suggest that the ester moiety
of [CxyExImMe]X ILs is involved in the stabilization of the mesophase, very likely through the
polarizability of the m electrons of the carbonyl group. Tseng ef al. came to the same conclusion
for [CxyE()ImMe]X ILCs.>” The authors observed that [Cx,EHImMe]BFs exhibit wider
mesophase than their [CxyImMe]BF4 analogs. For [Ci2:0E()ImMe]BF4, they measured 77 = 52 °C
and Trc =164 °C, i.e. AT._,; ~ 112 °C. By comparison, Tn =43 °C and Trc = 144 °C, i.e. ATq_,
~101 °C, for [Ci2:0E(2)ImMe]BF4. Thus, it appears that decreasing the size of the spacer in-between

the imidazolium core and the ester moiety results in a slight increase of 7'» and AT¢_,; .

POM of [CxyE)ImMe] X IL(C)s

As indicated earlier, the thermotropic liquid crystalline properties of [CiyE)ImMe]X were
confirmed by using polarized optical microscopy (POM), equipped with a heating platform. By
slowly cooling the samples from the isotropic liquid (5 °C min'!), micrograph textures, suggesting
a layered smectic A (SmA) mesophase, appear for all the samples that exhibited a post-melting
peak of small enthalpy in their DSC thermogram. Figure 4a displays a typical micrograph obtained
for [Ci2:0E2)ImMe]pTsO at 75 °C (Tm = 70 °C, Trc = 78 °C from DSC measurements). In that
case, a fan-like texture with striking birefringence, characteristic of a SmA mesophase, is observed.
Figure 4b illustrates the micrograph for [Cis:0E2)ImMe]pTsO (Tm =81 °C, Trc= 173 °C) recorded
at T =100 °C. In that case, dichroism is no longer visible due to the homeotropic alignment of the
liquid crystal domain, i.e., the optical axis is oriented perpendicularly to the microscope slides.
When the film is deformed by shearing the slides, an oily-streak texture is observed (Figure 4b),

another distinctive signature of the SmA mesophase.
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T=100"°C

[C120E2mMe]pTsO * A ) | B [C15.0E o) mMe]oTsO
T, =70°C, T,c =78 °C Ak ; T, = 81°C, T o 1E2 °C

Figure 4: Optical microscopic texture of the mesophase (Smectic A) observed under crossed
polarizers at elevated temperature for (a) [Ci2:0E2)ImMe]pTsO, T = 75 °C (fan-like texture with

birefringence) and (b) [Cis:.0E2)ImMe]pTsO, T = 100 °C (oily streak texture).

Fan-like textures and/or oily-streak textures, characteristic of a SmA mesophase, were observed
for all the [CiyE(2ImMe]X salts showing a clearing transition on their DSC thermogram (see
corresponding POM micrographs in Figures S62 to S68). In the case of [Cis:0EzImMe]l and
[Cis:1E)ImMe]l (Figures S66 and S67), for which clearing transitions are not apparent in DSC,
presumably because they are beyond the maximum temperature of the heating cycle, the same oily
streak texture was observed by shearing the sample after heating above their melting point. This
is consistent with a mesomorphic behavior over the temperature range explored in this study.

Overall, these results suggest that [Cx:0E(2)ImMe]X exhibit SmA mesophase for x values as low
as x = 12 in the case of X = pTsO (no mesophase for x = 11), and x =11 in the case of X =1 and
BF4 (the cases x < 10 were not investigated). For [Cx.olmMe]BF4, Seddon ef al. observed a SmA

mesophase for x values as low as x = 12 (no mesophase for x < 11). Similarly, for
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[CxoE)ImMe]BF4, Tseng et al. reported a SmA mesophase for x values as low as x = 12 (the cases

x < 11 were not investigated).

SAXS of [CurvEImMe] X IL(C)s

SAXS data were collected for all the ILCs as a function of temperature, in complement to DSC
and POM analyses. The diffraction patterns obtained for [Cis.0E2)ImMe]pTsO (7w = 81 °C, Trc =
173 °C ) at (i) T = 30 °C (crystal), (i) T = 120 °C (mesophase) and (iii) T = 190 °C (isotropic
liquid) are displayed in Figure 5. The diffractogram obtained at T = 30 °C (crystal) shows a
principal scattering peak for ¢* = 0.19 A and higher order peaks, 2¢g*, 3¢* and 4¢*, that are
consistent with a lamellar ordering. The layer spacing in the crystalline phase, dc- = 35.4 A, is
calculated using the Bragg’s law, d = 2m/g* (Eq. 2). A large number of peaks, corresponding to
repeating distance within the layers (e.g., cation-cation, anion-anion), are found in the large-g
region. They are consistent with the high ordering of the crystalline phase.®” Upon heating up to T
=120 °C (mesophase), the principal scattering peak, ¢ *, and the higher order peaks, 2¢* and 3¢ *,
persist, meaning the lamellar ordering is maintained above the melting point (7 = 81 °C, from
DSC measurement). This correlates with the observation of the characteristic texture of a lamellar
SmA mesophase by POM. The calculation of the layer spacing in the mesophase gives dsm4 = 34.9
A (¢f. Eq. 2). Peaks in the large-g region are lost in this case, indicating a decrease in positional
ordering within the layer plane. Instead, a very broad single peak is observed, which is
characteristic of the fluid-like alkyl chain region.®® By further increasing the temperature to T =
190 °C (liquid), the principal scattering peak broadens and the higher order peaks disappear. The

resulting single broad reflection is characteristic of a disordered structure, thus confirming that the
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system behaves as an isotropic liquid beyond the clearing point, 7.c = 173 °C, as determined by

DSC.

3 [C,. E_ ImMelpTsO

18:0 (2)

T.=81°C, T,.=173°C

190 °C, isotropic liquid

120 °C, mesophase

Intensity (arb. units)

il 2q*
1 \J v . 4q" 30 °C, crystall

00 05 10 15 20
q (A7)

Figure 5: Small angle X-ray scattering patterns for [Cis:.0E@2)ImMelpTsO (Tn = 81°C, Trc =173

°C) in the crystal (30 °C), SmA (120°C) and isotropic (190°C) phases. The patterns were acquired

during a heating cycle. In the crystal phase and the mesophase the principal scattering peak (g*)

and the higher order reflection peaks (multiple of ¢*) are indicated by pointed down triangles.

Curves have been shifted vertically for clarity.

When comparing the d-spacing, dcr and dsma, to the fully extended length of the cation (L,
calculated by using Chem3D® software, see Figure S69), the following order is observed: L < dcr,
dsma < 2L. This suggests an arrangement into a bilayer structure, with partial interdigitation of the
alkyl chains, possibly with a tilt angle with respect to the layer normal, as schematically depicted

in Figure 6. The resulting bimolecular layering in the mesophase is often referred to as Smectic
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A2, SmA2.%7 A similar arrangement was reported for both [Cx.oImMe]X%” and [CroE(nImMe]X>’

ILCs in the crystal phase and the mesophase.

2 « Linear
ke e . .
Imidazolium »

yer

Double Bila

« Bent
Imidazolium »

Figure 6: Schematic representation of the bilayer arrangement with interdigitation of the alkyl

chains, in the crystalline phase and in the mesophase

In the crystal phase, a much less intense peak is observed in the small-g region (g = 1.67 A",

dc’=52.9 A), which does not fit the regular repeating unit of the lamellar structure. This particular

feature was also observed for conventional ester-free [Cx.o0ImMe]X ILs by Bradley et al.,*” and

was attributed to a different layer spacing, possibly a double bilayer, arising from differing

conformations of the imidazolium core in alternating layers. Indeed, as depicted in Figure 6, the
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imidazolium ring can exhibit a linear or a bent conformation, as compared to the alkyl tail. Both
conformations were reported to coexist in single crystals of [Cx.0lmMe]CL.%°

Surprisingly, for [Cis:.0E2)ImMe]pTsO, dcr ~ dsma, unlike conventional [Cx.olmMe]X (with X =
halide or BF4") for which the d-spacing usually increases from the crystal phase to the mesophase.
The SAXS diffractograms of [Ci2:0E2)ImMe]pTsO and [Cis:1E2)ImMe]pTsO, (Figures S70 and
S71) suggest the same bilayer arrangement both in the crystal phase and in the mesophase. The
values of dcr and dsma are reported in Table 2. As expected, the d-spacing decreases with x. It is
worth noting that the introduction of an unsaturation has very little impact on dsma.

The diffractograms of [Csx:yE2)ImMe]l were also collected (see Figures S72 to S75 and Table 2
for d-spacing values). For (x:y) = (12:0), (18:0) and (18:1), the same lower and upper bound, i.e.
L < dcy, dsma < 2L, are observed, suggesting a similar bilayer arrangement into the SmA?2
mesophase. However for (x:y) = (11:0), dcr < L and L < dsma < 2L, indicating some peculiarities
in the crystalline phase for this alkyl chain length, although the mesophase is similar to the other
ILCs of this study. This is further illustrated by the very large expansion of [Cii:0E2ImMe]l, dsma
- dcr =13 A, during the crystal-to-mesophase transition, as compared to dsma - dc- ~ 4 A for the
other [CiyE(ImMe]l ILCs. These results suggest that [Cii.0E@)ImMe]l adopts a bilayer
arrangement (SmA:>) in the crystalline phase, with a much higher molecular packing density than
the other ILs. This observation is in line with results obtained by DSC, where a pronounced odd-
even effect was evidenced for [Ci1:0E2ImMe]l. Indeed, [Ci1:0E2)ImMe]l is characterized by a
higher melting point than [Ci2:0E(2ImMe]l, most probably due to a higher packing ability in the
crystalline phase. This is further supported by single-crystal X-ray analysis presented hereafter.

Figures S76 and S77 represent the diffractograms obtained for [Cx.yE(2ImMe]BFs with (x:y) =

(12:0) and (11:0). The d-spacing values are reported in Table 2. Remarkably, [Ci1:0E2)ImMe]BF4
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exhibits the same peculiarities as [Ci1:0Eo)ImMel]l, i.e., dor < L and L < dsma < 2L, again supporting

the hypothesis that the Ci1:0 alkyl tail promotes a high molecular packing density.

