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ON PERIODIC POINTS OF HAMILTONIAN
DIFFEOMORPHISMS OF CPd VIA GENERATING FUNCTIONS

SIMON ALLAIS

Abstract. Inspired by the techniques of Givental and Théret, we provide a proof
with generating functions of a recent result of Ginzburg-Gürel concerning the
periodic points of Hamiltonian diffeomorphisms of CPd. For instance, we are able
to prove that fixed points of pseudo-rotations are isolated as invariant sets or that
a Hamiltonian diffeomorphism with a hyperbolic fixed point has infinitely many
periodic points.

1. Introduction

Let CPd be the complex 2d-dimensional space endowed with its classical sym-
plectic structure ω, that is π∗ω = i∗Ω where π : S2d+1 → CPd is the quotient map,
i : S2d+1 ↪→ Cd+1 is the inclusion map and Ω := ∑

j dqj ∧ dpj is the canonical
symplectic form of Cd+1 ' R2(d+1). We are interested in the study of Hamiltonian
diffeomorphisms of CPd, which are time-one maps of those vector fields Xt satisfying
the Hamilton equations Xtyω = dht for some smooth maps h : [0, 1] × CPd → R
called Hamiltonian maps. Let Ham(CPd) be the set of Hamiltonian diffeomorphisms
of CPd. In 1985, Fortune-Weinstein [4] proved that the Arnol’d conjecture holds for
CPd: any Hamiltonian diffeomorphism ϕ ∈ Ham(CPd) has at least d + 1 fixed
points. Inspired by the work of Givental [9], Théret [17] used generating functions
to reprove Fortune-Weinstein’s theorem. Given ϕ ∈ Ham(CPd), a k-periodic point
x ∈ CPd of ϕ is by definition a fixed point of the k-iterated map ϕk. Contrary to
aspherical symplectic manifolds like the 2d-dimensional torus T2d endowed with the
canonical symplectic form, the Conley conjecture does not hold in CPd: there exists
Hamiltonian diffeomorphisms with only finitely many periodic points. For instance,
one can take a rotation ρ of CPd defined by

ρ([z1 : z2 : · · · : zd+1]) :=
[
e2iπa1z1 : e2iπa2z2 : · · · : e2iπad+1zd+1

]
,

with rationally independent coefficients a1, . . . , ad+1 ∈ R. This is indeed a Hamil-
tonian diffeomorphism whose only periodic points are its fixed points: the projection
of the canonical base of Cd+1. Notice that this Hamiltonian diffeomorphism has the
minimal number of periodic points. A Hamiltonian diffeomorphism of CPd which
has exactly d+ 1 periodic points is called a pseudo-rotation of CPd.

In the case d = 1, CP1 ' S2 and Hamiltonian diffeomorphisms are the area
preserving diffeomorphisms isotopic to identity. Franks [5, 6] proved that such
area preserving homeomorphisms have either 2 or infinitely many periodic points.
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Therefore, the only Hamiltonian diffeomorphisms of CP1 with finitely many peri-
odic points are pseudo-rotations. In 1994, Hofer-Zehnder [11, p.263] conjectured a
higher-dimensional generalization of this result: every Hamiltonian diffeomorphism
of CPd has either d + 1 or infinitely many periodic points (it was stated for more
general symplectic manifolds). In this direction, a symplectic proof of Franks result
(in the smooth setting) was provided by Collier et al. [2]. In 2019, Shelukhin [15]
proved a version of Hofer-Zehnder conjecture: if a Hamiltonian diffeomorphism of
a closed monotone symplectic manifold with semisimple quantum homology (e.g.
CPd) has a finite number of contractible periodic points then the sum of ranks of
the local Floer homology groups at its contractible fixed points is equal to the total
dimension of the homology of the manifold (that is d+ 1 for CPd).

A compact invariant set K ⊂ CPd of a homeomorphism ϕ is said to be isolated if
there exists a neighborhood U of K such that, for all p ∈ U \K, ϕk(p) 6∈ U for some
k ∈ Z. A fixed point of a Hamiltonian diffeomorphism is said to be homologically
visible if its local Floer homology is non-trivial. The purpose of this article is to
provide an elementary proof of the following theorem of Ginzburg-Gürel [8]:

Theorem 1.1. Every Hamiltonian diffeomorphism of CPd which has a fixed point
all of whose iterations are homologically visible that is isolated as an invariant set
has infinitely many periodic points.

As Ginzburg-Gürel already pointed out, Theorem 1.1 has two important corollar-
ies. If x is a hyperbolic point then it is always isolated as an invariant set and the
local cohomology of its iterations has rank 1.

Corollary 1.2. Every Hamiltonian diffeomorphism of CPd with a hyperbolic fixed
point has infinitely many periodic points.

In fact, this theorem of Ginzburg-Gürel was originally proven in [7] in a more
general setting, including some complex Grassmannians, CPd × P 2k where P is
symplectically aspherical and k ≤ d, monotone products CPd × CPd. We mention
that the case of CPd×T2k, when k ≤ d, can be deduced as well from our techniques.

In the special case of pseudo-rotations, every fixed point arises from a min-max
principle and thus has a non-trivial local cohomology.

Corollary 1.3. Each fixed point of a pseudo-rotation of CPd is not isolated as an
invariant set.

The original proof of Theorem 1.1 involves a non-trivial estimate on the en-
ergy of Floer trajectories leaving a periodic orbit called crossing energy theorem
by Ginzburg-Gürel [7, Theorem 3.1] [8, Theorem 6.1] and is proved with a Gromov
compactness like theorem on J-holomorphic curves. The second ingredient of the
original proof is quantum homology, which is defined by means of Gromov-Witten
invariants. Although we closely follow the original argument, our proof employs
only elementary machinery: Morse theory and classical algebraic topology. Our
main tool is generating functions, which are finite dimensional versions of the action
functional for Hamiltonian diffeomorphisms of R2d. Inspired by Théret [17], we build
a smooth map T : M → R defined on a finite dimensional manifold M ⊂ R×CPN .
There is a correspondence between critical points of T and capped fixed points of
ϕ. With this map, the crossing energy theorem essentially boils down to elementary
analysis. If ζ ∈ M is a critical point of T associated to a capped fixed point z̄,
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then C∗(z̄) is by definition the local cohomology of ζ with integral coefficients. In
this setting, the q operator of quantum homology is mimicked by multiplication by
ud+1 ∈ H∗(M) where u is the generator of H2(CPN) (notice that we have a mor-
phism H∗(CPN)→ H∗(M), sinceM ⊂ R×CPN) so that we can write the following
identity when every object can be defined:

C∗(z̄#A) = ud+1C∗(z̄),
where A is the generator of π2(CP d) ' Z satisfying 〈[ω], A〉 = −π (see Proposi-
tion 5.11 for the precise statement and Section 5.7 for a further discussion about
it).

Incidentally, we give a new composition formula for generating functions which
is analogous to Chaperon’s one [1] but works for the C-linear identification of the
diagonal (z, Z) 7→ ( z+Z2 , i(z − Z)). We also give an alternative way to study the
projective join of a subspace of CPN with a projective subspace that does not involve
equivariant cohomology.

Organization of the paper. In Section 2, we provide the background on gen-
erating functions. In Section 3, we provide the background on the Maslov index.
In Section 4, we study the cohomological properties of the projective join needed
to study the action of recapping on the cohomology of the sublevel sets of T . In
Section 5, we show how to use generating functions to provide a finite dimensional
analogue of Floer cohomology in CPd. In Section 6, we prove Theorem 1.1 and
Corollaries 1.2 and 1.3, postponing the proof of the crossing energy theorem. In
Section 7, we prove the crossing energy theorem in our setting.

Acknowledgments. I am very grateful to my advisor Marco Mazzucchelli, who
introduced me to this problem and discussed it with me.

2. Generating functions

A generating function for Lagrangian submanifold of T ∗Cn is a smooth function
F : Cn × Ck → R such that 0 is a regular value of the Ck-fiber derivative ∂F

∂ξ
. The

space

ΣF :=
{

(q; ξ) ∈ Cn × Ck | ∂F
∂ξ

(q; ξ) = 0
}

(1)

is a smooth submanifold with dimension 2n. Let ιF : ΣF → T ∗Cn denotes the map
ιF (q; ξ) := (q, ∂qF (q; ξ)). Then ιF is a Lagrangian immersion and we say that F
generates the immersed Lagrangian submanifold L := ιF (ΣF ).

A conical generating function of C2n ' T ∗Cn is a C1 map F : Cn ×Ck → R such
that
1. F is S1-invariant and 2-homogeneous, that is

F (λζ) = |λ|2F (ζ), ∀λ ∈ C,∀ζ ∈ Cn × Ck,

2. F is smooth in the neighborhood of ΣF \ 0 where the subset ΣF ⊂ Cn × Ck is
still defined by (1)

3. 0 is a regular value of the fiber derivative ∂ξF on Cn × Ck \ 0.
The set ΣF is C-invariant and so is L̃ := ιF (ΣF ). If π : C2n \ 0 → CP2n−1 denotes
the quotient map, then L := π(L̃) is a smooth immersed Lagrangian of CP2n−1. We
will say that L̃ is a conical immersed Lagrangian.
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A quadratic generating function Q : Cn × CN → R is a generating function
which is also a quadratic form. In this case, the induced Lagrangian ιQ(ΣQ) is a
linear Lagrangian subspace of T ∗Cn. Notice that if F : Cn×Ck → R is a generating
function of the Lagrangian L ⊂ C2n, then the quadratic form d2F (x) : Cn×Ck → R,
for x ∈ ΣF , is a quadratic generating function of the tangent space TιF (x)L ⊂ C2n.
The same is true if F is conical and x ∈ ΣF \ 0. Moreover, Cx ⊂ ker d2F (x) in this
case.

The existence of generating functions is well known for Lagrangians which are
isotopic to the 0-section Cn × {0} with a “suitably controlled” behavior at infinity
(e.g. for a compactly supported isotopy or for a linear isotopy). In fact, we usually
find a generating family of a whole isotopy (Lt) := (Φt(Cn × {0})), where (Φt) is a
Hamiltonian flow, that is a continuous family of generating functions (Ft) with Ft
generating Lt for all t ∈ [0, 1]. In Section 5, we give a construction of generating
families for Hamiltonian flows.

There are strong uniqueness results relative to generating functions of linear La-
grangians or Lagrangians isotopic to the 0-section through compactly supported
isotopies. Concerning quadratic generating functions, we will only need the follow-
ing elementary result

Lemma 2.1 ([16, Prop. 35]). For every quadratic generating function Q : Cn×Ck →
R of the 0-section, there exists a linear fibered isomorphism A of Cn × Ck which is
isotopic to the identity through linear fiberwise isomorphism such that Q ◦ A(q; ξ)
does not depend on q ∈ Cn. More precisely, if Q(z) =

〈
Q̃z, z

〉
with

Q̃ =
[
a b
tb c

]
,

then c is invertible and A(q; ξ) := (q; ξ − c−1tbq) so that Q ◦ A(q; ξ) = tξcξ.

Concerning the conical case, we will use the following

Lemma 2.2 ([17, Lemma 4.8]). If (Ft : Cn×Ck → R) is a smooth family of conical
generating functions for the constant conical Lagrangian L ⊂ T ∗Cn, then there is a
smooth isotopy (Bt) of conical fibered diffeomorphisms such that

Ft ◦Bt = F0, ∀t.

Let Ham(Cd) be the set of Hamiltonian diffeomorphisms of Cd ' T ∗Rd. The map

τ : Cd × Cd → C2d, τ(z, Z) =
(
z + Z

2 , i(z − Z)
)
, (2)

is a C-linear symplectomorphism sending the diagonal {(z, z) | z ∈ Cd} to the 0-
section of C2d. Let Φ ∈ Ham(Cd), the image of the graph z 7→ (z,Φ(z)) of Φ
under τ is then a Lagrangian submanifold LΦ ⊂ C2d. A generating function of
the Hamiltonian diffeomorphism Φ is a generating function of LΦ. A generating
family of a Hamiltonian flow (Φt) is a generating family of (LΦt). Let Φ be a conical
Hamiltonian diffeomorphism of Cd, that is, a homeomorphism Φ : Cd → Cd with
Φ|Cd\0 ∈ Ham(Cd \ 0) and which is C-equivariant:

Φ(λz) = λΦ(z), ∀λ ∈ C, ∀z ∈ Cd.

To simplify notation, we will write Φ ∈ HamC(Cd) and say that Φ is a C-equivariant
Hamiltonian diffeomorphism. The last definition extends to Hamiltonian flows in
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an obvious way. Then the induced subset LΦ ⊂ C2d is a conical Lagrangian. A
conical generating function of Φ (or simply a generating function of Φ) is a conical
generating function of LΦ. It extends to conical flows in an obvious way. As a
consequence of the general case, if F is a generating function of Φ ∈ HamC(Cd) and
(z; ξ) 6= 0 is a critical point of F then z is a fixed point of Φ and d2F (z; ξ) is a
quadratic generating function of dΦ(z). Moreover,

dim ker d2F (z; ξ) = dim ker(dΦ(z)− id).

3. Maslov Index

3.1. Maslov index of a path in Sp(2d). Let Γ = (Γt) : [0, 1] → Sp(2d) be a
continuous path in the space of symplectic matrices Sp(2d) of R2d ' Cd. Then there
exists a continuous family (Qt) of quadratic generating functions such that, for t ∈
[0, 1], Qt : CN → R is generating Γt. The variation of index ind(Q1)− ind(Q0) ∈ Z
is independent of the choice of (Qt) and is called the Maslov index of Γ denoted

mas((Γt)) := ind(Q1)− ind(Q0) ∈ Z.
Other equivalent definitions of the Maslov index (which is sometimes also called
Conley-Zehnder index) are available in the literature, see [14], [12] and references
therein.

