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We use generating function techniques developed by Givental, Théret and ourselves to deduce a proof in CP d of the homological generalization of Franks theorem due to Shelukhin. This result proves in particular the Hofer-Zehnder conjecture in the non-degenerate case: every Hamiltonian diffeomorphism of CP d that has at least d + 2 non-degenerate periodic points has infinitely many periodic points. Our proof does not appeal to Floer homology or the theory of J-holomorphic curves. An appendix written by Shelukhin contains a new proof of the Smith-type inequality for barcodes of Hamiltonian diffeomorphisms that arise from Floer theory, which lends itself to adaptation to the setting of generating functions.

Introduction

Let CP d be the complex d-dimensional projective space endowed with the Fubini-Study symplectic structure ω, that is π * ω = i * Ω where π : S 2d+1 → CP d is the quotient map, i : S 2d+1 → C d+1 is the inclusion map and Ω := j dq j ∧ dp j is the canonical symplectic form of C d+1 R 2(d+1) . We are interested in the study of Hamiltonian diffeomorphisms of CP d , which are time-one maps of those vector fields X t satisfying the Hamilton equations X t ω = dh t for some smooth maps (h t ) : [0, 1] × CP d → R called Hamiltonian maps. In 1985, Fortune-Weinstein [START_REF] Fortune | A symplectic fixed point theorem for CP n[END_REF] proved that any Hamiltonian diffeomorphism of CP d has at least d + 1 fixed points, as was conjectured by Arnol'd. Given a diffeomorphism ϕ, a k-periodic point of ϕ is by definition a fixed point of the k-iterated map ϕ k . On closed symplectically aspherical manifold (e.g. on tori T 2d ), every Hamiltonian diffeomorphism has infinitely many periodic points. This result was conjectured by Conley, proven for the tori by Hingston [START_REF] Hingston | Subharmonic solutions of Hamiltonian equations on tori[END_REF] and generalized by Ginzburg [START_REF] Viktor | The Conley conjecture[END_REF] after decades of flourishing advances: Conley-Zehnder proved the non-degenerate case for tori [START_REF] Conley | A global fixed point theorem for symplectic maps and subharmonic solutions of Hamiltonian equations on tori[END_REF], Salamon-Zehnder proved the non-degenerate case for aspherical manifolds [START_REF] Salamon | Morse theory for periodic solutions of Hamiltonian systems and the Maslov index[END_REF], Franks-Handel and Le Calvez proved the conjecture for surfaces [START_REF] Franks | Periodic points of Hamiltonian surface diffeomorphisms[END_REF][START_REF] Le | Periodic orbits of Hamiltonian homeomorphisms of surfaces[END_REF]. Contrary to aspherical symplectic manifolds, the Conley conjecture does not hold in CP d : there exists Hamiltonian diffeomorphisms with only finitely many periodic points. A simple counter-example is the diffeomorphism [z 1 : z 2 : • • • : z d+1 ] → e 2iπa 1 z 1 : e 2iπa 2 z 2 : • • • : e 2iπa d+1 z d+1 , with rationally independent coefficients a 1 , . . . , a d+1 ∈ R. This is indeed a Hamiltonian diffeomorphism whose only periodic points are its fixed points: the projection of the canonical base of C d+1 . Notice that this Hamiltonian diffeomorphism has the minimal number of periodic points, that is the minimal number of fixed points conjectured by Arnol'd.

In the case d = 1, CP 1 S 2 and Hamiltonian diffeomorphisms are the area preserving diffeomorphisms isotopic to the identity. Franks [START_REF] Franks | Geodesics on S 2 and periodic points of annulus homeomorphisms[END_REF][START_REF] Franks | Area preserving homeomorphisms of open surfaces of genus zero[END_REF] proved that such area preserving homeomorphism has either 2 or infinitely many periodic points. In 1994, Hofer-Zehnder [23, p.263] conjectured a higher-dimensional generalization of this result: every Hamiltonian diffeomorphism of CP d has either d + 1 or infinitely many periodic points (it was stated for more general symplectic manifolds). In this direction, a symplectic proof of Franks result was provided by Collier et al. [START_REF] Collier | A symplectic proof of a theorem of Franks[END_REF] in the smooth setting. Here, we are interested in a version of the Hofer-Zehnder conjecture proved by Shelukhin in 2019: if a Hamiltonian diffeomorphism on a closed monotone symplectic manifold with semisimple quantum homology has a finite number of contractible periodic points then the sum of dimension of the local Floer homologies at its contractible fixed points is equal to the total dimension of the homology of the manifold [START_REF] Shelukhin | On the Hofer-Zehnder conjecture[END_REF]. As we will see, his proof is based on the theory of barcodes in symplectic topology introduced by Polterovich-Shelukhin in [START_REF] Polterovich | Autonomous Hamiltonian flows, Hofer's geometry and persistence modules[END_REF].

In [START_REF] Allais | On periodic points of Hamiltonian diffeomorphisms of CP d via generating functions[END_REF], we elaborate on the ideas of Givental [START_REF] Givental | Nonlinear generalization of the Maslov index[END_REF] and Théret [START_REF] Théret | Rotation numbers of Hamiltonian isotopies in complex projective spaces[END_REF] to essentially build an analogue of the Floer homology of Hamiltonian diffeomorphisms of CP d with classical Morse theory and generating functions. In this article, we complete this construction in order to give an alternative proof of the theorem of Shelukhin on the Hofer-Zehnder conjecture "that could have been given in the 90s". Shelukhin introduced a homology count over a field F of the number of fixed points of a Hamiltonian diffeomorphism with finitely many fixed points ϕ of CP d . In our setting, it is defined by N (ϕ; F) :=

x∈Fix(ϕ) dim C * (ϕ; x; F) ∈ N, (1) 
where the precise definition of the local homology C * (ϕ; x; F) of the fixed point x over F is given in Section 3. [START_REF] Serguei | The framed Morse complex and its invariants[END_REF]. In fact, one can prove that C * (ϕ; x; F) is isomorphic to the local Floer homology of x over the field F, so that N (ϕ; F) equals the homological count defined by Shelukhin. One always has N (ϕ; F) ≥ d + 1, this is an avatar of the Fortune-Weinstein theorem. The theorem of Shelukhin that we prove is the following.

Theorem 1.1 ([28, Theorem A for M = CP d ]). Every Hamiltonian diffeomorphism ϕ of CP d with finitely many fixed points such that N (ϕ; F) > d + 1 for some field F has infinitely many periodic points. Moreover, if F has characteristic 0 in the former assumption, there exists A ∈ N such that, for all prime p ≥ A, ϕ has a p-periodic point that is not a fixed point; if F has characteristic p = 0, ϕ has infinitely many periodic points that are p k -periodic for some k ∈ N.

In the special case where every fixed point of ϕ is non-degenerate, one has dim C * (ϕ; x; F) = 1 for every fixed point x; hence, N (ϕ; F) equals the number of fixed points of ϕ. As a special case, every Hamiltonian diffeomorphism ϕ of CP d that has at least d + 2 non-degenerate periodic points has infinitely many periodic points and the number grows at least like the sum of prime numbers (i.e. the number of periodic points of period less than k is k 2 log k ). One can indeed replace ϕ with a power k of itself in order to get N (ϕ k ; F) ≥ d + 2 and apply Theorem 1.1.

Our proof follows the same main steps as the original one and takes advantage of the new proof given by Shelukhin in Appendix B of inequality (2) below. Let us give a short outline of it. Our analogue of the Floer homology of the Hamiltonian diffeomorphism associated with the Hamiltonian map (h s ) defines with its inclusion morphisms a persistence module (G (-∞,t) * (h s ; F)) t . Such a persistence module can be represented in a graphical way by a barcode (see Figure 1). Infinite bars of the barcodes always exist in the same cardinality: they are associated with the spectral values of (h s ). On the other hand, finite bars exist if and only if N (ϕ; F) > d + 1. The barcodes always have infinitely many bars but there is a natural free Z-action on their collection, preserving the length of bars in such a way that, if ϕ has finitely many fixed points, there are only finitely many Z-orbits of finite bars. Moreover, if ϕ has finitely many periodic points, the number of finite bars associated with its iterations is uniformly bounded. The proof consists in showing that the existence of a finite bar implies an unbounded growth of the number of Z-orbits of finite bars.

Since Z acts on the collection of finite bars by preserving their length, one can define the sequence of bar length of each Z-orbit 0 < β 1 ((h s ); F) ≤ β 2 ((h s ); F) ≤ • • • ≤ β((h s ); F). We denote by β tot ((h s ); F) the sum of these lengths. The proof relies on two results: the length of a finite bar is bounded above by 1 (with our normalization, see (3) below), the sum of the length satisfies the Smith-type inequality

β tot ((h ps ); F p ) ≥ pβ tot ((h s ); F p ), (2) 
for all prime p. These two steps easily imply Theorem 1.1. We refer to Section 2 for a more precise outline of the proof.

Organization of the paper. In Section 2, we give an outline of the proof. In Section 3, we provide the background on persistence modules and generating functions.

In Section 4, we define and study the generating function homology associated with Hamiltonian maps of CP d . In Section 5, we prove that every finite bar of the barcode associated with a Hamiltonian map of CP d has length less than 1. In Section 6, we show that the sum of the lengths of the representatives of the finite bars of such a barcode satisfies a Smith-type inequality. In Section 7, we prove Theorem 1.1.

In Appendix A, we prove fundamental properties of the projective homology join used throughout the paper. In Appendix B, Shelukhin gives a new proof of the aforementioned Smith-type inequality on a closed monotone symplectic manifold in the realm of Floer theory.
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Outline of the proof

Here, we introduce the main tools of the proof and give an outline of it. Let (h s ) : [0, 1] × CP d → R be a smooth periodic Hamiltonian map and let (ϕ s ) be the associated Hamiltonian flow on CP d . This Hamiltonian map defines a unique Hamiltonian map (H s ) : [0, 1] × (C d+1 \ 0) → R that is 2-homogeneous, invariant under the diagonal action of S 1 on C d+1 \ 0 given by λ • (z 0 , . . . , z d ) := (λz 0 , . . . , λz d ) (we will simply write "S 1 -invariant") so that its restriction on the unit sphere S 2d+1 ⊂ C d+1 is a lift of (h s ) under the quotient map S 2d+1 → CP d . Let (Φ s ) be the C *equivariant Hamiltonian flow associated with (H s ). By a slight abuse of notation, we will identify (Φ s ) with the induced family of homeomorphisms of C d fixing the origin and we will call such homeomorphisms "C-equivariant diffeomorphisms of C d ". We will say that (H s ) and (Φ s ) are the lifted Hamiltonian map and Hamiltonian flow of (h s ). In Section 3.2, we introduce decompositions of (Φ s ) into small Hamiltonian diffeomorphisms (see Section 3.2) that we usually write σ = (σ 1 , . . . , σ n ) so that

σ k • • • • • σ 1 = Φ t k for some 0 ≤ t 1 ≤ • • • ≤ t n = 1. For such a decomposition σ, we define homology groups G (a,b) * (σ) for almost all -∞ ≤ a < b ≤ +∞ in Section 4.
In the end of Section 4.3, we prove that these homology groups and their natural morphisms do not depend on the choice of the decomposition σ of (Φ s ) (up to isomorphism) so that we can write

G (a,b) * (h s ) := G (a,b) * (σ),
fixing a decomposition σ. We call these homology groups "Generating function homology groups of (h s )" or simply "GF-homology of (h s )".

Generating function homology groups of (h s ) satisfy the same key properties as the Floer homology groups of (h s ) and one can hope that G (a,b) * (h s ) is isomorphic to HF (πa,πb) * (h s ) with commuting inclusion and boundary morphisms (the π factor is due to our normalisation, see (3) below). These groups are homology groups defined over any chosen ring R (in fact over any group G). Given a fixed point z ∈ CP d of ϕ 1 and a capping u : D 2 → CP d , that is a smooth map from the unit 2-disk of C to CP d so that u(e 2iπs ) = ϕ s (z), one can define the action t(z) ∈ R of the capped orbit z := (z, u) by

t(z) = - 1 π D 2 u * ω + 1 0 h s • ϕ s (z)ds . ( 3 
)
Recapping gives a Z-orbit of action values:

t(A#z) = t(z) + k where A ∈ π 2 (CP d ) and πk = -[ω],
A . On Floer homology, the recapping by the generator

A 0 ∈ π 2 (CP d ) Z of symplectic area [ω], A 0 = π induces the quantum operator q : HF (a,b) * (h s ) -→ HF (a-π,b-π) * -2(d+1) (h s )
. The analogue isomorphism is defined at (11) (more precisely, its inverse).

Taking R to be a field F, these homology groups are F-vector spaces and the family (G (-∞,t) * (h s ; F)) t together with its inclusion morphisms define a persistent module that we call the persistence module associated with (h s ) over the field F. Assuming that the Hamiltonian diffeomorphism ϕ 1 has finitely many fixed points, the persistence modules of fixed degree (G (-∞,t) k (h s ; F)) t , k ∈ Z, satisfy suitable finiteness assumptions and one can define a finite barcode for each of them, giving a global countable (graded) barcode for the persistence module associated with (h s ). Let us describe this barcode (see Figure 1 for an example). The isomorphism

G (-∞,t) * (h s ) G (-∞,t+1
) * +2(d+1) (h s ) induces a Z-action on the bars of the barcode sending a bar (a, b) of degree k on a bar (a + 1, b + 1) of degree k + 2(d + 1). Therefore, it is enough to describe a set of representatives of bars under this action. In the case where ϕ 1 is non-degenerate, end-points of representative bars are in one-to-one correspondence with fixed points of CP d , the value of an end-point being equal to the action of a capping of the associated fixed point. In general, a fixed point should be counted with multiplicity equal to its local homology, which gives N ((h s ); F) endpoints. Among the representative bars, d + 1 and only d + 1 are infinite. This is an avatar of Fortune-Weinstein theorem, in fact the increasing sequence (c k (h s )) k∈Z of values of end-points of the infinite bars of the whole barcode corresponds to the sequence of spectral invariants of (h s ) (see Theorem 4.13).

Theorem 1.1 is proved by studying the length of the finite bars of the barcode of (h s ). Let us denote by I 1 , . . . , I n ⊂ R representatives of the Z-orbits of finite bars over the field F. Up to a permutation, one can assume that (length I k ) k is non-decreasing. Let β k ((h s ); F) be the length of I k , β((h s ); F) := β n ((h s ); F) be the length of the longest bar and

β tot ((h s ); F) := k β k ((h s ); F).
The number β((h s ); F) was first introduced by Usher and called the boundary depth of (h s ) [START_REF] Usher | Boundary depth in Floer theory and its applications to Hamiltonian dynamics and coisotropic submanifolds[END_REF]. The first important property is that every finite bar has a length smaller or equal to 1 (see Theorem 5.1). This is the analogue of [START_REF] Shelukhin | On the Hofer-Zehnder conjecture[END_REF]Theorem B] in the special case M = CP d and the proof follows the same key ideas: we define a product between GF-homologies and use it to find an interleaving between the GF-homology of (h s ) and the one of (h s ) ≡ 0 that does not have any finite bar. The second important property is the Smith inequality (2) stated in Corollary 6.3 which is the analogue of [START_REF] Shelukhin | On the Hofer-Zehnder conjecture[END_REF]Theorem D] in the special case M = CP d . The general strategy follows a new proof of [START_REF] Shelukhin | On the Hofer-Zehnder conjecture[END_REF]Theorem D] given by Shelukhin in Appendix B. In the realm of generating functions, the proof is rather short and very elementary: it essentially relies on the classical Smith inequality [START_REF] Viktor | The Conley conjecture[END_REF]; it could seem surprising regarding the extraordinary machinery necessary to prove its Floer theoretical analogue (although the Floer theoretical proof is available for every closed monotone symplectic manifold).

Preliminaries

In this section, we fix conventions and notation used throughout the article and recall known results that will be used as well.

Persistence modules and barcodes.

Let us fix a field F. A persistence module (V, π) over the field F is an R-family of F-vector spaces (V t ) t∈R with a collection of morphisms π t s : V s → V t for s ≤ t such that π t t = id V t and π t s • π s r = π t r whenever r ≤ s ≤ t that one can call persistence morphisms. We extend this definition to families (V t ) t∈R\S satisfying the same axioms with the exception that t ∈ R \ S where S ⊂ R is discrete by identifying (V t ) with the persistence module V t defined by taking the direct limit

V t := lim -→ s<t V s , ∀t ∈ R,
with the obvious extension of the morphisms π t s . Given two persistence modules (V, π) and (V , π ), one defines the direct sum of them in the obvious way (V ⊕ V , π ⊕ π ) which is a persistence module. A morphism of persistence module f : (V, π) → (V , π ) is a family of morphisms f t : V t → V t commuting with the persistence morphisms.

A persistence module (V t ) is of finite type if V t = 0 for t sufficiently close to -∞, every V t has a finite dimension and there exists a finite set S ⊂ R such that π t s is an isomorphism whenever s and t belong to the same connected component of R \ S. The fundamental example is given by V t := H * ({f ≤ t}; F), where f : M → R is a smooth function on a compact manifold M with finitely many critical points (by taking a general map on any space, we only have a general persistence module). Given an interval I = (a, b] or I = (a, +∞), we define the persistence module F(I) by V t = F for t ∈ I and V t = 0 otherwise, π t s = id when t and s belong to the same connected component of R \ {a, b} or R \ {a} respectively and π t s = 0 otherwise. It is a persistence module of finite type. We think of it as representing a class that appears at t = a and persists until t = b or indefinitely if I = (a, +∞). Graphically, we represent F(I) by drawing an horizontal bar from t = a to t = b or without right endpoint if I = (a, +∞). In order to state the normal form theorem properly, we assume that our persistence modules (V t ) satisfy the following left-continuity property: for all t ∈ R, π t s is an isomorphism for those s ≤ t that are close to t. The normal form theorem asserts that for every persistence module V of finite type, there exists a unique finite collection of couples (I k , m k ), I k ⊂ R being a bar as above and m k ∈ N * , so that there is an isomorphism of persistence modules

V k F(I k ) ⊕m k
(see for instance [START_REF] Serguei | The framed Morse complex and its invariants[END_REF][START_REF] Zomorodian | Computing persistent homology[END_REF]). The collection B(V ) := {(I k , m k )} is called the barcode of V ; it is graphically represented by drawing each horizontal bars of the I k 's with multiplicity in the same figure (see Figure 1 for an example with 6 infinite bars and 5 finite bars; ignore the fact that it is actually a part of a larger barcode).