Anion Crystal SmA2

X] : (x:y) Tm(°C) T (°C) L(A)a i _
der (A) Ter (°C) dsma (A)  Tsma(°C)

[pTsO] (12:0) 70 78 221 30.0 25 29.5 74
(18:0) 81 172 29.6 35.4 30 34.9 120
(18:1) 33 148 26.1 NAP NAP 35.7 40
m (11:0) 84 123 21.0 17.1 25 30.1 100
(12:0) 63 164 221 28.4 56 32.0 110
(18:0) 81 >200 29.6 36.1 75 38.7 120
(18:1) 29/34 >200 26.1 NAP NAD 37.8 100
[BF4] (11:0) 64 107 21.0 17.4 25 30.8 100
(12:0) 43 144 221 34.8 25 32.7 100

Table 2: Layer spacing of the ILCs determined by small angle X-ray scattering in the crystalline
phase, dcr, and in the SmA2 phase, dsna. The values are based on the position of the principal
scattering peak, ¢*, of the SAXS pattern acquired for the measuring temperatures 7c- and Tsma,
respectively. ? L is the fully extended length of the cation calculated by using Chem3D® software.
® For (x:y) = (18:1), the salts behaves as room temperature (RT) ILs (T very close to RT) and it

was not possible to study the crystalline phase by SAXS.

Single crystal X-ray analysis of [CxyE)ImMe]X IL(C)s

In order to fully elucidate the structure suggested by SAXS experiments, single crystal X-ray
analysis was conducted for ILCs providing crystals of sufficient quality. Well-formed single
crystals of [Cis:0E@ImMe]pTsO, [Cii:0EImMel]l, as well as [Ci1:0E(2ImMe|BFa, were grown

from cold methanol solutions. Details of the crystallographic data of these three compounds are
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given in Table S2. Attempts to crystallize the other salts, i.e. of lower melting point, were

unsuccessful.

Figure 7: Crystal structure of [Cis:0E(2)ImMe]pTsO at 25 °C. (a) unit cell along b axis, (b) unit cell
along ¢ axis, (c¢) overall bilayer structure showing the interdigitation and the tilted alkyl chains

along b axis.

The data obtained for [Cis:.0E2)ImMe]pTsO confirm that the crystal structure consists of sheets
of imidazolium rings and tosylate anions, separated by interdigitated alkyl chains. The unit cell is
represented in Figures 7a and 7b (along b and a axis, respectively), while Figure 7¢ depicts the
interdigitated pattern (along b axis). The layer distance is equal to 35.5 A (see Figure S78), in very
good accordance with the d-spacing measured by SAXS (dc-=35.4 A). Remarkably, the imidazole
rings are almost perpendicular to the layer plan. Indeed, the plan formed by the imidazolium ring

intersects the layer plan with an angle of about 87° (Figure S79). As suggested by SAXS, the alkyl
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chains are tilted as compared to the layer plan. They form an angle of about 39° with the normal
layer (see Figure S78). When considering the tosylate anion, the sulfonate head group is oriented
toward the imidazolium head group, while the aromatic ring points towards the interdigitated alkyl
chains. The very short distance between two consecutive bilayers makes it possible for the
sulfonate head group to develop O---H—C interactions, i.e., weak hydrogen bonds, with
neighboring imidazolium head groups located within the same bilayer, and in the in-front bilayer
(Figure S80). Similarly, the oxygen atoms of the sulfonate head group develop O---H—C
interactions with the hydrogens in alpha position of the carbonyl group of one neighboring cation
(see Figure S81). To our knowledge, this is the first time the crystal structure of a 1-long alkyl
chain-3-methylimidazolium salt featuring a tosylate counter-anion is reported. The orientation of
the imidazolium cation is very similar to that of other [Cis.o)lmMe]X ILs and ILCs. For instance,
hexafluorophophate?® and bis(fluorosulfonyl)imide’® salts of [Cis.0ImMe] exhibit a comparable

interdigitated structure with imidazole ring perpendicular to the layer plan.

Ty 1
S ol o2 bl ol

Figure 8: Crystal structure of [Ci1:.0E2)ImMe]l at 25 °C. (a) unit cell along b axis, (b) unit cell

along c axis, (c) overall bilayer structure showing the interdigitation and the tilted alkyl chains

along b axis.
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The crystal structure of [CiroE@ImMe]l is presented in Figure 8. Similarly to
[Ci18:0E2)ImMe]pTsO, it consists of sheets of imidazolium rings and iodide anions, separated by
interdigitated alkyl chains. However, the orientation of the cation is totally different. Indeed, the
imidazolium rings are parallel to the layer plan. They form a border between two consecutive
bilayers, suggesting that strong m-m interactions are developed between those layers. In this
configuration, the imidazolium rings occupy a minimal space along the normal layer. Furthermore,
the alkyl chain are tilted with an angle of about 52° (Figure S82), as compared to the normal layer,
against 37° for the alkyl chains of [Cis:.0E(2)ImMe]pTsO.

These features result in a strong minimization of the layer distance, dc-= 17.2 A (see Figure S82),
which is in very good accordance with the estimation of dc- by SAXS measurement (dcr = 17.1
A). It is also worth noting that the oxygen atom of the carbonyl group is arranged nearly in the
plan of the imidazolium ring. In this configuration, the carbonyl group can develop O---H—C
interactions with neighboring imidazolium head groups located within the same bilayer, and in the
in-front bilayer (see Figure S83). It is thus actively contributing to the stabilization of the whole
crystalline structure. The iodide anion is located within the bilayer, 1 A below the plan formed by
the imidazolium ring and in the center of the triangle formed by the imidazolium rings of three
cations. It develops weak interactions with one hydrogen per surrounding cation (see Figure S84).
Interestingly, Tseng et al. reported that [Cie:0E(1)ImMe]Br exhibits a crystal structure with the same
parallel arrangement of the imidazolium rings in the layer plan.>” In that case, however, the oxygen
atom of the carbonyl group points towards the inner part of the bilayer and does not contribute to

the stabilization of the ionic layer.

The crystal structure of [Ci1:0E(2)ImMe]BF4 (Figures S85 and S86) is very similar to that of

[C11:0E2ImMe]l, with a layer distance of 17.0 A (again in good agreement with the result obtained
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by SAXS, dcr=17.4 A), and interdigitated alkyl chains forming an angle of 53° with the normal
layer.

Although these data do not permit to draw unequivocal conclusion regarding which parameters
(e.g., x and X) is responsible for the parallel or orthogonal orientation of the imidazolium head
groups relatively to the layer plan, they demonstrate that this new family of IL(C)s exhibits original
molecular ordering. They could be useful in applications including anisotropic conductive
materials or molecular templating. The most original feature is the contribution of the carbonyl
group of the ester moiety to the stabilization of the ionic layer, through the development of specific

interactions in the plan formed by imidazolium head groups.

Conclusions

A library of 1-alkyl-3-methylimidazolium-type IL(C)s was designed, following a strategy based
on three (for X = I or pTsO") or four (for X = BF4") consecutive reaction steps starting from
biosourced fatty alcohols. The synthesis involves the Michael addition of imidazole onto the
acrylic-functionalized fatty alcohols, followed by the quaternization of the imidazole ring using
different alkylating agents. This strategy introduces an ester moiety within the N-alkyl substituent,
and possibly a C=C double bond when unsaturated fatty alcohols are employed.

The thermal and structural properties of these ILs were thoroughly investigated by NMR, DSC,
TGA, POM and SAXS. Their higher susceptibility to thermal degradation, as compared to ester-
free 1-alkyl-3-methylimidazolium ILs, was evidenced by TGA analysis, and attributed to the
presence of the cleavable ester function. A higher sensitivity to biodegradation is anticipated on

the basis of previous results reported for other ester-containing 1-alkyl-3-methylimidazolium ILs.
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Most of these newly synthesized ILs also exhibit liquid crystalline properties, as established by
DSC, POM, single crystal X-Ray and SAXS analyses. The temperature window of their
mesophase was found to dramatically depend on the size of the alkyl substituent, the anion and on
the degree of unsaturation. Characterization by POM and SAXS revealed that these ILCs self-
organize into a smectic A ordering, which is characterized by a bilayer arrangement with partial
interdigitation of the alkyl chains and a tilt angle with respect to the normal layer. Analysis of the
crystal structure gave further insight, showing that self-assembled structures involve sheets of
imidazolium rings and anions, separated by interdigitated alkyl chains. Interestingly, the
orientation of the imidazolium head group can be either parallel or orthogonal to the layer plan,
depending both on the size of the alkyl chain and the nature of the anion. Moreover, the ester
moiety plays a key role in the crystal structure by developing O---H—C interactions both within
bilayers and in-between neighboring bilayers.

By combining the use of bio-sourced precursors (fatty alcohols) with nearly quantitative
synthetic steps (Michael addition), this work provides an efficient synthesis of new ILs and ILCs
with easily tunable properties and a reduced environmental impact. The ester moiety and the
potential unsaturation provide a versatile means to manipulate the thermal and structural properties
of these IL(C)s. The latter could be used to program their degradation after disposal (cleavage of
the ester bond) or for further valorization after synthesis (post-functionalization and/or
polymerization using an unsaturated polymerizable moiety, for instance). The multistep synthesis
of these new ester-containing IL(C)s still suffers from the use of toxic solvents (e.g., chloroform)
and reagents (e.g., acryloyl chloride, methyl iodide). In this regard, we are currently investigating
a new synthetic pathway providing analogous structures (i.e., [CxyE(2ImMe]X) in one-step with

halogen-free reagents and solvents.
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1. Materials

Oleyl alcohol (>98%, NuCheck Prep Inc.) was used as received. 1-Undecenol, 1-Undecanol, methyl acrylate,
lauryl acrylate, stearyl acrylate, acryloyl chloride, methyl-para-toluene sulfonate, methyl iodide, AgBF,
were supplied by Aldrich and used as received. Methanol used for anion metathesis was dried over sodium
methoxide and freshly distilled prior to use. Acetonitrile was dried over activated molecular sieves and
freshly distilled prior to use. Dichloromethane was dried with Glass Contour solvent purification system.