In order to state the general properties of mas, following Théret, in this section
we will denote by R • S the concatenation of two paths R = (Rt) and S = (St) in
Sp(2d) satisfying R1 = S0, that is (R•S)t = R2t for t ∈ [0, 1/2] and (R•S)t = S2t−1
for t ∈ [1/2, 1]. The path RS stands for the pointwise matrix product of two paths
in Sp(2d) that is (RS)t = RtSt for all t. Given a path R = (Rt) in Sp(2d), the path
R(−1) will stand for the reverse path (R1−t), whereas R−1 will stand for the path of
inverses (R−1

t ). Identifying matrices with their canonical linear maps, for two square
matrices A and B, A⊕B will stand for the square matrix[

A 0
0 B

]
and given two paths R = (Rt) and S = (St) in Sp(2n) and Sp(2m) respectively,
(R⊕ S)t := (Rt ⊕ St) as a path in Sp(2(n+m)). We recall the basic proprieties of
the Maslov index (see for instance [16, Prop. 39 and 58]).
Proposition 3.1. Let R be a path in Sp(2n),
(1) if S is a path in Sp(2n) with S0 = R1, then mas(R • S) = mas(R) + mas(S),
(2) the Maslov index of the reverse path is mas(R(−1)) = −mas(R),
(3) if S is a path in Sp(2m), then mas(R⊕ S) = mas(R) + mas(S),
(4) if A ∈ Sp(2d), then mas(ARA−1) = mas(R).
(5) if S is a path homotopic to R relative to endpoints, that is there exists a con-

tinuous family s 7→ Rs of paths in Sp(2n) with R0 = R and R1 = S such that
Rs

0 ≡ R0
0 and Rs

1 ≡ R0
1, then mas(S) = mas(R),

(6) if St :=
[
cos(2πt) − sin(2πt)
sin(2πt) cos(2πt)

]
∈ Sp(2), t ∈ [0, 1], then mas(S) = −2.

Let (Φt) be a Hamiltonian flow on Cd starting at Φ0 = id. If z ∈ Cd is a fixed-point
of Φ1, the Maslov index of z is set to be the Maslov index of the path t 7→ dΦt(z)
in Sp(2d), that is

mas(z, (Φt)) := mas((dΦt(z))).
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Suppose that Ft : CN → C, t ∈ [0, 1], defines a continuous family of generating
functions of (Φt). Let ζt ∈ ΣFt ⊂ CN be a continuous family associated to Φt(z).
Then the continuous family of Hessians Qt := d2Ft(ζt) is a continuous family of
quadratic generating functions of dΦt(z), thus

mas(z, (Φt)) = ind(ζ1, F1)− ind(ζ0, F0),
where ind(ζ, F ) := ind(d2F (ζ)) ∈ N denotes the Morse index of F at the critical
point ζ.

This definition is extended to every symplectic manifold M2d as follows. Let (ϕt)
be a Hamiltonian flow on M2d starting at ϕ0 = id and let z ∈ M be a fixed point
of ϕ1 such that the loop t 7→ ϕt(z) is contractible. Let D2 := {w ∈ C | |w| ≤ 1} be
the closed unit disk of C. Since the loop is contractible, there exists a smooth map
u : D2 →M such that u(e2iπt) = ϕt(z). Then there exists a trivialization D2×Cd →
u∗TM , (w, ζ) 7→ ξ(w)ζ so that, for all w ∈ D2, ξ(w) : Cd → Tu(w)M is a symplectic
map. Moreover, if we endowM with an almost complex structure, the trivialization
can be made C-linear. The set of every such trivialization is contractible, for a fixed
choice of u (see [14, Lemma 5.1] for instance). Then γt := ξ(e2iπt)−1dϕt(z)ξ(1),
t ∈ [0, 1], is a symplectic path in Sp(2d) and the Maslov index of z with respect to
the capping u is set to be

mas(z, u) := mas((γt)).
It does not depend on the specific choice of trivialization, in fact it only depends
on the homotopy class of u relative to the boundary ∂D2. Thus, if π2(M) = 0 any
choice of u gives the same index.

3.2. Maslov index of a C-equivariant Hamiltonian diffeomorphism. Let
(Φt) be a C-equivariant Hamiltonian flow on Cd+1 lifting a Hamiltonian flow (ϕt) on
CPd. Let Z0 ∈ S2d+1 be a fixed point of Φ1 and denote by Zt := Φt(Z0), t ∈ [0, 1], the
associated loop in S2d+1. Let π : S2d+1 → CPd be the quotient map. Let zt := π(Zt)
be the associated loop in CPd so that zt = ϕt(z0). Let U : D2 → S2d+1 be any
smooth capping of (Zt), i.e. Zt = U(e2iπt). All such cappings are homotopic since
π2(S2d+1) = 0. We set u := π ◦ U .

Proposition 3.2. With the above notations,
mas(Z0, (Φt)) = mas(z0, u).

Proof. For all t ∈ [0, 1], let γt := dϕt(z0) : Tz0CPd → TztCP d and Γt := dΦt(Z0)
which is a path in Sp(2(d + 1)). For all w ∈ D2, let ξ(w) : Cd → Tu(w)CPd be
a smooth family of C-linear symplectic maps induced by u as explained above.
Throughout the proof, if f denotes a map whose domain is D2, then, for t ∈ [0, 1],
ft := f(e2iπt). For all t ∈ [0, 1] let ξt := ξ(e2iπt) and γ′t := ξ−1

t γtξ0 ∈ Sp(2d) so that
mas(Z0, (Φt)) = mas((Γt)) and mas(z0, u) = mas((γ′t)).

Notice that, for all Z ∈ S2d+1, the tangent space Tπ(Z)CPd ' Cd+1/CZ is canoni-
cally isomorphic to (CZ)⊥ (given a C-subspace E ⊂ Cd+1, E⊥ denotes its hermitian
orthogonal subspace, which is also its Euclidean orthogonal subspace or its sym-
plectic orthogonal subspace). Let L(w) := (CU(w))⊥ → Tu(w)CPd, w ∈ D2, be the
induced continuous family of C-linear symplectic maps. Let us define the following
continuous family of endomorphism of Cd+1 indexed by w ∈ D2,
A(w) : C× Cd → CU(w)⊕ (CU(w))⊥, A(w)(λ, ζ) = λU(w) + L(w)−1ξ(w)ζ.
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Since the linear maps λ 7→ λU(w) and L(w)−1ξ(w) are symplectic maps and since
both direct sums C× Cd and CU(w)⊕ (CU(w))⊥ are symplectic-orthogonal sums,
A(w) ∈ Sp(2(d+ 1)).

Since Φt is a C-equivariant diffeomorphism, The symplectic map dΦt(Z0) = Γt
sends the orthogonal subspaces CZ0 and (CZ0)⊥ respectively on CZt and (CZt)⊥
with

Γt(λZ0 + ζ) = λZt + L−1
t γtL0ζ, ∀λ ∈ C,∀ζ ∈ (CZ0)⊥,

where Lt := L(e2iπt) : (CZt)⊥ → TztCPd. Thus Γ′t := A−1
t ΓtA0 is the symplectic

path Γ′t = I2 ⊕ γ′t, so Proposition 3.1 (3) implies mas((Γ′t)) = mas((γ′t)). Since
At = A(e2iπt) with A : D2 → Sp(2(d+1)) continuous, (Γ′t) is homotopic to (A−1

0 ΓtA0)
relative to endpoints, thus mas((Γ′t)) = mas((A−1

0 ΓtA0)) = mas((Γt)), according to
Proposition 3.1 (5) and (4). �

3.3. Bott’s iteration inequalities. Let (Φt) be a Hamiltonian flow on Cd starting
at Φ0 = id and let z ∈ Cd be a fixed point. Even though (Φt(z)) is a loop in Cd,
Γt := dΦt(z), t ∈ R+, defines only a path in Sp(2d), so that in general mas(Γkt, t ∈
[0, 1]) 6= kmas(Γt, t ∈ [0, 1]). Notice that the path (Γt)t∈R only depends on (Γt)t∈[0,1]
since Γt+k = ΓtΓk1 for k ∈ N and t ≥ 0.

Theorem 3.3. Let Γ := (Γt)t≥0 be a continuous path in Sp(2d) such that Γ0 = I2d
and Γt+k = ΓtΓk1 for all k ∈ N and t > 0. Then the average Maslov index

mas(Γ) := lim
k→∞

mas(Γkt, t ∈ [0, 1])
k

∈ R

is a well-defined real number and we have the iteration inequalities
kmas(Γ)− d ≤ mas(Γkt, t ∈ [0, 1]),

mas(Γkt, t ∈ [0, 1]) + dim ker(Γk1 − I2d) ≤ kmas(Γ) + d.

We refer to [13, Theorem 3.6] for a more precise statement and a proof. Notice
that, by definition, the average Maslov index is homogeneous:

mas((Γkt)) = kmas((Γt)).

Let us denote by mas(z, (Φt)) ∈ R the average Maslov index of the fixed point z,
that is

mas(z, (Φt)) := mas(dΦt(z), t ≥ 0).
So that Theorem 3.3 gives for all k ∈ N,

kmas(z, (Φt))− d ≤ mas(z, (Φkt)),
mas(z, (Φkt)) + dim ker(dΦk(z)− id) ≤ kmas(z, (Φt)) + d.

This inequality can be extended to every symplectic manifold M2d as follows. Let
(ϕt) be a Hamiltonian flow onM2d starting at ϕ0 = id and let z ∈M be a fixed point
of ϕ1 such that (ϕt(z)) is contractible. Let u : D2 →M be a capping of z and ξ(w) :
Cd → Tu(w)M , w ∈ D2, be an induced trivialization. For k ∈ N∗, let uk : D2 → M
be the smooth map uk(w) := u(wk), w ∈ D2. This map is the natural capping of
z as a fixed point of the time-one map of the Hamiltonian flow (ϕkt) induced by
(z, u). If z̄ := (z, u), it is often denoted by z̄k = (z, uk). An induced trivialization is
ξk(w) := ξ(wk), so that γ(k)

t = γkt, where γ(k)
t := ξk(e2iπt)−1dϕkt(z)ξk(1), and γt :=
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ξ(e2iπt)−1dϕt(z)ξ(1), t ≥ 1. Since mas(z̄k) := mas(γ(k)
t , t ∈ [0, 1]) with γt+k = γtγ

k
1

for all k ∈ N and t ≥ 0, Theorem 3.3 gives for all k ∈ N,

kmas(z̄)− d ≤ mas(z̄k),
mas(z̄k) + dim ker(dϕk(z)− id) ≤ kmas(z̄) + d.

(3)

where mas(z̄) := mas(γt, t ≥ 0) is the average Maslov index of the capped fixed
point z̄ = (z, u). Let (Φt) be a C-equivariant Hamiltonian flow of Cd+1 with Φ0 = id
which is the lift of a Hamiltonian flow (ϕt) of CPd with ϕ0 = id. Let Z ∈ S2d+1 be
a fixed point of Φ1 and z̄ = (π(Z), u) be the capped fixed point of ϕ1 associated to
it, then

mas(Z, (Φkt)) = mas(z̄k), ∀k ∈ N.

Indeed, if U : D2 → S2d+1 is a capping of Z so that u = π◦U , then Uk is a capping of
Z relative to (Φkt)t∈[0,1] and uk = π ◦Uk (recall that mas(Z, (Φkt)) does not depend
on the choice of capping since π2(S2d+1) = 0). So, according to equation (3), for
every fixed point Z ∈ S2d+1 of any C-equivariant Hamiltonian flow (Φt) of Cd+1

which is the lift of some Hamiltonian flow (ϕt) of CPd, for all k ∈ N,

kmas(Z, (Φt))− d ≤ mas(Z, (Φkt)),
mas(Z, (Φkt)) + dim ker(dϕk(z)− id) ≤ kmas(Z, (Φt)) + d,

(4)

where z := π(Z).

4. Projective join

In [9, Appendix], Givental studied the cohomology of projective joins by using
S1-equivariant cohomology. Here, we give an alternative way to study the special
case of joins with a projective subspace.

Let m,n ∈ N and let π : Cm+n+2 \ 0→ CPm+n+1 be the quotient projection. We
projectively embed CPm and CPn in CPm+n+1 by identifying CPm with π(Cm+1 ×
0 \ 0) and CPn with π(0 × Cn+1 \ 0) so that CPn and CPm do not intersect. This
is equivalent to considering two projective subspaces of respective C-dimensions m
and n in general position. Let A ⊂ CPm and B ⊂ CPn. Then the projective join
A ∗ B ⊂ CPm+n+1 is the union of every projective lines intersecting A and B. In
other words, A ∗B = A ∪B ∪ π(Ã× B̃) where Ã and B̃ are the lifts of A and B to
Cm+1 \ 0 and Cn+1 \ 0 respectively. One can remark that CPm ∗ CPn = CPm+n+1

and that if [a : b] ∈ CPm+n+1, with a ∈ Cm+1 and b ∈ Cn+1, does not belong to
CPm nor to CPn, then only one projective line intersecting CPm and CPn contains
[a : b], namely the line joining [a : 0] to [0 : b]. Given A ⊂ CPm, we denote by
pA : A ∗ CPn \ CPn → A the projection [a : b] 7→ [a : 0].

