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HOMOLOGICALLY VISIBLE CLOSED GEODESICS ON
COMPLETE SURFACES

SIMON ALLAIS AND TOBIAS SOETHE

Abstract. In this article, we give multiple situations when having one or two
geometrically distinct closed geodesics on a complete Riemannian cylinder, a com-
plete Möbius band or a complete Riemannian plane leads to having infinitely many
geometrically distinct closed geodesics. In particular, we prove that any complete
cylinder with isolated closed geodesics has zero, one or infinitely many homologi-
cally visible closed geodesics; this answers a question of Alberto Abbondandolo.

1. Introduction

The problem of the existence and multiplicity of closed geodesics plays an impor-
tant role in both Riemannian geometry and dynamics. Going back to Hadamard
and Poincaré [23, 27], it is still open for a large class of Riemannian manifolds. Given
a complete Riemannian manifold (M, g), a famous question is whether it possesses
a closed geodesic for every Riemannian metric g. This is always true if M is closed
[10, 25, 17]. We can then ask whether the number of closed geodesics is infinite or
not. It is known that every closed surface has infinitely many geometrically distinct
closed geodesics [18, 5, 24]. However, this question is still open for spheres of higher
dimension. In this article, we are interested in non-compact complete Riemannian
surfaces for which even the existence of one closed geodesic fails in general: planes
and cylinders (we also study the Möbius band that can have only one closed ge-
odesic). For instance, the Euclidean plane does not possess any closed geodesic.
Nevertheless, under specific geometric conditions, interesting results can be stated.
In 1980, Bangert proved that any complete Riemannian cylinder, plane or Möbius
band of finite area has infinitely many closed geodesics [4]. For the plane and the
cylinder he proved the same result even under the weaker assumption of just the
existence of a convex neighborhood of infinity. We will discuss this result in greater
depth as it is used extensively in our proofs. The purpose of this article is to give
simple conditions under which the existence of one or two distinct closed geodesics
implies that a complete Riemannian cylinder, Möbius band or plane contains infin-
itely many geometrically distinct closed geodesics.

Let S1 := R/Z and let M ' S1 × R be a complete Riemannian cylinder. Let
ΛM be its loop space. Two loops α, β ∈ ΛM are said to be geometrically distinct if
their images are distinct: α(S1) 6= β(S1). Throughout the article, by writing that
two closed geodesics are distinct we will always mean that they are geometrically
distinct. Given a ring R, a closed geodesic γ ∈ ΛM is said to be homologically visible
over R if the local homology of the critical circle S1 ·γ ⊂ ΛM of the energy functional
is non-zero over the coefficients ring R (see Section 2 for precise definitions). With
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the exception of the Möbius band, every result is true over any coefficients ring R
(once fixed) so the ring R will not be mentioned explicitly.

Theorem 1.1. Let M be a complete Riemannian cylinder where all closed geodesics
are isolated and assume one of the following hypotheses:
1. there exists a contractible closed geodesic,
2. there exists a self-intersecting closed geodesic,
3. there exist two distinct closed geodesics that intersect,
4. there exists a closed geodesic of non-zero average index,
5. there exist two homologically visible closed geodesics.
Then M contains infinitely many homologically visible closed geodesics intersecting
some common compact set K ⊂M and at least one without self-intersection.

Notice that according to Bott iteration theory, a closed geodesic c has a non-zero
average index if and only if some iterate cm has a non-zero index. The fact that
hypothesis 5 implies that there exists infinitely many homologically visible closed
geodesics proves a conjecture of Abbondandolo:

Corollary 1.2. Any complete Riemannian cylinder where all closed geodesics are
isolated has zero, one or infinitely many homologically visible closed geodesics.

By essentially taking the double cover (see Section 7 for details), one can thus
deduce the following counterpart of Theorem 1.1 when M is a complete Möbius
band.