2. Methods

Nuclear Magnetic Resonance

NMR spectra of all compounds were recorded in the indicated deuterated solvent at 298 K on a Bruker
Advance | NMR spectrometer (400 MHz for *H NMR, 100 MHz for 3C NMR). Chemical shifts are reported
in parts per million (ppm) on the & scale relative to Me,Si (6 = 0 ppm for *H NMR), CDCls (& = 77.2 ppm for
13C NMR) as internal references.

High Resolution Mass Spectrometry

High-resolution Mass spectra were performed by the CESAMO (Bordeaux, France) on a Qexactive mass
spectrometer (Thermo Scientific). The instrument is equipped with an ESI source and spectra were
recorded in both the negative and the positive ion mode. The spray voltage was maintained at 3200 V and
capillary temperature set at 320°C. Samples were introduced by injection through a 20 uL sample loop
into a 300 uL min flow of methanol from the LC pump.

Thermogravimetric analysis

TGA were performed using a TA instruments Q50 under nitrogen or air atmosphere, from room
temperature to 700 °C at 10 °C min! with typical sample size of 10-15 mg in Pt pans. The weight loss was
recorded as a function of temperature.

Differential scanning calorimetry

DSC thermograms were performed on a DSC Q100 apparatus from TA instruments using standard
aluminum T-zero pans with hermetic lids containing 5 to 10 mg of the sample. Scans were conducted under
an inert atmosphere (N2). For each sample, two cycles from -120 to 200 °C at 10 °C min! were performed,
and the transition temperatures were calculated from the cooling run for the isotropic liquid to liquid
crystal transition and the crystallization, and from the second heating run for the melting and the liquid
crystal to isotropic liquid transition.
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Polarized optical microscopy

POM was carried out using a Zeiss AX10 Lab.A1 microscope under cross-polarized light. The samples were
sandwiched in-between a microscope slide and a cover glass. The pictures were recorded using a Zeiss
Axiocam 105 color camera. The temperature was varied using a Mettler Toledo FP82HT Hot stage
controlled with a Mettler Toledo FP90 Central processor.

Small Angle X-Ray Scattering

SAXS experiments were performed at the Centre de Recherche Paul Pascal (CRPP) at Université de
Bordeaux using a high-resolution X-ray spectrometer Xeuss 2.0 from Xenoxs operating with radiation
wavelength of A = 1.54 A. 2D scattering patterns were collected by using a PILATUS 300 K Dectris detector
with a sample-to-detector distance of 1631 mm. The beam center position and the angular range were
calibrated by using a silver behenate standard sample. The SAXS patterns were radially averaged around
the direct beam position by using the Xenocs XSACT software. Samples were heated using a Peltier device
with a heating rate of 10 °C min™.

Single crystal X-ray analysis

The data for the crystal structure were collected on a Bruker microstar X8 PROTEUM with a classical kappa
geometry and Platinum135 CCD camera. The structures were solved by the AB-initio method implemented
in SHELXD and refined with SHELXL.? Full-matrix least-squares refinement was performed on F2 for all
unique reflections, minimizing w(Fo2-Fc2)2, with anisotropic displacement parameters for non-hydrogen
atoms. The positions of the H atoms were deduced from coordinates of the non-H atoms. The non-H atoms
were refined with anisotropic temperature parameters.

3. General synthetic procedures and NMR data

3.1. General procedure for the synthesis of alkyl acrylate

Acryloyl
chloride o)
OH
“; - TS
EtsN
i DCM 2
C., OH Cyyacrylate ~ X=n+1=11,18

y=0or1

Scheme S1: Acrylation of the fatty alcohols

All acrylates were synthesized following a reported procedure.? Alcohol (26.4 mmol), 20 mL of dry
dichloromethane and 1.5 equivalents of dry triethylamine (39.6 mmol) are introduced in a flame-dried
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flask equipped with a magnetic stirring bar. The reaction mixture is then cooled to 0 °C after which 1.3
equivalents of acryloyl chloride (34.3 mmol) are added dropwise. The cold bath is then removed, and the
reaction mixture is stirred at room temperature for two hours. Once the reaction is finished, the
dichloromethane is evaporated and replaced by petroleum ether. The resulting precipitate is filtrated off
over celite. The organic phase obtained is washed with 10 % HCI (2 x 20 mL), saturated solution of sodium
bicarbonate (2 x 20 mL) and brine. Finally, the obtained solution is dried over magnesium sulfate and the
solvent is evaporated under reduced pressure to obtain a crude material that is used in the next step
without further purification.

3.2. General procedure for the Michael addition of imidazole to the acrylates,
synthesis of 1-alkylpropionate-imidazole C,.,EIm

HN_ N =\
o) N7
S MO\H/\/N\?N
20 CHCl,, 70 °C o 3
C,.,acrylate C,.,EzIm X=n+1=1,11,12,18
y=0or1

Scheme S2: Aza-Michael addition of imidazole onto the fatty acrylates

Acrylate (12.4 mmol), 10 mL of chloroform and 1.5 equivalents of imidazole (18.6 mmol) are introduced
in a 50 mL round button flask equipped with a magnetic stirring bar. The reaction is heated under reflux
for one day and monitored by *H NMR. Upon reaction completion, the chloroform is evaporated under
reduced pressure and the resulting product is purified by flash chromatography using gradient mixture of
ethyl acetate and heptane.

In the case of methyl acrylate, the reaction is conducted in presence of excess of acrylate (1.5 equivalents).
After reaction completion, all solvent and excess of acrylate are evaporated under reduced pressure. The
resulting crude material is obtained in satisfying purity and is used without further purification in the next
step.

Ci.0Erzlm 1-methylpropionate-imidazole. *H-NMR (CDCls, 400 MHz) &6 (ppm): 7.35 (s, N-
CH-N, 1 H), 6.86 (s, N-CH-CH-N, 1 H), 6.79 (s, N-CH-CH-N, 1 H), 4.11 (t, CH>-CH>-N, 2 H, J= 6.4 Hz), 3.52 (s,
CHs-0, 3 H), 2.63 (t, CO-CH>-CH,, 2 H, J = 6.8 Hz). 3C-NMR (CDCls, 100 MHz) 6 (ppm): 170.9 (C=0), 137.1
(N-CH-N), 129.4 (N-CH-CH-N), 118.8 (N-CH-CH-N), 51.9 (CH3-0), 42.1 (CH2-CH,-N), 35.6 (CO-CH,-CH5).
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Ci1.0E;zlm 1-undecanylpropionate-Imidazole. 82% yield. *H-NMR
(CDCls, 400 MHz) & (ppm): 7.42 (s, N-CH-N, 1 H), 6.94 (s, N-CH-CH-N, 1 H), 6.85 (s, N-CH-CH-N, 1 H), 4.18
(t, CH,-CH>-N, 2 H, J = 6.4 Hz), 3.99 (t, CH,-CH,-0O, 2 H, J = 6.8 Hz), 2.69 (t, CO-CH,-CH;, 2 H, J = 6.8 Hz), 1.51
(m, CH,-CH»-0, 2 H), 1.25-1.10 (m, CH3-(CH>)s, 16 H), 0.80 (t, CH3-CH>, 3 H, J = 6.8 Hz). 3C-NMR (CDCls, 100
MHz) & (ppm): 170.7 (C=0), 137.2 (N-CH-N), 129.5 (N-CH-CH-N), 118.8 (N-CH-CH-N), 65.2 (CH»-CH;-0),
42.2 (CH»-CH>-N), 36.0 (CO-CH,-CH3y), 31.9 (CH»-CH-0), 30 — 22 (CHs-(CH>)s), 14.1 (CH3-CH>).

FN
= OY\/N\/)

o

Ci1.1Ezlm 1-undecenylpropionate-imidazole. 84% vyield. *H-NMR
(CDCls, 400 MHz) & (ppm): 7.42 (s, N-CH-N, 1 H), 6.94 (s, N-CH-CH-N, 1 H), 6.85 (s, N-CH-CH-N, 1 H), 5.72
(m, CH2=CH, 1 H), 4.88 (d, CH,=CH, 1 H, J = 17.2 Hz), 4.83 (d, CH.=CH, 1 H, J =10.0 Hz), 4.17 (t, CH,-CH--
N,2H,J=6.4Hz),3.99 (t, CH,-CH»-0, 2 H, /= 6.8 Hz), 2.68 (t, CO-CH>-CH5, 2 H, /= 6.8 Hz), 1.95 (m, CH,=CH-
CH,, 2 H), 1.51 (m, CH,-CH»-0, 2 H), 1.3-1.1 (m, (CH,)s, 12 H). 3C-NMR (CDCls, 100 MHz) & (ppm): 170.5
(C=0), 139.0 (CH,=CH), 137.2 (N-CH-N), 129.5 (N-CH-CH-N), 118.7 (N-CH-CH-N), 114.1 (CH,=CH) 65.2 (CH>-
CH,-0), 42.2 (CH,-CH>-N), 35.8 (CO-CH,-CH,), 33.6 (CH»-CH>-0), 30 — 25 ((CH.)7).

OW N//:>

[0}

Ci2:0Ezlm 1-dodecanylpropionate-imidazole. 87% vyield. *H-NMR
(CDCls, 400 MHz) & (ppm): 7.52 (s, N-CH-N, 1 H), 7.03 (s, N-CH-CH-N, 1 H), 6.92 (s, N-CH-CH-N, 1 H), 4.24
(t, CH2-CH»-N, 2 H, J = 6.8 Hz), 4.06 (t, CH,-CH,-0, 2 H, J = 6.8 Hz), 2.75 (t, CO-CH,-CH,, 2 H, J = 6.8 Hz), 1.58
(m, CH,-CH>-0, 2 H), 1.3-1.1 (m, CH3-(CH,)s, 18 H), 0.86 (t, CH3-CH,, 3 H, J = 6.8 Hz) . 3C-NMR (CDCls, 100
MHz) & (ppm): 170.6 (C=0), 137.3 (N-CH-N), 129.5 (N-CH-CH-N), 118.8 (N-CH-CH-N), 65.3 (CH,-CH,-0),
42.3 (CH»-CH>-N), 36.1 (CO-CH,-CHy), 32.0 (CH»-CH-0), 30 — 22 (CHs-(CH>)), 14.2 (CH3-CH>).