Although we will not need it in its full strength, we recall the isometry theorem between the bottleneck distance between barcodes and the interleaving distance between persistence modules (of finite type). Given δ, δ ∈ R with δ + δ ≥ 0, a (δ, δ )-interleaving between persistence modules (V, π) and (W, κ) is a couple of morphisms of persistence modules f : (V t ) → (W t+δ ) and g :

(W t ) → (V t+δ ) such that g t+δ • f t = π t+δ+δ t and f t+δ • g t = κ t+δ+δ t for all t ∈ R.
When such an interleaving exists, it is said that V and W are (δ, δ )-interleaved. Given δ ≥ 0, a δ-interleaving is by definition a (δ, δ)-interleaving. For instance, if (V t ) and (W t ) are (δ, δ )-interleaved, then (V t ) and (W t+δ -) are δ + -interleaved, where δ -= δ-δ 2 and δ + = δ+δ 2 . The interleaving distance between two persistence modules V and W is defined by The isometry theorem between the bottleneck distance and the interleaving distance states that given any persistence modules of finite type V and W ,

d int (V, W ) := inf{δ ≥ 0 | V and W are δ-interleaved}.
d int (V, W ) = d bottleneck (B(V ), B(W ))
(see for instance [START_REF] Bauer | Induced matchings of barcodes and the algebraic stability of persistence[END_REF]).

3.2. Generating functions of C-equivariant diffeomorphisms. In this section, we summarize definitions widely discussed in [START_REF] Allais | On periodic points of Hamiltonian diffeomorphisms of CP d via generating functions[END_REF]Section 5]. This use of generating functions was much inspired by the dynamical viewpoint of Chaperon [START_REF] Chaperon | Une idée du type "géodésiques brisées" pour les systèmes hamiltoniens[END_REF] and the work of Givental [START_REF] Givental | Nonlinear generalization of the Maslov index[END_REF] and Théret [START_REF] Théret | Rotation numbers of Hamiltonian isotopies in complex projective spaces[END_REF].

Given a Hamiltonian map (h s ) : [0, 1]×CP n → R, let (H s ) be the lifted Hamiltonian of C d+1 that is 2-homogeneous and S 1 -invariant as defined in the beginning of Section 2 and let (Φ s ) be the associated Hamiltonian flow. The maps Φ s are smooth diffeomorphisms of C d+1 \ 0 that extend to homeomorphisms of C d+1 by setting Φ s (0) = 0. We refer to these maps as C-equivariant Hamiltonian diffeomorphisms because Φ s (λz) = λΦ s (z), ∀λ ∈ C, ∀z ∈ C d+1 . In general, a generating function will denote a map F : C d+1 × C k → R, (x; ξ) → F (x; ξ), such that ∂ ξ F is a submersion. We say that x ∈ C d+1 is the main variable of F and ξ ∈ C k is the auxiliary variable. Let Σ F ⊂ C d+1 × C k be the submanifold

Σ F := (x; ξ) ∈ C d+1 × C k | ∂ ξ F (x; ξ) = 0 .
We say that the generating function F is generating the Hamiltonian diffeomorphism Φ of

C d+1 if ∀z ∈ C d+1 , ∃!(x; ξ) ∈ Σ F , x = z + Φ(z) 2 and ∂ x F (x; ξ) = i(z -Φ(z)).
The critical points of a generating function of Φ are in one-to-one correspondence with the fixed points of Φ, the bijection being (x; ξ) → x. Given generating functions

F : C d+1 × C k → R and G : C d+1 × C l → R of Φ
and Ψ respectively, the fiberwise sum of F and G denotes the map

(F + G)(x; ξ, η) := F (x; ξ) + G(x; η). ( 4 
)
Although this is not a generating function of Φ • Ψ, the critical points of F + G are also in bijection with the fixed points of Φ • Ψ via (x; ξ, η) → x -i∂ x G(x; η)/2 (these statements are easy consequences of the definitions).

Let Φ be a Hamiltonian diffeomorphism of C d+1 which can be decomposed in Φ = σ n • • • • • σ 1 where every Hamiltonian diffeomorphism σ k has its restriction to the unit sphere sufficiently C 1 -close to id S 2d+1 such that they admit generating functions without auxiliary variable f k : C d+1 → R. We call such generating functions elementary generating functions. They are uniquely defined up to an additive constant. For all n ∈ N * , we will say that the n-tuple σ = (σ 1 , . . . , σ n ) is associated to the Hamiltonian flow (Φ s ) if there exists real numbers 0

= t 0 ≤ t 1 ≤ • • • ≤ t n = 1 such that σ k = Φ t k • Φ -1 t k-1 .
For all k ∈ N, we denote ε k the k-tuple

ε k := (id, . . . , id),
and we define the k-th power σ k of a n-tuple σ as the kn-tuple

σ k := (σ, . .

. , σ).

A continuous family of such tuples (σ s ) will denote a family of tuples of the same size n ≥ 1, σ s =: (σ 1,s , . . . , σ n,s ) such that the maps s → σ k,s are C 1 -continuous. Every compactly supported Hamiltonian flow and every C-equivariant Hamiltonian flow (Φ s ) s∈[0,1] admit a continuous family of associated tuple (σ s ) that is σ s is associated to Φ s for all s ∈ [0, 1] (and the size can be taken as large as wanted). We denote by F σ the following function (C d+1 ) n → R: 

F σ (v 1 , . . . , v n ) := n k=1 f k v k + v k+1 2 + 1 2 v k , iv k+1 , with convention v n+1 = v 1 , each f k : C d+1 → R
(λw) = |λ| 2 f k (w), ∀λ ∈ C, ∀w ∈ C d+1 ,
so that the resulting F σ is also 2-homogeneous and S 1 -invariant. Hence, a C-line of critical points Cv of F σ corresponds to a C-line of fixed points Cv 1 of Φ 1 . The Euler identity for homogeneous maps implies that these C-lines of critical points have value 0. Given a 2-homogeneous and S 1 -invariant map F : C N +1 → R, we denote by F : CP N → R the projectivization of F , that is the unique map for which the restriction of F to the unit sphere S 2N +1 ⊂ C N +1 is a lift under the quotient map S 2N +1 → CP N . For instance, h s = H s . Critical C-lines of F σ are in one-toone correspondence with critical points of F σ with value 0. Generically, F σ has no critical point of value 0 at all. Indeed, for all [z] ∈ CP d with lift z ∈ C d+1 \ 0,

ϕ 1 ([z]) = [z] with action t ∈ R/Z ⇔ e -2iπt Φ 1 (z) = z,
where t is defined by (3) (it is well-defined up to an integer if one does not choose a preferred capping); this is due to Théret [START_REF] Théret | Rotation numbers of Hamiltonian isotopies in complex projective spaces[END_REF]Proposition 5.8]. Therefore, for a fixed m ∈ N * , we need to define a family (σ m,t ) of tuples generating (e -2iπt Φ 1 ), -m ≤ t ≤ m. Let (δ t ) be the family of small C-equivariant diffeomorphisms δ t (z) := e -2iπt z, t ∈ (-1/2, 1/2). The associated elementary generating function is w → -tan(πt) w 2 . Let us fix once for all an even number n 0 ≥ 4 and let (δ

(1)
t ) be the family of n 0 -tuples (δ t/n 0 , . . . , δ t/n 0 ) generating z → e -2iπt z for t ∈ (-2, 2). For all m ∈ N * , let (δ (m) t ) be a family of mn 0 -tuples generating z → e -2iπt z for t ∈ (-m -1, m + 1) and satisfying

δ (m+1) t = δ (m) t , ε n 0 , ∀t ∈ [-m, m]. ( 5 
)
More precisely, let χ : R → R be an odd smooth non-decreasing map such that χ m ≡ id on [-m -1/4, m + 1/4] and χ m ≡ m + 1/2 on [m + 3/4, +∞). We set

δ (m+1) t = δ (m) χm(t) , δ (1) 
t-χm(t) , ∀t ∈ (-m -2, m + 2). Finally, we can set

σ m,t := σ, δ (m) t , ∀t ∈ [-m, m].
Since tan is increasing on [-π/2, π/2], we deduce that ∂ t F σm,t ≤ 0 by a straightforward computation.

Homology of sublevel sets and local homology of a fixed point.

The study of the homology of sublevel sets of generating functions was introduced by Viterbo [START_REF] Viterbo | Symplectic topology as the geometry of generating functions[END_REF] who introduced spectral invariants of Hamiltonian diffeomorphisms of R 2d with compact support. This work led to the definition of homology groups of these diffeomorphisms by Traynor [START_REF] Traynor | Symplectic homology via generating functions[END_REF] (which are in fact isomorphic to their Floer theoretic analogue [START_REF] Viterbo | Functors and Computations in Floer homology with Applications Part II[END_REF]). Here, we show how to define similar homology groups for Hamiltonian diffeomorphisms of CP d . We refer to [1, Section 5] for comprehensive proofs and references of the results stated in this section.

Throughout this paper, H * (X) and H * (X) denote respectively the singular homology and the singular cohomology of a topological space or pair X over an indeterminate ring R. If one needs to specify the ring R, one writes H * (X; R) and H * (X; R) instead. Let σ be an n-tuple of small C-equivariant Hamiltonian diffeomorphisms. We denote by Z(σ) ⊂ CP n(d+1)-1 the sublevel set (σ, m) H * +(n-1)(d+1) ({T ≤ b} , {T ≤ a}) , for some C 1 -map T : M → R defined on some manifold M that is smooth in the neighborhood of its critical points. The function T is some kind of finite-dimensional action: critical points of T are in one-to-one correspondence with capped fixed points of ϕ 1 with action value inside [-m, m]. This correspondence sends critical value to action value and Morse index up to a (n -1)(d + 1) shift in degree to the Conley-Zehnder index. More generally, the local homology of T (up to the same shift in degree) is isomorphic to the local Floer homology of the corresponding capped orbit. Let us denote by C * (f ; x) the local homology of the critical point x of a map f . According to the above discussion, we can define up to isomorphism ) shift in degree so we will not specify the choice of representative t ∈ R when the grading is irrelevant. One can prove it without using the isomorphism with local Floer homology as was done in [START_REF] Allais | On periodic points of Hamiltonian diffeomorphisms of CP d via generating functions[END_REF]Proposition 5.10] or by using the isomorphism induced by [START_REF] Conley | A global fixed point theorem for symplectic maps and subharmonic solutions of Hamiltonian equations on tori[END_REF] in local homology. We can now define precisely (1) for a choice of tuple σ by

Z(σ) := F σ ≤ 0 .
N (σ; F) := z∈Fix(ϕ 1 ) dim C * (σ; z; F) ∈ N.
We recall that an integer k ∈ N * is said to be admissible for ϕ at a fixed point z if λ k = 1 for all eigenvalues λ = 1 of dϕ(z). Until the end of the section, ϕ is associated with a tuple σ and the periodic points of ϕ are isolated in order to simplify the statements. The following proposition was proved by Ginzburg-Gürel in [START_REF] Viktor | Local Floer homology and the action gap[END_REF] for the local Floer homology. Proposition 3.1. Let k ∈ N * be an admissible iteration of ϕ at the fixed point z. Then as graded R-modules,

C * (σ k ; z) C * -i k (σ; z), for some shift in degree i k ∈ Z.
In our setting, one can prove this result by directly applying the shifting theorem of Gromoll-Meyer [20, §3]. Let us shortly give the main steps of the proof when k is odd. One can assume that the fixed point z has action 0 so that C * (σ k ; z) is isomorphic to the local homology of [START_REF] Allais | On periodic points of Hamiltonian diffeomorphisms of CP d via generating functions[END_REF]Equation (11) and above]). According to the shifting theorem, the local homology of a function at a given point is isomorphic to the local homology of the restriction of this function to a characteristic submanifold at the given point up to a shift in degree. Since F σ k • ι = F σ , the conclusion follows. This proof needs small changes when k is even (see Section 6.4 for an idea of the case k = 2), but it will not be needed to prove the following corollary. Corollary 3.2. For every fixed point z of ϕ, there exists B > 0 such that, for all prime p dim C * (σ p ; z; F p ) < B.

F σ k at [v 0 : • • • : v 0 ], where [v 0 ] ∈ CP N is the critical point of F σ associated with z. Let M ⊂ CP N be a characteristic submanifold for F σ at [v 0 ]. Then the image of M under the embedding ι : [v] → [v : • • • : v] is a characteristic submanifold for F σ k if and only if k is admissible (see
Proof. Applying Proposition 3.1 with R := Z, the C * (σ p ; z; Z)'s are isomorphic up to a shift in degree for sufficiently large prime numbers p. Since these Z-modules are finitely generated, the conclusion is a straightforward application of the universal coefficient theorem.

Generating functions homology of Hamiltonian diffeomorphisms of CP d

4.1. Composition of sublevel sets of generating functions. Given an odd number n ∈ N, let A n be the linear automorphism of (C d+1 ) n such that w

= A n v with w k = v k +v k+1 2
, with convention v n+1 := v 1 . We will often omit A n in our changes of variables and talking about w-variables.

Let Q n : (C d+1 ) n → R be the S 1 -invariant quadratic form Q n (v) := F ε n (v) = 1 2 n k=1 v k , iv k+1 = 2 n k=1 k-1 l=1 (-1) k+l w k , iw l ,
with conventions v n+1 := v 1 and w n+1 := w 1 .

The following proposition is a direct consequence of the fact that Q n is both a quadratic form and a generating function.

Proposition 4.1. The quadratic form Q n has nullity 2(d + 1). Moreover Q n (v 1 , v 2 , . . . , v n ) = -Q n (v 1 , v n , v n-1 , . . . , v 2 ) so that ind Q n = coind Q n = (n -1)(d + 1). We denote by B n,m : (C d+1 ) n × (C d+1 ) m → (C d+1 ) m+n+1 the C-linear map B n,m (w, w ) := w, m k=1 (-1) k+1 w k , w ,
and we denote by B n,m : CP (d+1)n-1 * CP (d+1)m-1 → CP (d+1)(n+m+1)-1 the associated projective map, where * denotes the projective join (see Appendix A). A straightforward computation gives the following proposition. 

Q n+m+1 B n,m (w, w ) = Q n (w) + Q m (w ).
F (σ,ε,σ ) B n,m (w, w ) = F σ (w) + F σ (w ).
Therefore, B n,m induces an injective map

{F σ ≤ a} × {F σ ≤ b} → F (σ,id,σ ) ≤ a + b by restriction. In the category of C-equivariant diffeomorphisms, B n,m induces a map Z(σ) * Z(σ ) → Z(σ, ε, σ ).
Proof. This is a direct consequence of the form that takes F σ in w-variables:

F σ (w) = n k=1 f k (w k ) + Q n (w).
Therefore,

F (σ,ε,σ ) B n,m (w, w ) = n k=1 f k (w k ) + m l=1 f l (w l ) + Q n+m+1 B n,m (w, w ) = n k=1 f k (w k ) + Q n (w) + m l=1 f l (w l ) + Q m (w ) = F σ (w) + F σ (w ).
By making use of the homology projective join defined in Appendix A, we are now in position to define a special map in homology involving two different Hamiltonian flows and their composition. Let us fix 2 tuples σ, σ of odd respective sizes n and n . According to Corollary 4.3, the map B n,n induces a natural morphism

H * (Z(σ) * Z(σ )) → H * (Z(σ, ε, σ )). In Appendix A, we define a morphism pj * : H * (A × B) → H * +2 (A * B)
called the homology projective join. The composition of the morphism induced by B n,n with the homology projective join defines a natural morphism

HZ * (σ) ⊗ HZ * (σ ) → HZ * -2d ((σ, ε, σ )).
It generalizes to the relative case Z(σ ) ⊂ Z(σ ): σ,ε,σ ),(σ,ε,σ )); the relative HZ * could be in the left hand side of the tensor product as well, as long as one of the two HZ * 's is an absolute homology group. In symbols, we will write this map as α⊗β → α β. The naturality of these morphisms under inclusion maps and boundary maps follows directly from the naturality of the homology projective join.

HZ * (σ) ⊗ HZ * (σ , σ ) → HZ * -2d ((
In particular, the following diagram commutes

HZ * (σ) ⊗ HZ * (σ ) / / HZ * -2d ((σ, ε, σ )) H * +r (CP N ) ⊗ H * +r (CP N ) pj * / / H * +r+r +2 (CP N ) , ( 6 
)
where 

HZ * (σ) ⊗ HZ * (σ ) ⊗ HZ * (σ ) / / HZ * (σ) ⊗ HZ * -2d ((σ , ε, σ )) HZ * -2d ((σ, ε, σ )) ⊗ HZ * (σ ) / / HZ * -4d ((σ, ε, σ , ε, σ ))
.

In symbols, given α ∈ HZ * (σ), β ∈ HZ * (σ ) and γ ∈ HZ * (σ ),

(α β) γ = α (β γ).
This is also true for the relative case where one of the initial groups ( e.g. HZ * (σ )) is replaced by a relative homology group ( e.g. HZ * (σ , σ (3) )) while the other groups are still absolute homology groups.