Corollary 1.3. Let M be a complete Riemannian Möbius band where all closed
geodesics are isolated and assume one of the following hypotheses:
1. there exists a contractible closed geodesic,
2. there exists a self-intersecting closed geodesic,
3. there exist two distinct closed geodesics that intersect,
4. there exists a closed geodesic of non-zero average index,
5. there exist two homologically visible closed geodesics over Z/2Z.
Then M contains infinitely many closed geodesics intersecting some common com-
pact set K ⊂M that are homologically visible over Z/2Z.

According to Thorbergsson [29, Theorem 3.2], any complete Möbius band has at
least one homologically visible closed geodesic without self-intersection (it is homo-
logically visible as a local minimum of the energy, see Section 2 below).

Corollary 1.4. Any complete Riemannian Möbius band where all closed geodesics
are isolated has one or infinitely many homologically visible closed geodesics over
Z/2Z.

Similar results can also be obtained when M ' R2 is a complete plane:

Theorem 1.5. Let M be a complete Riemannian plane where all closed geodesics
are isolated and assume one of the following hypotheses:
1. there exists a self-intersecting closed geodesic,
2. there exist two distinct closed geodesics that intersect,
3. there exists a closed geodesic of non-zero average index,
4. there exists a homologically visible closed geodesic.
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Then M contains infinitely many homologically visible closed geodesics intersecting
some common compact set K ⊂M and at least one without self-intersection.

Corollary 1.6. Any complete Riemannian plane where all closed geodesics are iso-
lated has zero or infinitely many homologically visible closed geodesics.

It is easy to give counter-examples to Theorem 1.1 when none of the assumptions
1-5 holds by considering embedded cylinders of revolution

(θ, z) 7→ (r(z) cos θ, r(z) sin θ, z), (1)
for well-chosen smooth maps r : R → (0,+∞). A complete cylinder may have no
closed geodesic at all: take r′ > 0. It can have an arbitrary large finite number
k ∈ N of homologically invisible closed geodesics: take r′(z) > 0 for all z ∈ R \
{z1, . . . , zk} and r′(zi) = 0. It can also have a unique visible closed geodesic: take
r′ < 0 on (−∞, 0), r′(0) = 0 and r′ > 0 on (0,+∞) (one can as well add to this
cylinder an arbitrary large finite number of homologically invisible closed geodesics
the same way as before). By taking such an r even and taking the quotient under the
involution (θ, z) 7→ (θ+ π,−z), one gets Möbius bands with only one homologically
visible closed geodesic and as many homologically invisible closed geodesic as wanted.
Remark that in our examples closed geodesics are without self-intersections and not
contractible as implied by the theorem. Counter-examples where the theorem fails
by lack of completeness can be found as well by choosing embedded cylinders of
revolution restricting the domain of the embedding (1) to (θ, z) ∈ R/2πZ × (a, b)
for a, b ∈ R. We could proceed as follows: take an even r : [−1, 1] → (0,+∞)
with r′ > 0 on [−1, 0) such that z = 0 is the only closed geodesic of the associated
compact embedded cylinder. One can find such an r by slightly modifying a Tannery
surface: a sufficient condition is that the metric g on the interior of the cylinder can
be written as

g = [α + h(cos ρ)]2 dρ2 + sin2 ρ dθ2,

for a good choice of coordinates (ρ, θ) ∈ (0, π) × S1, where α is irrational and
h : (−1, 1)→ (−α, α) is a smooth odd function (see for instance [9, Theorem 4.13]).
Then extend r to a smooth map (−3, 1] → (0,+∞) with r|(−3,−1) < r(−1), r′ < 0
on (−3,−2) and r′ > 0 on (−2,−1). Then z = −2 and z = 0 are the only closed
geodesic of the cylinder embedded by r|(−3,1) and are both visible.