OY\/N//:>

(e}

Cis:0Ezlm  1l-octadecanylpropionate-imidazole. 90%
yield. *H-NMR (CDCls, 400 MHz) & (ppm): 7.59 (s, N-CH-N, 1 H), 7.10 (s, N-CH-CH-N, 1 H), 6.94 (s, N-CH-CH-
N, 1 H), 4.27 (t, CH,-CH,-N, 2 H, J = 6.4 Hz), 4.08 (t, CH,-CH»-0O, 2 H, J = 6.8 Hz), 2.77 (t, CO-CH,-CH,, 2 H, J
= 6.8 Hz), 1.58 (m, CH,-CH,-0, 2 H), 1.3-1.1 (m, CHs-(CH.)1s, 30 H), 0.88 (t, CH3-CH,, 3 H, J = 6.8 Hz). 13C-
NMR (CDCls, 100 MHz) 6 (ppm): 170.6 (C=0), 137.2 (N-CH-N), 129.4 (N-CH-CH-N), 118.9 (N-CH-CH-N), 65.4
(CH2-CH,-0), 42.4 (CH,-CH>-N), 36.1 (CO-CH;-CH3), 32.0 (CH2-CH»-0), 30 — 22 (CHs-(CH3)1s), 14.2 (CH3-CHy).

CigiEglm  1-octadecenylpropionate-imidazole. 87%
yield.*H-NMR (CDCls, 400 MHz) 6 (ppm): 7.42 (s, N-CH-N, 1 H), 6.95 (s, N-CH-CH-N, 1 H), 6.85 (s, N-CH-CH-
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N, 1 H), 5.26 (m, CH=CH, 2 H), 4.18 (t, CH,-CH2>-N, 2 H, J = 6.4 Hz), 3.99 (t, CH,-CH,-O, 2 H, J = 6.8 Hz), 2.68
(t, CO-CH,-CH,, 2 H, J = 6.8 Hz), 1.93 (m, CH,-CH=CH, 4 H), 1.51 (m, CH-CH,-0, 2 H), 1.3-1.1 (m, CH3-(CH:)11,
22 H), 0.80 (t, CH3-CHa, 3 H, J = 6.8 Hz). 13C-NMR (CDCls, 100 MHz) & (ppm): 170.5 (C=0), 137.2 (N-CH-N),
129.9 (CH=CH), 129.6 (CH=CH), 129.5 (N-CH-CH-N), 118.7 (N-CH-CH-N), 65.2 (CH,-CH,-0), 42.2 (CH,-CH,-
N), 35.9 (CO-CH,-CH,), 31.8 (CH2-CH,-0), 30 — 22 (CH3-(CH,)13), 14.0 (CH3-CH,).

3.3. General procedure for the quaternization of C,.,E)Im with pTsOMe, synthesis of
l-alkylpropionate-3-methylimidazolium p-toluenesulfonate, [C..,E2) ImMe]pTsO

= pTsOMe __
MeCN @® N—
\Hno\l'(\/ N X N \Hno\ﬂ/\/ N \é//
O 3 O 4 pTsO
CyyEqzlm [C,,Ez)mMe]pTsO X =n+1=1,11,12,18

y=0or1

Scheme S3: Quaternization with methyl tosylate

1-alkylpropionate-imidazole (2.91 mmol), 3.5 mL of anhydrous acetonitrile and 1 equivalent of pTsOMe
(2.91 mmol) were introduced in a Schlenk flask equipped with a magnetic bar and under nitrogen
atmosphere. The reaction was heated at 70 °C for 24 hours. Once the reaction was completed, the solvent
was evaporated under reduce pressure and the product was washed with diethylether (3 x 10 mL).

[C1.0E2lmMe]pTsO [1-methylpropionate-3-methylimidazolium] p-toluenesulfonate.
97% yield. *H-NMR (CDCls, 400 MHz) & (ppm): 9.56 (s, N-CH-N, 1 H), 7.68 (d, CH-Ar, 2 H, J = 8 Hz) 7.49 (s,
N-CH-CH-N, 1 H), 7.39 (s, N-CH-CH-N, 1 H), 7.09 (d, CH-Ar, 2 H, J = 8 Hz), 4.42 (t, CH-CH>-N, 2 H, J = 6.4
Hz), 3.83 (s, CHs-N, 3 H), 3.58 (s, CHs-O, 3 H), 2.86 (t, CO-CH>-CH>, J = 6.4 Hz) 2.28 (s, CH3-CAr, 3 H). 3C-
NMR (CDCls, 100 MHz) & (ppm): 170.9 (C=0), 143.9 (CAr), 139.4 (CAr), 137.9 (N-CH-N), 128.7 (CHAr x 2),
125.8 (CHAr x 2), 123.5 (N-CH-CH-N), 123.0 (N-CH-CH-N), 52.2 (CH3-0), 45.1 (CH>-CH,-N), 36.3 (CHs-N),
34.3 (CO-CH;-CH,), 21.3 (CH3-CAr).

/

N
o N@/
T(\/ est o

(o)

[Ci1:0E(2)lmMe]pTsO 1-undecanylpropionate-3-
methylimidazolium p-toluenesulfonate. 96% yield. *H-NMR (CDCls, 400 MHz) & (ppm): 9.62 (s, N-CH-N, 1
H), 7.71 (d, CH-Ar, 2 H, J = 8.2 Hz), 7.46 (s, N-CH-CH-N, 1 H), 7.38 (s, N-CH-CH-N, 1 H), 7.10 (d, CH-Ar, 2 H,
J=8.2 Hz), 4.45 (t, CH,-CH,-N, 2 H, J = 6.0 Hz), 3.98 (t, CH,-CH»-0, 2 H, J = 6.8 Hz), 3.87 (s, CH3-N, 3 H), 2.86
(t, CO-CH»-CH3, 2 H, J = 6.4 Hz), 2.30 (s, CH3-CAr, 3 H), 1.53 (m, CH»-CH»-0, 2 H), 1.3-1.1 (m, CH3-(CH,)s, 16
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H), 0.84 (t, CHs-CHy, 3 H, J = 6.8 Hz). 3C-NMR (CDCls, 100 MHz) & (ppm): 170.7 (C=0), 143.8 (CAr), 139.4
(CAr), 138.1 (N-CH-N), 128.7 (CHAr x 2), 125.9 (CHAr x 2), 123.4 (N-CH-CH-N), 123.0 (N-CH-CH-N), 65.5
(CH-CH2-0), 45.2 (CH,-CH,-N), 36.4 (CH3-N), 34.6 (CO-CH,-CHs), 31.9 (CH,-CH2-0), 30 — 22 (CHs-(CHa)s),
21.3 (CHs-CAr), 14.1 (CH3-CH;). HRMS (ESI), m/z calculated for CigH33sN,0; [Ci1:0E;z)lmMe]*: 309.25365,
found 309.25294, m/z calculated for C7H;05S pTsO: 171.01214, found 171.01176.

N/
o
= OT(\/ N \/) estO

(o}

[C11:1E12)lmMe]pTsO 1-undecenylpropionate-3-
methylimidazolium p-toluenesulfonate. 94% yield.*"H-NMR (CDCls, 400 MHz) & (ppm): 9.62 (s, N-CH-N, 1
H), 7.72 (d, CH-Ar, 2 H, J = 8.2 Hz), 7.46 (s, N-CH-CH-N, 1 H), 7.40 (s, N-CH-CH-N, 1 H), 7.11 (d, CH-Ar, 2 H,
J=7.6Hz), 5.78 (m, CH2=CH, 1 H), 4.94 (d, CH,=CH, 1 H, J = 17.2 Hz), 4.88 (d, CH,=CH, 1 H, J = 10.0 Hz),
4.45 (t, CHy-CH2-N, 2 H, J = 6.0 Hz), 3.99 (t, CH,-CH,-0, 2 H, J = 6.8 Hz), 3.87 (s, CHs-N, 3 H), 2.86 (t, CO-CHa-
CH3, 2 H,J=6.4 Hz), 2.31 (s, CH3-CAr, 3 H), 2.00 (m, CH,=CH-CH>, 2 H) 1.53 (m, CH,-CH>-0, 2 H), 1.4-1.1 (m,
(CHa)s, 12 H). 3C-NMR (CDCls, 100 MHz) & (ppm): 170.7 (C=0), 143.8 (CAr), 139.3 (CAr), 139.1 (CH,=CH),
138.1 (N-CH-N), 128.7 (CHArx 2), 125.9 (CHAr x 2), 123.4 (N-CH-CH-N), 123.0 (N-CH-CH-N), 114.2 (CH,=CH)
65.5 (CH2-CH,-0), 45.1 (CH2-CH3-N), 36.4 (CHs-N), 34.5 (CO-CH,-CH3), 33.8 (CH,-CH2-0), 30 — 25 ((CH3)7),
21.3 (CH3-CAr). HRMS (ESI), m/z calculated for C1gH31N,0; [Ci1:1EzlmMe]*: 307.23800, found 307.23736,
m/z calculated for C;H;03S pTsO~: 171.01214, found 171.01176.