In this paper, H∗ will stand for the singular cohomology with integer coefficients.
Given A ⊂ CPm, let T ⊂ A ∗ CPm be a tubular neighborhood of CPm such that
(A ∗ CPn, T ) retracts on (A ∗ CPn,CPn). By excision H∗(A ∗ CPn,CPn) ' H∗(A ∗
CPn \ CPn, T \ CPn). Using this identification, we define the cup-product H∗(A ∗
CPn \CPn)⊗H∗(A∗CPn,CPn)→ H∗(A∗CPn,CPn) by the following commutative
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diagram
H∗(A ∗ CPn \ CPn)⊗H∗(A ∗ CPn,CPn) ^

//

'
��

H∗(A ∗ CPn,CPn)
'
��

H∗(A ∗ CPn \ CPn)⊗H∗(A ∗ CPn, T ) H∗(A ∗ CPn, T )

H∗(A ∗ CPn \ CPn)⊗H∗(A ∗ CPn \ CPn, T \ CPn)

'

OO

^
// H∗(A ∗ CPn \ CPn, T \ CPn)

'

OO
,

where the vertical arrows are induced by inclusions and the bottom arrow is the usual
cup-product. According to the long exact sequence of the couple (CPm+n+1,CPn),
the map H2(n+1)(CPm+n+1,CPn) → H2(n+1)(CPm+n+1) induced by the inclusion
is an isomorphism (the dimension of CPn being 2n < 2n + 1) so that we can
see the class un+1 ∈ H2(n+1)(CPm+n+1) in H2(n+1)(CPm+n+1,CPn) via this iden-
tification. Given A ⊂ CPm, let tA ∈ H2(n+1)(A ∗ CPn,CPn) be the image of
un+1 ∈ H2(n+1)(CPm+n+1,CPn) induced by the inclusion and let fA : H∗(A) →
H∗+2(n+1)(A ∗ CPn) be the morphism given by fA(v) := p∗A(v) ^ tA.

Proposition 4.1. Let A ⊂ CPm. One has the following isomorphisms:

Hk(A ∗ CPn) '

Hk(CPn) for k ≤ 2n+ 1,
Hk−2(n+1)(A) for k > 2n+ 1,

where the isomorphisms Hk(A ∗CPn)→ Hk(CPn) are induced by the inclusion and
the isomorphisms Hk−2(n+1)(A)→ Hk(A ∗ CPn) are given by fA.

Proof. Let us consider the long exact sequence of the couple (A ∗ CPn,CPn):

· · · → H∗(A ∗ CPn,CPn) j∗−→ H∗(A ∗ CPn) i∗−→ H∗(CPn)→ · · · (5)
The inclusions of A ∗ CPn and CPn in CPm+n+1 give the following commutative
diagram:

H∗(A ∗ CPn) i∗
// H∗(CPn)

H∗(CPm+n+1)

OO 77

where the diagonal arrow is onto (we recall that CPn is projectively embedded inside
CPm+n+1), thus i∗ is onto. Hence the long exact sequence (5) can be reduced to the
short exact sequence

0→ H∗(A ∗ CPn,CPn) j∗−→ H∗(A ∗ CPn) i∗−→ H∗(CPn)→ 0. (6)
Let us consider pA : A∗CPn \CPn → A. This projection defines a complex vector

bundle of dimension n + 1. Indeed, let EA := A ∗ CPn \ CPn and Ui ⊂ CPm+n+1

be the affine chart {[a0 : · · · : am : z0 : · · · : zn] | ai 6= 0}. Since the intersection
of a projective line with the projective hyperplane CPm+n+1 \ Ui is either a point
or the projective line itself, we see that p−1

A (A ∩ Ui) = EA ∩ Ui. We then have the
trivialization EA ∩ Ui ' A ∩ Ui × Cn+1 given by [a : z] 7→ ([a], z/ai). Thus EA is a
fiber bundle, moreover this is the restriction of ECPm to A. We can even say that
ECPm ' (γ1

m)⊕(n+1) where γ1
m is the tautological fiber bundle of CPm, by looking at

the transition maps of the above trivialization charts (but this will not be relevant
for us). Let us endow CPm+n+1 with the Riemannian metric induced by the round
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metric of S2(m+n)+3 and let T ⊂ A∗CPn be the tubular neighborhood of CPn defined
as the set of points at distance less than r ∈ (0, π/2) of CPn. Then the topological
pair (A ∗ CPn, T ) retracts on (A ∗ CPn,CPn) so that the inclusion map induces an
isomorphism H∗(A∗CPn,CPn) ' H∗(A∗CPn, T ) in cohomology. Since the compact
CPn is included in the interior of T , by excision H∗(A ∗CPn, T ) ' H∗(EA, T ∩EA).
In the trivialization charts, each fibers of EA \ T is a round ball of Cn+1 so that
(EA, EA \ A) retracts on (EA, T ∩ EA). According to Thom isomorphism theorem,

H∗−2(n+1)(A) ' H∗(EA, EA \ A) ' H∗(A ∗ CPn,CPn),
where the isomorphism H∗−2(n+1)(A) → H∗(A ∗ CPn,CPn) is given by the cup-
product of the pull-back of the class by pA with the Thom class t′A ∈ H2(n+1)(A ∗
CPn,CPn). Furthermore, since Hk(CPn) is zero when k > 2n and Hk(A∗CPn,CPn)
is zero when k < 2(n + 1), the short exact sequence (6) obviously decomposes:
H∗(A ∗ CPn) ' H∗(A ∗ CPn,CPn)⊕H∗(CPn).

Since EA is the restriction of ECPm , the Thom class t′A is the image of the Thom
class t′CPm under the morphism induced by inclusion. Since j∗ must be an isomor-
phism in degree 2(n + 1) in the exact sequence (6) for A = CPm, we must have
t′CPm = ±un+1 (recall that CPm ∗ CPn = CPm+n+1). In fact t′CPm = un+1 = tCPm

as the orientation of a complex fiber ' Cn+1 coincides with the orientation of a
projective subspace of C-dimension n+ 1 (they all come from the complex structure
of CPm+n+1). �

Following Givental, we define `(A) ∈ N for A ⊂ CPN as the rank of the morphism
H∗(CPN)→ H∗(A) induced by the inclusion (e.g. `(CPn) = n+ 1). This definition
coincides with the equivariant cohomological index defined by Fadell and Rabinowitz
[3] (in the special case of the free action of S1 on S2N+1).

Corollary 4.2 ([9, Corollary A.2]). Let A ⊂ CPm, then `(A ∗CPn) = `(A) +n+ 1.

Proof. Since fCPm(uk) = un+1 ^ uk for 0 ≤ k ≤ m, we have the following commu-
tative diagram:

H∗(CPm+n+1) un+1^·
//

��

H∗+2(n+1)(CPm+n+1)

��

H∗(A) fA
// H∗+2(n+1)(A ∗ CPn)

where the vertical arrows are induced by inclusions. For the grading ∗ = 2(`(A ∗
CPn)−n−1), the map un+1 ^ · is onto, so `(A∗CPn) ≤ `(A)+n+1. According to
Proposition 5.2, the map fA is an injection for the grading ∗ = 2`(A), so `(A∗CPn) ≥
`(A) + n+ 1. �

5. Generating functions of C-equivariant Hamiltonian
diffeomorphisms

5.1. “Broken trajectories” and generating functions of Cd. Let Φ ∈ Ham(Cd)
be a Hamiltonian diffeomorphism which can be decomposed as Φ = σn◦· · ·◦σ1, where
every σk ∈ Ham(Cd) is sufficiently C1-close to id such that they admit generating
functions fk : Cd → R satisfying:

∀zk ∈ Cd,∃!wk ∈ Cd, wk = zk + σk(zk)
2 and ∇fk(wk) = i(zk − σk(zk)). (7)



PERIODIC POINTS IN CPd VIA GENERATING FUNCTIONS 11

We call such generating functions without auxiliary variable elementary generat-
ing functions. We will say that the n-tuple σ = (σ1, . . . , σn) is associated to the
Hamiltonian flow (Φt) if there exists real numbers 0 = t0 ≤ t1 ≤ · · · ≤ tn = 1
such that σk = Φtk ◦ Φ−1

tk−1 . A continuous family of such tuples (σs) will denote a
family of tuples of the same size n ≥ 1, σs =: (σ1,s, . . . , σn,s) such that the maps
s 7→ σk,s are C1-continuous. Every compactly supported Hamiltonian flow and every
C-equivariant Hamiltonian flow (Φs)s∈[0,1] admits a continuous family of associated
tuple (σs) that is σs is associated to Φs for all s ∈ [0, 1] (and the size can be taken
as large as wanted).

Denote by Fσ the following function (Cd)n → R:

Fσ(v1, . . . , vn) :=
n∑
k=1

fk

(
vk + vk+1

2

)
+ 1

2 〈vk, ivk+1〉 , (8)

with convention vn+1 = v1. Let A : (Cd)n → (Cd)n denotes the linear map such
that, for v = (v1, . . . , vn), A(v) = w with wk = vk+vk+1

2 . Let ψ : (Cd)n → (Cd)n be
the diffeomorphism ψ(z) = w defined by (7).

Proposition 5.1. Under the above hypothesis, we have
∀k, ∀v ∈ (Cd)n, ∂vk

Fσ(v1, . . . , vn) = i(zk − σk−1(zk−1)),
where z := ψ−1 ◦ A(v) and z0 := zn. Moreover, if n is odd, Fσ is a generating
function of Φ with v1 as main variable.

Proof. Let F := Fσ. Given any n-tuple v ∈ (Cd)n, we associate n-tuples w and z
in (Cd)n given by w = A(v) and ψ(z) = w. Then

∂vk
F (v) = 1

2

(
∇fk−1

(
vk−1 + vk

2

)
+∇fk

(
vk + vk+1

2

)
+ i(vk+1 − vk−1)

)
= 1

2 (∇fk−1(wk−1) +∇fk(wk)) + i(wk − wk−1)

= i(zk − σk−1(zk−1)).
where indices are seen in Z/nZ. Now suppose that n is odd, so that A is an
isomorphism. If we denote by ξ := (v2, . . . , vn) the auxiliary variables, we thus
have ∂ξF (v) = 0 if and only if zk+1 = σk(zk) for 1 ≤ k ≤ n − 1. Moreover, since
v1 = ∑

k(−1)k+1wk, if ∂ξF (v) = 0 then

v1 =
n∑
k=1

(−1)k+1 zk + σk(zk)
2 = z1 + σn(zn)

2 ,

as required (since σn(zn) = Φ(z1) recursively).
Finally we must show that ∂ξF is transverse to 0. This is clear in the z-coordinates:

the matrix

d(∂ξF )(v) · A−1 · dψ(z) = i


−dσ1(z1) I2d

−dσ2(z2) I2d
. . . . . .
−dσn(zn) I2d


is invertible. �

This proposition provides a quantitative way to see how close a discrete trajectory
(z1, . . . , zn) given by (v1, . . . , vn) is to a discrete trajectory of the dynamics σn◦· · ·◦σ1.
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If σ = (σ1, . . . , σn) and δ = (δ1, . . . , δm), we write (σ, δ) = (σ1, . . . , σn, δ1, . . . , δm).
We have the following decomposition formula:
∀v1, . . . , vn+m ∈ Cd, F(σ,δ)(v) = F(σ,id)(v1, . . . , vn+1) + F(δ,id)(vn+1, . . . , vn+m, v1).

(9)
The following proposition will be of special interest for us.

Proposition 5.2. Let σ be m-tuple with m even and δ := (U1, . . . , Un) be a n-tuple
of unitary maps with n odd. Assume Un◦· · ·◦U1 = id. Then the generating function
F(σ,δ) is equivalent to F(σ,id). More precisely, writing v1 := (v1, . . . , vn+1) and v2 :=
(vn+2, . . . , vm+n) there exists a C-linear isomorphism Aδ : (Cd)m+n → (Cd)m+n of
the form Aδ(v1,v2) = (v1,v2−A′δ(v1)) that does not depend on the choice of σ and
a non-degenerate quadratic form Q of (Cd)n−1 such that

F(σ,δ) ◦ Aδ(v1,v2) = F(σ,id)(v1) +Q(v2),
with ind(Q) = ind(F(δ,id)) = ind(Fδ). In fact

Q(v2) := Fδ(0,v2).

In order to prove it, we will need the following lemma.

Lemma 5.3. Let n ∈ N be odd. Let U1, . . . , Un ∈ U(Cd) be unitary maps generated
by elementary quadratic generating functions and such that Un◦· · ·◦U1 = id. Let δ :=
(U1, . . . , Un). Then, writing v′ := (v2, . . . , vn) there exists a C-linear isomorphism
Bδ : (Cd)n+1 → (Cd)n+1 of the form Bδ(v1,v′, vn+1) = (v1,v′ + B′δ(v1, vn+1), vn+1)
and a non-degenerate quadratic form Q : (Cd)n−1 → R such that

∀v1, . . . vn+1 ∈ Cd, F(δ,id) ◦Bδ(v1,v′, vn+1) = Q(v′),
with ind(Q) = ind(F(δ,id)) = ind(Fδ). In fact Q(v′) := Fδ(0,v′).

Proof. We will show that F := F(δ,id) is a generating function of the 0-section of
(Cd)2 with main variable x := (v1, vn+1) and auxiliary variable ξ := v′. According
to Proposition 5.1, ∂ξF (v) = 0 implies zk+1 = Ukzk for 1 ≤ k ≤ n − 1 so that
zn = Un−1 · · ·U1z1 = U−1

n z1. Since n+ 1 is even, one has

im(A) =
{

w ∈ (Cd)n+1 |
∑
k

(−1)kwk = 0
}

so that if ∂ξF (v) = 0 then
n+1∑
k=1

(−1)k zk + Ukzk
2 = zn+1 − z1 = 0.

Thus, for v ∈ (Cd)n+1 such that ∂ξF (v) = 0, according to Proposition 5.1,

∂xF (v) =
(
i(z1 − zn+1)
i(zn+1 − Unzn)

)
= 0,

since we have seen that Unzn = z1. We see that ∂ξF is transverse to 0 easily in the
z-coordinates.