In a similar way, we can give examples of complete planes with only an arbitrary
finite number of homologically invisible closed geodesics by considering surfaces of
revolution (1) parametrized by R/2πZ× [0,+∞) with r : [0,+∞)→ [0,+∞) being
increasing and smooth on (0,+∞) with r(0) = 0 and r′(z)→ +∞ when z → 0 in a
suitable way (i.e. so that the surface is smooth at the origin). Then, as above, we
get homologically invisible closed geodesics on the inflexion points of r, and nowhere
else.

We say that C− ⊂ M (resp. C+) is a neighborhood of −∞ (resp. of +∞) if C−
contains S1 × (−∞, a) for some a ∈ R (resp. S1 × (b,+∞) for some b ∈ R) for an
arbitrarily fixed identification ofM with S1×R. In these terms, Bangert proved the
following theorem (where for the notion of local convexity, we refer to Section 2.2):

Theorem 1.7 ([4, Theorem 3, Remark 2]). Let M be a complete Riemannian cylin-
der where all closed geodesics are isolated and suppose there exist locally convex
closed neighborhoods C− and C+ with disjoint interior of −∞ and +∞ respectively
such that the boundaries ∂C± are not totally geodesic. Then M contains infinitely
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many (homologically visible) closed geodesics intersecting a common compact set K
and at least one without self-intersections.

In order to prove Theorem 1.1, we will extensively use a variation of the above
theorem adapted to our problem. The desired applications require us to work with
open neighbourhoods of infinity. This in turn necessitates a slighty different con-
vexity property to be satisfied, which we call Property (C) (and which we introduce
properly in Section 2.2, where it is discussed with its connections to local convexity).
To avoid technicalities, we impose some slightly stronger assumptions (which will
always be satisfied in our applications) to state the following modified version of
Bangert’s theorem:
Theorem 1.8. Let M be a complete Riemannian cylinder where all closed geodesics
are isolated and suppose there exist disjoint open neighborhoods C− and C+ of −∞
and +∞ respectively satisfying Property (C) and such that the boundaries ∂C± do
not contain a simple closed geodesic. ThenM contains infinitely many homologically
visible closed geodesics intersecting K = M \ (C− ∪ C+) and at least one without
self-intersections.

Our modified statement can be proven in the same way as the original theorem.
However, since Bangert did not give the precise proof of Theorem 1.7 (but rather
for its analogue in case of the plane), for the sake of completeness we give a com-
prehensive proof of Theorem 1.8 in the paper. The proof of Theorem 1.5 is quite
similar and relies extensively on the analogous theorem of Bangert when M is a
plane where all closed geodesics are isolated: if there exists a locally convex open
neighborhood of infinity C 6= M with a boundary ∂C which is not totally geodesic,
M contains infinitely many homologically visible closed geodesics [4, Theorem 3].
These two theorems were originally used by Bangert to prove that any complete
Riemannian plane of finite area has infinitely many closed geodesics.

In fact, our results extend verbatim to the case where M is a complete reversible
Finsler manifold as we will essentially use variational properties of geodesics in our
proof with no concern for geometric notion specific to Riemannian manifold. How-
ever, nothing can be said concerning the more general case of a complete (asymmet-
rical) Finsler manifold. The major issue is that, in the asymmetrical case, a closed
subset of M which is bounded by a geodesic is not locally convex (and neither does
an open such set satisfy Property (C)). In this direction, we point out that the
related question of whether or not infinitely many closed geodesics exist on every
irreversible Finsler cylinder of finite area is still open [13, Question 2.3.2].