N/
07(\/ N@ S

pTsO
(0]

[C12:0E12)lmMe]pTsO 1-dodecanylpropionate-3-
methylimidazolium p-toluenesulfonate. 98% yield. *H-NMR (CDClz, 400 MHz) 6 (ppm): 9.70 (s, N-CH-N, 1
H), 7.75 (d, CH-Ar, 2 H, J = 8.0 Hz), 7.48 (s, N-CH-CH-N, 1 H), 7.34 (s, N-CH-CH-N, 1 H), 7.13 (d, CH-Ar, 2 H,
J=7.6Hz),4.52 (t, CH,-CH>-N, 2 H, J= 6.4 Hz), 4.02 (t, CH,-CH»-0, 2 H, J = 6.8 Hz), 3.93 (s, CHs-N, 3 H), 2.91
(t, CO-CH>-CH3, 2 H, /= 6.0 Hz), 2.34 (s, CH5-CAr, 3 H), 1.57 (m, CH»-CH>-0, 2 H), 1.3-1.1 (m, CH3-(CHa)s, 18
H), 0.88 (t, CH5-CH,, 3 H, J=7.2 Hz) . 3C-NMR (CDCls, 100 MHz) & (ppm): 170.9 (C=0), 143.6 (CAr), 139.6
(CAr), 138.3 (N-CH-N), 128.8 (CHAr x 2), 125.9 (CHAr x 2), 123.2 (N-CH-CH-N), 123.1 (N-CH-CH-N), 65.6
(CHy-CH,-0), 45.3 (CH2-CH3-N), 36.5 (CH3-N), 34.6 (CO-CH,-CH,), 32.0 (CH2-CH»-0), 30 — 22 (CHa-(CHa)s),
21.4 (CHs-CAr), 14.2 (CH3-CH;). HRMS (ESI), m/z calculated for CisH3sN,O; [Ci2:0E;z)lmMe]*: 323.26930,
found 323.26875, m/z calculated for C7H;05S pTsO: 171.01214, found 171.01171.
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[Cis:0E(2)lmMe]pTsO  1-octadecanylpropionate)-3-
methylimidazolium p-toluenesulfonate. 99% yield. *H-NMR (CDClz, 400 MHz) 6 (ppm): 9.66 (s, N-CH-N, 1
H), 7.73 (d, CH-Ar, 2 H, J = 8.4 Hz), 7.48 (s, N-CH-CH-N, 1 H), 7.39 (s, N-CH-CH-N, 1 H), 7.12 (d, CH-Ar, 2 H,
J=8.0Hz), 4.48 (t, CH,-CH,-N, 2 H, J= 6.0 Hz), 4.00 (t, CH,-CH»-0O, 2 H, J = 6.8 Hz), 3.90 (s, CHs-N, 3 H), 2.88
(t, CO-CH»-CHa, 2 H, J = 6.4 Hz), 2.32 (s, CHs-CAr, 3 H), 1.53 (m, CH2-CH,-0, 2 H), 1.3-1.1 (m, CH3-(CH,)1s, 30
H), 0.86 (t, CH3-CHy, 3 H, J = 6.8 Hz). 3C-NMR (CDCls, 100 MHz) & (ppm): 170.8 (C=0), 143.8 (CAr), 139.4
(CAr), 138.2 (N-CH-N), 128.7 (CHAr x 2), 125.9 (CHAr x 2), 123.3 (N-CH-CH-N), 123.0 (N-CH-CH-N), 65.5
(CH2-CH,-0), 45.2 (CH2-CH2-N), 36.4 (CH3-N), 34.6 (CO-CH,-CH,), 32.0 (CH,-CH,-0), 30 — 22 (CHs-(CHa)1s),
21.3 (CH3-CAr), 14.2 (CHs-CHy). HRMS (ESI), m/z calculated for CasHa7N20> [Cis:oEz)imMe]*: 407.36430,
found 407.36255, m/z calculated for C;H;05S pTsO: 171.01214, found 171.01168.

(0] stOe

/\/\/\f\/\/\/\/\OJJ\/\ '\\IE\/N’
[Cis:1E12)lmMe]pTsO 1-octadec-9-enylpropionate)-

3-methylimidazolium p-toluenesulfonate. 97% yield. *H-NMR (CDCls, 400 MHz) & (ppm): 9.76 (s, N-CH-N,
1 H), 7.76 (d, CH-Ar, 2 H, J = 8.4 Hz), 7.48 (s, N-CH-CH-N, 1 H), 7.34 (s, N-CH-CH-N, 1 H), 7.14 (d, CH-Ar, 2
H, J=8.0 Hz), 5.34 (m, CH=CH, 2 H), 4.52 (t, CH>-CH,-N, 2 H, J = 6.0 Hz), 4.03 (t, CH>-CH»-0, 2 H, J = 6.8 Hz),
3.94 (s, CHs-N, 3 H), 2.93 (t, CO-CH,-CH,, 2 H, J = 6.4 Hz), 2.33 (s, CH3-CAr, 3 H), 2.00 (m, CH,-CH=CH, 4 H),
1.57 (m, CH»-CH,-0, 2 H), 1.4-1.1 (m, CH3-(CH3)11, 22 H), 0.88 (t, CH3-CH,, 3 H, J = 6.8 Hz). 3C-NMR (CDCls,
100 MHz) 6 (ppm): 170.9 (C=0), 143.7 (CAr), 139.4 (CAr), 138.5 (N-CH-N), 130.1 (CH=CH), 129.8 (CH=CH),
128.8 (CHAr x 2), 125.9 (CHAr x 2), 123.1 (N-CH-CH-N x 2), 65.6 (CH-CH»-0), 45.3 (CH»-CH,-N), 36.5 (CH3-
N), 34.7 (CO-CH,-CH), 31.98 (CH»-CH,-0), 30 — 22 (CH3-(CH2)13), 21.4 (CHs-CAr), 14.2 (CHs-CH,). HRMS (ESI),
m/z calculated for CasHasN20> [Cis1Ez)lmMe]*: 405.34756, found 405.34712, m/z calculated for C7H;03S
pTsO: 171.01214, found 171.01175.

3.4. General procedure for the quaternization of C,.,E ) Im with Mel, synthesis of 1-
alkylpropionate-3-methylimidazolium iodide, [C...EImMe]l

Mel
[ MeCN '@ |
o] N_.N 0 NN~
AD S LD G
o3 04 |
CyyE(zim [C.,EpimMe]l X =n+1=1,11,12,18

y=0or1

Scheme S4: Quaternization with methyl iodade
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1-alkylpropionate-imidazole (2.09 mmol), 2.5 mL of anhydrous acetonitrile and 1.25 equivalent of Mel
(2.5 mmol) were introduced in a Schlenk flask equipped with a magnetic bar under nitrogen atmosphere.
The reaction was heated at 40 °C for 15 hours. Once the reaction was completed, the solvent and excess
of Mel were evaporated under reduce pressure and the product was washed with diethylether (3 x 10
mL). Typical yield: quantitative, 100%

/
///N
PO ON
T

[Ci.0EzlmMe]l 1-methylpropionate-3-methylimidazolium iodide. 96% yield. *H-NMR
(CDCls, 400 MHz) & (ppm): 9.51 (s, N-CH-N, 1 H), 7.64 (s, N-CH-CH-N, 1 H), 7.53 (s, N-CH-CH-N, 1 H), 4.53
(t, CH2-CH,-N, 2 H, J = 6.4 Hz), 3.95 (s, CHs-N, 3 H), 3.54 (s, CH3-0, 3 H), 2.96 (t, CO-CH»-CH,, J = 6.4 Hz).
13C-NMR (CDCl3, 100 MHz) & (ppm): 170.7 (C=0), 136.9 (N-CH-N) 123.7 (N-CH-CH-N), 123.1 (N-CH-CH-N),
52.3 (CH3-0), 45.4 (CH,-CH,-N), 37.2 (CHs-N), 34.6 (CO-CH>-CH,).

/
N

r
07(\/ N/ °,

(0]

[Ci1:0E(zlmMe]l 1-undecanylpropionate-3-methylimidazolium
iodide. 95% yield. *H-NMR (CDCls, 400 MHz) 6 (ppm): 9.84 (s, N-CH-N, 1 H), 7.65 (s, N-CH-CH-N, 1 H), 7.51
(s, N-CH-CH-N, 1 H), 4.65 (t, CH2-CH»-N, 2 H, J = 6.0 Hz), 4.06 (s, CHs-N, 3 H), 4.02 (t, CH,-CH,-O, 2 H, J =
6.8 Hz), 3.04 (t, CO-CH,-CH,, 2 H, J = 6.0 Hz), 1.57 (m, CH,-CH,-0, 2 H), 1.25 (m, CHs-(CH,)s, 16 H), 0.85 (t,
CH3-CH, 3 H, J = 6.8 Hz). *C-NMR (CDCls, 100 MHz) 6 (ppm): 170.6 (C=0), 137.3 (N-CH-N), 123.4 (N-CH-
CH-N), 123.2 (N-CH-CH-N), 65.7 (CH-CH,-0), 45.6 (CH,-CH2-N), 37.3 (CHs-N), 34.8 (CO-CH,-CH,), 31.9 (CH,-
CH,-0), 30 — 22 (CHs3-(CH3)s), 14.1 (CHs-CH5). HRMS (ESI), m/z calculated for CigH3sN20; [Ci1:0E(zlmMe]*:
309.25365, found 309.25296, m/z calculated for I: 126.90502, found 126.90469.

/

l®
/
= OT(\/N ®|
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[Ci1:1EzlmMe]l 1-undec-10-enylpropionate-3-imidazolium iodide.
95% yield. *H-NMR (CDCls, 400 MHz) & (ppm): 9.88 (s, N-CH-N, 1 H), 7.64 (s, N-CH-CH-N, 1 H), 7.48 (s, N-
CH-CH-N, 1 H), 5.78 (m, CH2=CH, 1 H), 4.94 (d, CH,=CH, 1 H, J = 17.2 Hz), 4.89 (d, CH,=CH, 1 H, J = 10.0 Hz),
4.66 (t, CH>-CH>-N, 2 H, J= 6.0 Hz), 4.08 (s, CHs3-N, 3 H), 4.04 (t, CH,-CH,-0, 2 H, J = 6.8 Hz), 3.06 (t, CO-CH,-
CHy, 2 H, J = 6.4 Hz), 1.99 (m, CHy=CH-CH>, 2 H) 1.56 (m, CH,-CH»-O, 2 H), 1.3-1.1 (m, (CHa)s, 12 H). *3C-
NMR (CDCls, 100 MHz) & (ppm): 170.6 (C=0), 139.2 (CH,=CH), 137.4 (N-CH-N), 123.3 (N-CH-CH-N), 123.3
(N-CH-CH-N), 114.2 (CH,=CH), 65.8 (CH,-CH,-0), 45.6 (CH,-CH,-N), 37.3 (CHs-N), 34.8 (CO-CH,-CH,), 33.8
(CH2-CH>-0), 30— 25 ((CH3)7). HRMS (ESI), m/z calculated for C1gH31N20; [C11:1E12)lmMe]*: 307.23800, found
307.23728, m/z calculated for I": 126.90502, found 126.90473.
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[Ci2:0E(zlmMe]l  1-dodecanylpropionate-3-methylimidazolium
iodide.99% yield. *H-NMR (CDCls, 400 MHz) & (ppm): 9.93 (s, N-CH-N, 1 H), 7.63 (s, N-CH-CH-N, 1 H), 7.44
(s, N-CH-CH-N, 1 H), 4.67 (t, CH,-CH»>-N, 2 H, J = 6.0 Hz), 4.08 (s, CHs-N, 3 H), 4.05 (t, CH,-CH»-O, 2 H, J =
6.8 Hz), 3.07 (t, CO-CH.-CH;, 2 H, J = 6.0 Hz), 1.60 (m, CH,-CH,-0, 2 H), 1.3-1.1 (m, CH3-(CHz)s, 16 H), 0.87
(t, CH3-CH,, 3 H, J = 6.8 Hz). 3C-NMR (CDCls, 100 MHz) & (ppm): 170.7 (C=0), 137.5 (N-CH-N), 123.3 (N-
CH-CH-N), 123.2 (N-CH-CH-N), 65.8 (CH,-CH,-0), 45.7 (CH,-CH>-N), 37.3 (CH3-N), 34.9 (CO-CH,-CH,), 32.0
(CH,-CH,-0), 30 — 22 (CHs-(CH)e), 14.2 (CHs-CH,). HRMS (ESI), m/z calculated for CigH3sN,0,
[Ci2:0E;z7ilmMe]*: 323.26930, found 323.26876, m/z calculated for I": 126.90502, found 126.90469.