Proof. We first remark that

B n+n +1,n B n,n (w, w ), w =   w, n k=1 (-1) k+1 w k , w , n l=1 (-1) l+1 w l , w   = B n,n +n +1 w, B n ,n (w , w ) , ∀w, w , w , so that B n+n +1,n • (B n,n * id) = B n,n +n +1 • (id * B n ,n ). Here, we denote by f * g the map (f * g)[a : b] := [f (a) : g(b)].
Therefore, for all α ∈ HZ * (σ), β ∈ HZ * (σ ) and γ ∈ HZ * (σ ) (or γ ∈ HZ * (σ , σ (3) )),

(B n+n +1,n ) * pj * ((B n,n ) * (pj * (α × β) × γ)) = (B n+n +1,n ) * (B n,n * id) * pj * (pj * (α × β) × γ) = (B n,n +n +1 ) * (id * B n ,n ) * pj * (pj * (α × β) × γ) = (B n,n +n +1 ) * (id * B n ,n ) * pj * (α × pj * (β × γ)) = (B n,n +n +1 ) * pj * (α × (B n ,n ) * pj * (β × γ)),
where we use the naturality of the homology projective join [START_REF] Hingston | Subharmonic solutions of Hamiltonian equations on tori[END_REF] to get the first and last identity, the previous remark to get the second equality and the associativity of the homology projective join (Proposition A.2) to get the third equality.

The direct system of G

(a,b) * (σ). For a fixed m ∈ N, the long exact sequence of the triple induces inclusion and boundary morphisms fitting into a long exact sequence:

• • • ∂ * +1 --→ G (a,b) * (σ, m) → G (a,c) * (σ, m) → G (b,c) * (σ, m) ∂ * -→ G (a,b) * -1 (σ, m) → • • • where -m ≤ a ≤ b ≤ c ≤ m.
In order to precisely define these maps without reference of m anymore, we will define an isomorphism

θ m+1 m : G (a,b) * (σ, m) → G (a,b) * (σ, m + 1), (7) 
for -m ≤ a ≤ b ≤ m, that commutes with the above mentioned inclusion and boundary morphisms and define G (a,b) * (σ) as the direct limit of the direct system induced by (θ m+1 m ) m :

G (a,b) * (σ) := lim -→ G (a,b) * (σ, m).
We will then have inclusion and boundary morphisms

• • • ∂ * +1 --→ G (a,b) * (σ) → G (a,c) * (σ) → G (b,c) * (σ) ∂ * -→ G (a,b) * -1 (σ) → • • • for all a ≤ b ≤ c that are not action values; one can thus set G (-∞,b) * (σ) := lim ← - G (a,b) * (σ), a → -∞,
and one can then define G (-∞,+∞) * (σ) by taking a direct limit in a similar way. The inclusion and boundary maps thus extend to the extended real numbers line

R := R ∪ {-∞, +∞}.
In order to define the isomorphism [START_REF] Chaperon | Une idée du type "géodésiques brisées" pour les systèmes hamiltoniens[END_REF], let us remark that for an odd n ∈ N, the space Z(ε n ) retracts on the projectivization of the maximal non-positive linear subspace of Q n which is a CP N -1 with N = (d+1)(n+1)/2 according to Proposition 4.1.

Therefore,

HZ * (ε n ) = d k=-(d+1)(n-1)/2 Ra (n) k H * +(n-1)(d+1) CP (d+1)(n+1)/2-1 , where a (n)
k is the generator of degree 2k identified with the class [CP l ] of appropriate degree 2l = 2k + (n -1)(d + 1) under the isomorphism induced by the inclusion of a maximal complex projective subspace of Z(ε n ). With the help of the composition defined in the previous section, we now define [START_REF] Chaperon | Une idée du type "géodésiques brisées" pour les systèmes hamiltoniens[END_REF] by

θ m+1 m (α) := α a (n 0 -1) d ∈ G (a,b) * (σ, m + 1), ∀α ∈ G (a,b) * (σ, m).
This is formally well-defined since

HZ * ((σ m,b , ε n 0 ), (σ m,a , ε n 0 )) = G (a,b) * (σ, m + 1),
according to [START_REF] Bauer | Induced matchings of barcodes and the algebraic stability of persistence[END_REF]. Proposition 4.5. For an odd n ∈ N, the morphism

HZ * (σ m,b , σ m,a ) → HZ * ((σ m,b , ε n+1 ), (σ m,a , ε n+1 )) α → α a (n) d
is an isomorphism (and the same is true for α → a

(n) d α). Corollary 4.6. The morphism θ m+1 m is an isomorphism. Proof. Let A := Z(σ m,b , σ m,a ), A := Z((σ m,b , ε n+1 ), (σ m,a , ε n+1 )), B := Z(ε n ), n
be the size of σ m,b and let us denote by θ the morphism in question. Up to a shift in degree, the morphism θ can be written explicitly as the composition

H * (A) pj * (•×a (n) d ) ------→ H * +i 0 (A * B) (B n ,n ) * -----→ H * +i 0 (A ),
for some i 0 ∈ N. According to Corollary A.6, the first morphism is an isomorphism. It remains to show that (B n ,n ) * is also an isomorphism.

Let C be the following automorphism of (C d+1 ) n +n+1 :

C(v, v ) := (v, v + (v 1 , v n , v 1 , v n , . . . , v 1 , v n )),
where v ∈ (C d+1 ) n and v ∈ (C d+1 ) n+1 . By a direct computation

F (σm,t,ε n+1 ) • C(v, v ) = F σm,t (v) + Q n+2 (0, v ), (this is an explicit version of [1, Proposition 5.2]). According to Givental [18, Propo- sition B.1], { F (σm,t,ε n+1 ) • C ≤ 0} retracts on { F σm,t ≤ 0} * { Q n+2 (0, •) ≤ 0}. The quadratic form Q n+2 (0, •) is non-degenerate with index (n + 1)(d + 1), so that the sublevel set { Q n+2 (0, •) ≤ 0} retracts on a complex projective space of C-dimension (d + 1)(n + 1)/2 -1. The injective linear map J : (C d+1 ) n → (C d+1 ) n+1 , Jv := (v, v 1 ) satisfies Q n+2 (0, Jv) = Q n (v).
Since the sum of the index and the nullity of Q n is (n + 1)(d + 1), { Q n ≤ 0} retracts on a projective space of C-dimension (d + 1)(n + 1)/2 -1 in such a way that J induces an isomorphism in homology

J * : H * Q n ≤ 0 -→ H * Q n+2 (0, •) ≤ 0 . Let P : (C d+1 ) n+1 → (C d+1
) n be the surjective linear map

P (v 1 , . . . , v n+1 ) := (v n+1 , v 2 , v 3 , . . . , v n ) so that P J = id. Let P : (C d+1 ) n+n +1 → (C d+1 ) n+n be P (v, v ) = (v, P v ) and let J : (C d+1 ) n+n → (C d+1 ) n+n +1 be J (v, v ) = (v, Jv ) so that P J = id. In v-variables, B n ,n takes the form (v, v ) → (v, v 1 , v + (v 1 -v 1 , v 1 -v 1 , v 1 -v 1 , . . . , v 1 -v 1 )).
A direct computation then shows that the endomorphism f :

= P C -1 B n ,n is invert- ible. More precisely, f (v, v ) = (v, g(v ) + h(v))
where g and h are C-linear and g is invertible. Let f : A * B → A * B be the induced projective map.

We then have the following commutative diagram:

H * (A * B) (B n ,n ) * / / f * H * (A ) H * (A * B) J * / / H * A * Q n+2 (0, •) ≤ 0 P * m m C * O O .
By the above discussion, the induced maps f * , C * , J * and P * are isomorphisms. Therefore, (B n ,n ) * is an isomorphism and so is θ.

By construction of the map θ m+1 m , the following diagram commutes.

G (a,b) * (σ, m) θ m+1 m / / G (a,b) * (σ, m + 1) HZ * (σ m,b ) • a (n 0 -1) d / / O O HZ * (σ m+1,b ) O O H * +r (CP N ) H * +r (CP N +n 0 (d+1) ) pj * (•×[CP (d+1)n 0 /2 ]) / / H * +r+n 0 (d+1) (CP N +n 0 (d+1) ) , ( 8 
)
where the vertical arrows are induced by inclusions, r := (n

1 + mn 0 -1)(d + 1), n 1 is the size of σ, N := (n 1 + mn 0 )(d + 1) -1.
Applying the commutativity of ( 6) to σ = ε n and σ = ε n , one has

a (n) k a (n ) l = a (n+n +1) k+l-d , for -(d + 1)(n -1)/2 ≤ k ≤ d and -(d + 1)(n -1)/2 ≤ l ≤ d.
By associativity of (Proposition 4.4), we deduce that the isomorphism θ m+k m

:= θ m+k m+k-1 • • • • • θ m+1 m is θ m+k m (α) = α a (kn 0 -1) d
. By using the same construction as for θ m+k m , one can define an isomorphism 

η k : G (a,b) * (σ, m) -→ G (a,b) * ((ε k , σ), m),
η k : G (a,b) * (σ) -→ G (a,b) * ((ε k , σ)).
4.3. Interpolation isomorphisms. We start this section with a general statement that is easily deduced from Morse theory.

Proposition 4.7. Let X be a closed manifold and m > 0. Let f s,t :

X → R, s ∈ [0, 1], t ∈ [-m, m], be a C 1 -family of maps. We suppose that for all s ∈ [0, 1], t ∈ (-m, m) and x ∈ X, d dt f s,t (x) ≤ 0. If a, b ∈ (-m, m), a ≤ b, satisfy that 0 is a regular value of f s,a and f s,b for all s ∈ [0, 1], then the inclusion X → [0, 1] × X, x → (s, x), induces the following isomorphism in homology for all s ∈ [0, 1] H * ({f s,b ≤ 0}, {f s,a ≤ 0}) -→ H * ({(r, x) | f r,b (x) ≤ 0}, {(r, x) | f r,a (x) ≤ 0}) ,
where (r, x) are describing [0, 1] × X in the right hand side of the arrow. The analogous non-relative statement is also true: let f s : X → R, s ∈ [0, 1], be a C 1 -family of maps with 0 as a regular value. Then the inclusion X → [0, 1] × X, x → (s, x), induces the following isomorphism in homology for all s ∈ [0, 1] 

H * ({f s ≤ 0}) -→ H * ({(r, x) | f r (x) ≤ 0}) . Proof. For any interval I ⊂ [0, 1], let f I,t : I ×X → R be the map f I,t (r, x) := f r,t (x).
H * (I × {f s,b ≤ 0}, I × {f s,a ≤ 0}) / / H * ({f I,b ≤ ε}, {f I,a ≤ ε}) H * ({s} × {f s,b ≤ 0}, {s} × {f s,a ≤ 0}) / / O O H * ({f I,b ≤ 0}, {f I,a ≤ 0}) O O
, Another way to proceed is to remark that ({f I,b ≤ 0} \ {f I,a < 0}, {f I,a = 0}) retracts on ({f s,b ≤ 0} \ {f s,a < 0}, {f s,a = 0}) relative to boundaries through the gradient flow of the restriction of the projection I × X → I, which has no critical points under the hypothesis made on a and b.

where
Let s → σ (s) be a C 1 -family (or more generally C 1 -piecewise) of tuples associated with the same C-equivariant Hamiltonian diffeomorphism Φ without C-lines of fixed points. We apply Proposition 4.7 to the following family of maps:

f s := F σ (s) : CP N → R.
The assumptions of Proposition 4.7 are fulfilled and we define ∆ so that the following diagram commutes:

HZ * (σ (0) ) / / ∆ H * +i 0 (A) HZ * (σ (1) ) 8 8
, where the non-vertical arrows are the inclusions maps and

A := {(r, x) | f r (x) ≤ 0} .
Since these isomorphisms are defined with inclusion maps the above way, they clearly commute with inclusion and boundary morphisms. In the same way, let (η (s) t ) be a C 1 -family of tuples so that for each s the family t → η (s) t is associated with the same C-equivariant Hamiltonian diffeomorphism. If the associated map f s,t : CP N → R satisfies the assumption of Proposition 4.7, then we can define the associated isomorphism ∆ : HZ * (η

(0) b , η (0) a ) -→ HZ * (η (1) 
b , η (1) a ). As an important example, let s → σ (s) (1) , m).

∆ : G (a,b) * (σ (0) , m) -→ G (a,b) * (σ
We will call the isomorphism ∆ the interpolation isomorphism associated with (σ (s) ) and write in symbols ∆ ←→ s → σ (s) . Proposition 4.8. Let ∆, ∆ and ∆ be the interpolation isomorphisms associated with (σ (s) ), (η

(s) t ) and (σ (s) , ε, η (s)
t ) respectively. The following diagram commutes:

HZ * σ (0) ⊗ HZ * η (0) 1 , η (0) 0 / / ∆⊗∆ HZ * -2d σ (0) , ε, η (0) 1 , σ (0) , ε, η (0) 0 ∆ HZ * σ (1) ⊗ HZ * η (1) 1 , η (1) 0
/ / HZ * -2d σ (1) , ε, η , σ (1) , ε, η 

* (A × B) → H * +2 (A * B) is defined by (p 2 ) * • (p 1 ) * . Since E A,
Bs is the restriction of the fiber bundle E A,B to A × B s , by naturality of the morphisms involved, the following diagram commutes for all s ∈ I:

H * (A × B s ) pj * / / H * +2 (A * B s ) H * (A × B) pj * / / H * +2 (A * B)
,

where the vertical arrows are inclusion morphisms induced by {s} → I. By giving to Z(η I t ) the meaning of s {s} × Z(η

(s)
t ) and then extending the definition of HZ * accordingly, we deduce that the following diagram commutes for all s ∈ I:

HZ * (σ) ⊗ HZ * η (s) 1 , η (s) 0 / / HZ * -2d σ, ε, η (s) 1 , σ, ε, η (s) 0 HZ * (σ) ⊗ HZ * η I 1 , η I 0 / / HZ * -2d σ, ε, η I 1 , σ, ε, η I 0 ,
where the vertical arrows are inclusion morphisms. The conclusion follows.

In particular, the interpolation isomorphism ∆ : G (σ (1) , m) commutes with the direct system (θ m+1 m ), so it ultimately defines the interpolation isomorphism (1) ) that commutes with inclusion and boundary morphisms.

∆ : G (a,b) * (σ (0) ) -→ G (a,b) * (σ
We are now in position to prove that G 

G (a,b) * (σ) / / G (a,b) * (σ ) G (a,b) * ((ε 2n , σ)) ∆ η 2n O O G (a,b) * ((ε 3n-n , σ )) η 3n-n O O G (a,b) * ((σ, ε 2n )) ∆ / / G (a,b) * ((σ, σ -1 , ε n-n , σ )) ∆ O O
, where ∆, ∆ and ∆ are interpolation isomorphisms associated with isotopies of 3n-tuples generating the same Hamiltonian diffeomorphism Φ in the following way 

∆ ←→ s →    (σ 2s , σ -2s , σ), 0 ≤ s ≤ 1/2, (σ, σ -2(1-s) , σ 2(1-s) ), 1/2 ≤ s ≤ 1, ∆ ←→ s → (σ, σ -s , ε n-n , (σ ) s ), ∆ ←→ s → (σ 1-s , σ s-1 , ε n-n , σ ).
HZ * (σ m ,c ) ⊗ G (a,b) * (σ, m) -→ HZ * (η b , η a ),
where

η t := σ , δ (m ) c , ε, σ, δ (m) t .
Let (η s t ) s be a homotopy of tuples of small Hamiltonians from η 0 t = η t to η 1 t = (σ , ε, σ) t+c,m+m , for 2|t| < m, generating the same diffeomorphism for a fixed value of t. The condition m > 2m > 4n makes the construction of such a homotopy possible, we sketch the successive stages of it:

η t = σ , δ (m ) c , ε, σ, δ (m) t σ , ε m n 0 +1 , σ, δ (m) t+c σ , ε, σ, σ -1 , ε k , σ, δ (m) t+c σ , ε, σ, ε m n 0 , δ (m) t+c σ , ε, σ, δ (m+m ) t+c = (σ , ε, σ) t+c,m+m .
According to the previous section, this homotopy induces an interpolation isomorphism ∆ : HZ * (η b , η a ) -→ G (a+c,b+c) * ((σ, ε, σ ), m + m ).

The composition of the above composition morphism with ∆ gives this generating functions homology version of the composition morphism:

HZ * (σ m ,c ) ⊗ G (a,b) * (σ, m) → G (a+c,b+c) * -2d ((σ , ε, σ), m + m ).
We define the same way composition morphism of absolute homology groups:

HZ * (σ m,t ) ⊗ HZ * (σ m ,t ) → HZ * -2d ((σ, ε, σ ) m+m ,t+t ).
We will denote these maps α ⊗ β → α β so that in symbols

α β := ∆(α β).
Since interpolation isomorphisms commute with inclusion in the total space, the commutativity of (6) implies the commutativity of the analogous square

HZ * (σ m,t ) ⊗ HZ * (σ m ,t ) / / HZ * -2d ((σ, ε, σ ) m+m ,t+t ) H * +r (CP N ) ⊗ H * +r (CP N ) pj * / / H * +r+r +2 (CP N ) . ( 9 
)
This new form of the composition morphism is also associative.

Corollary 4.9. The following diagram of composition morphisms commutes:

HZ * (σ m,c ) ⊗ HZ * (σ m ,c ) ⊗ G (a,b) * (σ , m ) / / HZ * (σ m,c ) ⊗ G (a+c ,b+c ) * -2d ((σ , ε, σ ), m + m ) HZ * -2d ((σ, ε, σ ) m+m ,c+c ) ⊗ G (a,b) * (σ , m ) / / G (a+c+c ,b+c+c ) * -4d ((σ, ε, σ , ε, σ ), m + m + m )
.