In order to put these results in perspective, we recall some known results concern-
ing existence of closed geodesics on complete non-compact Riemannian manifolds.
In 1978, Thorbergsson proved the existence of closed geodesics on a complete Rie-
mannian manifoldM if it contains a convex compact set which is not homotopically
trivial or ifM has a non-negative sectional curvature outside some compact set [29].
In the 1990s, Benci and Giannoni proved that any complete d-dimensional Rie-
mannian manifold such that the limit superior of its sectional curvature at infinity
is non-positive and the homology of its free loop space is non-trivial in some degree
larger than 2d possesses a closed geodesic [7, 8]. In 2017, Asselle and Mazzucchelli
showed the existence of infinitely many closed geodesics for complete d-dimensional
Riemannian manifolds which have no close conjugate points at infinity and a free
loop space with unbounded Betti numbers in degrees larger than d [1]. They also
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improved the result of Benci and Giannoni by replacing the asymptotic curvature
assumption by an assumption on the conjugated points at infinity and by improving
the bound on the homology of the free loop space. The existence of one closed geo-
desic in any complete Riemannian manifold of finite volume is a hard open problem
(see for instance the following recent review of the subject [13]).

Organization of the paper. In Section 2, we fix notation and recall results of the
variational theory of geodesics that we will need. In Section 3, we give a compre-
hensive proof of Theorem 1.8. In Section 4, we prove Theorem 1.1 when hypothesis
1, 2 or 3 is assumed. In Section 5, we prove Theorem 1.1 when hypothesis 4 is
assumed. In Section 6, we prove the last case of Theorem 1.1. In Section 7, we
prove Corollary 1.3. In Section 8, we prove Theorem 1.5.

Acknowledgments. This work started while the first author was visiting the Ruhr-
Universität Bochum (Germany) in October 2019. The first author wishes to thank
Alberto Abbondandolo and Stefan Suhr for the invitation, and the Ruhr-Universität
Bochum for providing an excellent working environment. The first author is also
grateful to his advisor Marco Mazzucchelli who introduced him to the result conjec-
tured by Alberto Abbondandolo. To the latter the second author expresses his grat-
itude for his continuing help and advice. The second author is partially supported
by the SFB/TRR 191 ‘Symplectic Structures in Geometry, Algebra and Dynamics’,
funded by the DFG (Projektnummer 281071066 – TRR 191). Both authors are
thankful to the anonymous referee for his careful reading of the preprint and for
providing important comments and suggestions.

2. Preliminaries

In this section, we recall some results of Riemannian geometry that we will use in
our proofs and fix some notation. For the extension of these notions to the Finsler
case, the reader may for instance look at [14, Section 2].

2.1. The energy functional. Given a complete Riemannian manifold with bound-
ary W , we denote by ΛW the space of H1-maps S1 → W . In fact, if one wants
to avoid analytic questions, we can always reduce our space to a finite-dimensional
manifold of broken geodesics. For γ ∈ ΛW and m ∈ N∗, the iterated loop γm ∈ ΛW
is defined by t 7→ γ(mt). A geodesic is an immersed path γ : R→ W such that

∇γ̇ γ̇ = 0,
where ∇ denotes the Levi-Civita connection of the metric and γ̇ stands for the
derivative of γ. Therefore, in our convention, geodesics have constant speed. A
closed geodesic is a geodesic γ which is periodic: γ(t + 1) = γ(t) so that γ ∈ ΛW .
Closed geodesics of W are the critical points with non-zero critical value of the
energy functional E : ΛW → [0,+∞),

E(γ) :=
∫
S1
gγ(γ̇, γ̇)dt, ∀γ ∈ ΛW.

The energy functional E is C2. IfW is a compact manifold (possibly with boundary),
E also satisfies the Palais-Smale condition and the (−∇E)-flow is defined for all time
t ≥ 0 (if f is a real-valued on a Riemann-Hilbert manifold, ∇f denotes its gradient).
We notice that every closed geodesic lies on a critical circle S1 · γ, where S1 acts on
ΛW by t · γ := γ(t + ·). In our study we assume that E has only isolated critical
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circles (except for the constant loops which have zero value). Two closed geodesics
c1 and c2 are said to be geometrically distinct if they do not have the same image
in W .