The lemma is now a direct application of Lemma 2.1 In our case, it gives
F(δ,id)(v1,v′ +B′δ(v1, vn+1), vn+1) = Q(v′)

where
Q(v′) = F(δ,id)(0,v′, 0) = Fδ(0,v′).
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Since the map Bδ(v) := (v1,v′+B′δ(v1, vn+1), vn+1) is a linear isomorphism, ind(Q) =
ind(F(δ,id)). In fact ind(Q) = ind(Fδ), as can be seen by applying Lemma 2.1,
this time to the quadratic generating function of the 0-section Fδ with v1 as main
variable. �

Proof of Proposition 5.2. This is a direct application of Lemma 5.3 to the function
F(δ,id) together with the decomposition formula (9). �

The following lemma will be useful to relate critical points of Hamiltonian diffeo-
morphisms with a common factor.

Lemma 5.4. Let σ, δ and δ′ be respectively an m-tuple and two n-tuples of small
Hamiltonians diffeomorphism of Cd as above. Let ψ and ψ′ be the diffeomorphisms
z 7→ w of (Cd)m+n+1 defined by (7) for the tuples (σ, δ, id) and (σ, δ′, id) respectively.
Let A : v 7→ w be the linear map of (Cd)m+n+1 defined as above. Then for all
z1 ∈ (Cd)m, z2, z3 ∈ (Cd)n and zm+n+1 ∈ Cd, we have (v1, . . . , vm) = (v′1, . . . , v′m)
where ψ(z1, z2, zn+m+1) = A(v) and ψ′(z1, z3, zn+m+1) = A(v′).

Proof. Under the above hypothesis,
vm+n+1 + v1

2 = zm+n+1 = v′m+n+1 + v′1
2 and vk + vk+1

2 = z1
k + σk(z1

k)
2 = v′k + v′k+1

2 ,

where k ∈ {1, . . . , n}. So that, with matrices,

Av′ =

I2md
∗

I2d

Av.

The conclusion then follows from a direct computation. �

5.2. Generating family of the S1-action. In this section we follow Théret [17]
and study generating families of the unitary (Hamiltonian) flow g : t 7→ e−2iπt of
Cd+1 For |t| < 1/2, the Hamiltonian diffeomorphism gt(z) := e−2iπtz admits the
elementary quadratic generating function

qt(w) := − tan(πt)‖w‖2, ∀w ∈ Cd+1.

Let δt be the m-tuple (gt/(m−1), . . . , gt/(m−1), id) with m ≥ 5 odd such that Fδt

generates gt for t ∈ (−ε, 1 + ε) where ε > 0 is arbitrarily fixed (we have only put
a final “id” in δt in order for us to apply Lemma 5.4 in a further section without
trouble).

Lemma 5.5. With the above notation,
ind(Fδ1)− ind(Fδ0) = 2(d+ 1).

Proof. According to Proposition 3.1 (3) and (6), mas(z, (gt)) = 2(d + 1) for all
z ∈ Cd+1. Since Fδt is a generating function of gt, the result follows by definition of
the Maslov index. �

Lemma 5.6 (compare with [17, Lemma 4.4]). Let σ be a m′-tuple, with m′ even,
such that Ft := F(σ,δt) : (Cd+1)m′+m → R is a smooth family of conical generating
functions. Then
(i) ∂tFt(v) ≤ 0, ∀v ∈ (Cd+1)m′+m,
(ii) ∂tFt(v) < 0, ∀v ∈ ΣFt \ 0.
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Proof. The first property is a direct consequence of the definitions and the fact that
∂t(tan(πt/m)) > 0. Let v = (v1, . . . , vm+m′) ∈ (Cd+1)m+m′ be such that ∂tFt(v) = 0.
Then, for m′ + 1 ≤ k < m′ + m, wk := vk+vk+1

2 = 0 thus zk = 0 where the family
z = (zk) is associated to the family w = (wk) via (7) as usual. Thus if v ∈ ΣFt , zk
must be 0 for all k for the sequence (z1, . . . , zm′+m) to be the discrete dynamics of
conical diffeomorphisms, hence w = 0 and v = 0. �

5.3. A discrete variational principle for C-equivariant Hamiltonian diffeo-
morphisms. Let (ϕt) be the Hamiltonian flow of CPd associated to the Hamiltonian
map h : [0, 1] × CPd → R. Let h̃ : [0, 1] × S2d+1 → R be the S1-invariant lift of
h defined by h̃t := ht ◦ π where π : S2d+1 → CPd is the quotient map π(z) := [z].
Let H : [0, 1] × Cd+1 → R be the 2-homogeneous Hamiltonian map such that
Ht(λx) := λ2h̃t(x) for all x ∈ S2d+1. It defines a C-equivariant symplectic flow (Φt)
stabilizing the Euclidean sphere S2d+1 and such that

π ◦ Φt|S2d+1 = ϕt ◦ π, ∀t ∈ [0, 1]. (10)

This flow (Φt) is uniquely defined by the choice of Hamiltonian map (ht) of (ϕt). In
fact, if (Φ′t) is a C-equivariant Hamiltonian flow stabilizing the sphere and such that
(10), then Φ′t = eiθ(t)Φt which boils down to a change of equivalent Hamiltonian
map (h′t) for (ϕt). We will usually write ϕ := ϕ1 ∈ Ham(CPd) and Φ := Φ1 ∈
HamC(Cd+1). Given a choice of Hamiltonian map (ht), the action a(x) ∈ R/Z of a
fixed point x ∈ CPd is defined by

a(x) := − 1
π

(∫
D
ω +

∫ 1

0
ht ◦ ϕt(x)dt

)
∈ R/Z,

where D ⊂ CPd is a 2-disc filling the contractible loop γ := (ϕt)t∈[0,1], that is
∂D = γ (the 1/π factor is a standard renormalization to simplify notations). Fixed
points x ∈ CPd of action a ∈ R/Z are in one-to-one correspondence with C-lines
CX ⊂ Cd+1 such that Φ1(X) = e2iπaX, X ∈ Cd+1 \ 0 (see [17, Prop. 5.8]). Since
the action only depends on the choice of lift (Φt), when such a lift is given, we will
simply call it the action of (ϕt) or the action of ϕ.

Following Théret, we now define a map T : M → R that provides a variational
principle for fixed points of (ϕt). Let ε > 0, let (δt) be one of the families of
odd tuples associated to (gt) defined in Section 5.2 for t ∈ (−ε, 1 + ε) and let
(σs) be an even continuous family of tuples associated to (Φs) of the form (σ′s, δ0).
Then Fs,t := F(σs,δt) : CN+1 → R gives us a family of conical functions generating
e−2iπtΦs. In order to simplify notation, let Ft := F1,t be the family of conical
functions generating e−2iπtΦ, t ∈ (−ε, 1 + ε). Let f̃ : (−ε, 1 + ε) × S2N+1 → R be
the S1-invariant function f̃(t, ζ) := Ft(ζ) for |ζ| = 1 and f : (−ε, 1 + ε)×CPN → R
be the induced function. Then there is a one-to-one correspondence between fixed
points of ϕ of action t̄ ∈ R/Z and critical points of f(t, ·) with value 0 for any
t ∈ (−ε, 1 + ε).

According to property (ii) of Lemma 5.6, the differential df̃ = ∂t(Ft)dt + dFt
never vanishes on CN+1 \ 0 so 0 is a regular value of f . Let I := (−ε, 1 + ε). Let
M := {(t, ζ) ∈ I × CPN | f(t, ζ) = 0} and T : M → I be the projection onto
the first factor. Fixed points of action t̄ ∈ R/Z are in one-to-one correspondence
with critical points of T with value t: more precisely dT (t, ζ) = 0 ⇔ dζf(t, ζ) =
0. Moreover, if (t, ζ) ∈ M is a critical point of T , then the Hessian d2T (t, ζ) is
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equivalent as a quadratic form to d2
ζ,ζf(t, ζ) which is equivalent to d2Ft(ζ̃) restricted

to a complement of the C-line induced by ζ̃ ∈ S2N+1, where ζ̃ is a lift of ζ ∈ CPN
(because Ft is conical). Since this line Cζ̃ is included in ker d2Ft(ζ̃), critical points
(t, ζ) ∈M and ζ̃ ∈ CN+1 share the same index. Moreover, if z ∈ CPd and Z ∈ Cd+1

are fixed points associated to ζ ∈ CPN and ζ̃ ∈ CN+1 respectively, since
dim ker d2Ft(ζ̃) = dim ker(e−2iπtdΦ(Z)− id)

one has
dim ker d2

ζ,ζf(t, ζ) = dim ker(dϕ(z)− id) =: ν(z). (11)

5.4. Cohomology of sublevel sets of T . We recall that H∗ denotes the singular
cohomology with integral coefficients. Let p : I×CPN → CPN be the projection on
the second space and i : M ↪→ I × CPN be the inclusion map. Let F̂t : CPN → R
be the C1 map induced by Ft|S2N+1 . According to Lemma 5.6, if s ≤ t, then F̂t ≤ F̂s
so that

{
F̂s ≤ 0

}
⊂
{
F̂t ≤ 0

}
. Thus the subspace

At :=
{

(s, ζ) ∈ (−ε, t]× CPN | F̂s(ζ) ≤ 0
}

retracts on t×
{
F̂t ≤ 0

}
, hence p induces an isomorphism H∗

({
F̂t ≤ 0

})
→ H∗(At)

for all t ∈ I and thus induces isomorphisms

p∗ : H∗
({
F̂b ≤ 0

}
,
{
F̂a ≤ 0

})
→ H∗(Ab, Aa), (12)

for a ≤ b in I. Let a ≤ b in I and e > 0 such that a−e ∈ I, the subspace Ab retracts
on {T ≤ b} ∪Aa−e by (t, ζ) 7→ (s, ζ) where s is the maximal r ∈ (a− e, t] satisfying
F̂r(ζ) = 0 or s = a− e if such a max does not exist. By excision, we then have that
i induces an isomorphism

i∗ : H∗(Ab, Aa)→ H∗({T ≤ b}, {T ≤ a}), (13)
for all a ≤ b in I. Putting (12) and (13) together, we get the following

Lemma 5.7. For all a ≤ b in I, the composition p ◦ i induces an isomorphism in
cohomology

H∗
({
F̂b ≤ 0

}
,
{
F̂a ≤ 0

})
' H∗({T ≤ b}, {T ≤ a}).

The above statement still holds when the inequalities on one or both sides of
the topological pairs are replaced by strict inequalities. It also extends to local
cohomology, the precise statement being given in the next section.

5.5. Local cohomology of a fixed point. Let z ∈ CPd be a fixed point of ϕ with
Φ(Z) = e2iπtZ where Z ∈ S2d+1 is a lift of z. We assume that z is an isolated fixed
point and that its action value is isolated among the action values of ϕ (it is always
the case when ϕ has a finite number of fixed point). We denote by C∗(z, t) the local
cohomology of T at the critical point (t, ζ) corresponding to z, i.e.

C∗(z, t) = H∗({T ≤ t}, {T ≤ t} \ (t, ζ)).
This group depends only on the germ of T at (t, ζ). Namely, for all neighborhoods
U ⊂M of (t, ζ),

C∗(z, t) ' H∗(U ∩ {T ≤ t}, U ∩ {T ≤ t} \ (t, ζ)).
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By an argument similar to the proof of Lemma 5.7, the map p ◦ i : M → CPN
induces an isomorphism

C∗(z, t) ' H∗
({
F̂t ≤ 0

}
,
{
F̂t ≤ 0

}
\ ζ
)
.

Thus C∗(z, t) is isomorphic to the local cohomology of F̂t at the point ζ which we
denote by C∗(F̂t; ζ). The support of a cohomology group C∗ is defined by

suppC∗ := {k ∈ Z | Ck 6= 0} ⊂ Z.

A classical result due to Gromoll-Meyer [10, remark following Lemma 1] implies that
for any smooth function f : M → R and any isolated critical point x ∈M ,

suppC∗(f ;x) ⊂
[
ind(x, f), ind(x, f) + dim ker d2f(x)

]
.

According to (11), we thus have

suppC∗(z, t) ⊂
[
ind(ζ̃ , Ft), ind(ζ̃ , Ft) + ν(z)

]
, (14)

where ζ̃ ∈ CN+1 is a lift of ζ.
We want to study the relationship between the local cohomology groups C∗(z, t)

and C∗(z, t+1) when z is a fixed point of action t ∈ (−ε, ε). Let us assume that t = 0
and let (j, ζj) ∈ M , j = 0, 1, be the critical points associated to z. Let (uj,vj) ∈
(Cd+1)n+1×(Cd+1)m−1 be lifts of ζj. According to Lemma 5.4, one can take u0 = u1.
According to proposition 5.2, there exist C-linear maps Aj : (Cd+1)m+n → (Cd+1)m−1

such that Fj(u, Aj(u,v)) = g(u) + Qj(v) where g = F(σ,id), Qj(v) = Fδj
(0,v) and

the linear maps have the form Aj(u,v) = v +Bj(u). Since the (u0,vj)’s are critical
points and the Qj’s are non-degenerate Aj(u0, 0) = vj.

Lemma 5.8. Let C : (Cd+1)n+1 → (Cd+1)m−1 be the linear map such that the
following diagram commutes:

{g ≤ 0} × {Q1 ≤ 0}
(u,v)7→(u,A1(u,v))

// {F1 ≤ 0}

{g ≤ 0} × {Q0 ≤ 0}

(u,v)7→(u,v+C(u))

OO

(u,v)7→(u,A0(u,v))
// {F0 ≤ 0}

?�

OO

(15)

The set {Q0 ≤ 0} is included in {Q1 ≤ 0} and the left hand vertical arrow is
homotopic to the inclusion map {g ≤ 0} × {Q0 ≤ 0} ↪→ {g ≤ 0} × {Q1 ≤ 0}.