In symbols, given α ∈ HZ * (σ m,c ),

β ∈ HZ * (σ m ,c ) and γ ∈ G (a,b) * (σ , m ), (α β) γ = α (β γ).
Proof. According to Proposition 4.8,

(α β) γ = ∆ 2 (∆ 1 (α β) γ) = ∆ 2 • ∆ 1 ((α β) γ),
where the interpolation isomorphisms are associated with homotopies in the following way:

∆ 1 ←→ (σ m,c , ε, σ m ,c ) (σ, ε, σ ) m+m ,c+c , ∆ 1 ←→ ((σ m,c , ε, σ m ,c ), ε, σ m ,t ) ((σ, ε, σ ) m+m ,c+c , ε, σ m ,t ), ∆ 2 ←→ ((σ, ε, σ ) m+m ,c+c , ε, σ m ,t ) (σ, ε, σ , ε, σ ) m+m +m ,c+c +t .
In the same way,

α (β γ) = ∆ 2 (α ∆ 1 (β γ)) = ∆ 2 • ∆ 1 (α (β γ)),
with convenient interpolation isomorphisms ∆ 1 , ∆ 1 and ∆ 2 . According to the associativity of (Proposition 4.4), it is enough to prove that ∆ 2 • ∆ 1 = ∆ 2 • ∆ 1 . These two interpolation isomorphisms are associated with homotopies that are themselves homotopic through homotopies preserving the associated family of diffeomorphisms. It is then a simple consequence of the definition of the interpolation isomorphisms.

As a consequence, the following diagram commutes

HZ * (σ m ,c ) ⊗ G (a,b) * (σ, m) / / id⊗θ m+1 m G (a+c,b+c) * -2d ((σ , ε, σ), m + m ) θ m+m +1 m+m HZ * (σ m ,c ) ⊗ G (a,b) * (σ, m + 1) / / G (a+c,b+c) * -2d ((σ , ε, σ), m + m + 1)
.

It ultimately defines a morphism

HZ * (σ m ,c ) ⊗ G (a,b) * (σ) - → G (a+c,b+c) * -2d ((σ , ε, σ)),
for almost all a, b ∈ R. By naturality of the composition morphism, given t ≥ 0 and m ∈ N * , the following diagram commutes

G (a,b) * (σ) ⊗ HZ * (ε m,0 ) / / id⊗inc * G (a,b) * -2d ((σ, ε 2 )) inc * G (a,b) * (σ) ⊗ HZ * (ε m,t ) / / G (a+t,b+t) * -2d ((σ, ε 2 )) . ( 10 
)
4.5. Properties of the generating functions homology. Let σ and σ be two different tuples of (h s ). We proved that the graded modules G (σ ) are isomorphic and that there exists a family of isomorphism compatible with the inclusion maps so it makes sense to define G (a,b) * (h s ) in Section 2. Nevertheless, we will keep track of the specific choice of σ in our statements for the sake of being precise.

Let us first focus on the special case σ = ε. Let us denote by T m,t the family of generating functions associated with (ε m,t ) t . Since the elementary generating function of δ s is u → -tan(πs) u 2 , the map T m,t is a quadratic form. Since T m,t is a generating function, its kernel as a quadratic form has dimension 2(d + 1). We had already remarked that T m,0 is equivalent to -T m,0 (they both generates the identity) which implies that ind T m,0 = mn 0 (d + 1) (Proposition 4.1). The variation of index is governed by the Maslov index of (e -2iπt ) so that ind T m,t -ind T m,0 = 2(d + 1) t , (See [1, Section 3 and Lemma 5.5]). Therefore, there exists an increasing sequence of complex projective subspaces P m,-m ⊂ P m,-m+1 ⊂ • • • ⊂ P m,m such that P m,k CP (d+1)(k+mn 0 /2) and Z(ε m,t ) retracts on P m, t inducing an equivalence between the persistence modules (H * (P m, t )) and (H * (Z(ε m,t ))), -m ≤ t ≤ m. Thus, as a graded R-module,

HZ * (ε m,t ) = d+(d+1) t k=-(d+1)mn 0 /2 Ra (mn 0 +1) k (t),
where a (mn 0 +1) k (t) is the generator of degree 2k identified with the class [CP l ] of appropriate degree 2l = 2k +(d+1)mn 0 under the isomorphism induced by P m, t → Z(ε m,t ). The inclusion morphism HZ * (ε m,t ) → HZ * (ε m,s ) maps each a c) is also well-defined and sent to the former. We deduce that there exists a well-defined

(mn 0 +1) k (t) to a (mn 0 +1) k (s) (for -m ≤ t ≤ s ≤ m). Hence, G (a,b) * (ε, m) = d+(d+1) b k=d+(d+1) a Rα (m) k (a, b), for -m < a ≤ b < m, where α (m) k (a, b) is the image of a (mn 0 +1) k (b) under the inclusion morphism HZ * (ε m,b ) → G (a,b) * (ε, m). According to the commutativity of (8), one has θ m+1 m α (m) k (a, b) = α (m+1) k (a, b). We set α k (a, b) := θ ∞ m α (m) k (a, b). For a < b < c, if α k (b, c) is well-defined, then α k (a,
α k (-∞, c) ∈ G (-∞,c) 2k (ε) sent to α k (a, c) for all a ≤ c. Let α k be the image of α k (-∞, c) under G (-∞,c) 2k (ε) → G (-∞,+∞) 2k (ε). Finally, G (-∞,+∞) * (ε) = k∈Z Rα k ,
we will show in Theorem 4.13 that this is also the case for any σ.

In order to show the "periodicity" of the persistence module of σ, let us define a natural isomorphism

G (a,b) * (σ) -→ G (a+1,b+1) * +2(d+1) (σ). (11) 
In order to simplify the exposition, let us set a d := a 

a 2d+1 • / / a d • ) ) G (a+1,b+1) * +2(d+1) ((ε 2 , σ)) a -1 • a d • * * G (a,b) * ((ε 4 , σ)) a 2d+1 • / / G (a+1,b+1) * +2(d+1) ((ε 6 , σ))
so every arrow in it is an isomorphism.

As explained in Section 2, we can now associate to every σ a persistence module (G

(-∞,t) * (σ)) t that satisfies the "periodicity" property G (-∞,t+1) * (σ) G (-∞,t) * +2(d+1) (σ)
, the isomorphism being an isomorphism of persistence module according to the naturality of [START_REF] Conley | A global fixed point theorem for symplectic maps and subharmonic solutions of Hamiltonian equations on tori[END_REF]. While discussing barcodes properties, we assume that the persistence module is over a field. Since this periodicity property shifts the degree by a constant positive integer 2(d + 1), it induces a permutation of the bars of the barcode sending a bar (a, b] on a bar (a + 1, b + 1] that generates a free Z-action on the bars. A family of representatives of the bars is given by the union of the barcodes of (G (-∞,t) k (σ)) t for 0 ≤ k ≤ 2d+1. For instance, Figure 1 Proof. Let us consider the long exact sequence

• • • ∂ * +1 --→ G (-∞,a) * (σ; F) → G (-∞,b) * (σ; F) → G (a,b) * (σ; F) ∂ * -→ G (-∞,a) * -1 (σ; F) → G (-∞,b) * -1 (σ; F) → • • • . (12)
Applying the normal form theorem of persistence modules, one can find bases ((α i ), (δ - j )) and ((β k ), (δ + j )) of the F-vector spaces G (σ; F) that are in a canonical bijection with bars of the barcode intersecting t = a and t = b respectively, δ - j and δ + j being associated with the same bar for each j while the bars associated with the α i 's do not intersect t = b and the bars associated with the β k 's do not intersect t = a (see Figure 2). In other words, the following diagram commutes

G (-∞,a) * (σ; F) = i Fα i ⊕ j Fδ - j G (-∞,b) * (σ; F) = j Fδ + j ⊕ k Fβ k ,
where the left arrow is the inclusion morphism and the right arrow sends δ - j to δ + j for all j. Let us recall that, according to the finiteness assumption on the number of fixed points, the number of α i 's and β k 's is finite (here a and b are finite). With the above diagram, one can extract a short exact sequence of finite dimensional vector spaces from the long exact sequence [START_REF] Fortune | A symplectic fixed point theorem for CP n[END_REF] 0

→ k Fβ k → G (a,b) * (σ; F) → i Fα i → 0.
Hence the result.

Proposition 4.12. Given a tuple σ of C-equivariant Hamiltonian diffeomorphisms with a finite number of fixed C-lines, for every field F,

N (σ; F) = d + 1 + 2K(σ; F),
where K(σ; F) is the number of Z-orbits of finite bars of the persistence module of σ over the field F. In other words, N (σ; F) is the number of (finite) extremities of a set of representative bars.

Proof. According to the Z-symmetry of the barcode, it boils down to proving that the number of extremities of the barcode lying inside [0, 1) is equal to N (σ; F). Let 0 ≤ t 1 < t 2 < • • • < t n < 1 be the action values of σ in [0, 1), that is the points where extremities of the barcode could appear. Let t ± j := t j ± ε where ε > 0 is strictly less than the minimum distance between two action values so that t j is the only action value inside [t - j , t (σ; F) gives the number of α i 's and β k 's.

the number of extremities at t = t j . Therefore, we just have to prove that

N (σ; F) = n j=1 dim G (t - j ,t + j ) * (σ; F).
Let us denote by ϕ the Hamiltonian diffeomorphism associated with σ. Since t j is the only action value in [t - j , t + j ], an excision argument gives

G (t - j ,t + j ) * (σ) z C * (σ; z, t j ),
where the direct sum is over the fixed points z ∈ CP d of ϕ with action value t j (see [START_REF] Allais | On periodic points of Hamiltonian diffeomorphisms of CP d via generating functions[END_REF]Section 5.5]). By taking these isomorphisms over the field F for all j, the conclusion follows.

Theorem 4.13. Let σ be a tuple of small C-equivariant Hamiltonian diffeomorphisms associated with the Hamiltonian diffeomorphism

ϕ of CP d . As a graded R-module, G (-∞,+∞) * (σ) = k∈Z Rα k for some non-zero α k 's with deg α k = 2k. For all k ∈ Z, let c k (σ) := inf t ∈ R | α k ∈ im G (-∞,t) * (σ) → G (-∞,+∞) * (σ) . Then for all k ∈ Z, c k (σ) ∈ R is an action value of σ and c k+d+1 (σ) = c k (σ) + 1. Moreover c k (σ) ≤ c k+1 (σ)
for all k ∈ Z, and if there exists k ∈ Z such that c k (σ) = c k+1 (σ), then ϕ has infinitely many fixed points of action c k (σ).

If d + 1 consecutive c k (σ)'s are equal then ϕ = id.
The following proposition is contained in the proof of Theorem 4.13. It makes precise the fact that one could informally think of α k as "the class [CP k+∞ ] ∈ H 2(k+∞) (CP 2∞ )". Proposition 4.14. Let σ be an n 1 -tuple of small C-equivariant Hamiltonian diffeomorphisms and let k ∈ Z. Let m ∈ N, K ∈ R and t ∈ R such that -m < -K < c k (σ) < t < m. We set r := (n 1 + mn 0 -1)(d + 1) and N := (n 1 + mn 0 )(d + 1) -1.

Let α k ∈ G (-∞,t) 2k (σ) be a class sent to α k under the inclusion map G (-∞,t) * (σ) → G (-∞,+∞) * (σ). Then the image α k ∈ G (-K,t) 2k
(σ) under the inclusion map is non-zero and there exists b k ∈ G

(-K,t) 2k (σ, m) such that θ ∞ m (b k ) = α k . The class b k is the image of a class b k ∈ HZ 2k (σ m,t ) that is sent to [CP k+r/2 ] ∈ H 2k+r (CP N ) under the map induced by inclusion Z(σ m,t ) → CP N .
Proof of Theorem 4.13. In the beginning of this section, we have proved the theorem for σ = ε; hence for σ = ε n for all odd n ∈ N. Let us show that the persistence module of any n-tuple σ and the persistence module of ε n are δ-interleaved for some δ > 0.

Let σ be an n-tuple and let us denote f 1 , . . . , f n : C d+1 → R the elementary generating functions of σ 1 , . . . , σ n respectively. For all ζ ∈ (C d+1 ) n+mn 0 , one has

F σm,t (ζ) -F (ε n )m,t (ζ) ≤ M (σ) := max z 1 ,...,zn∈B |f 1 (z 1 ) + • • • + f n (z n )|,
where B ⊂ C d+1 denotes the closed unit ball. It follows that the inclusion maps induce a natural (i.e. that commutes with inclusions and the direct system) M (σ)interleaving between G (-K,t) * (σ, m) and G (-K,t) * (ε n , m) with K ∈ (-m, 1 -m) fixed and almost every t ∈ (-K, m). These natural interleavings induced a M (σ)interleaving between G

(-∞,t) * (σ) and G (-∞,t) * (ε n ). The fact that G (-∞,+∞) * (σ) is isomorphic as a graded R-module to G (-∞,+∞) * (ε n
) is now a direct consequence of the existence of an interleaving between their associated persistence modules. The characterisation of c k (σ) and α k given by Proposition 4.14 is true for σ = ε n by the above discussion. Since the M (σ)-interleaving is induced by inclusion, Proposition 4.14 is still true for σ that is "α k corresponds to [CP N (m)+k ]" seen in G Informally one could think of e k as "the class u k+∞ ∈ H 2(k+∞) (CP 2∞ )". Therefore, one can define alternatively the spectral values c k (σ) by

c k (σ) = inf t ∈ R | e k ∈ ker G * (-∞,+∞) (σ) → G * (-∞,t) (σ) .
Given an n-tuple σ = (σ 1 , . . . , σ n ), we denote by σ -1 the n-tuple (σ -1 n , . . . , σ -1 1 ). We recall that if f : C d+1 → R is an elementary generating function of σ then -f is an elementary generating function of σ -1 . Therefore, one has

F σ -1 (v 1 , v 2 , . . . , v n ) = -F σ (v 1 , v n , v n-1 , . . . , v 2 ) (13) 
(this identity has already been stated in the special case σ = ε n in Proposition 4.1). Given an n-tuple σ and an m-tuple σ , one has

F (σ,σ ) (v, v ) = F (σ ,σ) (v , v), ∀v ∈ (C d+1 ) n , ∀v ∈ (C d+1 ) m . ( 14 
)
Proposition 4.15 (Poincaré duality). Let σ be a tuple of small C-equivariant Hamiltonian diffeomorphisms of C n+1 . There exists a duality isomorphism between generating function homology cohomology 

P D : G * (a,b) (σ) -→ G (-b,-a) d- * (σ -1 ), with -∞ ≤ a ≤ b ≤ +∞
   H * (M, A) H * {f ≤ b}, {f ≤ a} H * (M, B) H * {-f ≤ -a}, {-f ≤ -b}
Finally, one has the duality isomorphism

P D : H * {f ≤ b}, {f ≤ a} -→ H n- * {-f ≤ -a}, {-f ≤ -b} .
Let us apply the same idea in W := CP N with N := (n + mn 0 )(d + 1) -1:

G * (a,b) (σ, m) = H (n+mn 0 -1)(d+1)+ * F σ m,b ≤ 0 , F σm,a ≤ 0 H 2N -((n+mn 0 -1)(d+1)+ * ) F σm,a ≥ 0 , F σ m,b ≥ 0 ,
where we have used that 0 is not a critical value of either F σm,a or F σ m,b . This last homology group is isomorphic to

H (n+mn 0 -1)(d+1)+(2d- * ) F (σ -1 ) m,-a ≤ 0 , F (σ -1 ) m,-b ≤ 0 = G (-b,-a) 2d- * (σ -1 , m).
Indeed, according to identity [START_REF] Franks | Geodesics on S 2 and periodic points of annulus homeomorphisms[END_REF], this homology group is naturally isomorphic to the homology group of a pair of sublevel sets of functions -F (σm,t) -1 . The conclusion follows by applying Proposition 4.7 to an interpolation from (σ m,t ) -1 to (σ -1 ) m,-t . Let us precise the interpolation argument. One has (σ m,t ) -1 = ((δ

(m) t ) -1 , σ -1
). According to [START_REF] Franks | Area preserving homeomorphisms of open surfaces of genus zero[END_REF], the sublevel set induced by this tuple is homeomorphic to the one induced by (σ -1 , (δ (m) t ) -1 ) so it is enough to find an interpolation from (δ

(m) t ) -1 to δ (m) -t . By definition, (δ (m) t ) -1 = (ε qn 0 , δ -1 s , δ -1 1 , . . . , δ -1 1 ) with s = t -t . We remark that δ -1 t = δ -t .
It is then easy to find the wanted homotopy among tuples the form (δ t 1 , δ t 2 , . . .) with Proof. This is a direct consequence of the commutativity of [START_REF] Çineli | On the iterated Hamiltonian Floer homology[END_REF].

t 1 + t 2 + • • • = -t.
As an application, one can prove the sub-additivity of the spectral invariants. 

β(σ) ≤ 1.
As a matter of fact, the proof allows us to give the more precise bound:

β(σ) ≤ c d+k (σ) -c k (σ),
for all k ∈ Z (in particular, one can always replace ≤ 1 by < 1).

In the proof, we will essentially prove that the persistence modules of σ and ε are (c d (σ), -c 0 (σ))-interleaved. The isometry theorem between the interleaving distance and the barcode distance states that the distance between the two associated barcodes is not more than c d (σ) -c 0 (σ). Since the barcode of ε does not have any finite bar, the conclusion follows.