,rN/
OT(\/Ng/)el

o

[Cis:0EzlmMel]l 1-octadecanylpropionate-3-
methylimidazolium iodide.99% yield. *H-NMR (CDCls, 400 MHz) & (ppm): 9.76 (s, N-CH-N, 1 H), 7.65 (s, N-
CH-CH-N, 1 H), 7.53 (s, N-CH-CH-N, 1 H), 4.63 (t, CH,-CH>-N, 2 H, J = 6.0 Hz), 4.04 (s, CHs-N, 3 H), 4.00 (t,
CH,-CH,-0, 2 H, J = 6.8 Hz), 3.02 (t, CO-CH»>-CH,, 2 H, J = 6.0 Hz), 1.55 (m, CH2-CH»-0, 2 H), 1.3-1.1 (m, CHs-
(CH2)15, 30 H), 0.82 (t, CH5-CH,, 3 H, J = 6.8 Hz). 3C-NMR (CDCls, 100 MHz) 6 (ppm): 170.5 (C=0), 137.2 (N-
CH-N), 123.4 (N-CH-CH-N), 123.2 (N-CH-CH-N), 65.7 (CH,-CH,-0), 45.5 (CH,-CH»-N), 37.2 (CHs-N), 34.7 (CO-
CH,-CH3), 31.8 (CH,-CH»-0), 30 — 22 (CHs-(CH2)1s), 14.1 (CH3-CH,). HRMS (ESI), m/z calculated for
CasH47N205 [Cis0EzlmMe]*: 407.36321, found 407.36260, m/z calculated for I: 126.90502, found
126.90472.

= o) NN
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[Cis:1E12)lmMe]l 1-octadec-9-enylpropionate-3-
methylimidazolium iodide.97% yield. *H-NMR (CDCls, 400 MHz) 6 (ppm): 9.88 (s, N-CH-N, 1 H), 7.58 (s, N-
CH-CH-N, 1 H), 7.41 (s, N-CH-CH-N, 1 H), 5.27 (m, CH=CH, 2 H), 4.61 (t, CH»-CH»>-N, 2 H, J = 6.0 Hz), 4.01 (s,
CHs-N, 3 H), 3.99 (t, CH,-CH»-0O, 2 H, J = 6.8 Hz), 3.00 (t, CO-CH»-CH,, 2 H, J = 6.0 Hz), 1.94 (m, CH,-CH=CH,
4 H), 1.53 (m, CH>-CH,-0, 2 H), 1.3-1.1 (m, CH3-(CHa)11, 22 H), 0.81 (t, CH3-CH;, 3 H, J = 6.8 Hz). 3C-NMR
(CDCls, 100 MHz) & (ppm): 170.7 (C=0), 137.5 (N-CH-N), 130.0 (CH=CH), 129.7 (CH=CH), 123.3 (N-CH-CH-
N x 2), 65.8 (CH,-CH>-0), 45.6 (CH2-CH>-N), 37.2 (CHs-N), 34.8 (CO-CH,-CH,), 31.9 (CH,-CH,-0), 30 — 22 (CHs-
(CH2)13), 14.2 (CH3-CH;). HRMS (ESI), m/z calculated for CasHasN2O; [CisaEfzlmMel]*: 405.34756, found
405.34683, m/z calculated for I: 126.90502, found 126.90474.
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3.5. General procedure for the metathesis reaction between [C.. Ez)ImMe]l and
AgBFy4, synthesis of 1-alkylpropionate-3-methylimidazolium tetrafuoroborate,

[CryE)ImMe]|BF4
[\ AgBF4 /5\
o) NE N 5O NG N—
\Hﬂ g o MeOH, 80 °C f \g/\/BF@
O 4 | 5 4
[Cx\E(z)lmMe]l [C.,EzImMe]BF, X =n+1=1, 11

y=0

Scheme S5: Anion metathesis with silver tetrafluoroborate

A solution of AgBF, (1.5 mmol) in 2 mL of anhydrous MeOH was slowly added to a stirred solution of 1-
alkylpropionate-3-methylimidazolium iodide in 2 mL of anhydrous MeOH, under inert atmosphere (N,).
The reaction mixture was heated at 70 °C for 15 hours. Finally, the reaction was allowed to cold down to
room temperature and the Agl precipitated was filtered off over celite. The new ionic liquid was purified
by recrystallization in MeOH at 0 °C.

/
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[Ci1:0E12lmMe]BFs 1-undecanylpropionate-3-methylimidazolium
tetrafuoroborate. 89% yield. *H-NMR (CDCls, 400 MHz) 6 (ppm): 8.78 (s, N-CH-N, 1 H), 7.46 (s, N-CH-CH-
N, 1 H), 7.29 (s, N-CH-CH-N, 1 H), 4.49 (t, CH,-CHa>-N, 2 H, J = 6.0 Hz), 4.07 (t, CH,-CH>-O, 2 H, J = 6.8 Hz),
3.94 (s, CHs-N, 3 H), 2.95 (t, CO-CH»-CH,, 2 H, J = 6.0 Hz), 1.60 (m, CH.-CH,-0O, 2 H), 1.4-1.1 (m, CHs-(CH.)s,
16 H), 0.89 (t, CH3-CH,, 3 H, J = 6.8 Hz). 13C-NMR (CDCls, 100 MHz) & (ppm): 170.8 (C=0), 137.2 (N-CH-N),
123.3 (N-CH-CH-N), 123.0 (N-CH-CH-N), 65.6 (CH,-CH»-0), 45.4 (CH,-CH,-N), 36.5 (CHs-N), 34.4 (CO-CH,-
CHy), 32.0 (CH»-CH>-0), 30 — 22 (CHs-(CH,)s), 14.2 (CHs-CH3). HRMS (ESI), m/z calculated for CisH33N20;
[Ci1.0E(zilmMe]*: 309.25365, found 309.25294, m/z calculated for BF4: 87.00347, found 87.00289.

N/
OW N@ ®BF4

[©)

[C12:0E(2lmMe]BF,4 1-dodecanylpropionate)-3-
methylimidazolium tetrafuoroborate.91% yield. H-NMR (CDCls, 400 MHz) & (ppm): 8.67 (s, N-CH-N, 1 H),
7.38 (s, N-CH-CH-N, 1 H), 7.24 (s, N-CH-CH-N, 1 H), 4.41 (t, CH,-CH>-N, 2 H, J = 6.0 Hz), 3.99 (t, CH,-CH,-O,
2 H,J=6.8Hz), 3.85 (s, CHs-N, 3 H), 2.87 (t, CO-CH,-CH,, 2 H, J = 6.0 Hz), 1.53 (m, CH.-CH»-0, 2 H), 1.4-1.1
(m, CH3-(CH,)s, 16 H), 0.81 (t, CH3-CH>, 3 H, J = 6.8 Hz). '3C-NMR (CDCls, 100 MHz) 6 (ppm): 170.8 (C=0),
137.0 (N-CH-N), 123.3 (N-CH-CH-N), 122.9 (N-CH-CH-N), 65.6 (CH,-CH,-0), 45.2 (CH,-CH2-N), 36.4 (CHs-N),
34.3 (CO-CH,-CH3), 32.0 (CH,-CH2-0), 30 — 22 (CH3-(CH,)o), 14.2 (CHs-CH;). HRMS (ESI), m/z calculated for
Ci19H3sN205 [Ciz0EzlmMe]*: 323.26930, found 323.26869, m/z calculated for BF,: 87.00347, found
87.00286
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4. "H and C NMR spectra of synthetized products
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Figure S1: *H NMR spectrum (up) and 3C NMR spectrum (down) in CDCls of Cy.0E(zlm
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Figure S2: 'H NMR spectrum (up) and **C NMR spectrum (down) in CDCl; of Ci1.0E(2lm
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5. High Resolution Mass Spectra of IL(C)s
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Figure S21: High resolution mass spectrum of [Ci1.0E2lm]pTsO (positive ion mode)
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Figure S22: High resolution mass spectrum of [C11.1E.2lm]pTsO (positive ion mode)
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Figure S23: High resolution mass spectrum of [C12.0E2lm]pTsO (positive ion mode)
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Figure S24: High resolution mass spectrum of [Cigs.0E2lm]pTsO (positive ion mode)
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Figure S25: High resolution mass spectrum of [Cis.1E.2lm]pTsO (positive ion mode)
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Figure S26: High resolution mass spectrum of [Ci1.0E.2lm]l (positive ion mode)
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Figure S27: High resolution mass spectrum of [Ci1.1E.2lm]l (positive ion mode)
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Figure S28: High resolution mass spectrum of [Ci2.0Ezlm]l (positive ion mode)
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Figure S29: High resolution mass spectrum of [Cis.0E2lm]l (positive ion mode)
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Figure S30: High resolution mass spectrum of [Cis.1E2lm]l (positive ion mode)
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Figure S31: High resolution mass spectrum of [Ci1.0E(2lm]BF4 (positive ion mode)
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Figure S32: High resolution mass spectrum of [C12.0E(2lm]BF4 (positive ion mode)
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6. TGA thermograms of IL(C)s

. TGA, air TGA, N;
Anion, [X] (x:y)
Tonset, °C Totemax, °C Tonset, °C Totemax, °C
[pTsO] (1:0) 251 276/300 246 270/324
(11:0) 245 274/302 245 269/304
(11:1)2 242 280 247 267/321
(12:0) 242 274/303 243 277/308
(18:0) 245 268/302 245 268/308
(18:1)° 242 274 245 265/300
[ (1:0) 176 196 165 192/243
(11:0) 206 233/320 197 230
(11:1) 203 231 207 235/266
(12:0) 204 232/330 209 235/270
(18:0) 220 234/361 213 235/278
(18:1) 210 235 211 237/281
[BFa] (11:0) 258 299 267 293/308
(12:0) 245 286 262 304

Table S1: Thermal decomposition temperatures, Tonset, and temperature corresponding to the maxima of
the differential thermogravimetry (DTG, the first derivative of the mass loss), Toremax, Obtained from
thermogravimetric analysis (TGA) under Air and nitrogen (N) atmosphere (10 °C min, Pt pans) for all the
ILs synthesized in this study.