Proof. According to Lemma 5.6, Q1 ≤ Q0 so that we have the inclusion of their
sublevel sets. We now prove that the map (u,v) 7→ (u,v + sC(u)) is well-defined
from {g ≤ 0} × {Q0 ≤ 0} to {g ≤ 0} × {Q1 ≤ 0} for s ∈ [0, 1] in order to conclude.
By the above inclusion, this is true for s = 0. For all (u,v) ∈ {g ≤ 0} × {Q0 ≤ 0},
we have Q1(v + C(u)) ≤ 0 by definition of C. Thus for s ∈ (0, 1], since (u,v/s) is
also in {g ≤ 0} × {Q0 ≤ 0}, one has

Q1(v/s+ C(u)) = s−2Q1(v + sC(u)) ≤ 0.

Hence the result follows for s 6= 0. �

Lemma 5.9. In the diagram (15), the sublevel sets {Qj ≤ 0} retract on the maximal
negative C-subspaces of the Qj’s through C-linear maps. By taking the projection of
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these spaces on CPN , we get the following commutative diagram in cohomology:

H∗(X ∗ CPk+d+1)

��

H∗
({
F̂1 ≤ 0

})
'
oo

��

H∗(X ∗ CPk) H∗
({
F̂0 ≤ 0

})
'

oo

where X = {ĝ ≤ 0}, CPk ⊂ CPk+d+1 are projectively embedded subspaces of CPN
(the projections of the negative spaces of the Qj’s), vertical maps are induced by
inclusions and the horizontal maps are isomorphisms induced by [u : v] 7→ [u :
Aj(u,v)]. The same is true when we replace {F̂j ≤ 0} by {F̂j ≤ 0} \ [u0 : vj] and
X ∗ CPk+j(d+1) by X ∗ CPk+j(d+1) \ [u0 : 0].

Proof. The variation of dimension between the maximal negative subspaces of Q1
and Q0 is 2(d+ 1) since

ind(Q1)− ind(Q0) = ind(Fδ1)− ind(Fδ0) = 2(d+ 1),
according to Proposition 5.2 together with Lemma 5.5. The commutativity of the
diagram in the statement is a direct consequence of Lemma 5.8. According to the five
lemma applied to long exact sequences of pairs, in order to complete the proof, we
only need to show that the following morphisms induced by [u : v] 7→ [u : Aj(u,v)]
are isomorphisms:

H∗
({
F̂j ≤ 0

})
→ H∗

(
X ∗ CPk+j(d+1)

)
,

C∗
(
F̂j; [u0 : vj]

)
→ H∗

(
X ∗ CPk+j(d+1), X ∗ CPk+j(d+1) \ [u0 : 0]

)
,

(16)

for j ∈ {0, 1}.
In order to show that the first morphism of (16) is an isomorphism, we need

to deform the zero sublevel set of F̂j into a certain non-singular sublevel set. Let
η ∈ (0, 1/2) be a small number. For j ∈ {0, 1} and t ∈ [j − η, j + η], let ft :
(Cd+1)m+n → R be the S1-invariant and 2-homogeneous map ft := F(σ′,δt−j ,δj),
where σ′ is the tuple satisfying σ = (σ′, δ0). In particular, fj = Fj. In a way
similar to Section 5.3, we define a C1-map T ′ : M ′ → (−η, η) ∪ (1 − η, 1 + η) as
the retriction of the projection R × CPN → CPN to the submanifold M ′ of those
(t, ζ) satisfying f̂t(ζ) = 0. By the same argument used in Section 5.4, the statement
of Lemma 5.7 is still true if one replaces the Ft’s with ft’s, T with T ′ and I with
(−η, η) or (1 − η, 1 + η). By applying Morse’s deformation lemma to T ′, we thus
get that for η′ ∈ (0, η) such that (0, η′] does not contain any action value of ϕ the
inclusion morphism

H∗
({
f̂j+η′ ≤ 0

})
→ H∗

({
f̂j ≤ 0

})
= H∗

({
F̂j ≤ 0

})
is an isomorphim. By our choice of ft and by construction of Aj,

ft+j(u, Aj(u,v)) = gt(u) +Qj(v),
where t ∈ (−η, η) and gt := F(σ′,δt,id). In particular, g0 = g and gt is non-decreasing
with t. By the same reasoning as above, Morse’s deformation lemma implies that
the inclusion morphism

H∗ ({ĝη′ ≤ 0})→ H∗ ({ĝ0 ≤ 0}) = H∗ ({ĝ ≤ 0})
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is an isomorphism. By Proposition 4.1, it implies that the inclusion morphisms
H∗

(
{ĝη′ ≤ 0} ∗

{
Q̂j ≤ 0

})
→ H∗

(
{ĝ ≤ 0} ∗

{
Q̂j ≤ 0

})
are isomorphisms for j ∈ {0, 1}. Now, proving that the first morphism of (16) is an
isomorphism is equivalent to proving that the inclusion morphism

H∗
({

̂gη′ ⊕Qj ≤ 0
})
→ H∗

(
{ĝη′ ≤ 0} ∗

{
Q̂j ≤ 0

})
is an isomorphism. It boils down to the fact that

{
̂gη′ ⊕Qj ≤ 0

}
retracts on

{ĝη′ ≤ 0} ∗
{
Q̂j ≤ 0

}
, which is proved by Givental in [9, Proposition B.1] (here,

we need that gη′ does not have any C-line of critical points, contrary to g).
Let us prove that the second morphism of (16) is also an isomorphism. Since

u0 6= 0, one can assume that u0 = (1,u1). By excision to affine neighborhood
{[u : v] | u1 6= 0}, the inclusion morphism

C∗
(
F̂j; [u0 : vj]

)
→ C∗

(
Fj(1, ·); (u1,vj)

)
is an isomorphism. The image of the local cohomology of Fj(1, ·) at (u1,vj) under
(u,v) 7→ (u, Aj(1,u,v)) is the local cohomology of g(1, ·) ⊕ Qj at (u1, 0), which is
isomorphic to

H∗
(
{g(1, ·) ≤ 0} × {Qj ≤ 0}, {g(1, ·) ≤ 0} × {Qj ≤ 0} \ (u1, 0)

)
,

under the inclusion morphism, according to the shifting theorem of Gromoll-Meyer
[10, §3]. By excision to the same affine neighborhood as above applied to the target
space of the second morphism of (16), we finally get that this morphism is an
isomorphism. �

According to this lemma, regarding cohomology of sublevel sets, one can essen-
tially assume that {F̂0 ≤ 0} = X ∗ CPk and {F̂1 ≤ 0} = X ∗ CPk+d+1.
Proposition 5.10. Let z ∈ CPd be a fixed point of ϕ with action t ∈ (−ε, ε), then

C∗(z, t+ 1) ' C∗−2(d+1)(z, t).
Proof. Let us first assume that t = 0. Since we are in the hypothesis of Lemma 5.9,
we keep the same notation with j ∈ {0, 1}. The coordinate changes [u : v] 7→ [u :
Aj(u,v)] induce isomorphisms in local cohomologies:

C∗(z, j) ' H∗
(
X ∗ CPk+j(d+1), X ∗ CPk+j(d+1) \ [u0 : 0]

)
. (17)

We recall that, according to the proof of Proposition 4.1, X ∗CPk+j(d+1)\CPk+j(d+1)

is a complex fiber bundle with fibers Ck+1+j(d+1). Let U ⊂ X be an open set of
trivialization containing [u0] ∈ X. Then by excision,

C∗(z, j) ' H∗
(
U × Ck+1+j(d+1), U × Ck+1+j(d+1) \ ([u0], 0)

)
,

and Künneth formula gives
C∗(z, j) ' H∗−2(k+1+j(d+1))

(
U,U \ [u0]

)
, (18)

which concludes the case t = 0.
Let us assume that t ∈ (−ε, ε). We recall that σ1 = (σ′1, δ0), thus s 7→

(σ′1, δst, δ(1−s)t) is a continuous family of tuples associated to the constant flow
e−2iπtΦ starting at (σ, δt). Therefore, according to Lemma 2.2, there exists an iso-
topy (Bs) with B0 = id and F(σ′1,δt,δ0) ◦B1 = Ft. Let Gs := F(σ′1,δt,δs), then we have
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G0 ◦ B1 = Ft and, by the same way, we have G1 ◦ B′1 = Ft+1 for another isotopy
(B′s). The proof follows along the same lines as before replacing (Fs) by (Gs). �

We want to elaborate on this local statement when the subgroup C∗(z, t) “persists
in the action window (t, t + 1]”. Let z ∈ CPd be a fixed point of ϕ with action
t ∈ (−ε, ε). By excision, we have an isomorphism

H∗({T ≤ t}, {T < t}) '
⊕
i

C∗(zi, t), (19)

where z1 = z, z2, z3, . . . is the finite family of fixed points of ϕ with action t. We will
make use of the following maps induced by inclusions:

j∗1 : H∗({T ≤ t+ 1}, {T < t})→ H∗({T ≤ t}, {T < t})
and

j∗2 : H∗({T ≤ t+ 1}, {T < t+ 1})→ H∗({T ≤ t+ 1}, {T < t}).
We recall that ud+1 ∈ H2(d+1)(CPN) acts on these relative cohomology groups by the
cup-product, identifying H∗(CPN) with H∗(I×CPN) via the projection I×CPN →
CPN .

Proposition 5.11. Let z ∈ CPd be a fixed point of ϕ with zero action such that there
exists a subgroup G(z) of H∗({T ≤ 1}, {T < 0}) whose image j∗1G(z) is C∗(z, 0)
under the identification (19). Then C∗(z, 1) trivially intersects ker j∗2 and we have
the isomorphism

C∗(z, 1) ' j∗2C∗(z, 1) = ud+1G(z).

Proof. In order to simplify notations, let M≤j := {T ≤ j} and M<j := M≤j \
[u0 : vj] where j ∈ {0; 1}. The proposition is then a direct consequence of the
commutativity of the following diagram:

H∗−2(d+1)(M≤1,M<0) ud+1^·
//

��

H∗(M≤1,M<0)

H∗−2(d+1)(M≤0,M<0) '
// H∗(M≤1,M<1)

OO

where the vertical arrows are induced by inclusion and the bottom one is constructed
as follows. By definition H∗(M≤j,M<j) = C∗(z, j). In the proof of Proposition 5.10,
we have seen that excision gives (17) after identifying M≤j with X ∗CPk+j(d+1) and
taking a trivialization neighborhood U ⊂ X of the induced covering. At last, we
had an isomorphism (18) between local cohomologies C∗(z, j) and H∗(U,U \ [u0])
with a shift in degrees. This last isomorphism is in fact induced by the cup-product
of an element of H∗(U,U \ [u0]) with the restriction of uk+d+1 since the Thom
class of the fiber bundle covering X is also a restriction of uk+d+1 according to
Proposition 4.1. Thus, the cup-product by ud+1 makes explicit the isomorphism
H∗−2(d+1)(M≤0,M<0) '−→ H∗(M≤1,M<1) (after applying a suitable excision), so
that the commutativity of the diagram follows. �

5.6. Iteration properties of T . Given a n-tuple σ and a integerm ≥ 0, we denote
by σm the mn-tuple (σ, . . . ,σ). For m ≥ 1, let (σ(m)

s ) be the family of tuples of
(Φms) defined by

σ
(m)
k/m+s =

(
σk

1,σs,σ
m−k−1
0

)
, ∀s ∈ [0, 1/m], 0 ≤ k ≤ m− 1.
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Let Fm
s,t := F(σ(m)

s ,δt)
be the induced generating family of e−2iπtΦms. We denote by

Mm :=
{

(t, [ζ]) ∈ (−ε, 1 + ε)× CPN(m) | Fm
1,t(ζ) = 0

}
, T m : Mm → (−ε, 1 + ε)

the discrete action associated to Φm via the generating family Fm
1,t : CN(m)+1 → R.

According to Proposition 5.10, in order to study the local cohomology groups of
T and T m, it is enough to consider points of value in [0, 1). Let y ∈ CPd be a fixed
point of ϕ and t(y) ∈ [0, 1) be uniquely defined by Φ(ỹ) = e2iπt(y)ỹ, where π(ỹ) = y.
We define the index of the fixed point y by ind(y) := ind(ζ, F1,t(y)). We extend these
definitions to iterated diffeomorphisms ϕm in the following way: if y ∈ CPd is a
fixed point of ϕ, t(ym) denotes the only t ∈ [0, 1) such that Φm(ỹ) = e2iπtỹ, hence
satisfies

t(ym) = mt(y)− bmt(y)c.
The same way, the m-iterated index of y designates the integer

ind(ym) := ind
(
ζ, Fm

1,t

)
,

for some critical point ζ associated to the fixed point ỹ of the diffeomorphism
e−2iπt(ym)Φm.

According to (14),

suppC∗(ym, t(ym)) ⊂ [ind(ym), ind(ym) + ν(ym)] .

By definition of the Maslov index,

ind(ym) = mas
(
ỹ,
(
e−2iπt(ym)sΦms

))
+ i(m),

where i(m) := ind(Fm
0,0) only depends onm ∈ N∗. Thus, according to Bott’s iteration

inequalities (4),

suppC∗(ym, t(ym)) ⊂
[
ind(ym)− d, ind(ym) + d

]
, (20)

where ind(ym) := i(m) + mas(ỹ, (e−2iπt(ym)sΦms)).

Lemma 5.12. Let y ∈ CPd be a fixed point of ϕ, then

ind(ym) = mmas
(
ỹ,
(
e−2iπt(y)sΦs

))
− 2(d+ 1)bmt(y)c+ i(m), ∀m ∈ N∗.

Proof. Let y ∈ CPd be fixed by ϕ, m ∈ N∗ and k ∈ N∗. In Sp(2(d + 1)), the path
s 7→ d

(
e−2iπkmt(y)sΦkms

)
(ỹ) is homotopic relative to endpoints to the concatenation

of the path s 7→ d
(
e−2iπkt(ym)sΦkms

)
(ỹ) and the loop Γ : s 7→ e−2iπkbmt(y)cs, thus

Proposition 3.1 (1) and (5) implies

mas
(
ỹ,
(
e−2iπkmt(y)sΦkms

))
= mas

(
ỹ,
(
e−2iπkt(ym)sΦkms

))
+ mas(Γ),

According to Proposition 3.1, mas(Γ) = 2(d + 1)kbmt(y)c, thus, dividing by k and
letting k →∞, we get

mas
(
ỹ,
(
e−2iπmt(y)sΦms

))
= mas

(
ỹ,
(
e−2iπt(ym)sΦms

))
+ 2(d+ 1)bmt(y)c.