In order to simplify the proof, we will use a slightly weaker result than the isometry theorem. We recall that the maximal length of a finite bar β(V t ) ≥ 0 in the persistence module (V t ) can alternatively be defined by

β(V t ) = sup β ≥ 0 | ∃t ∈ R, ker(V t → V t+β ) = ker(V t → V +∞ ) .
Lemma 5.2. Let ((V t ), π) be a persistence module and ((W t ), κ) be a persistence module without any finite bar. If there exist δ, δ ∈ R with δ + δ ≥ 0 and f : (V t ) → (W t+δ ) and g : (W t ) → (V t+δ ) that are morphisms of persistence modules such that

g t+δ f t = π t+δ+δ t for all t ∈ R, then β(V t ) ≤ δ + δ .
Proof of Lemma 5.2. The proof can be summed up by the following diagram:

V t / / ft " " V t+δ+δ / / V s fs " " W t+δ g t+δ 9 9
/ / W s+δ , (we do not assume that the right "square" is commutative). By contradiction, let us assume that there exists t ∈ R and v ∈ V t such that π t+δ+δ t v = 0 and (η + η ) ∈ HZ 2d (ε m,η+η ) (we recall that ε 2n+1 = ε mn 0 +1 = ε m,0 by our assumption on n). Let us denote by ∆ 1 the interpolation isomorphism associated with (σ s-1 , ε, σ 1-s ) s∈[0,1] and by ∆ 2 the interpolation isomorphism associated with (σ 1-s , ε, σ s-1 ) s∈ [0,[START_REF] Allais | On periodic points of Hamiltonian diffeomorphisms of CP d via generating functions[END_REF] . Let us denote by ∆ 1 the interpolation isomorphism associated with (σ, ε, σ s-1 , ε, σ 1-s ) s∈[0,1] and by ∆ 2 the one associated with (σ ε,ε,σ

π +∞ t v = 0. Since π +∞ t v = 0, there exists s ≥ t + δ + δ such that π s t v = 0. By hypothesis, π t+δ+δ t = g t+δ f t so w := f t v = 0. Since (W t ) does not have any finite bars, κ s t+δ w = 0. Since f is a morphism of persistence modules, f s π s t = κ s+δ t+δ f t so f s π s t v = κ s+δ t+δ w = 0. A contradiction with π s t v = 0.
) s∈[0,1] .
We define the following morphisms of persistence modules:

f t : G (-∞,t) * (σ) → G (-∞,t+η ) * (ε 2n+1 ), α → ∆ 1 (b d α), g t : G (-∞,t) * (ε 2n+1 ) → G (-∞,t+η) * (σ), α → a -1 d ∆ 2 • ∆ -1 1 (b d α).
Indeed, these morphisms commute with inclusion morphisms by naturality of the morphisms involved in their definitions. Let us denote by

π s t : G (-∞,t) * (σ) → G (-∞,s) *
(σ) the inclusion morphism for t ≤ s.

In order to apply Lemma 5.2, one just needs to show that g t+η • f t = π t+η+η t for all t ∈ R. For all α ∈ G (-∞,t) * (σ), one has

g t+η • f t (α) = a -1 d ∆(b d ∆ 1 (b d α)) = a -1 d ∆ 2 (b d b d α) = a -1 d ∆ 2 (b d b d ) α = a -1 d a d α = π η+η t α,
where the second and third equality comes from Proposition 4.8 and the identity a -1

d a d = π η+η t
is a direct consequence of the commutativity of [START_REF] Collier | A symplectic proof of a theorem of Franks[END_REF]. The conclusion follows from Lemma 5.2 since the persistence module of ε 2n+1 does not have any finite bar (see the beginning of Section 4.5) and

η + η = c d (σ) + c d (σ -1 ) + ε = c d (σ) -c 0 (σ) + ε ≤ 1 + ε,
where the second equality comes from Proposition 4.16.

Smith inequality

In this section, we show how the classical Smith inequality ( 16) can be applied to the sublevel sets of generating functions to prove inequality (2). Çineli-Ginzburg used the same kind of argument to prove a Smith inequality between the dimension of the local homology of a Hamiltonian orbit and its p-iterate for p prime [START_REF] Çineli | On the iterated Hamiltonian Floer homology[END_REF].

Z/(p)-action of a p-iterated generating function.

Let us fix a prime number p ≥ 3. Let us fix t ∈ R and study the generating function of (e -2iπt Φ 1 ). In order to fix the notation, we recall that

F σm,t (v) := n k=1 f k v k + v k+1 2 + 1 2 v k , iv k+1 ,
where v := (v 1 , . . . , v n ) ∈ (C d+1 ) n and the f k : C d+1 → R are S 1 -invariant and 2-homogeneous. Thus F σ p m,t : (C n(d+1) ) p → R is invariant under the action of Z/(p) by cyclic permutation of coordinates generated by

(v 1 , v 2 , . . . , v p ) → (v p , v 1 , . . . , v p-1 ),
(here σ p m,t means (σ m,t ) p ). The induced F σ p m,t : CP pn(d+1)-1 → R is then invariant under the Z/(p)-action by permutation of homogeneous coordinates induced by

[v 1 : v 2 : • • • : v p ] → [v p : v 1 : • • • : v p-1 ].
Fixed points (CP N ) Z/(p) of this action are the disjoint union q P q of the p following (n(d + 1) -1)-complex projective subspaces:

P q := v : ζ q v : ζ 2q v : • • • : ζ (p-1)q v | [v] ∈ CP n(d+1)-1 , ζ := e 2iπ p .
Using the fact that the f k 's are S 1 -invariant and 2-homogeneous,

1 p F σ p m,t (v, ζ q v, . . . , ζ q(p-1) v) = n-1 k=1 f k v k + v k+1 2 + 1 2 v k , iv k+1 + f n v n + ζ q v 1 2 + 1 2 v n , iζ q v 1 .
We apply the linear change of variables v → u given by u

k := v k + (-1) k 1-ζ q 2 v 1 so that                u 1 + u 2 = v 1 + v 2 , u 2 + u 3 = v 2 + v 3 , . . . u n-1 + u n = v n-1 + v n , u n + u 1 = v n + ζ q v 1 .
A direct computation gives

n-1 k=1 v k , iv k+1 + v n , iζ q v 1 = n k=1 u k , iu k+1 -2 tan qπ p u 1 2 ,
for all integer q ∈ 1-p 2 , . . . , p-1

2

, so that

F σ p m,t (v, ζ q v, . . . , ζ q(p-1) v) = p F σm,t (u) -tan qπ p u 1 2 =: pG t,q (u),
for q ∈ 1-p 2 , . . . , p-1

2

. This last function G t,q is the fiberwise sum of a generating function of e -2iπt Φ 1 and a generating function of e -2iπq/p . We recall that in this case, C-lines of critical points of this function are in one-to-one correspondence with C-lines of fixed points of the composed diffeomorphism e -2iπ(t+q/p) Φ 1 (see the paragraph surrounding Equation ( 4)). Let (f s,t ) be the family of function

f s,t (u) := F σ m,t+(1-s)q/p (u) -tan s qπ p u 1 2 , s ∈ [0, 1].
The function f s,t is the fiberwise sum of a generating function of e -2iπ(t+(1-s)q/p) Φ 1 and a generating function of e -2iπsq/p so 0 is a regular value of f s,t if and only if e -2iπ(t+q/p) Φ 1 does not have any C-line of fixed points, that is if and only if t + q/p is not an action value of σ. According to Proposition 4.7,

H * G b,q ≤ 0 , G a,q ≤ 0 G (a+q/p,b+q/p) * -i 0 (σ, m) G (a+q/p,b+q/p) * -i 0 (σ), (15) 
where -m ≤ a + q/p ≤ b + q/p ≤ m, i 0 is some integer and a + q/p and b + q/p are not action values of σ.

Application of Smith inequality. According to Smith inequality

, dim H * (X; F p ) ≥ dim H * (X Z/(p) ; F p ), ( 16 
)
where X is a locally compact space or pair such that H * (X; F p ) is finitely generated, a space on which acts the group Z/(p) (see for instance dim G (a+q/p,b+q/p) * (σ; F p ).

Proof. Let us assume that p ≥ 3 and refer the reader to Section 6.4 for the modifications specific to p = 2. By concatenating σ with some ε k if needed, it is not difficult to find a homotopy interpolating σ p m,t := (σ m,t ) p and (σ p ) pm,pt . Therefore, the associated interpolation isomorphism gives us

HZ * (σ p m,b , σ p m,a ) G (pa,pb) * (σ p , pm) G (pa,pb) * (σ p ). (17) 
Now, we apply the Smith inequality [START_REF] Viktor | The Conley conjecture[END_REF] to the couple

X := F σ p b ≤ 0 , F σ p a ≤ 0 . According to the last section, X Z/(p) (1-p)/2≤q≤(p-1)/2 G b,q ≤ 0 , G a,q ≤ 0 .
Therefore, Smith inequality ( 16), ( 17) and ( 15) bring the conclusion. 6.3. Computation of β tot . The arguments of this section follow the proof of Theorem B.1 given by Shelukhin in Appendix B in the realm of Floer theory that applies to every closed monotone symplectic manifold. Proposition 6.2. Let σ be a tuple of small C-equivariant Hamiltonian diffeomorphisms of C d+1 with a finite number of associated fixed points in CP d . For all a ∈ R, all integer n ∈ N * and all field F, 

β tot (σ; F) = 1 2 1 0 dim G (a+t,a+t+n) * (σ; F) dt -n(d + 1) . Proof. Let I 1 , . . . , I n ⊂ R
(σ; F) = k∈Z n r=1 χ Ir (b + k) -χ Ir (a + k) + d+1 s=1 χ Js (b + k) -χ Js (a + k) .
Therefore, in order to prove the statement, it is enough to prove that for all I ∈ {I 1 , . . . , I n },

k∈Z 1 0 χ I (a + t + k + n) -χ I (a + t + k) dt = 2 length I, (18) 
while for all J ∈ {J 1 , . . . , J d+1 },

k∈Z 1 0 χ J (a + t + k + n) -χ J (a + t + k) dt = n. ( 19 
)
In order to prove [START_REF] Givental | Nonlinear generalization of the Maslov index[END_REF], let us write I = (u, v]. According to Theorem 5.1, length I = v -u ≤ 1. If the integer parts u -a and v -a are equal, then only the terms k = u -a and k = u -a + n are non-zero, both equal to length I. Otherwise, one must compute the four non-zero terms and gets

(1 -{u -a}) + {v -a} + (1 -{u -a}) + {v -a} = 2(v -u) = 2 length I,
where {x} denotes the fractional part x -x for x ∈ R (at the first equality, we have used v -a = u -a + 1).

Identity [START_REF] Granja | Givental's non-linear Maslov index on lens spaces[END_REF] is proven by a similar straightforward computation.

The following corollary is a generating functions analogue of [START_REF] Shelukhin | On the Hofer-Zehnder conjecture[END_REF]Theorem D] in the special case M = CP d . Corollary 6.3. For all tuple of small C-equivariant Hamiltonian diffeomorphisms of C d+1 with a finite number of associated fixed points in CP d , for all prime number p, β tot (σ p ; F p ) ≥ pβ tot (σ; F p ).

Proof. Let us take the integral over almost all t ∈ [0, 1] of the inequality stated in Proposition 6.1 for a = t and b = 1 + t. On the left hand side,

1 0 dim G (pt,p+pt) * (σ p ; F p )dt = 1 p p 0 dim G (s,p+s) * (σ p ; F p )ds = 1 p p-1 k=0 1 0 dim G (k+s,k+s+p) * (σ p ; F p )ds = 1 p p-1 k=0 2β tot (σ p ; F p ) + p(d + 1) = 2β tot (σ p ; F p ) + p(d + 1),
where we have applied Proposition 6.2 at the third line. On the right hand side, by applying Proposition 6.2 once again,

(1-p)/2≤q≤(p-1)/2 1 0 dim G (q/p,q/p+t) * (σ; F p )dt = (1-p)/2≤q≤(p-1)/2 2β tot (σ; F p ) + d + 1 = 2pβ tot (σ; F p ) + p(d + 1).
Therefore, 2β tot (σ p ; F p ) + p(d + 1) ≥ 2pβ tot (σ; F p ) + p(d + 1) and the conclusion follows. Proposition 6.4. For all tuple of small C-equivariant Hamiltonian diffeomorphisms σ of C d+1 with a finite number of associated fixed points in CP d , there exists an integer N ∈ N such that for all prime number p ≥ N ,

β tot (σ; F p ) = β tot (σ; Q).
Proof. According to Proposition 6.2, it is enough to prove that for some N ∈ N every prime number such that p

≥ N satisfies dim G (t,t+1) * (σ; F p ) = dim G (t,t+1) * (σ; Q), ∀t ∈ [0, 1]. ( 20 
) If there is no action value of σ in [a, b] then dim G (a,a+1) * (σ; F) = dim G (b,b+1) *
(σ; F) for all field F. Since there is a finite number of action values in [0, 1], it is enough to prove [START_REF] Gromoll | On differentiable functions with isolated critical points[END_REF] for a finite number of value t (one in between each critical value of [0, 1]). For each t (that is not an action value), G (t,t+1) * (σ; F) H * +i 0 (A t , B t ; F) for a topological pair (A t , B t ) of some complex projective space independent of F with a finitely generated homology group with integral coefficients. According to the universal coefficient theorem, there exists

N t ∈ N such that dim H * (A t , B t ; Q) = dim H * (A t , B t ; F p )
for all prime number p ≥ N t . The conclusion follows by taking the maximum among the N t 's for our finite set of t's.

6.4. The special case p = 2. Here, we briefly explain how to modify the above arguments in the special case p = 2 -that is only useful to prove Theorem 1.1 when F has characteristic 2.

In order to study the Z/(2)-symmetry of a generating function associated with (Φ 2 t ), one cannot take the generating function of σ 2 m,t since it is an even tuple. Instead, we take the generating function of (σ m,t , ε, σ m,t ) which is invariant under the following action of Z/(2) written in w-variables:

(w 1 , w 2 , w 3 ) → w 3 , -w 2 + n k=1 (-1) k (w 1 k + w 3 k ), w 1 .
Indeed, Q 2n+1 is invariant under this action and, in w-variables,

F (σm,t,ε,σm,t) (w 1 , w 2 , w 3 ) = F (w 1 ) + F (w 3 ) + Q 2n+1 (w 1 , w 2 , w 3 ),
where F is the direct sum of the elementary generating functions of σ m,t . The set of fixed points of the induced action on CP (2n+1)(d+1)-1 is the disjoint union of the complex projective spaces P 0 and P 1 defined by

P 0 := w : n k=1 (-1) k w k : w | w ∈ (C d+1 ) n , P 1 := [w : w : -w] | (w, w ) ∈ (C d+1 ) n × C d+1 .
The restriction of the generating function to P 0 gives us back the generating function F σm,t whereas, still in w-variables,

1 2 F (σm,t,ε,σm,t) (w, w , -w) = F σm,t (w) + 2 n k=1 (-1) k+1 w k , iw ,

By the change of variables

A n v = w and ξ = 2w , one gets, in v-variables, the function (v, ξ) → F σm,t (v) + v 1 , iξ
which is the fiberwise sum of a generating function of e -iπt Φ 1 with the generating function (x; ξ) → x, iξ that generates -id. This time, we can take (f s,t ) to be the family of function

f s,t (v, v n+1 ) := F σ m,t+(1-s)/2 (v) + sin s π 2 v 1 -i cos s π 2 ξ 2 , iξ , s ∈ [0, 1],
that interpolates the latter with (v, ξ) → F σ m,t+1/2 (v). That being said, it is not difficult to conclude. Let us assume that F = Q. According to Proposition 4.12, N (σ; Q) > d + 1 implies that K(σ; Q) > 0 so β(σ; Q) > 0. According to Corollary 6.3, for all prime number p ≥ 3,

K(σ p ; F p )β(σ p ; F p ) ≥ β tot (σ p ; F p ) ≥ pβ tot (σ; F p ).
Thus, by Proposition 6.4, for all sufficiently large prime p,

K(σ p ; F p )β(σ p ; F p ) ≥ pβ tot (σ; Q) ≥ pβ(σ; Q),
that is to say that K(σ p ; F p )β(σ p ; F p ) grows at least linearly with prime numbers p. According to Theorem 5.1, β(σ p ; F p ) ≤ 1 so K(σ p ; F p ) must diverge to +∞ with prime numbers p and so must N (σ p ; F p ) by Proposition 4.12. Let z 1 , . . . , z n ∈ CP d be the fixed points of ϕ. According to Corollary 3.2, there exists B > 0 such that dim C * (σ p ; z k ; F p ) < B for all k and all prime p. Let A ∈ N be such that for all prime p ≥ A, N (σ p ; F p ) > nB. Then, for all prime p ≥ A, there must be at least one fixed point of ϕ p that is not one of the z k 's, that is there must be at least one p-periodic point that is not a fixed point. Hence, the conclusion for the case F of characteristic 0.

Let us assume that F = F p for some prime number p. By contradiction, let us assume that ϕ has only finitely many periodic point of period p k for some k ∈ N. According to Corollary 6.3,

β tot (σ p k ; F p ) ≥ p k β tot (σ; F p ), ∀k ∈ N, in particular, N (σ p k ; F p ) > d + 1 for all k ∈ N.
Thus, by taking a sufficiently large p k -iterate of ϕ, one can assume that every periodic point of ϕ of period p k for some k is an admissible fixed point of ϕ (see the end of Section 3.3 for the definition of an admissible fixed point). According to Proposition 3.1, it implies that N (σ p k ; F p ) = N (σ; F p ) for all k ∈ N. But Corollary 6.3 together with Proposition 4.12 imply that the left-hand side of this equation must diverge to +∞ as k grows, a contradiction.

Appendix A. Projective join

We describe an operation on the homology of subsets of a projective space relating the homology of two subsets A and B to the homology of their projective join A * B. The analogous operation for the topological join was already defined by Whitehead in [START_REF] Whitehead | Homotopy groups of joins and unions[END_REF]. Granja-Karshon-Pabiniak-Sandon already defined a homology projective join in the real case in [START_REF] Granja | Givental's non-linear Maslov index on lens spaces[END_REF] for a purpose similar to ours. However, their direct construction seems difficult to extend in the complex case.

Since the proof of some fundamental properties of this operation are only technical and does not shed much light on their applications, we have put these proofs in a specific section. More precisely, proofs of Proposition A. We need to define a projective join in the level of homology which would be a map pj * : H * (A × B) → H * +2 (A * B), or dually in the level of cohomology pj * : H * (A * B) → H * +2 (A × B). One can perhaps proceed directly by defining a projective join at the level of chains, sending two chains α ∈ C i (A) and β ∈ C j (B) to a chain α * β ∈ C i+j+2 (A * B) that triangulates the projective join of their images. We will proceed in an indirect way by remaining in the level of homology.