2.2. Finite-dimensional approximation of the loop space. Morse’s finite-
dimensional approximation of the curve space over W , as presented by Bangert
in [4] consists of the following data: an open set O ⊂ W , an energy bound κ > 0
and a parameter j ∈ N satisfying 1

j
< ε2

κ
where ε > 0 is smaller than the injectivity

radius on O. The positivity of ε will be fulfilled if for instance O has compact clo-
sure, as will be the case in our considerations. The finite-dimensional approximation
Ω = Ω(O, κ, j) is constructed as follows: it is the set of all curves γ ∈ ΛW such that
E(γ) < κ, γ(i/j) ∈ O and such that γ|[i/j,(i+1)/j] is a geodesic of length less than ε
for 0 ≤ i ≤ j − 1.

We call a closed subset C of a manifold locally convex, if every point possesses
a neighborhood U ⊂ C such that any two sufficiently close points in U can be
joined by a unique geodesic which is entirely contained in U . We only define local
convexity for closed sets, as open sets are always satisfying this property. Let Ω be
a finite-dimensional approximation of ΛW and C ⊂ W a closed locally convex set
with compact boundary such that C ⊂ O. Then there exists an ε > 0 such that
for any two points p, q ∈ C with Riemannian distance d(p, q) < ε, if there exists a
unique geodesic of length = d(p, q) joining p and q, it is contained entirely in C [4,
p. 85]. The negative gradient of the restriction of the energy functional to Ω is given
by

−∇E|Ω(γ) = −2
(
γ̇1(1/j)− γ̇2(1/j), . . . , γ̇j−1((j − 1)/j)− γ̇j((j − 1)/j)

)
for γ ∈ Ω, where γi = γ|[(i−1)/j,i/j] for 1 ≤ i ≤ j (see [20, p. 252]). Now from our
choice of j and Cauchy-Schwarz inequality, we get

d(γ((i− 1)/j), γ(i/j))2 ≤ 1
j
E(γ|((i−1)/j,i/j)) ≤

ε2

κ
κ = ε2 .

Consequently, by local convexity of C, the negative gradient flow of the finite-di-
mensional approximation of the energy functional respects C, i.e. γ(S1) ⊂ C implies
φt(γ)(S1) ⊂ C for all t ≥ 0, where φt denotes the negative gradient flow (in finite-
dimensional approximation).
We would like to use this property on slightly more general sets. Therefore we
denote Br(p) := {q ∈ W | d(p, q) < r} and state the following property for a subset
C ⊂ W .

There exists an ε > 0 such that if p, q are elements in the same con-
nected component of Bε(p) ∩ int(C), then whenever a unique geodesic
connecting p and q exists, it is contained in that connected component.

(C)

Notice, that closed locally convex sets with compact boundary satisfy this prop-
erty. Moreover, so do open sets whose boundary coincides with a broken geodesic
with convex vertices.
The above discussion carries over and we have that the negative gradient flow of the
finite-dimensional approximation of the energy functional respects sets that satisfy
Property (C).
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2.3. Index of a closed geodesic. The index of a closed geodesic γ is the Morse
index of E:

ind(γ) := ind(E, γ).
It is always finite. The behavior of this index under iteration k 7→ ind(γk) was
extensively studied by Bott in [12]. We simply recall that

ind(γk) ≥ k ind(γ)− dim(W ) + 1, k ∈ N, (2)
where ind(γ) ≥ 0 is the average index of γ defined by

ind(γ) := lim
k→∞

ind(γk)
k

.

Let p ∈ W and ΩpW ⊂ ΛW be the set of loops based at p, that is H1-paths
γ : [0, 1] → W such that γ(0) = γ(1) = p. Given a closed geodesic γ ∈ ΛW , we
denote by indΩ(γ) ∈ N the Morse index

indΩ(γ) := ind
(
E|Ωγ(0)W , γ

)
.