�
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5.7. Remarks on the parallel with Floer homology. Our construction of the
cohomology groups of the sublevel sets depends a priori on the choice of the tuple
σ of the Hamiltonian diffeomorphism Φ. We discuss uniqueness properties of this
group and links with Floer homology without complete proofs, as it will not be
necessary for this paper. Given a C-equivariant flow (Φs) and real numbers a < b
not in the action spectrum of ϕ, we can define Fs,t generating e−2iπtΦs for s ∈ [0, 1]
and t ∈ I, where I is an interval containing some a′ < a and b′ > b, the same way
as before. Let i0 := ind(F0,0), we define the cohomology group

G∗(a,b)((Φs)) := H∗−i0({T ≤ b}, {T ≤ a}).
By using Lemma 2.2 together with Lemma 5.3, one can show that this group does
not depend on the specific choice of (σs) associated to the Hamiltonian flow (Φs).
Moreover, one can show that it only depends on the homotopy class of Hamiltonian
path (Φs) relative to endpoints the same way Théret showed it for its rotation
numbers in [17, Prop. 5.7]. We can go a little further if we normalize the Hamiltonian
map (hs) of the flow (ϕs) so that for instance∫

CPd
hsω

d = 0, ∀s ∈ [0, 1].

Then (Φs) is uniquely determined by (ϕs) and the group G∗(a,b)((Φs)) only depends
on the homotopy class of (ϕs) relative to endpoints, that is the choice of a lift
ϕ̃ ∈ H̃am(CPd) of ϕ to the universal cover of Ham(CPd).

When there are finitely many fixed points, the building blocks ofG∗(a,b) are the local
cohomology groups C∗−i0(z, t) for fixed points z ∈ CPd of ϕ and t ∈ (a, b). Giving a
couple (z, t) is equivalent to giving a capped orbit z̄ = (z, ut) where ut is the capping
naturally induced by the lift e−2iπtΦ, as seen in Section 3.2. We can remark that
both C∗(z̄) := C∗−i0(z, t) and local Floer cohomology HF ∗(z̄) have their support in
[mas(z̄) − d,mas(z̄) + d] and that they are equal when z̄ is non-degenerate. One
can prove that they are isomorphic by using the isomorphism between cohomology
of generating functions of Hamiltonian diffeomorphisms of Cd+1 and their Floer
cohomology in [18].

Proposition 5.11 essentially asserts that for all capped orbit z̄ of ϕ,
C∗(A0#z̄) = ud+1C∗(z̄),

where A0 is the generator of π2(CPd) ' Z satisfying 〈[ω], A0〉 = −π. The reader
familiar to quantum homology can interpret this relation as the fact that the class
ud+1 of H∗(CP∞) acts on the group G∗(a,b) the same way as the operator q of the
quantum homology of CPd acts on the group HF

(a,b)
∗ (see [8, Sect. 2] but beware

signs of ω and action are opposite to our convention). Moreover, the relation

[pt] ∗ [CPd−1] = q[CPd]

in the quantum homology of CPd can be interpreted as
ud ^ u = ud+1 ^ 1,

seeing ud, u and 1 respectively as the Poincaré duals of the homology classes [pt],
[CPd−1] and [CPd] in H∗(CPd). This relation is fundamental in the original proof of
Ginzburg-Gürel and thus explains the fundamental role of the subordinated classes
1, u and ud+1 in our proof.
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6. Proof of Theorem 1.1 and its corollaries

In this section, we prove Theorem 1.1, postponing the proof of the crossing energy
theorem to Section 7. We then provide the proofs of Corollaries 1.2 and 1.3 sketched
in the introduction.

6.1. Preliminaries. Let ϕ ∈ Ham(CPd) be the time-one map of a Hamiltonian
flow (ϕs) with a fixed point x ∈ CPd which is isolated as an invariant set. Moreover,
let (Φs) be a C-equivariant Hamiltonian flow lifting (ϕs) and let us suppose that
t(x) = 0 and that the local cohomology groups of x associated to the iterations of
ϕ are all non-zero. We will prove Theorem 1.1 by contradiction: let us assume that
ϕ has only finitely many periodic points so that T m has only isolated critical points
in a finite number for all m ∈ N∗. In our construction of T , we take ε < 1/2 so that
any fixed point of ϕ have at most 2 associated critical points. Taking an iteration,
we might suppose that any periodic point is a fixed point of ϕ. For all m ∈ N∗, let
(j, ζmj ) ∈ Mm, j ∈ {0, 1}, be the critical points of T associated to x. In Section 7,
we prove the crossing energy theorem which applies to our point x, isolated as an
invariant set, in the following way:

Theorem 6.1. There exist c∞ > 0, families of open neighborhoods V m
j ,W

m
j ⊂Mm

of (j, ζmj ) with Wm
j ⊂ V m

j which do not intersect Crit(T m) \ (j, ζmj ) and an adapted
pseudo-gradient Xm of T m, such that any gradient or reversed-gradient flow line
u : R→ Mm, u̇ = ±Xm(u), with u(s) 6∈ V m

j and u(t) ∈ Wm
j for some m ∈ N∗ and

j ∈ {0, 1} satisfies
|T m(u(s))− T m(u(t))| > c∞.

Let c∞ > 0 be given by the above result. Without loss of generality, we suppose
that

0 < c∞ <
1

2(d+ 1) . (21)

6.2. Augmented action. By the analogy with Ginzburg-Gürel augmented action,
for any fixed point y ∈ CPd we define

ã(ym) := mt(y)− 1
2(d+ 1) mas(ỹ, (e−2iπmst(y)Φms)) = mã(y).

According to Lemma 5.12,
ind(ym)− ind(xm) = m

(
mas

(
ỹ,
(
e−2iπt(y)sΦs

))
−mas

(
x̃,
(
e−2iπt(x)sΦs

)))
− 2(d+ 1)bmt(y)c
= 2m(d+ 1) (ã(x)− ã(y)) + 2(d+ 1)t(ym).

(22)

By Dirichlet’s lemma, one can find m ∈ N∗ such that, for all fixed points y, the
fraction part of each mt(y), which is t(ym), satisfies

t(ym) ∈ [0, c∞) ∪ (1− c∞, 1) (23)
with m taken sufficiently large so that

|ã(y)− ã(x)| = 0 or m|ã(y)− ã(x)| > 3. (24)
Thus equation (22) together with assumption (21) implies the following lemma.

Lemma 6.2. Let m ∈ N∗ be so that (23) and (24) are satisfied. Given any fixed
point y ∈ CPd, we have:
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•
∣∣∣ind(ym)− ind(xm)

∣∣∣ ≤ 2d+ 1 implies t(ym) < c∞,
•
∣∣∣ind(ym)−

(
ind(xm) + 2(d+ 1)

)∣∣∣ ≤ 2d+ 1 implies t(ym) > 1− c∞.

Given two subsets A,B ⊂ R, we denote the smallest distance among their points
by

dist(A,B) := inf {|a− b| | a ∈ A, b ∈ B} ∈ [0,+∞].
According to Proposition 5.10 and equation (20), Lemma 6.2 implies

Corollary 6.3. Let m ∈ N∗ be so that (23) and (24) are satisfied. Given any fixed
point y ∈ CPd of ϕm of action t̄ with t ∈ (−ε, 1 + ε), if

dist(suppC∗(y, t), suppC∗(x, j)) ≤ 1,
then |t− j| < c∞, for j ∈ {0, 1}.

6.3. Subordinated min-max. By taking the m-th iteration of ϕ ∈ CPd, we can
suppose that ϕ satisfies Corollary 6.3 for m = 1. Let Gt : M → M be the gradient
flow associated to the pseudo-gradient of Theorem 6.1 at time t ∈ R. In order to
simplify notation in this section, given any subset U ⊂ M and any b ∈ I, we set
U≤b := U ∩ {T ≤ b} and U<b := U ∩ {T < b}, and we denote by C∗(y) the local
homology associated to a critical point y ∈ M . For all critical points y ∈ M , let us
define a specific flow-out U(y), that is an open neighborhood of y which is invariant
under Gt for all t ≥ 0. We take a small neighborhood B of y, then we set

U ′(y) :=
⋃
t≥0

Gt(B),

let {zj} be the family of critical points in the closure of U ′(y), we then define U(y) :=
U ′(y) ∪ {zj} which is in fact open if one takes B small enough. Let z0 := (0, ζ0)
and z1 := (1, ζ1) be the two critical points associated to the fixed point x ∈ CPd.
Applying Theorem 6.1 together with Corollary 6.3, we choose B small enough such
that zj ∈ U(y) implies that

dist(suppC∗(y), suppC∗(zj)) > 1, (25)
and in the case where y = zj, we do the same so that this last equation holds also for
critical points y ∈ U(zj). We also ask that if some critical point y is in U(y′), then
U(y) ⊂ U(y′) (this could be achieved by induction on the critical values, starting by
defining the flow-out for the critical points of largest value). We first prove that the
local cohomology C∗(z0) “persists in the action window [0, 1 + ε)”. Let v0 ∈ C∗(z0)
be a non-zero class, which exists by hypothesis.

Lemma 6.4. For all b ∈ [0, 1 + ε), there exists a class v ∈ H∗(M≤b,M<0) such
that its image under the morphism induced by the inclusion H∗(M≤b,M<0) →
H∗(M≤0,M<0) is v0. Moreover, given one of the above flow-outs U = U(y),

v 6∈ ker
(
H∗(M≤b,M<0)→ H∗(U≤b, U<0)

)
if and only if z0 ∈ U , where the morphism is induced by inclusion.

Proof. According to Morse deformation lemma, if the lemma is true for b and (b, c] ⊂
I does not contain any critical value, then the lemma is also true for c. Since there
is a finite number of critical values, we can thus prove this lemma inductively on
the critical value b ≥ 0. We start with the case b = 0. As we have seen, by excision
C∗(z0) ⊂ H∗(M≤0,M<0) and taking v = v0 under this injection is enough.
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Let us assume that b > 0 is a critical value and that the lemma is true on [0, b).
Let (yk) be the family of critical points of value b and Uk := U(yk) be their associated
flows-out. We will work with the following commutative diagram:

H∗(M≤b,M<b) j∗
//

��

H∗(M≤b,M<0) i∗
//

��

H∗(M<b,M<0)

��

H∗(U≤bk , U<b
k )

j∗k
// H∗(U≤bk , U<0

k )
i∗k
// H∗(U<b

k , U<0
k )

(26)

where every arrow is induced by inclusion. By Morse deformation lemma M<b and
U<b on the right hand side of the diagram can be replaced byM≤c and U≤c for some
c < b close enough. By induction, there exists v′ ∈ H∗(M<b,M<0) satisfying the
lemma (with symbol ≤ b replaced by < b). Let us first show that v′ is in the image
of i∗. According to the long exact sequence of the triple (M≤b,M<b,M<0), it boils
down to showing that ∂∗v′ = 0 where ∂∗ is the coboundary map. By contradiction
let us assume that ∂∗v′ 6= 0. By excision, we recall that

H∗(M≤b,M<b) '
⊕
k

C∗(yk),

thus if ∂∗v′ 6= 0 then ∂∗kv
′ 6= 0 for some k, where ∂∗k is the composition of the

coboundary with the projection on C∗(yk) with respect to the above direct sum.
IdentifyingH∗(U≤bk , U<b

k ) with C∗(yk) by excision, one has the following commutative
diagram:

H∗(M<b,M<0) ∂∗
//

��

∂∗k

))

H∗+1(M≤b,M<b)

��

H∗(U<b
k , U<0

k ) // C∗+1(yk)
where the vertical arrows are induced by inclusions and the horizontal are cobound-
ary maps. Thus we see that v′ is not in the kernel of the left hand side arrow, so
that by induction hypothesis z0 ∈ Uk. But according to equation (25), if ` is the
degree of v′ (which maps to v0 ∈ C`(z0)), then C`+1(yk) = 0, a contradiction.

Hence ∂∗v′ = 0 and there exists v′′ ∈ H∗(M≤b,M<0) such that i∗v′′ = v′. This
v′′ maps to v0 as required but does not satisfy the second conclusion of the lemma
a priori. We now explain how to build v in the inverse image of v′. For a fixed k,
let v′′k ∈ H∗(U

≤b
k , U<0

k ) be the image of v′′ under the vertical arrow of (26). For v′′
to satisfy the conclusions of the lemma, we need v′′k to be zero if and only if the
image of v′ = i∗v′′ under its vertical arrow is zero. If i∗kv′′k = 0, then there exists
w′k ∈ H∗(U

≤b
k , U<b

k ) such that j∗kw′k = v′′k . We recall that the left hand side arrow is
equivalent to the projection ⊕

`

C∗(y`)→ C∗(yk),

let wk ∈ H∗(M≤b,M<b) be then the image of w′k under the inclusion C∗(yk) ⊂
H∗(M≤b,M<b). We finally set

v := v′′ −
∑
k

j∗(wk) ∈ H∗(M≤b,M<0)

to be the wanted solution.
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The conclusion is true for the U = Uk with this choice of v, by construction. Let
U be the flow-out of some critical point. If U does not contain any of the yk, by
the Morse deformation lemma, U≤b retracts on U<b so that the conclusion follows
by induction. Otherwise, let (ykq) be the sub-family of (yk) included in U , so that
Ukq ⊂ U by construction of our flows-out. If z0 ∈ U , then by hypothesis, v′ is not
in the kernel of H∗(M<b,M<0) → H∗(U<b, U<0) and, as i∗v = v′, v is neither in
the kernel of H∗(M≤b,M<0) → H∗(U≤b, U<0). Conversely, if v is not in the above
kernel, either v′ is not in the kernel of its restriction to U , in which case z0 ∈ U
by induction, or its image vU ∈ H∗(U≤b, U<0) under the above map has the form
j∗UwU where j∗U : H∗(U≤b, U<b) → H∗(U≤b, U<0). Now by excision H∗(U≤b, U<b) is
isomorphic to the direct sum of the H∗(U≤bkq

, U<b
kq

)’s. Thus, there is a kq such that
wU projects on wkq 6= 0. The commutativity of the left hand square of (26) for
k = kq together with the construction of v yields a contradiction. �

Corollary 6.5. There exists a subgroup G ⊂ H∗(M≤1,M<0) whose image under
the map H∗(M≤1,M<0)→ H∗(M≤0,M<0) is C∗(z0) and such that its image under
H∗(M≤1,M<0)→ H∗(U≤1, U<0) is non-zero if and only if z0 ∈ U , where U := U(y)
is a flow-out.