All the [CyyEzlmMe]X salts are stable under ambient conditions and may be handled under normal
laboratory conditions. Their stability as a function of temperature was investigated under both nitrogen
and air atmosphere by thermogravimetric analysis (TGA). Representative degradation profiles of the ILs
are depicted in Figure S21. The temperatures of the onset of the degradation, Tonset, are reported in Table
1 for all the lipidic ILs (all the degradation profiles are available below, Figure S22 to S35). Note that the
onset of the degradation is conventionally considered as the intersection of the baseline weight and the
tangent of the weight versus temperature curve as decomposition occurs. The temperature
corresponding to the maxima of the differential thermogravimetry (DTG, the first derivative of the mass
loss), Toremax, are also reported in Table S1. For the whole series, it is clear that Tonset as well as Toremax
obtained under air and N, atmospheres are very close to each other. The steadiness of the degradation
process under different gas atmospheres was already reported into the literature for classical 1-alkyl-3-
methylimidazolium, [CxyimMe]X, ILs.3 It suggests that the onset of the thermal degradation is not
mediated by oxidative process for both [C,ImMe]X and [C.,EzlmMe]X ILs. Thus, the ester moiety of
[CxyEinlmMe]X does not result into further susceptibility to thermal oxidation.

When compared to data reported by others for classical [Cy.,imMe]X ILs, the values of Tonset measured for
the [CxyE(zlmMe]X series are substantially smaller. For instance, Seddon et al. reported values of Tonset Of
about 300 °C for [Cx.olmMe]BF4. In comparison, we measured Tonset ~ 250 °C for [Ci2.0E(z)lmMe]BF4 and

545



[Ci1:0E(zlmMe]BF.4, suggesting that the introduction of the ester bond results in a decrease of the onset of
the decomposition temperature of the ILs of approximately 50 °C. This observation is consistent with
results published by Garcia et al. for [C,yE(5)lmMe]Cl. They reported that the temperature corresponding
to the onset of the decomposition were 50-70 °C smaller than those of the corresponding [Cx,ImMe]Cl
ILs.* The degradability of [Cy,E(nylmMe]X and [Cy,EzlmMe]X ILs is thus expected to be comparable,
suggesting that the position of the ester bonds within the lipidic chain (E;; or Ez)) has very little effect on
the stability of the corresponding ILs.
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10D xy—(2) - 11:05(2)
a b
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Figure S33: Ramped temperature TGA (N, atmosphere, 10 °C min, Pt pans) for (a) [Cx.0E(lmMe]pTsO
salts with x =1, 12 and 18, and for (b) [C11.0E(zlmMe]X salts with X = pTsO, | and BFa.

As for the evolution of the degradation profiles within the series of [Cy.,E(;)lmMe]X ILs as a function of x, y
and X, the expected tendencies are observed. First of all, Tonset is independent of x and y as suggested by
Figure S21a. The same behavior was reported by others for classical [Cy,ImMe]X ILs. When considering
the influence of the counter-anion, X, it appears that the thermal stability of [Cy.,EzlmMe]X ILs varies
according to the following order: [pTsO] ~ [BF4] > [I], with iodide ILs exhibiting Tonset approximately 40 °C
smaller than those of tosylate and tetrafluoroborate equivalents. Again, the same trend is reported in the
literature for classical [Cy,ImMe]X ILs. It is well known that halide anions (X = Cl, Br, |) significantly reduce
the thermal stability of ILs due to their relatively high nucleophilic and basic character.® In particular, it
was proposed that the degradation of halide imidazolium ILs proceeds via the dealkylation of the
imidazolium core according to a Sn2 mechanism, also known as the reverse Menshutkin reaction.
Moreover, due to the higher steric hindrance of the longer alkyl chain, Cy,, it was observed that the
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nucleophilic attack preferentially occurs on the methyl group, Me, providing the neutral Cy.,Im species as
the first degradation byproduct of the thermal decomposition of [C,,,/mMe]X ILs.®

In the case of [Cx,EzlmMe]X, the TGA results suggest a different scenario. First of all, the significant
decrease of Tonset for [CxyE(2lmMe]X as compared to [C,,,ImMe]X suggests that the decomposition process
of [Cx,yE(zlmMe]X occurs through a fundamentally different mechanism, noticeably through a reaction of
lower activation energy than the reverse Menshutkin reaction. Moreover, for most of the tested ILs, the
DTG profiles (first derivative) exhibit two maxima (see Table S1) suggesting that the degradation takes
place in two steps. By taking a closer look at the degradation profiles, the weight percentage left after the
first step suggests that the larger substituent of the imidazolium core, i.e. C,y, is involved in the early stage
of the thermal decomposition. This can be the indication of a dealkylation through an elimination instead
of a substitution.” In particular, it is highly suspected that the degradation process takes place via a retro-
Michael reaction as suggested in Scheme S6. Further investigations would be necessary to confirm this
hypothesis.

Overall, the TGA results demonstrate the higher susceptibility to thermal degradation for this new series
of [CxyE(zimMe]X ILs. If this feature is undesirable for high-temperature applications, it is however
advantageous when considering the disposal of the ILs at the end of their life cycle. Moreover, it has
already been proven that a higher susceptibility to thermal degradation coincides with a higher
biodegradability in the case of [Cx,E;lmMe]X.” A similar result is expected in the case of [Cx/E(;lmMe]X.
This will be the object of future investigations.

O\ﬂ/\ pTSOH

0]

Scheme S6: Proposed mechanism for the early stage of the thermal degradation of [Cy. E(zlmMe]X ILs via
a retro-Michael reaction. Representation for (x:y) = (18:1), X = pTsO.
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7. DSC thermograms of IL(C)s
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Figure $48: DSC thermogram of [C1.0E/z)lmMe]pTsO under N; (cycle 2: cool, cycle 3: heat)
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Figure S49: DSC thermogram of [Ci1.0E;2lmMe]pTsO under Nz (cycle 2: cool, cycle 3: heat)
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Figure S50: DSC thermogram of [C11.1E;2lmMe]pTsO under N (cycle 2: cool, cycle 3: heat)
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Figure S51: DSC thermogram of [Ci2.0E;zlmMe]pTsO under N (cycle 2: cool, cycle 3: heat)
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Figure S52: DSC thermogram of [Cig.0E;zlmMe]pTsO under N (cycle 2: cool, cycle 3: heat)
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Figure S53: DSC thermogram of [Cis.1E;2lmMe]pTsO under N (cycle 2: cool, cycle 3: heat)
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Figure S54: DSC thermogram of [C1.0E(zlmMe]l under N (cycle 2: cool, cycle 3: heat)
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Figure S55: DSC thermogram of [Ci1.0E;zilmMe]l under N; (cycle 2: cool, cycle 3: heat)
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Figure S56: DSC thermogram of [C11.1E;zilmMe]l under N; (cycle 2: cool, cycle 3: heat)
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Figure S57: DSC thermogram of [C12.0E;zilmMe]l under N; (cycle 2: cool, cycle 3: heat)
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Figure S59: DSC thermogram of [Cis.1E;zlmMe]l under N3 (cycle 2: cool, cycle 3: heat)
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Figure S61: DSC thermogram of [Ci2.0E;zlmMe]BF4 under N3 (cycle 2: cool, cycle 3: heat)
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8. Polarized optical microscopy (POM) of IL(C)s

Figure S62: Optical microscopic texture of the mesophase (Smectic A) observed under crossed polarizers
at elevated temperature for [Ci2:0E(2ImMe]pTsO (T, = 70 °C, Tic = 78 °C), T = 75 °C (fan-like texture with
birefringence).

Figure S63: Optical microscopic texture of the mesophase (Smectic A) observed under crossed polarizers
at elevated temperature for [Cis.0E(2lmMe]pTsO (T = 81 °C, Tic =172 °C), T = 100 °C (oily streak texture).
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Figure S64: Optical microscopic texture of the mesophase (Smectic A) observed under crossed polarizers
at elevated temperature for [Cis.1E(2lmMe]pTsO (T = 33 °C, Tic = 148 °C), T = 100 °C (oily streak texture).

Figure S65: Optical microscopic texture of the mesophase (Smectic A) observed under crossed polarizers
at elevated temperature for [Ci2.0E(2lmMe]l (T = 63 °C, Tic = 164 °C), T =110 °C.
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Figure S66: Optical microscopic texture of the mesophase (Smectic A) observed under crossed polarizers
at elevated temperature for [Cis.0E(zlmMe]l (T = 81 °C, Tc > 200 °C), T = 100 °C (oily streak texture).