Let E A,B ⊂ CP n × CP m × CP m+n+1 be the set

E A,B := {(a, b, c) ∈ A × B × (A * B) | c ∈ (ab)} .
Let p 1 and p 2 be the canonical projection of CP n × CP m × CP m+n+1 on the factor CP n × CP m and CP m+n+1 respectively. Then p 1 | E A,B defines a CP 1 -fiber bundle on A × B, the fiber of any (a, b) ∈ A × B being a × b × (ab) (ab). As CP 1 can be identified with the 2-sphere S 2 , the Gysin long exact sequence holds:

• • • • e --→ H * (A × B) (p 1 ) * ---→ H * (E A,B ) (p 1 ) * ---→ H * -2 (A × B) • e --→ • • • , ( 21 
)
where e ∈ H 

H * (A × B) (f | A ×f | B ) * pj * / / H * +2 (A * B) f * H * (C × D) pj * / / H * +2 (C * D) . ( 22 
)
This statement extends to topological pairs in the obvious way.

Proposition A.2. The homology projective join is associative: given A, B and C included in CP n ,

∀(α, β, γ) ∈ H * (A) × H * (B) × H * (C), pj * (pj * (α × β) × γ) = pj * (α × pj * (β × γ)).
As R-algebras, one has

H * (CP m+n+1 ) = R[u]/u m+n+2 and H * (CP m × CP n ) = R[u 1 , u 2 ]/(u m+1 1 , u n+1 2 )
where u, u 1 and u 2 restrict to orientation classes of CP 1 (with CP 1 ⊂ CP m for u 1 and CP 1 ⊂ CP n for u 2 ).

Proposition A.3. Let pj * be the cohomology projective join on CP m × CP n , with the above notation one has

pj * u k = i+j=k-1 u i 1 u j 2 , ∀k ∈ N * .
Dually, the homology projective join pj * on CP m × CP n satisfies

pj * [CP i ] × [CP j ] = [CP i+j+1
], ∀i ∈ {0, . . . , m}, ∀j ∈ {0, . . . , n}.

We recall that the cohomological length (A) of a subspace A ⊂ CP N is the rank of the morphism H * (CP N ; Z) → H * (A; Z) induced by the inclusion (e.g. (CP n ) = n + 1). This is also the rank of the morphism H * (A; Z) → H * (CP N ; Z).

Given two subsets A = ∅ and B as above, let := (B). The restriction of u ∈ H * (CP m+n+1 ) to H * (B) is zero and is non-zero in H * (A * B). Let v B ∈ H * (A * B, B) be one of its inverse image. We recall that there is a well-defined cap-product

H k (A * B, B) × H l (A * B, B) -→ H k-l (A * B \ B)
which is defined by the following commutative diagram:

H * (A * B, B) × H * (A * B, B) ( ( H * (A * B, T ) × H * (A * B, T ) O O H * (A * B \ B) H * (A * B \ B, T \ B) × H * (A * B \ B, T \ B) O O 4 4
, where T ⊂ A * B is the restriction of a tubular neighborhood of CP n to A * B, the bottom diagonal arrow is the usual cap-product and vertical maps are isomorphisms induced by inclusion maps (the isomorphisms come from retractions at the top and from excision at the bottom). Let ). These definitions extend to the case where A is a topological pair (A 1 , A 0 ) with A 1 = A 0 by taking v B ∈ H (B) (A 1 * B, B) and by using the cap-product

H k (A 1 * B, A 0 * B) × H l (A 1 * B, B) -→ H k-l (A 1 * B \ B, A 0 * B \ B),
defined the same way as above. Hence (A * B) ≥ (A) + (B). The converse inequality comes from the commutativity of the following diagram: 

H * (A * B) f / / H * -2 (B) (A) H * (CP m+n+1 ) • u (B) / / H *
H * +2 -2 (A × B) pj * / / H * +2 (A * B) f H * (A) •×β O O id = / / H * (A)
, where f (α) := (p A ) * (α v B ) as defined above. This result also holds when A is a topological pair (A 1 , A 0 ) with A 1 = A 0 .

Corollary A.6. Let (A 1 , A 0 ) be a topological pair included in CP m , the map α → pj * (α × [CP n ]) gives an isomorphism

H * (A 1 , A 0 ) → H * +2(n+1) (A 1 * CP n , A 0 * CP n ) which is the inverse of the isomorphism f : α → (p A 1 ) * α v CP n .
Proof. According to [1, Proposition 4.1], the inclusion morphism H * (CP n ) → H * (A i * CP n ) is an isomorphism in degree * ≤ 2n+1 and f i :

H * (A i * CP n ) → H * -2(n+1) (A i ), f i (α) := (p A i ) * α v CP n is
an isomorphism in degree * ≥ 2(n + 1), for i ∈ {0, 1} (it is stated in cohomology but the proof also holds in this dual setting). Using the long exact sequences of the pairs (A 1 , A 0 ) and (A 1 * CP n , A 0 * CP n ), we deduce that f :

H * (A 1 * CP n , A 0 * CP n ) → H * -2(n+1) (A 1 , A 0
) is an isomorphism. The result is now a direct consequence of Proposition A.5.

A.2. Technical proofs. We will denote E CP m ,CP n by E m,n . The bundle E A,B is the restriction of the bundle E m,n to A × B, hence e is the pullback of the Euler class of E m,n which lies in H 3 (CP m × CP n ) = 0. Therefore e = 0 and (21) reduces to the short exact sequence

0 → H * (A × B) (p 1 ) * ---→ H * (E A,B ) (p 1 ) * ---→ H * -2 (A × B) → 0. ( 23 
)
Proof of Proposition A.2. Let us first define a projective join with 3 entries pj 3 * :

H * (A × B × C) → H * +4 (A * B * C) then prove that pj * (pj * (α × β) × γ) = pj 3 * (α × β × γ) = pj * (α × pj * (β × γ)). ( 24 
)
Given three points a, b and c of some projective space CP N that are projectively independent, we use the classical notation (abc) ⊂ CP N to denote the complex projective plane Let E A,B,C ⊂ (CP n ) 3 × CP 3n+2 be the set (E A,B,C ) denotes the morphism dual to the integration along the fiber of the fibration P 1 (the complex structure of CP 2 gives a natural identification H 4 (CP 2 ) R). We refer to Section A.3 for the definition and properties of this morphism.

E A,B,C := {(a, b, c, z) ∈ A × B × C × (A * B * C) | z ∈ (
In order to prove [START_REF] Le | Periodic orbits of Hamiltonian homeomorphisms of surfaces[END_REF], let us introduce the set c,z). The map P 1 is a CP 1 -fiber bundle, in fact f is a morphism of fiber bundle with base-space morphism f := p 2 × id C . In order to summarize the situation, we have the following commutative diagram:

E (A,
A * B * C E A,B,C P 1 P 2 8 8 E (A,B),C f / / P 1 P 2 O O g o o E A * B,C p 1 p 2 h h E A,B × C f / / p 1 ×id C (A * B) × C A × B × C . ( 25 
)
According to the naturality of the integration along the fiber [START_REF] Whitehead | Homotopy groups of joins and unions[END_REF] 

(α × β) × γ) = (P 2 ) * (P 1 ) * (p 1 × id C ) * (α × β × γ). ( 26 
)
The map g commutes with the Serre fibration q := (p 1 ×id C )•P 1 and the fiber bundle P 1 . Let us fix a base-point (a, b, c) ∈ A×B ×C, of fiber F = a×b×c×(abc) (abc) for P 1 and of fiber F {(x, z) | x ∈ (ab) and z ∈ (xc)} for q. According to Proposition A.7 and the remark after it, in order to show that the following diagram commutes:

H * +4 (E A,B,C ) H * +4 (E (A,B),C ) g * o o H * (A × B × C) P * 1 h h q * O O (27) 
(with coefficients of every H * in the same ring R), one must prove that g * : H 4 (F ) → H 4 (F ) commutes with the identity of R under the isomorphisms H 4 (F ) R and H 4 (F ) R given by the local complex orientation. This comes from the fact that the quotient space F /((ab) × c) is canonically homeomorphic to (abc) F (in particular, preserving the orientation), the homeomorphism being induced by g| F . The long exact sequence of the couple (F , (ab) × c) concludes. Therefore, diagram [START_REF] Salamon | Morse theory for periodic solutions of Hamiltonian systems and the Maslov index[END_REF] commutes. Thus, according to the left hand side of the diagram (25) together with the composition property q * = (P 1 ) * (p 1 ×id C ) * , one has (P 2 ) * (P 1 ) * (p 1 ×id C ) * = (P 2 ) * (P 1 ) * and (26) gives the first equality of [START_REF] Le | Periodic orbits of Hamiltonian homeomorphisms of surfaces[END_REF].

The second equality is proven in a symmetric way.

Proof of Proposition A.3. For now, let us work on E m,n . First, let us see that pj * u = 1. By naturality [START_REF] Hingston | Subharmonic solutions of Hamiltonian equations on tori[END_REF], it boils down to showing that pj * : H 2 ((ab)) → H 0 (a × b) maps the restriction of u to (ab) to 1 ∈ H 0 (a × b) for all (a, b) ∈ CP m × CP n . Now E a,b = a × b × (ab) so that (p 2 ) * is an isomorphism sending the orientation class of (ab) to the orientation class of E a,b . According to [START_REF] Hofer | Symplectic invariants and Hamiltonian dynamics[END_REF], (p 1 ) * is also an isomorphism (preserving the orientation), hence the result.

Let u 0 := (p 2 ) * u ∈ H 2 (E m,n ). We must now study (p 1 ) * u k 0 for k ∈ N * . Let T ⊂ CP m+n+1 be a tubular neighborhood of CP n that is a deformation retract. Its pullback p -1 2 (T ) is a deformation retract of p -1 2 (CP n ), hence

H * E m,n , p -1 2 (CP n ) H * E m,n , p -1 2 (T ) H * E m,n \ p -1 2 (CP n ), p -1 2 (T \ CP n ) , ( 28 
) where the isomorphisms are induced by inclusion, the second one coming from excision. The space E m,n \ p -1 2 (CP n ) is the CP 1 -fiber bundle E m,n with one global section taken away, so it is a C-fiber bundle. Let t ∈ H 2 (E m,n , p -1 2 (CP n )) be its Thom class (under the natural identification given by ( 28)). Therefore, according to Thom isomorphism theorem, the map

H * (CP m × CP n ) → H * +2 (E m,n , p -1 2 (CP n )), α → t (p 1 ) * α (29) 
is an isomorphism. By looking at restrictions to E a,b 's, we see that t is non-zero on H * (E m,n ) and is sent to 1 ∈ H 0 (CP m × CP n ) by (p 1 ) * . According to [START_REF] Hofer | Symplectic invariants and Hamiltonian dynamics[END_REF], on H * (E m,n ) we have u 0 -t = (p 1 ) * v for some v ∈ H 2 (CP m × CP n ). In order to find v, we consider the following commutative diagram:

H * (CP m × CP n ) (p 1 ) * v v (p 1 ) * H * E m,n , p -1 2 (CP n ) / / H * (E m,n ) / / H * p -1 2 (CP n ) H * (CP m+n+1 , CP n ) (p 2 ) * O O / / H * (CP m+n+1 ) (p 2 ) * O O / / H * (CP n ) (p 2 ) * O O , ( 30 
)
where horizontal arrows are induced by inclusion and form exact sequences. The restriction of p 1 to p -1 2 (CP n ) induces a homeomorphism CP m × CP n p -1 2 (CP n ). Under this identification, the restriction of p 2 to p -1 2 (CP n ) is the projection on the second factor CP n . Hence, the right-hand side vertical arrow (p 2 ) * of (30) sends u k to (p 1 ) * u k 2 . In particular, by commutativity of [START_REF] Théret | Rotation numbers of Hamiltonian isotopies in complex projective spaces[END_REF],

u 0 ∈ H 2 (E m,n ) is sent to (p 1 ) * u 2 . Since t ∈ H 2 (E m,n ) is in the image of the top left arrow, it is sent to 0 in H 2 (p -1 2 (CP n )) by exactness. Thus u 0 -t ∈ H 2 (E m,n ) is sent to (p 1 ) * u 2 whereas (p 1 ) * v ∈ H 2 (E m,n ) is sent to (p 1 ) * v ∈ H 2 (p -1
2 (CP n )) by commutativity of the up right triangle (with a slight abuse of notation). Therefore v = u 2 .

In order to study the powers of u 0 , we now study the powers of t ∈ H 2 (E m,n ). Seen in H 4 (E m,n , p -1 2 (CP n )), t 2 = t (p 1 ) * (λu 1 + µu 2 ) for some λ, µ ∈ Z according to Thom isomorphism [START_REF] Shelukhin | The Z/pZ-equivariant product-isomorphism in fixed point Floer cohomology[END_REF]. Let us first find the value of λ by restricting the complex line bundle E m,n \ p -1 2 (CP n ) to the base space CP m × CP 0 . This complex line bundle is E m,0 \ p -1 2 (CP 0 ) and its Thom class t is the restriction of t to

H 2 E m,0 , p -1 2 (CP 0 ) H 2 E m,0 /p -1 2 (CP 0 ) , so that t 2 = λt (p 1 ) * u 1 . Since CP 0 is just a point, p 2 factors in a homeomorphism between E m,0 /p -1 2 (CP 0 ) and CP m * CP 0 . Thus p 2 induces an isomorphism of Z- algebras H * (CP m * CP 0 , CP 0 ) -→ H * (E m,0 , p -1 2 (CP 0 )). ( 31 
) According to the long exact sequence of the couple (CP m * CP 0 , CP 0 ), H 2 (CP m * CP 0 , CP 0 ) H 2 (CP m * CP 0 ) so that the generator u ∈ H 2 (CP m * CP 0 ) can naturally be seen in H 2 (CP m * CP 0 , CP 0 ). Under the isomorphism [START_REF] Traynor | Symplectic homology via generating functions[END_REF], u is mapped to t so that u 2 is mapped to t 2 . Thus t 2 must be a generator of H 4 (E m,0 , p -1 2 (CP 0 )), hence λ = ±1. By applying the orientation preserving morphism (p 1 ) * , we see that λ = 1. Now, since u 0 = t + (p 1 ) * u 2 , one has

u 2 0 = t (p 1 ) * (u 1 + (µ + 2)u 2 ) + (p 1 ) * u 2 2 hence (p 1 ) * u 2 0 = u 1 + (µ + 2)u 2 .
By symmetry of (p 1 ) * u 2 0 in u 1 and u 2 , µ must be -1. Indeed, the above identity is still true by restricting ourselves to E 1,1 and must be invariant under the map induced by (a, b, c) → (b, a, c) that swaps u 1 and u 2 . Since u 0 = t + (p 1 ) * u 2 , one has that

u k 0 = i+j=k k i t i (p 1 ) * u j 2 .
Using

t i = t (p 1 ) * (u 1 -u 2 ) i-1 for i ∈ N and (p 1 ) * (t (p 1 ) * w) = w, one finally gets (p 1 ) * u k 0 = i+j=k k i (u 1 -u 2 ) i-1 u j 2 = i+j=k-1 u i 1 u j 2 , ( 32 
)
the last equality can be obtained by identification of coefficients of the polynomial expression in u 1 and u 2 .

Proof of Proposition A.5. We first remark that there is a well-defined cap-product

H * (E A,B ) × H * (E A,B , p -1 2 (B)) → H * (E A,B \ p -1 2 (B)
) compatible with the one defines in A * B through the map p 2 and defined the same way. This is summed up by saying that the left hand side of the following diagram is "commutative":

H * (E A,B ) × H * (E A,B , p -1 2 (B)) / / (p 2 ) * H * (E A,B \ p -1 2 (B)) (p 2 ) * (p 1 ) * / / H * (A × B) (pr 1 ) * H * (A * B) × H * (A * B, B) / / (p 2 ) * O O H * (A * B \ B) (p A ) * / / H * (A) . ( 33 
)
In this diagram, pr 1 : A × B → A is the projection on the first factor. The commutativity of the right hand side of the diagram comes from the obvious commutativity of the associated continuous maps:

p A • p 2 = pr 1 • p 1 on E A,B \ p -1 2 (B). Let v B := (p 2 ) * v B ∈ H 2 (E A,B , p -1 2 (B)). The space E A,B \ p -1 2 (B) is the restriction to A × B of the C-fiber bundle E m,n \ p -1
2 (CP n ), so that the following map is an isomorphism for the same reason the map (29) was: 

H * (A × B) → H * +2 (E A,B , p -1 2 (B)), w → t ( p 
v B = w = i+j= -1 u i 1 u j 2 , (34) 
identifying u 1 and u 2 with their restrictions to H * (A × B) by a slight abuse of notation. We can now compute, for all α ∈ H * (A),

(p A ) * (pj * (α × β) v B ) = (p A ) * • (p 2 ) * ((p 1 ) * (α × β) v B ) = (pr 1 ) * • (p 1 ) * ((p 1 ) * (α × β) v B ) = (pr 1 ) *   (α × β) i+j= -1 u i 1 u j 2   = i+j= -1 (pr 1 ) * (α u i ) × (β u j ) = u -1 , β α u 0 = α.
The second equality follows from commutativity of the diagram (33), the third uses (34) together with the projection formula p * (p * γ w) = γ p * w where p is a sphere bundle. By grading issues, only the indices (i, j) = (0, -1) contribute to the sum and, by definition of β, u -1 , β = 1. The result of this computation is the statement we wanted to prove. A.3. Integration along the fiber. In this section, we recall some well known properties of the morphism of integration along fiber (see [START_REF] Chataur | String topology of classifying spaces[END_REF]Section A.2] and references therein). Since we cannot find any reference concerning the proof of the composition property, we give a proof of this key property used to prove Proposition A.2.

Let G be a group. Throughout this section, H * (X) and H * (X) will denote respectively the singular homology and the singular cohomology of the topological space or pair X with coefficients in G. If we want to put another group of coefficients G , we will write down explicitly H * (X; G ) or H * (X; G ) so that for instance H * (X; H d (Y )) = H * (X; H d (Y ; G)) where Y is a topological space or pair.