Proof. Take G to be the subgroup of H∗(M≤1,M<0) generated by every v given by
Lemma 6.4 for b = 1 and each v0 ∈ C∗(z0) \ 0. �

By using (25) for z1, one can prove dually the following lemma.

Lemma 6.6. The subgroup C∗(z1) ⊂ H∗(M≤1,M<1) trivially intersects the kernel
of the map

H∗(M≤1,M<1)→ H∗(U≤1, U<0)
induced by inclusion, where U := U(z1) is the flow-out of z1.

Proof of Theorem 1.1. Let v ∈ H∗(M≤1,M<0) be the class given by Lemma 6.4
for b = 1. Thus, applying Proposition 5.11 to Corollary 6.5, there exists a class
w ∈ C∗(z1) that maps to ud+1v ∈ H∗(M≤1,M<0). Considering the restriction map
H∗(M≤1,M<0)→ H∗(U≤1, U<0), where U := U(z1) is the flow-out of z1, the image
of ud+1v is non-zero by Lemma 6.6, thus the image v′ of v is non-zero. Therefore,
Lemma 6.4 implies that z0 ∈ U(z1). For t ∈ [0, 1], let i∗t be the map induced by
inclusion

i∗t : H∗(U≤1, U<0)→ H∗(U≤t, U<0),
and, for 0 ≤ k ≤ d+ 1, let τk ∈ [0, 1] be the family of min-max values

τk := inf
{
t ≥ 0 | ukv′ 6∈ ker i∗t

}
. (27)

As we have just seen, ud+1v′ 6= 0 so that ukv′ 6= 0 for k ≤ d + 1. Lemma 6.4
implies that τ0 = 0. By the long exact sequence of the triple (U≤1, U<1, U<0), the
image of ud+1v′ under H∗(U≤1, U<0) → H∗(U<1, U<0) is zero, thus τd+1 = 1. By
Lyusternik-Schnirelmann theory, τ1 is a critical value of T |U and τ0 < τ1 < τd+1
since T has a finite number of critical values (we recall that d ≥ 1). Let (yj) be the
family of critical points of value τ1 in U . According to Theorem 6.1, if the flow-out
U is taken small enough, τ1 ≤ 1− c∞, thus τ1 < c∞ since there are no critical points
with value in [c∞, 1 − c∞]. Since H∗(U≤τ1 , U<τ1) decomposes in the direct sum of
the local cohomologies of the yj’s, we find by similar arguments as before that there
exists a j such that the image of uv′ on H∗(U≤τ1

j , U<0
j ) is non-zero. For this j, the
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image of v′ under the same map is thus also non-zero, hence z0 ∈ Uj by Lemma 6.4.
But according to Theorem 6.1, for Uj taken small enough in our proofs, one must
have τ1 ≥ c∞, a contradiction. �

6.4. Corollaries.

Proof of Corollary 1.2. Let x ∈ CPd be a hyperbolic fixed point of ϕ ∈ Ham(CPd)
and Φ ∈ HamC(Cd+1) be a lift of ϕ. According to Theorem 1.1, it is enough to prove
that the local cohomology group C∗(x, t(xk)) is non zero for all iteration k ∈ N∗. In
Section 5.5, we have seen that C∗(x, t(xk)) ' C∗(F̂t(xk); ζk) where ζk ∈ CPN(k) is the
critical point of the map F̂t(xk) : CPN(k) → R induced by the generating function
Ft(xk) of e−2iπt(xk)Φ ∈ HamC(Cd+1). Since x is hyperbolic, dim ker(dϕ(x)k − id) = 0
for all k ∈ N∗, thus d2F̂t(xk) is non-degenerate according to (11) and C∗(x, t(xk)) has
rank 1. �

Proof of Corollary 1.3. Let ϕ ∈ Ham(CPd) be a pseudo-rotation of CPd with fixed
points x1, . . . , xd+1 ∈ CPd and a lift Φ ∈ HamC(Cd+1). According to Theorem 1.1,
it is enough to prove that the local cohomology groups C∗(xj, t(xkj )) are non-zero
for all j and all k ∈ N∗. This is a consequence of the following fact due to Théret
[17]: given any ϕ ∈ Ham(CPd), there always exists some integer k ∈ N such that
the classes uk, uk+1, . . . , uk+d ∈ H∗(CPN) are not in the kernel of the map induced
by the projection I × CPN → CPN

H∗(CPN)→ H∗({T ≤ 1 + ε′}, {T ≤ −ε′})
with associated min-max values in [0, 1) (that is the values τk of (27) where the
ukv′’s are replaced by the uk+j’s). We briefly recall the proof in our setting.

Given t ∈ [0, 1], let `(t) ∈ N be the integer

`(t) := max
{
k ∈ N | uk 6∈ ker

(
H∗(CPN)→ H∗({T ≤ t})

)}
.

We can show that `(t+1) = `(t)+d+1 by combining Corollary 4.2 and Lemma 5.9,
hence the statement for k := `(0) + 1.

In the case where ϕ ∈ Ham(CPd) has isolated fixed points, the min-max values
of the uk+j’s must be different by Lyusternik-Schnirelmann theory. Thus any ϕ ∈
Ham(CPd) with isolated fixed points has at least d + 1 fixed points with non-zero
associated local cohomology. Hence the conclusion holds, since every iteration of a
pseudo-rotation have only d+ 1 fixed points. �

7. Ginzburg-Gürel crossing Theorem for generating functions

In this section, we prove the analogue of Ginzburg-Gürel crossing theorem for
generating functions. Since the proof in CPd is essentially the same as the one in Cd

with some technical changes which could make it less transparent to the reader, we
first provide the argument for Cd, even though the Cd setting will not be employed
in this paper.

7.1. Crossing energy theorem in Cd. If σ := (σ, . . . , σ) is a tuple of even size
associated to Φ, then σm is a tuple of even size of the iterated diffeomorphism Φm.
Given any x ∈ Cd, let B2d

r (x) := {z ∈ Cd | |z − x| < r} or simply Br(x). We will
denote by Am the linear isomorphism of (Cd)mn+1 defined by Am(v) := w where
wk = vk+vk+1

2 . Throughout this section, we will study the generating functions F(σ,id)
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of Φm with a linear change of coordinates: let Fm(w) := F(σ,id) ◦ A−1
m (w). Given a

tuple δ := (δ1, . . . , δm), with δk ∈ Ham(Cd) for all k, x ∈ Cd and a radius r > 0, we
denote by Br(x, δ) ⊂ (Cd)m the open set

Br

(
x+ δ1(x)

2

)
×Br

(
δ1 + δ2 ◦ δ1(x)

2

)
× · · ·

· · · ×Br

(
δm−2 ◦ · · · ◦ δ1(x) + δm−1 ◦ · · · ◦ δ1(x)

2

)
,

that is Br(x, δ) = ∏
j Br(wj) where the m-tuple w is associated to the discrete

trajectory (x, δ1(x), . . . , δm−1 ◦ · · · ◦ δ1(x)) of the discrete dynamics of δ.

Lemma 7.1. Let σ := (σ1, . . . , σn) be such an n-tuple and x ∈ Cd be a fixed point
of σn ◦ · · · ◦ σ1. Suppose there exists a sequence (mj)j≥0 such that there exists a
sequence (wj)j≥0 with wj ∈ Br(x, (σmj , id)) \Br/2(x, (σmj , id)) satisfying,

∣∣∣∇Fmj

(
wj
)∣∣∣2 =

mjn+1∑
k=1

∣∣∣∂wk
Fmj

(
wj
)∣∣∣2 j→∞−−−→ 0. (28)

Let (a1, . . . , an) ∈ (Cd)n be such that Br(x,σ) = Br(a1)× · · · ×Br(an). Then, there
exists a sequence (zj)j∈Z ∈ (Cd)Z and some integer 1 ≤ q ≤ n such that zj+1 = σj(zj)
with {

zj+σj(zj)
2 ∈ B2d

r (aj mod n) for all j ∈ Z,
zq+σq(zq)

2 6∈ B2d
r/2(aq) or zq = z1 6∈ B2d

r/2(x). (29)

Remark that Proposition 5.1 and (28) imply

|zjk − σk−1(zjk−1)| j→∞−−−→ 0 for 1 < k ≤ mjn+ 1 and |zj1 − z
j
mjn+1|

j→∞−−−→ 0,

where zj is the discrete trajectory associated to wj via relations (7). Indeed,
∂vk

Fmj = 1
2(∂wk

Fmj + ∂wk−1F
mj ). Thus, the proof essentially consists in an ele-

mentary application of the Cantor’s diagonal argument to ultimately get a discrete
trajectory of the dynamic σn ◦ · · · ◦ σ1 whose special property (29) comes from the
domain of the wj’s.

Proof. We first prove the case where (mj)j≥0 admits a bounded subsequence for a
better understanding of the general case. Taking an extracted subsequence, we might
suppose that mj ≡ m ∈ N∗. Then by relative compactness, we might suppose that
wj → w ∈ Br(x, (σm, 0)) \ Br/2(x, (σm, 0)). Let us define (z′j)1≤j≤mn+1 ∈ (Cd)mn+1

by the relations (7) for w. According to Proposition 5.1, since ∇Fm(A−1
0 v) = 0, one

has z′j+1 = σj mod n(z′j) for 1 ≤ j ≤ mn and z′1 = z′mn+1. Since w 6∈ Br/2(x, (σm, 0)),
there is some integer 1 ≤ q′ ≤ mn+ 1 such that wq′ 6∈ B2d

r/2(aq′ mod n) if q′ 6= mn+ 1
or wq′ 6∈ B2d

r/2(x) otherwise. If q′ 6= mn + 1, let k ∈ N be such that kn + 1 ≤ q′ <

(k + 1)n + 1 and let 1 ≤ q ≤ n be the integer q = q′ − kn. The desired sequence
(zj)j∈Z is then the mn-periodic sequence such that

zj = z′j+kn, −kn+ 1 ≤ j ≤ (m− k)n.

In this case,
zq + σq(zq)

2 = wq′ 6∈ B2d
r/2(aq).
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If q′ = mn + 1, then the wanted sequence is the mn-periodic sequence such that
zj = z′j for 1 ≤ j ≤ mn with q = 1 and in this case

zq = z1 = wmn+1 6∈ B2d
r/2(x).

Now suppose that (mj)j≥0 admits no bounded infinite subsequence. Taking an
extracted subsequence, we might suppose that (mj) is increasing. For all j ∈ N, let
1 ≤ q′j < mjn + 1 be such that wjq′j 6∈ Br/2(aq′j mod n) or q′j = mjn + 1 if such an
integer does not exist. Similarly to the bounded case, we first suppose that we can
take an extracted subsequence q′j 6= mjn + 1 for all j ≥ 0. Let kj ∈ N be such that
kjn+ 1 ≤ q′j < (kj + 1)n+ 1 and let 1 ≤ qj ≤ n be the integer qj = q′j − kjn. Taking
an extracting subsequence, we might suppose qj ≡ q. For all j ≥ 0, let (w′j) ∈ (Cd)Z
be the mjn-periodic sequence such that w′jk = wjk+kjn

for −kjn+1 ≤ j ≤ (mj−kj)n.
Let M ∈ N∗ and let us consider the sequence (wM,j)j≥0 in (Cd)2M+1 defined by

restriction: for all j ≥ 0, (wM,j
k )−M−1≤k≤M := (w′jk )−M−1≤k≤M . Now, we can extract

a subsequence jMp →∞, such that (wM,jM
p )p converges. Since ∂wk+kj n

Fmj (wj)→ 0
for all −M − 1 ≤ k ≤ M , the associated (2M + 1)-tuple (zj)−M≤j≤M , now satisfies
zj+1 = σj(zj) for −M ≤ j ≤ M − 1. By a diagonal extraction associated to
subsequences (jMp )p as M goes to infinity, we extend our (2M + 1)-tuples (zj) to a
sequence in Z with the wanted properties. In particular zq+σq(zq)

2 6∈ B2d
r/2(aq).

If one cannot extract a subsequence such that q′j 6= mjn + 1, we can extract a
subsequence such that q′j ≡ mjn + 1. Then take q = 1 and define (w′j) to be
the mjn-periodic sequence such that w′jk = wjk for 1 ≤ k ≤ mjn. By the same
way as above, one gets the wanted (zj) by a diagonal extraction and in this case
zq = z1 6∈ B2d

r/2(x). �

Theorem 7.2. Let Φ ∈ Ham(Cd) admitting C1-small n-tuples σ. Suppose that
x ∈ Cd is a fixed point of Φ which is isolated as an invariant set. Then for every
sufficiently small r > 0, there exists c∞ > 0 and a n-tuple σ associated to Φ,
with n even, such that for all m ≥ 1, any gradient or reverse-gradient flow line
u : R → (Cd)mn+1, u̇ = ±∇Fm(u), with u(0) ∈ ∂Br(x, (σm, id)) and u(τ) ∈
Br/2(x, (σm, id)) for some τ ∈ R satisfies

|Fm(u(0))− Fm(u(τ))| > c∞.