Figure S67: Optical microscopic texture of the mesophase (Smectic A) observed under crossed polarizers
at elevated temperature for [Cis.1E(zlmMe]l (T, = 29 °C, Tic > 200 °C), T = 100 °C (oily streak texture).
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Figure S68: Optical microscopic texture of the mesophase (Smectic A) observed under crossed polarizers
at elevated temperature for [Ci2.0E(2lmMe]BF4 (Trn = 43 °C, Tic= 144 °C), T = 100 °C.
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9. Fully extended length of the cations
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Figure S69: Fully extended length of the cation used in this study calculated using Chem3D®
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10. Temperature dependent Small angle X-ray scattering
(SAXS) of IL(C)s
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Figure S70: Small angle X-ray scattering patterns for [C12:0E(zlmMe]pTsO (Tm = 70 °C, Tic = 78 °C) in the
crystal (30 °C), the SmA (74 °C) and isotropic (100 °C) phases. The patterns were acquired during a heating
cycle. In the crystal phase and the mesophase the principal scattering peak (g*) and the higher order
reflection peaks (multiple of g*) are indicated by pointed down triangles.
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Figure S71: Small angle X-ray scattering patterns for [Cis.1E(lmMe]pTsO (T, = 33 °C, Tic = 148 °C) in the
SmA (40 °C) and isotropic (155 °C) phases. The patterns were acquired during a heating cycle. In the crystal
phase and the mesophase the principal scattering peak (g*) and the higher order reflection peaks
(multiple of g*) are indicated by pointed down triangles.
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Figure $72: Small angle X-ray scattering patterns for [Ci1.0E(2lmMe]l (Tm = 84 °C, Tic = 123 °C) in the crystal
(25 °C), the SmA (100 °C) and isotropic (140 °C) phases. The patterns were acquired during a heating cycle.
In the crystal phase and the mesophase the principal scattering peak (g*) and the higher order reflection
peaks (multiple of g*) are indicated by pointed down triangles.
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Figure $S73: Small angle X-ray scattering patterns for [C12.0E(zlmMe]l (T, = 63 °C, Tic = 164 °C) in the crystal
(56 °C), the SmA (110 °C) and isotropic (180 °C) phases. The patterns were acquired during a heating cycle.
In the crystal phase and the mesophase the principal scattering peak (g*) and the higher order reflection
peaks (multiple of g*) are indicated by pointed down triangles.
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Figure $S74: Small angle X-ray scattering patterns for [Cig.0E(zlmMe]l (T, = 81 °C, Tic > 200 °C) in the crystal
(75 °C), the SmA (120 °C) phases. The patterns were acquired during a heating cycle. The principal
scattering peak (g*) and the higher order reflection peaks (multiple of g*) are indicated by pointed down
triangles.
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Figure S75: Small angle X-ray scattering patterns for [Cig.1EzlmMe]l (T, = 81 °C, Tic > 200 °C) in the SmA
phase (60 °C, 100 °C and 150 °C). The patterns were acquired during a heating cycle. The principal

scattering peak (g*) is indicated by a pointed down triangle.
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Figure S76: Small angle X-ray scattering patterns for [Ci11.0E(zlmMe]BFs (Tm = 64 °C, Tic = 106 °C) in the
crystal (25 °C), the SmA (100 °C) and isotropic (140 °C) phases. The patterns were acquired during a heating

cycle. In the crystal phase and the mesophase the principal scattering peak (g*) is indicated by a pointed
down triangle.
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Figure S77: Small angle X-ray scattering patterns for [Ci2.0E(zlmMe]BFs (Tm = 43 °C, Tic = 144 °C) in the
crystal (25 °C), the SmA (100 °C) and isotropic (160 °C) phases. The patterns were acquired during a heating
cycle. In the crystal phase and the mesophase the principal scattering peak (g*) and the higher order
reflection peaks (multiple of g*) are indicated by pointed down triangles.
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11. Single crystal X-ray analysis

[Ci1:0E(zlmMe]BF,4

[Cis:0E(2lmMMe]pTsO  [Cyy0E(zlmMe]l
Empirical formula Cs2 Hsa N> Os S Cis H33 N2 Oyl
Formula weight (g mol?) 578.38 436.16
Crystal system Monoclinic Monoclinic
Space group P2:/c Pc
a, A 35.58(2) 17.5768(12)
b, A 9.775(5) 8.2962(2)
c, A 9.355(5) 14.8556(14)
a,’ 90 90
B,° 93.501(19) 102.766(7)
Y, ° 90 90
Volume, A3 3247.55 2112.7
Z 4 4
p (g cm3) (calculated) 1.18 1.37

C18H33 N2 O2,B F4
396.26
Monoclinic
P2:/c
17.223(4)
8.252(2)
15.149(4)
90
99.137(4)
90
2125.72
4
1.24

Table S2: Crystal data for [Cis.0E(2lmMe]pTsO, [Ci1.0E(zlmMe]l and [Ci1.0EzlmMe]BF,

(100000

oo @

51.3¢

Figure S78: The crystal structure of [Cis:0E(zImMe]pTsO at 25 °C. The distance between the plan (1 0 0)
and (1000 0 0) provide the layer distance, d¢: = 35.5 A. The plan A, formed by symmetrical alkyl chains,
intersect plan (1 0 0) and (1000 0 0) with an angle, a = 51.34°. Thus, the tilt angle of the alkyl chains as

compared to the layer normal is, 8 =90° - a ~ 39°
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Figure S79: The crystal structure of [CisoE(zlmMe]pTsO at 25 °C. Plan R is the plan define by the
imidazolium ring of a cation. It intersects plan (1 0 0) and (1000 0 0) with an angle a = 87.46°.

The presence of O---H—C weak hydrogen bonds was assessed according to prevailing conventions using
the Van der Waals radii of O and C, Ro and Rc¢ respectively. If the O«=C distance is inferior or equal to the
sum of the Van der Waals radii of O and C, then a weak hydrogen bond exists, i.e., 0<=>C < Ro + Rc.2

The Van der Waals radii® 1° Ry are given in Table $3, Ro+ Rc=3.22 A.

Atom X Ry, A
Carbon C 1.70
Oxygen o 1.52

Table S3: Van der Waals radii

With this convention in hand, the tosylate anion of [Cis.0E(2)lmMe]pTsO develops O---H—C weak hydrogen
bonds with four cations located within the same layer. One of the oxygens interacts with the C2 carbon
of two imidazolium head group (0<—C distance, 3.075 A and 2.980 A, Figure $68). Another of the oxygens
interacts with the C5 carbon of one imidazolium head group (O<=C distance, 3.190 A, Figure $68). And
another of the oxygens interacts with the carbon in alpha position to the carbonyl group (O<—C distance,
3.196 A, Figure S69).

A tosylate anion from the in-front bilayer can also develop weak hydrogen bonds with the carbon of the
methyl group of an imidazolium head group, as depicted in Figure 568 (0«—C distance, 3.298 A). It is worth
noting that in that case, O«=C is slightly superior to Ro + Rc (3.22 A). However, 3.6 A is often consider as
the threshold value to rule out the presence of O---H—C weak hydrogen bonds.?
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Figure S80: Visualization of the distances between the atoms developing weak hydrogen bonds in the
crystal structure of [Cis:.0E(2lmMe]pTsO. These weak hydrogen bonds are formed between the tosylate
anion and the imidazolium head groups both inside a bilayer and in-between neighboring layers.
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Figure S81: Visualization of the distances between the atoms developing weak hydrogen bonds in the
crystal structure of [Cis:0E(2)lmMe]pTsO. These weak hydrogen bonds are formed between the tosylate
anion and the imidazolium head groups both inside a bilayer and in-between neighboring layers. View
along b axis for a special emphasize on the weak hydrogen bond developed between one oxygen of the
tosylate group and the carbon in alpha position to the carbonyl group (O«—C distance, 3.196 A).
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(1000 0 0)

Figure $82: The crystal structure of [Ci1.0E(zlmMe]l at 25 °C. The distance between the plan (1 0 0) and
(1000 0 0) provide the layer distance, de = 17.1 A. The plan A, formed by symmetrical alkyl chains, intersect
plan (1 0 0) and (1000 0 0) with an angle, a = 37.75°. Thus, the tilt angle of the alkyl chains as compared
to the layer normalis, 8 =90° - a ~ 52°

The oxygen of the carbonyl groups of [Ci1.0E(zlmMe]l develops O---H—C weak hydrogen bonds with two
cations located within the same layer. It interacts with the C4 and C5 carbons of one imidazolium head
group (O«=C distance, 3.062 A and 3.210 A, respectively, Figure S71a) and with the carbon of the methyl
group of another imidazolium head group (0«=C distance, 3.200 A, Figure S71a).

It also develops weak hydrogen bonds with the carbon of the methyl group of imidazolium head groups
located in the in-front layer, as depicted in Figure S71b (O«=C distance, 3.484 A). It is worth noting that
in that case, 0«—C is slightly superior to Ro + Rc (3.22 A). However, 3.6 A is often consider as the threshold
value to rule out the presence of O---H—C weak hydrogen bonds.?
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Figure S83: Visualization of the distances between the atoms developing weak hydrogen O-:-H—C bonds
in the crystal structure of [C11.0E(2zlmMe]l. These weak hydrogen bonds are formed between the carbonyle
groups and the imidazolium head groups both inside a bilayer (a) and in-between neighboring layers (b).

Figure S84: (a) Localization of the iodide anion as compared to the plan, R, formed by the imidazolium
head group in the crystal structure of [C11.0E(zlmMe]l. (b) The iodide anion is located in the center of the
triangle formed by the imidazolium rings of three cations. It develops weak interactions with one

hydrogen per surrounding cation (Hydrogen located on the carbon with 1«<-C< R, + R, where R, = 2.10
Am).
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Figure $85: Crystal structure of [Ci1.0E(2lmMe]BF,4 at 25 °C. (a) unit cell along b axis, (b) unit cell along ¢
axis, (c) overall bilayer structure showing the interdigitation and the tilted alkyl chains along b axis.

Figure S86: The crystal structure of [C11:0E(lmMe]BF4 at 25 °C. The distance between the plan (1 0 0) and
(1000 0 0) provide the layer distance, de = 17.0 A. The plan A, formed by symmetrical alkyl chains, intersect
plan (1 0 0) and (1000 0 0) with an angle, « = 36.79°. Thus, the tilt angle of the alkyl chains as compared
to the layer normalis, 8 =90° - a ~ 53°
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