Let us assume that π : X → B is a Serre fibration with fiber F which has the type of a CW complex of dimension d (throughout this section, we will simply write that the fibers of π have dimension d). In order to simplify the statements, we will always assume that π 1 (B) acts trivially on H * (F ). Then the Serre spectral sequence in homology (E r p,q ) of π satisfies E 2 p,q H p (B; H q (F )) = 0 for q > d. (F )). In de Rham cohomology, the map π * can be easily defined on compact smooth fiber bundles as induced by the integration of differential forms along the fibers.

In the special case F S n , the map π * corresponds to the Gysin morphism. This definition extends directly to relative fibrations π : (X, X ) → (B, B ) and the induced maps commute with the long exact sequences of pair and triple by naturality of the Serre spectral sequence. Given a commuting square of (possibly relative) fibrations where the bottom isomorphism is induced by the isomorphism H d 2 (F 2 ; H d 1 (F 1 )) H d 1 +d 2 (F ) between the groups of coefficients.

X p F f / / Y q F B f / / C ,
In our article, the fibers F 1 , F 2 and F are naturally oriented so that there are canonical isomorphisms between their top degree homology groups and the coefficient group and one does not have to bother with changes of coefficient group. However, if one wants to avoid the change of coefficients in the naturality statement [START_REF] Whitehead | Homotopy groups of joins and unions[END_REF] when H d (F ) G and H d (F ) G, the map f * : H d (F ) → H d (F ) must send preferred generator to preferred generator.

Proof of Proposition A.7. Without loss of generality, one can assume that B and X are actual CW complexes and that π 2 is a locally trivial cellular fibration [START_REF] Barnes | The simplicial bundle of a CW fibration[END_REF]. We denote by E, E 1 and E 2 Serre spectral sequences of π, π 1 and π 2 respectively, E 2 having H d 1 (F 1 ) coefficients. Let B p and X p denote respectively the p-skeleton of B and the p-skeleton of X. Let X p := π -1 2 (B p ), Y p := π -1 (B p ) and Y 1;p := π -1 1 (X p ) denote the filtration of the spaces X and Y associated with E 2 , E and E 1 respectively. Therefore, for instance the first page of E 2 is given by E 1 2;p,q := H p+q (X p , X p-1 ).

Since π 2 is a cellular fibration with fibers of dimension d 2 , X p = π -1 2 (B p ) is included in X p+d 2 . Hence, Y p ⊂ Y 1;p+d 2 and this inclusion between filtrations induces a morphism of spectral sequences (with a shift in degree) E r p,q → E r 1;p+d , where only the commutativity of the triangle is not a direct consequence of the previous diagram. The commutativity of the triangle is a consequence of the naturality of the morphism induced by the inclusion of filtrations X p ⊂ X p+d 2 between the associated spectral sequences. Indeed, since (X p+d 2 ) is a cellular filtration, the associated spectral sequence whose first page is (H p+q (X p+d 2 , X p+d 2 -1 )) p,q degenerates Note that for I = (-∞, ∞), (a suitable completion of) CF (H, J) = CF (H, J) I , as well as HF (H) = HF (H) I can be considered to be modules over the minimal Novikov field Λ min,K = K[[q -1 , q] where q is a formal variable of degree 2N. By the PSS-isomorphism [START_REF] Piunikhin | Symplectic Floer-Donaldson theory and quantum cohomology[END_REF] HF (H) ∼ = QH(M ; Λ min,K ), the right-hand side denoting the quantum homology algebra of (M, ω). As a Λ min,K -module, QH(M ; Λ min,K ) = H * (M ; K) ⊗ K Λ min,K , and the PSSisomorphism is an isomorphism of Λ min,K -modules. We note that ignoring the grading, for each admissible interval I, we have HF (H) I ∼ = HF (H) I+ρ , the isomorphism being given by multiplication by q. We express this fact by saying that the area, or the valuation, of q is ρ.

To a time-dependent Hamiltonian H on a closed monotone symplectic manifold (M, ω), the set Fix c (φ) of whose contractible fixed points is finite, we can associate a ρ-periodic barcode, B(H; K) = {(I j , m j )}, where I j , called bars, are intervals of the form (a, b], or (a, ∞), with endpoints in Spec(H) and m j ∈ Z >0 are their multiplicities. The ρ-periodicity means that if (I, m) ∈ B(H; K) then (I + ρ, m) ∈ B(H; K), or alternatively that the group ρ • Z acts on B(H; K). This barcode has a number of properties summarized in (iii) There are K(φ, K) orbits of finite bars counted with multiplicity, and B(K) orbits of infinite bars counted with multiplicity, under the ρ • Z action on B(H). These numbers satisfy:

B(K) = dim K H * (M ; K)
and N (φ, K) = 2K(φ, K) + B(K), where N (φ, K) = dim K HF loc (φ, x)

is the homological count of the fixed points of φ, the sum running over all the set Fix c (φ) of its fixed points. (iv) There are K(φ, K) bar-lengths corresponding to the finite orbits, 0 < β 1 (φ, K) ≤ . . . ≤ β K(φ,K) (φ, K), which depend only on φ. We call β(φ, K) = β K(φ,K) (φ, K)

  This is a true distance between persistence modules up to isomorphisms taking values in [0, +∞]. Let B := {(I k , m k )} and B := {(J l , m l )} be two barcodes that we see as multisets of intervals. Given an interval I = (a, b] or (a, +∞), we set I δ := (a -δ, b + δ] or (a -δ, +∞) respectively. Given δ ≥ 0, a δ-matching between the barcodes B and B is a bijection of multisets µ : B 0 → B 0 where B 0 and B 0 are some submultisets of B and B containing (at least) every interval of length ≥ 2δ and such that µ(I) ⊂ I δ and I ⊂ µ(I) δ for every I ∈ B 0 . When such a δ-matching exists, it is said that B and B are δ-matched. The bottleneck distance between two barcodes B and B is defined by d bottleneck (B, B ) := inf{δ ≥ 0 | B and B are δ-matched}. This is a true distance taking values in [0, +∞].

  We denote by HZ * (σ) the shifted homology group HZ * (σ) := H * +(n-1)(d+1) (Z(σ)), and if Z(σ ) ⊂ Z(σ), with σ an n-tuple, we set HZ * (σ, σ ) := H * +(n-1)(d+1) (Z(σ), Z(σ )). For m ∈ N * and a ≤ b in [-m, m], one has F σ m,b ≤ F σm,a so Z(σ m,a ) ⊂ Z(σ m,b ) and we can set G (a,b) * (σ, m) := HZ * (σ m,b , σ m,a ), when a and b are not action values of σ. In [1, Section 5.4], we remarked that this homology group can be naturally identified to the homology of sublevel sets of a map, that is G (a,b) *

Proposition 4 . 2 .

 42 Given odd integers n, m ∈ N, for all w ∈ (C d+1 ) n and w ∈ (C d+1 ) m , one has in w-variables,

Corollary 4 . 3 .

 43 Given tuples σ, σ of odd respective sizes n and m, one has

Proposition 4 . 4 .

 44 the vertical arrows are induced by inclusions, r := (n -1)(d + 1), N := n(d + 1) -1, r := (n -1)(d + 1), N := n (d + 1) -1, N := (n + n + 1)(d + 1) -1 and we see CP N and CP N as the disjoint subspaces included in CP N via [w] → [w : 0] and [w ] → [0 : w ]. The commutativity of this diagram follows from the naturality of pj * and the fact that B n,n is homotopic to [w : w ] → [w : 0 : w ]. Composition morphisms are associative, that is the following diagram commutes:

  sending α to a (k-1) d α for each even k ∈ N. This isomorphism commutes with the direct system induced by the θ m+1 m 's and the inclusion maps and makes a diagram similar to (8) commute where in particular σ m+1,b is replaced by (ε k , σ) m,b . The commutation with the direct system induces a natural final isomorphism

  Let a ≤ b be real numbers as above. By compacity of [0, 1], there exists an ε > 0 such that [-ε, 2ε] contains only regular values of f s,a and f s,b for all s ∈ [0, 1]. By compacity, there also exists a δ > 0 such that f s,c -f r,c ∞ < ε for |s -r| ≤ δ and c ∈ {a, b}. We recall that if topological pairs A ⊂ B ⊂ C ⊂ D satisfy that the maps induced by inclusions H * (A) → H * (C) and H * (B) → H * (D) are isomorphisms, then the map induced by inclusion H * (B) → H * (C) is also an isomorphism. We apply this result to A := ({f I,b ≤ -ε}, {f I,a ≤ -ε}), B := (I × {f s,b ≤ 0}, I × {f s,a ≤ 0}), C := ({f I,b ≤ ε}, {f I,a ≤ ε}) and D := (I × {f s,b ≤ 2ε}, I × {f s,a ≤ 2ε}) for I ⊂ [0, 1] an interval of length less than δ and s ∈ I. Indeed, these topological pairs are increasing for ⊂ by definition of δ and the needed isomorphisms come from the Morse deformation lemma which can be applied by definition of ε. We thus have the following commutative diagram:

  every map is induced by inclusion. The top arrow is an isomorphism by the above general fact. The left hand side arrow is an isomorphism because I retracts on {s}. The right hand side arrow is an isomorphism by the Morse deformation lemma, since [0, ε] contains only regular values of f I,a and f I,b . Therefore, the bottom arrow is an isomorphism. According to the Mayer-Vietoris long exact sequence, given topological pairs A and B, if the inclusion maps H * (A ∩ B) → H * (A) and H * (A ∩ B) → H * (B) are isomorphisms, then the inclusion map H * (A ∩ B) → H * (A ∪ B) is an isomorphism. We apply this result to A := ({f I,b ≤ 0}, {f I,a ≤ 0}) and B := ({f J,b ≤ 0}, {f J,a ≤ 0}) for increasing length of I and length(J) ≤ δ to show inductively the result.

  be a C 1 -family (or more generally C 1piecewise) of tuples associated with the same C-equivariant Hamiltonian diffeomorphism Φ. If a ≤ b are not action values of σ, then η (s) t := σ (s) m,t satisfies the above assumption and ∆ is an isomorphism

  One can assume that either (σ (s) ) or (η (s) t ) is independent of s. The proof of the proposition is a consequence of the naturality of (B n,n ) * and a slightly generalized version of pj * to projective bundles. Let I := [0, 1] and let us extend pj * to subsets of I × CP N the following way. Let A ⊂ CP n and B ⊂ I × CP m , we set B s := B∩{s}×CP m and define A * B ⊂ I ×CP m+n+1 by A * B := s {s}×(A * B s ). Let E A,B be the set of those (a, (s, b), (t, c))'s with a ∈ A, (s, b) ∈ B and (t, c) ∈ A * B such that s = t and c ∈ (ab); let p 1 : E A,B → A × B and p 2 : E A,B → A * B be associated projection maps. Now p 1 is a CP 1 -fiber bundle and pj * : H

  and its inclusion and boundary morphisms are independent, up to isomorphism, of the choice of continuous family of n-tuples of small Hamiltonian flows (σ s ) generating the C-equivariant Hamiltonian flow (Φ s ) lifting (ϕ s ) with σ 0 = ε n and σ 1 = σ. Indeed, let (σ s ) and ((σ ) s ) be a n-tuple and a n -tuple of small Hamiltonian flows generating (Φ s ) with n ≥ n . One can define an isomorphism G (a,b) * (σ) -→ G (a,b) * (σ ) by composition of reduction maps η k and interpolation maps ∆ in the following way:

4. 4 .

 4 Composition of generating functions homologies. Let us fix 2 tuples σ, σ of odd respective sizes n and n , a, b, c ∈ R that are not action values of σ or σ . Let m, m ∈ N such that m > 2m > 4n. The composition map has the form

(mn 0 1 dαProposition 4 . 10 . 1 (- 1 )

 0141011 +1) d(0) ∈ HZ 2d (ε m,0 ) and a 2d+1 := a (mn 0 +1) 2d+1(1) ∈ HZ 2(2d+1) (ε m,1 ). According to Proposition 4.5, the morphismG (a+1,b+1) * (σ) → G (a+1,b+1) * ((ε 2 , σ)), α → a d α, is an isomorphism; let us write α → a -its inverse morphism. We define the morphism[START_REF] Conley | A global fixed point theorem for symplectic maps and subharmonic solutions of Hamiltonian equations on tori[END_REF] by α → a -1 d a 2d+1 α. The morphism[START_REF] Conley | A global fixed point theorem for symplectic maps and subharmonic solutions of Hamiltonian equations on tori[END_REF] is an isomorphism commuting with inclusion and boundary morphisms.Proof. The naturality of this morphism comes from the naturality of α → a d α and α → a 2d+1 α. It remains to prove that α → a 2d+1 α is an isomorphism. Let us set a -1 := a (mn 0 +1) -∈ HZ -2 (ε m,-1 ). According to the commutativity of (9), a 2d+1 a -1 = a -1 a 2d+1 = a d where a d is identified with a

  represents a part of the barcode of some σ associated with a Hamiltonian diffeomorphism of CP 1 . This barcode has 2 Z-orbits of finite bars and d + 1 = 2 Z-orbits of infinite bars corresponding to the spectral values c 1 + Z and c 2 + Z where c k := c k (σ).

Lemma 4 . 11 .

 411 Let σ be a tuple of C-equivariant Hamiltonian diffeomorphisms with a finite number of fixed C-lines and let a < b that are not action values of σ. For every field F, the number of bars of the barcode of σ over F that intersect t = a or t = b but not both is equal to dim G (a,b) * (σ; F).

6 c 3 c 4 c 1 c 2 Figure 1 .

 621 Figure 1. Barcode of a Hamiltonian diffeomorphism of CP 1 in the neighborhood of [k, k + 1] for some k ∈ Z (bars of degree less than 2 are missing).

3 Figure 2 .

 32 Figure 2. Relationship between the barcode of σ in the interval (a, b) and its persistence module (there are infinitely many bars that do not appear in the figure). The value dim G (a,b) *

  m) for m, -a and b large enough. The fact that c k+d+1 (σ) = c k (σ) + 1 is a direct consequence of Proposition 4.10 applied to a = -∞ and b = c k (σ) + ε for ε > 0. The last statements of the Theorem 4.13 are consequences of the Lyusternik-Schnirelmann theory, as one can see that G (a,b) * (σ, m) is naturally isomorphic to the relative homology of sublevel sets of one single map (see [30, Section 5] or [1, Section 5.4] for details). The dual statement holds for the generating function cohomology groups G * (a,b) (σ) with the additional structure of R-algebra induced by the cup-product. Here, the cohomology group G * (a,b) (σ) is defined in the same way as the homology group, except that the H * 's is replaced by H * 's in the definitions. The R-algebra G * (-∞,+∞) (σ) is generated by a class e of degree 2 that is invertible, of infinite order and satisfies eu = e 2 : G * (-∞,+∞) (σ) = k∈Z Re k .

  and a, b not action values. This isomorphism is natural: it commutes with inclusion, boundary maps and the action by u (that is P D(v u) = P D(v) u). Proof. Let us recall a version of the classical Poincaré duality (see for instance [21, Theorem 3.43]). Let M be a compact R-orientable n-dimensional manifold whose boundary ∂M is the union of two disjoint manifolds A and B. Then the capproduct with the fundamental class [M ] ∈ H n (M, ∂M ) gives a natural isomorphism H * (M, A) → H n- * (M, B). This general statement can be applied to sublevel sets of a C 1 map of a closed R-orientable n-manifold f : W → R in the following way. Let a < b be regular values of f so that A := {f = a} and B := {f = b} are the disjoint pieces of the boundary of the compact R-orientable n-manifold M := {a ≤ f ≤ b}. Now, by excision (which can be used because the boundary of M admits a collar neighborhood)

Corollary 4 . 16 .Proposition 4 . 17 .

 416417 Let σ be a tuple of small C-equivariant Hamiltonian diffeomorphisms, thenc k (σ -1 ) = -c d-k (σ). Let m, m ∈ N be such that c k (σ) ∈ (-m, m) and c l (σ ) ∈ (-m , m ) and let t ∈ (c k (σ), m) and t ∈ (c l (σ ), m ). Let b k ∈ HZ 2k (σ m,t) and b l ∈ HZ 2l (σ m ,t ) be classes associated with the respective spectral classes α k and α l in the way expressed in Proposition 4.14. Then the composition morphism HZ * (σ m,t ) ⊗ HZ * (σ m ,t ) → HZ * -2d ((σ, ε, σ ) m+m ,t+t ) maps the class b k ⊗ b l to a class b k+l-d that is sent to the [CP r ] ∈ H * (CP N ) of appropriate degree under the inclusion map.

Corollary 4 . 18 . 5 .Theorem 5 . 1 .

 418551 Given any tuples σ and σ of small C-equivariant Hamiltonian diffeomorphisms, one hasc k+l-d ((σ, ε, σ )) ≤ c k (σ) + c l (σ ).Uniform bound on β For all tuple of small C-equivariant Hamiltonian diffeomorphisms σ generating a Hamiltonian diffeomorphism of CP d with finitely many fixed points, the longest finite bar of its barcode is less than 1:

Proof of Theorem 5 . 1 . 2 .

 512 Let ε > 0 and let η := c d (σ) + ε/2 and η := c d (σ -1 ) + ε/Let m > max(|η|, |η |, |c d (σ)|, |c d (σ -1 )|). One can assume that the size n of σ satisfies 2n = mn 0 for some integer m > max(|η|, |η |, |c d (σ)|, |c d (σ -1 )|), by concatenation of σ with some ε k . Let b d ∈ HZ 2d (σ m,η ) and b d ∈ HZ 2d (σ -1 m,η ) be classes associated with the spectral class α d in the sense of Proposition 4.16 (well defined by definition of η, η and m). In order to simplify the exposition, let us set a d := a (2n+1) d (0) ∈ HZ 2d (ε 2n+1 ) and a d := a (2n+1) d

[ 6 ,Proposition 6 . 1 .