Proof. Since x is isolated as an invariant set, there exists some R > 0 such that for
all z ∈ B2d

R (x) \ {x}, there exists k ∈ Z such that Φk(z) 6∈ B2d
R (x). Fix such an

R > 0 and choose an even tuple σ = (σ1, . . . , σn) such that |z − σj(z)| < R/8 for
all z ∈ B2d

R (x). Let m ≥ 1 and u : R+ → (Cd)mn+1 be as in the statement of the
theorem, we may suppose that u takes its values in BR/2(x, (σm, id)). Let τ > 0 be
such that u(τ) ∈ ∂BR/4(x, (σm, id)). In order to prove the theorem, it is enough to
show that there exists c∞ > 0 independent of m ≥ 1 and u satisfying

|Fm(u(0))− Fm(u(τ))| > c∞.

By contradiction, suppose there exists a sequence (mj)j≥0 and a sequence of gradi-
ent or reverse-gradient flow lines uj : [0, τj]→ BR/2(x, (σmj , id)), u̇j = ±∇Fmj (uj),
with uj(0) ∈ ∂BR/2(x, (σmj , id)) and uj(τj) ∈ ∂BR/4(x, (σmj , id)) such that∣∣∣Fmj (uj(0))− Fmj (uj(τj))

∣∣∣→ 0.
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For some 1 ≤ kj ≤ mjn+ 1, one has |ujkj
(0)− ujkj

(τj)| ≥ R/4 so

R/4 ≤
∫ τj

0
|u̇jkj

(s)|ds ≤
∫ τj

0
|u̇j(s)|ds =

∫ τj

0
|∇Fmj (uj(s))|ds,

but(∫ τj

0
|∇Fmj (uj(s))|ds

)2
≤ τj

∫ τj

0
|∇Fmj (uj(s))|2ds

= τj
(
Fmj (uj(0))− Fmj (uj(τj))

)
,

thus τj → +∞. Combined with
∫ τj

0 |∇Fmj (u(s))|2ds→ 0, it implies that there exists
a sequence (sj)j≥0 with sj ∈ [0, τj], such that the sequence (uj(sj)))j≥0 satisfies the
hypothesis of Lemma 7.1 with r = R/2.

Therefore, according to Lemma 7.1, there exists a sequence (zj)j∈Z ∈ (Cd)Z and
some integer 1 ≤ q ≤ n, such that |zj + σj(zj) − 2x| ≤ R which implies that
|zj − x| ≤ R/2 + R/16 < R by the specific choice of σj, |zq − x| > R/4 and
zj+1 = σj(zj). Thus, for all k ∈ Z, Φk(z1) = zkn+1 ∈ B2d

R (x) with z1 6= x since
σq−1 ◦ · · · ◦ σ1(z1) = zq 6= x = σq−1 ◦ · · · ◦ σ1(x),

a contradiction. �

7.2. Crossing energy theorem in CPd. We employ the notation of Section 6.
We recall that σ = (σ1, . . . , σn1) is a specific n1-tuple, with n1 even, associated to Φ,
δt = (gt/(n2−1), . . . , gt/(n2−1), id) is a n2-tuple, with n2 odd, associated to e−2iπt, Fm

1,t =
F(σm,δt) is a conical generating function of the conical Hamiltonian diffeomorphism
e−2iπtΦm,Mm := {(t, [z]) ∈ I×CPN(m) | Fm

t (z) = 0} is the domain of the projection
map T m : Mm → I with N(m) = (d + 1)(n1m + n2)− 1. Similarly to the Cd-case,
we apply a linear change of coordinates and study the function Fm

t := Fm
1,t ◦ A−1

m ,
and by a slight abuse of notation we still denote by Mm and T m the domains and
functions seen in the induced projective chart.

The proof of the crossing energy theorem in CPd follows the same lines as the Cd

case. First, we need an analogue to Lemma 7.1. We have to define a neighborhood
of CPN(m) similar to B(x, (σm, id)) in the Cd case. Let B1 ⊂ Cd+1 be the unit
Euclidean ball centered at the origin, so that, for k ∈ N∗, ∂(Bk

1 ) ⊂ (Cd+1)k denotes
the sphere

∂(Bk
1 ) =

⋃
1≤j≤k

Bj−1
1 × S2d+1 ×Bk−j

1 .

Let πm : ∂(Bmn1+n2
1 ) → CPN(m) be the quotient map by the diagonal action of

S1. We define now a S1-equivariant neighborhood in the sphere ∂(Bmn1+n2
1 ) of

the normalized w-coordinates of some point x ∈ Cd+1 \ 0 relative to Fm
t . Let a =

(a1, . . . , amn1+n2) ∈ (Cd+1)mn1+n2 be the w-coordinates of x, that is Br(x, (σm, δt)) =∏
j Br(aj). Let λ > 0 such that λa ∈ ∂(Bmn1+n2

1 ). For r > 1 we define
Ur(x,m, t) := S1 ·Br(λx, (σm, δt)) ∩ ∂(Bmn1+n2

1 ),
where S1 · E := {µz | z ∈ E, µ ∈ S1} for any subset E ⊂ (Cd)mn1+n2 . Let
Vr(x,m, t) ⊂ CPN(m) be the projection of this neighborhood on CPN(m).

Lemma 7.3. Let x ∈ Cd+1\0 be a fixed point of Φ. Suppose there exists an increasing
sequence of positive integers (mj)j≥0 such that there exist a sequence (tj)j≥0 in I sat-
isfying (tj)→ t ∈ {0, 1} and a sequence (wj)j≥0 with wj ∈ Ur(x,mj, t)\Ur/2(x,mj, t)
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satisfying, ∣∣∣∇Fmj

tj

(
wj
)∣∣∣2 =

mjn1+n2∑
k=1

∣∣∣∂wk
F
mj

tj

(
wj
)∣∣∣2 j→∞−−−→ 0.

Let a := (a1, . . . , an1) ∈ (Cd+1)n1 be such that Br(x,σ) = ∏
j Br(aj) and ã :=

(ã1, . . . , ãn2) ∈ (Cd+1)n2 be the n2-tuple

ãk := g(k−1)t/(n2−1)(x) + gkt/(n2−1)(x)
2 for 1 ≤ k ≤ n2 − 1 and ãn2 = x.

Then, there exists a possibly infinite integer κ ∈ Z ∪ {+∞} such that there exists a
sequence (bj) ∈ (Cd+1)Z defined by

bj :=


aj mod n1 if j ≤ κn1,

ãj−κn1 if κn1 + 1 ≤ j ≤ κn1 + n2,

aj−n2 mod n1 if j ≥ κn1 + n2 + 1,

a sequence (zj)j∈Z ∈ (Cd+1 \ 0)Z satisfying

zj+1 =


σj mod n1(zj) if j ≤ κn1,

gt/n2(zj) if κn1 + 1 ≤ j ≤ κn1 + n2,

σj−n2 mod n1(zj) if j ≥ κn1 + n2 + 1,

and some integer 1 ≤ q ≤ n1 + n2 such that{
zj+zj+1

2 ∈ C ·B2d
r (bj) for all j ∈ Z,

zq+zq+1
2 6∈ C ·B2d

r/2(bq)

Proof. The proof follows along the same lines as Lemma 7.1 with just additional
calligraphic difficulties, we will only underline the key changes.

Let x ∈ Cd+1 \0, a ∈ (Cd+1)n1 and ã ∈ (Cd+1)n2 satisfying the assumptions of the
lemma. Let λ > 0 be such that (λa, λã) ∈ ∂(Bn1+n2

1 ) (it exists since x 6= 0), then

Ur(x,m, t) = S1 ·
[(

n1∏
k=1

B2(d+1)
r (λak)

)m
×

n2∏
k=1

B2(d+1)
r (λãk)

]
∩ ∂(Bmn1+n2

1 ).

Let (wj) be satisfying the assumptions of the lemma. By S1-invariance of the
function |∂Fmj

tj | and the neighborhood Ur(x,mj, t), we can suppose that

wj ∈
(
n1∏
k=1

B2(d+1)
r (λak)

)mj

×
n2∏
k=1

B2(d+1)
r (λãk).

The result follows from Cantor’s diagonal argument applied to the sequence (wj/λ)
in the same way as in the proof of Lemma 7.1. �

In order to state the crossing energy theorem in CPd, we will need to define a
“good” pseudo-gradient Xm for the function T m. For technical reasons, the projec-
tion πm : ∂(Bmn1+n2

1 ) → CPN(m) is the most natural for our problem. However the
sphere ∂(Bmn1+n2

1 ) is not smooth, we thus introduce a smooth S1-invariant sphere
Σm ⊂ (Cd+1)mn1+n2 :

Σm :=
{

z ∈ (Cd+1)mn1+n2 |
mn1+n2∑
k=1

|zk|pm = 1
}
,
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where pm ≥ 2 is chosen such that,

∀z ∈ Σm, ∃λ ∈ [1, 2], λz ∈ ∂(Bmn1+n2
1 ),

(necessarily (pm) → ∞). We endow CPN(m) with the Riemannian metric induced
by the S1-invariant projection π′m : Σm → CPN(m). Since

dist(∂Ur(x,m, t), Ur/2(x,m, t)) ≥ r/2,

the condition on pm implies that

dist(∂Vr(x,m, t), Vr/2(x,m, t)) ≥ r/4. (30)

Let fm : I × CPN(m) → R be the C1 function satisfying fm(t, π′m(z)) = Fm
t (z) for

all z ∈ Σm, so thatMm = {(t, ζ) ∈ I×CPN(m) | fm(t, ζ) = 0}. The pseudo-gradient
Xm of T m is defined by

Xm(t, ζ) := ∂tf
m(t, ζ)∇fm(t, ζ)− |∇fm(t, ζ)|2 ∂

∂t

We have
〈
Xm,− ∂

∂t

〉
≥ 0 with equality if and only if ∇fm = 0, that is to say

dT m = 0.

Theorem 7.4. Let Φ ∈ HamC(Cd+1) be a lift of ϕ ∈ Ham(CPd). Suppose that
x ∈ Cd+1 \ 0 is a fixed point of Φ such that [x] ∈ CPd is isolated as an invariant
set of ϕ. Then for every sufficiently small r > 0, there exists c∞ > 0 and a tuple σ
associated to Φ such that for all m ≥ 1, if (t, ζmt ) ∈Mm denotes the critical point of
T m with critical value t ∈ {0, 1} associated to x, any gradient flow line u : R→Mm,
u̇ = ±Xm(u), with u(0) ∈ I × ∂Vr(x,m, t) and u(τ) ∈ I × Vr/2(x,m, t) for some
τ ∈ R satisfies

|T m(u(0))− T m(u(τ))| > c∞.

The pseudo-gradient Xm can be replaced by a pseudo-gradient C0-close to it, e.g. a
Morse-Smale adapted pseudo-gradient if T m is a Morse function.

Proof. We follow the steps of the proof of Theorem 7.2. By contradiction, suppose
that there exists a sequence (mj)j≥0 and a sequence of pseudo-gradient flow line
uj : [0, τj] → Ur(x,mj, t), u̇j = ±Xmj

(uj) with uj(0) ∈ ∂Vr(x,mj, t) and uj(τj) ∈
Vr/2(x,mj, t) such that∣∣∣T mj (uj(0))− T mj (uj(τj))

∣∣∣ j→+∞−−−−→ 0 and T mj (uj(0)) j→+∞−−−−→ 0.

First we must show that τj 6→ 0. Let p2 : I × CPN → CPN be the projection onto
the second factor, then (30) implies that

r

4 ≤
∫ τj

0
|dp2 · u̇j|ds,

so (
r

4

)2
≤ τj

∫ τj

0
|dp2 ·Xmj

(uj)|2ds = τj

∫ τj

0
(∂tfmj (uj))2|∇ζf

mj (uj)|2ds.

Remark that there exists some C > 0 independent of m (it only depends on (δt))
such that 0 ≤ −∂tfm < C, thus∫ τj

0
|dp2 ·Xmj

(uj)|2ds ≤ C2
∫ τj

0
|∇ζf

mj (uj)|2ds.
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This last term goes to 0 since∣∣∣T mj (uj(0))− T mj (uj(τj))
∣∣∣ =

∫ τj

0

〈
− ∂

∂t
,Xmj

(u)
〉

ds =
∫ τj

0
|∇ζf

mj (uj)|2ds.

Therefore, τj → +∞ and thus there exists a sequence (sj)j≥0 in I ×Vr(x,m, t) \ I ×
Vr/2(x,m, t) such that |∇ζf

mj (sj)| → 0.
Let (tj;λjwj) ∈ I × Ur(x,mj, t) be lifted from sj with wj ∈ Σmj

and λj ∈ [1, 2]
such that λjwj ∈ ∂(Bmjn1+n2

1 ) (which exists by definition of Σmj
). Since tj =

T mj (sj), one has tj → t. Since |∇ζf
mj (sj)| → 0, the norm of the orthogonal

projection of ∇Ftj (wj) ∈ CN(mj)+1 on the sphere Σmj
goes to zero as j → ∞. The

radial component is 〈wj,∇Ftj (wj)〉 = 2Ftj (wj) = 0, hence |∇Fmj

tj (wj)| → 0. Since
λj ∈ [1/2, 1], the homogeneity of Fmj

tj implies that∣∣∣∇Fmj

tj (λjwj)
∣∣∣ j→∞−−−→ 0.

We can thus apply Lemma 7.3 to the sequences (mj), (λjwj) and the fixed point
x ∈ Cd+1. We then find a sequence (zj)j∈Z in Cd+1 such that ϕk([z0]) stays close to
[x] for all k ∈ Z with [z0] 6= [x]. �
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