By inclusion, indΩ(γ) ≤ ind(γ). In fact, we have the concavity inequality [3,
Eq. (1.5)]:

ind(γ)− dim(W ) + 1 ≤ indΩ(γ) ≤ ind(γ). (3)
A Jacobi field of the geodesic path γ is a smooth map J : R→ γ∗TW , satisfying

J(t) ∈ Tγ(t)W, ∀t ∈ R and ∇2
γ̇J = R(γ̇, J)γ̇,

where R denotes the Riemann tensor. Let µ(t) be the number of linearly independent
Jacobi fields of γ such that J(0) = J(t) = 0; the Morse index theorem states that

indΩ(γ) =
∑

0<t<1
µ(t). (4)

The local homology of an isolated critical circle S1 ·γ over a ring R is by definition
C∗(S1 · γ;R) := H∗({E < E(γ)} ∪ S1 · γ, {E < E(γ)};R),

where the set {E < E(γ)} is {δ ∈ ΛW | E(δ) < E(γ)}, and H∗ denotes the singular
homology. When the choice of the fixed ring R is irrelevant, the symbol R will
omitted. According to the Gromoll-Meyer theory, local homology groups are finitely
generated (see [21, remark following Lemma 1] for the case of an isolated critical
point and [2, Proposition 3.1] for the reduction to this case). A closed geodesic is
said to be homologically visible if C∗(S1 · γ) 6= 0 and is said to be homologically
invisible otherwise. Although this notion depends on the choice of coefficients ring
R, the universal coefficients theorem implies that a closed geodesic is homologically
invisible over every ring R if and only if it is homologically invisible over Z. By
excision, for all neighborhood U ⊂ ΛW of S1 · γ,

C∗(S1 · γ) ' H∗
(
U ∩

(
{E < E(γ)} ∪ S1 · γ

)
, U ∩ {E < E(γ)}

)
. (5)

Therefore, every local minimum of E is homologically visible. We will be interested
in the properties of the local homology C∗(S1 · γ) especially in the case where γ is a
closed geodesic of average index ind(γ) = 0 and whose image γ(S1) lies in the interior
of W (ind(γ) = 0 is equivalent to the fact that ind(γm) vanishes for all m ≥ 1). Let
γ ∈ ΛW be such a closed geodesic. Given m ∈ N, we denote by ψm : ΛW → ΛW
the iteration map ψm(δ) := δm. According to a theorem of Gromoll-Meyer [22,
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Theorem 3], the local homology Cd(S1 · γ) is zero in degrees d ≥ 2 dimW and there
exist infinitely many positive integers m such that the induced map in homology

(ψm)∗ : C∗(S1 · γ)→ C∗(S1 · γm) (6)

is an isomorphism. On the other hand, a theorem of Bangert-Klingenberg [6, Corol-
lary 1] states that there exists m0 ∈ N above which for all m ≥ m0, there exists
em > m2E(γ) such that the composition

C∗(S1 · γ) (ψm)∗−−−→ C∗(S1 · γm) inc∗−−→ H∗
({
E < em

}
,
{
E < m2E(γ)

})
(7)

is zero.

3. Proof of the adapted Bangert theorem

A closed geodesic γ is a mountain pass if, for all neighborhoods U ⊂ ΛM of
S1 · γ, U ∩ E−1([0, E(γ)) is not connected. For the proof of Theorem 1.8, we need
the following statement, which tells us that isolated closed geodesics cannot remain
mountain pass critical points of the energy functional when sufficiently iterated. A
geometric proof is given by Bangert [4].

Theorem 3.1 ([4, Theorem 2]). Let γ be an isolated closed geodesic on M , where
dimM = 2. Then there exists an integer mγ ∈ N such that the following holds: For
all integer m ∈ N with m ≥ mγ, there is a neighborhood U of S1 · γ in ΛM such
that U ∩ E−1([0, E(γm))) is connected.

According to Gromoll-Meyer [22], given an isolated closed geodesic γ, there exists
a connected neighborhood U ⊂ ΛM of the critical circle S1 · γ such that

C∗(S1 · γ) ' H∗
(
U,U ∩ E−1

(
[0, E(γ))

))
.