 661 Chapter IV, §4.1]). Here dim H * means the total dimension k dim H k . Given any tuple σ of small C-equivariant Hamiltonian diffeomorphisms, for every prime number p and every a ≤ b such that a + q/p and b + q/p are not action values of σ and pa and pb are not action values of σ p , dim G (pa,pb) * (σ p ; F p ) ≥ (1-p)/2≤q≤(p-1)/2

  be representatives of each Z-orbit of finite bars of the persistence module (G (-∞,t) * (σ; F)) t and let J 1 , . . . , J d+1 ⊂ R be representatives of each Z-orbit of infinite bars of this persistence module. Given an interval I ⊂ R, let χ I : R → {0, 1} denote its characteristic map. According to Lemma 4.11, for a < b which are neither infinite nor action values of σ, one has dim G (a,b) *

7 . 1 Proof of Theorem 1 . 1 .

 7111 Proof of Theorem 1.Let σ be any tuple of C-equivariant Hamiltonian diffeomorphisms associated with ϕ, so that N (σ; F) = N (ϕ; F). Let us denote by K(σ; F) the number of Z-orbits of finite bars of the barcode associated with σ over the field F. According to the universal coefficient theorem, one can assume that F = Q if F has characteristic 0 and F = F p if it has characteristic p = 0.

2 A. 1 .

 21 3 and A.5 are postponed to Section A.Definition and properties. Let m, n ∈ N and let π : C m+n+2 \0 → CP m+n+1 be the quotient map. We projectively endow CP m and CP n in CP m+n+1 by identifying CP m with π(C m+1 × 0 \ 0) and CP n with π(0 × C n+1 \ 0) so that CP m and CP n do not intersect. This is equivalent to considering two projective subspaces of respective C-dimension m and n in general position. Let A ⊂ CP m and B ⊂ CP n be non-empty sets. Then the projective join A * B ⊂ CP m+n+1 is the union of every projective line intersecting A and B. In other words, A * B = A∪B ∪π( A× B) where A and B are the lifts of A and B to C n+1 \ 0 and C m+1 \ 0 respectively. One can remark that CP m * CP n = CP m+n+1 and that if [a : b] ∈ CP m+n+1 , with a ∈ C m+1 and b ∈ C n+1 , does not belong to CP m and CP n , then only one projective line intersecting these two subspaces contains [a : b], namely the line joining α := [a : 0] to β := [0 : b] denoted by (αβ).

Definition A. 1 .

 1 3 (A × B) denotes the Euler class of the S 2 -bundle E A,B . The cohomology projective join pj * : H * (A * B) → H * -2 (A × B) denotes the map pj * := (p 1 ) * • (p 2 ) * , where (p 1 ) * is defined by (21) and (p 2 ) * is induced by p 2 : E A,B → A * B. The homology projective join pj * = (p 2 ) * • (p 1 ) * : H * (A × B) → H * +2 (A * B) is defined dually. We extend this definition to topological couples (A, B) ⊂ CP m , (C, D) ⊂ CP n the following way. Let (A, B) * (C, D) := (A * C, A * D ∪ B * C), the map p 1 defines a relative CP 1 -fiber bundle (E A,C , E A,D ∪ E B,C ) on (A, B) × (C, D) while p 2 maps this bundle on (A, B) * (C, D). Hence, one can set pj * := (p 1 ) * • (p 2 ) * and pj * := (p 2 ) * • (p 1 ) * as before. By naturality of the maps induced by p 1 and p 2 , this extension is natural: projective join commutes with long exact sequences of topological pairs or triples. These maps are also natural in the following way: let A, C ⊂ CP m and B, D ⊂ CP n and assume that f : A * B → C * D is the restriction of a projective map satisfying f | A : A → C and f | B : B → D, then the CP 1 -fiber bundle E A,B is the pull-back of E C,D by f | A × f | B , so that the following diagram commutes:

  p A : A * B \ B → A be the map p A [a : b] := [a : 0]. Let f : H * (A * B) → H * -2 (A) be the map f (α) := (p A ) * (α v B

Corollary A. 4 (

 4 [START_REF] Givental | Nonlinear generalization of the Maslov index[END_REF] Corollary A.2]). For all non-empty subsets A ⊂ CP m and B ⊂ CP n , one has(A * B) = (A) + (B). Proof. Let α ∈ H 2 (A)-2 (A)and β ∈ H 2 (B)-2 (B) be classes that are sent to the class [CP (A)-1 ] ∈ H * (CP m ) and [CP (B)-1 ] ∈ H * (CP n ) respectively. According to Proposition A.3 and naturality (22), pj * (α × β) is sent to [CP (A)+ (B)-1 ] in H * (CP m+n+1 ).

  B),C := {(a, b, c, x, z) ∈ A×B ×C ×(A * B)×(A * B * C) | x ∈ (ab) and z ∈ (xc)} with the projection maps P 2 : E (A,B),C → A * B * C, P 1 : E (A,B),C → E A,B × C sending (a, b, c, x, z) to (a, b, x; c), f : E (A,B),C → E A * B,C sending (a, b, c, x, z) to (x, c, z) and g : E (A,B),C → E A,B,C sending (a, b, c, x, z) to (a, b,

[ 2 ,

 2 Proposition 22]: (i) For each window J = (a, b) in R, with a, b / ∈ Spec(H), only a finite number of intervals I with (I, m) ∈ B have endpoints in J. Furthermore, dim K HF (H) J = (I,m)∈B(H), #∂I∩J=1 m, where for an interval I = (a, b], ∂I = {a, b}, and for I = (a, ∞), ∂I = {a}. (ii) In particular for a ∈ Spec(H), and > 0 sufficiently small, so that we have (a -, a + ) ∩ Spec(H) = {a}, dim K HF (H) (a-,a+ ) = (I,m)∈B(H), a∈∂I m, dim K HF (H) (a-,a+ ) = A(x)=a dim K HF loc (H, x).

  being the elementary generating function associated with σ k . If n is odd, this function is a generating function of Φ with main variable v 1 and auxiliary variable (v 2 , . . . , v n ) that will be referred as the generating function associated with σ. If the opposite is not explicitly supposed, σ will have an odd size.Let (Φ s ) be the lift of the Hamiltonian flow (ϕ s ) of CP d under the Hamiltonian map (h s ). In this case, we choose the f k 's to be 2-homogeneous and S 1 -equivariant, that is f k

  Let A ⊂ CP m , B ⊂ CP n be non-empty sets and := (B). Let β ∈ H * (B) be a class that is sent to [CP -1 ] ∈ H * (CP n ). The following diagram commutes:

	.
	-2 (B) (CP m+n+1 )
	Proposition A.5.

  abc)} and let P 1 : E A,B,C → A × B × C and P 2 : E A,B,C → A * B * C be the associated projection maps. The map P 1 defines a CP 2 -fiber bundle which is the restriction of the fiber bundle E CP n ,CP n ,CP n → (CP n ) 3 , so the action of π 1 (A × B × C) on the homology group H * (CP 2 ) of a fiber is the restriction of the action of π 1 ((CP n ) 3 ) = 0 i.e. trivial. We define pj 3 * by pj 3

* := (P 2 ) * • (P 1 ) * where (P 1 ) * : H

* (A × B × C) → H * +4

  t = 1). Seen in H 2 (A * B), the class v B is the restriction of u , so that, seen in H 2 (E A,B ), v B is the restriction of u 0 . According to the identity[START_REF] Usher | Boundary depth in Floer theory and its applications to Hamiltonian dynamics and coisotropic submanifolds[END_REF], one has (p 1 ) *

1 ) * w, where t ∈ H 2 (E A,B , p -1 2 (B)) is the restriction of the class t in (29). Therefore, v B = t (p 1 ) * w for some w ∈ H 2 -2 (A × B) satisfying w = (p 1 ) * (v B ) (we recall that (p 1 ) *

  Hence, it gives natural morphisms E 2 p,d → E ∞ p,d → H p+d (X) for all p. Let π * : H * (B; H q (F )) → H * +d (X) denote the composition of the Serre isomorphism H * (B; H d (F )) E 2 * ,d with this map E 2 * ,d → H * +d (X). Dually, one can define a morphism π * : H * (X) → H * -d (B; H d

  with fibers F and F of the same dimension d, the naturality of the Serre spectral sequence induces the commutative square H * +d (X) Finally, it satisfies the following composition property. Let π 1 : Y → X and π 2 : X → B be (possibly relative) Serre fibrations of respective fibers F 1 and F 2 of dimension d 1 and d 2 . Then π := π 2 • π 1 is a fibration whose fiber F is a fibration over F 2 with fibers F 1 . According to the Serre spectral sequence, it has dimensiond 1 + d 2 and H d 1 +d 2 (F ) is naturally isomorphic to H d 2 (F 2 ; H d 1 (F 1 )). The following diagram commutes H * +d 2 (X; H d 1 (F 1 )) / / H *+d 1 +d 2 (Y ) H * (B; H d 2 (F 2 ; H d 1 (F 1 ))) (B; H d 1 +d 2 (F ))

	O O	f *	/ / H * +d (Y ) O O	
	p *		q *	,	(35)
	H * (B; H d (F ))			
	where f Proposition A.7. π * 1		
	O O			
	π * 2		/ / H π	

f * / / H * (B; H d (F )) * sends a class [σ ⊗ h], σ ∈ C * (B; Z) and h ∈ H d (F ), on [f * σ ⊗ f * h]. * * O O

  2 ,q-d 2 . Therefore, one gets the following commutative diagramH * +d 1 +d 2 (Y ) H * +d 1 +d 2 (Y ) E ∞ * ,d 1 +d 2 (B; H d 1 +d 2 (F )) H * +d 2 (X; H d 1 (F 1 ))where both the left and the right "squares" are the ones defining morphisms π * and π * 1 . The bottom row allows us to define a morphism f :H * (B; H d 1 +d 2 (F )) → H * +d 2 (X; H d 1 (F 1 )). According to the last diagram, it is enough to prove that f = π * 2 under the identification H d 1 +d 2 (F ) H d 2 (F 2 ; H d 1 (F 1 )) to conclude.We recall that the Serre isomorphismE 2 * ,d 1 +d 2 H * (B; H d 1 +d 2 (F )) is induced by a chain isomorphism between the chain complex E 1 * ,d 1 +d 2 = H * +d 1 +d 2 (Y * , Y * -1) and the chain complex of the cellular filtration (B p ) of B that isH * (B * , B * -1 ; H d 1 +d 2 (F )).We denote by Ψ :H * +d 1 +d 2 (Y * , Y * -1 ) → H * (B * , B * -1 ; H d 1 +d 2 (F )) the chain isomorphism associated with π and by Ψ 1 and Ψ 2 the chain isomorphisms associated with π 1 and π 2 respectively. Since these chain isomorphisms are natural (this is included in the proof of the naturality of the Serre spectral sequence), one gets the following commutative diagram of chain complexes:H * +d 1 +d 2 (Y * , Y * -1 ) +d 1 +d 2 (Y 1; * +d 2 , Y 1; * +d 2 -1 ) , B * -1 ; Z) ⊗ H d 1 +d 2 (F ) +d 2 (X * +d 2 , X * +d 2 -1 ; Z) ⊗ H d 1 (F 1 ) H * (B * , B * -1 ; Z) ⊗ H d 2 (F 2 ; H d 1 (F 1 )) H * +d 2 (X * , X * -1 ) ⊗ H d 1 (F 1 )where u denotes the natural isomorphismH d 1 +d 2 (F ) → H d 2 (F 2 ; H d 1 (F 1 )). By passing to homology, one gets the following commutative diagram:E 2 *,d 1 +d 2 * +d 2 (X; H d 1 (F 1 )) H * (B; H d 2 (F 2 ; H d 1 (F 1 )))

		< <	O O		O O	b b
	o o H π *	E 2 * ,d 1 +d 2 O O		/ / E ∞ 1; * +d 2 ,d 1 / / E 2 1; * +d 2 ,d 1 O O	/ / π * 1	,
					/ /
						Ψ 1
	H O O	,
				o o	
				Ψ 2	
					/ / E 2 1; * +d 2 ,d 1
	Ψ *				(Ψ 1 ) *
	H (id⊗u) *			O O	h h
			o o	(Ψ 2 ) *	E 2 2; * ,d 2	/ / E ∞ 2; * ,d 2

* Ψ H * * (B * id⊗u H * * (B; H d 1 +d 2 (F )) f / / H

This quantity can again be reduced. We refer to[START_REF] Shelukhin | The Z/pZ-equivariant product-isomorphism in fixed point Floer cohomology[END_REF] for this argument.

at the second page. The bottom part of the diagram shows that f is indeed π * 2 under the identification induced by u.

Appendix B. Smith-type inequality for barcodes of Hamiltonian diffeomorphisms via the minimal Novikov field by Egor Shelukhin

We present an alternative argument proving [START_REF] Shelukhin | On the Hofer-Zehnder conjecture[END_REF]Theorem D], which is the key Smith-type inequality for barcodes of Hamiltonian diffeomorphisms for the argument proving the Hofer-Zehnder conjecture for closed monotone symplectic manifolds with semi-simple even quantum homology algebra. While the approach described in [START_REF] Shelukhin | On the Hofer-Zehnder conjecture[END_REF] is more algebraically conceptual, it relies on the use of Floer complexes with coefficients in the universal Novikov ring, which are quite difficult to make sense of geometrically. The current approach, at the cost of certain more ad hoc arguments, reduces the consideration to filtered Floer homology with the standard minimal Novikov field (with quantum variable of degree twice the minimal Chern number). This choice of coefficients is more geometric, and it is this new proof that is most amenable to interpretation in the setting of generating functions.

To set up the result and its proof we recall a few basic notions on barcodes of Hamiltonian diffeomorphisms. We follow the exposition in [START_REF] Shelukhin | On the Hofer-Zehnder conjecture[END_REF] and [START_REF] Atallah | Hamiltonian no-torsion[END_REF], whereto we refer for further detail and discussion of relevant notions. Suppose that (M, ω) is a closed monotone symplectic manifold, that is there exists κ ∈ R >0 such that for each

The minimal Chern number of (M, ω) is the positive generator N > 0 of the image of the map c 1 (T M ) : H S 2 (M ; Z) → Z, given by A → c 1 (T M ), A . Set the rationality constant ρ ∈ R >0 on (M, ω) to be ρ = κ•N.

Fix a ground field K. For a time-dependent Hamiltonian H on a closed monotone symplectic manifold (M, ω), denote by Spec(H) ⊂ R the set of all actions

where x runs over contracting disks (considered up to the equivalence relation of having the same ω-areas) of 1-periodic orbit x of the Hamiltonian flow of H. If H is non-degenerate, that is its time-one map φ has its graph transverse to the diagonal in M × M, we denote by CF (H, J) the Floer complex of H with respect to a generic ω-compatible time-dependent almost complex structure J = (J t ) t∈S 1 . This complex is filtered by a natural extension of

) admissible, and denote by CF (H, J) <a , CF (H, J) <b the subcomplexes given by elements of filtration level smaller than a and b respectively, and set CF (H, J) I = CF (H, J) <b /CF (H, J) <a for the quotient complex. We denote by HF (H) I the homology of this complex, called the Floer homology of H in action window I, and the collection of HF (H) I for all admissible intervals I, together with natural maps HF (H) I → HF (H) 

Theorem B.1 ([28, Theorem D]). Let φ ∈ Ham(M, ω) be a Hamiltonian diffeomorphism of a closed monotone symplectic manifold (M, ω). Suppose that Fix

We now give a new proof of this result, that stays within the realm of filtered Floer homology with coefficients in Λ min,K , temporarily passing through a slightly larger field.

Proof of Theorem B.1. Suppose for this proof that p is odd, as the case of p = 2 is simpler and is left to the reader.

We start by observing that for a p-admissible interval I = (a, b), the Z/(p)equivariant pants product P p•I : H(Z/(p), (CF (H) ⊗p ) p•I ) → HF eq (H (p) ) p•I is well-defined by arguments from [START_REF] Shelukhin | On the Hofer-Zehnder conjecture[END_REF]Section 6], and is an isomorphism by the same spectral sequence argument as in [START_REF] Shelukhin | The Z/pZ-equivariant product-isomorphism in fixed point Floer cohomology[END_REF]. It is crucial to note that here, the coefficients are taken in the Novikov field Λ K = K[[q -1 , q], where our base field is the field K = F p [u -1 , u]] of Laurent polynomials in a formal variable u, and the tensor product of Floer complexes CF (H) ⊗p is taken over Λ K .

Disregarding grading, we define a new Novikov field Λ

into which Λ K embeds by sending q to t p . Observe that t has valuation ρ/p. The theory of quasi-Frobenius maps as in [START_REF] Shelukhin | The Z/pZ-equivariant product-isomorphism in fixed point Floer cohomology[END_REF] now yields an isomorphism

where HF (H; Λ Note that as HF (H) I+ρ ∼ = HF (H) I , we can replace the interval 0 ≤ j < p, by any other interval with p integers. For example we can pick the symmetric interval -(p -1)/2 ≤ j ≤ (p -1)/2 when p is odd. Taking dimensions over K, and using the inequality dim K HF eq (H (p) ) p•I ≤ 2 dim K HF (H (p) ) p•I , whose proof follows that in [START_REF] Shelukhin | The Z/pZ-equivariant product-isomorphism in fixed point Floer cohomology[END_REF] verbatim, we obtain after canceling a multiple of 2 that

In fact, we could replace the right-hand side by the generally smaller quantity 1 dim K (HF (H (p) ) p•I ) Z/(p) , the invariant subspace being considered with respect to a natural Z/(p)-action.

We proceed by considering an interval I 0 of length l = |I 0 | = kρ, with k ∈ Z >0 sufficiently large, so that l > β(φ, K), and pl > β(φ p , K). Set I t = I 0 + t for the interval I 0 shifted by t ∈ [0, l). We shall consider Equation ( 36) for I = I t and integrate it over t in [0, l), keeping in mind that for an interval J, dim HF (H) J is given as the number of bars