If γ and all its iterates are homologically invisible, Theorem 3.1 is thus true for
mγ = 1.

Proof of Theorem 1.8. Assume there are only finitely many prime closed geodesics
γ1, . . . , γk which have homologically visible iterates and which intersect W := M \
(C−∪C+). We will now derive a contradiction from this assumption. We will define
a suitable finite-dimensional approximation Ω = Ω(O, κ, j). Now as the statement
of Theorem 3.1 remains true in a finite-dimensional approximation, we get that
there exists m0 ∈ N such that for all integers m ≥ m0 and for all i ∈ {1, . . . , k} the
following holds:
i) There exists a neighborhood U of S1 · γmi in Ω such that U ∩ E−1([0, E(γmi )))

is connected.
Set A := max{E(γm0

i ) | i ∈ {1, . . . , k}}, and notice that A is larger than the energy
of a closed geodesic of mountain pass type. We fix an identification of π1(M) with
Z and denote by [γ] ∈ Z the class of a loop γ ∈ ΛM . We define the following sets
of curves:

P±n := {γ ∈ Ω | γ(S1) ⊂ C±, [γ] = n}.

In the following for each U, V ⊂M , we will denote

dist(U, V ) := inf
x∈U, y∈V

d(x, y).
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Choose δ > 0. Then there exists an n ∈ N such that for any curve γ ∈ P±n satisfying
dist(γ(S1),W ) < δ it holds that E(γ) ≥ A. We can now say how exactly the
finite-dimensional approximation has to be chosen:

• Choose a κ > 0 large enough such that there exists a homotopy h : [0, 1]→
E−1([0, κ)) in Ω from h0 ∈ P−n to h1 ∈ P+

n with

dist
(
ht(S1),W

)
< δ, ∀t ∈ [0, 1].

• Set O := {p ∈M | dist(p,W ) < R}, where R > 2κ 1
2 +δ such that O contains

γ1, . . . , γk.
• Choose j such that the (−∇E)-flow of the finite-dimensional approximation
respects C±, as described above.

A technical issue is given by the fact that the gradient flow of −∇E may not be
defined for all times as the sublevel sets of E|Ω are not compact. Ultimately we are
only going to be interested in curves intersecting the compact set W , i.e. the subset

K := {γ ∈ Ω | γ(S1) ∩W 6= ∅}
of Ω. We introduce a smooth function g : Ω→ [0, 1] with the property thatg(γ) = 1 if dist(γ(S1),W ) ≤ 1

2κ
1
2 ,

g(γ) = 0 if dist(γ(S1),W ) > 3
2κ

1
2 .

Then the flow φt of −g∇E is defined for all times t ≥ 0 and coincides with the
negative gradient flow for curves in K. Two crucial observations about the set K
are the following: firstly, for all κ̄ < κ the set K ∩E−1([0, κ̄]) is compact. Secondly,
if φt(γ) ∈ K for some γ ∈ Ω and some time t ≥ 0, we already have γ ∈ K as the
flow φt respects the sets C± (as those satisfy Property (C)). From this it follows:
ii) Let 0 < κ0 < κ0 + ε < κ. Let V denote a neighborhood of the closed geodesics

in K of energy κ0. Suppose there is no closed geodesic in K ∩E−1((κ0, κ0 + ε]).
Then there exists a time τ > 0, such that

φτ
(
E−1 ([0, κ0 + ε])

)
∩K ⊂ E−1([0, κ0)) ∪ V.

This is just the deformation lemma; for a proof see for instance [28, Lemma 3.4].
We are now set to complete the proof of the theorem. Define the set of homotopies

Π :=
{
β : [0, 1]→ Ω continuous | β0 ∈ P−n , β1 ∈ P+

n

}
.

Note that Π is not empty, as h ∈ Π. Furthermore, φt ◦ β ∈ Π for all β ∈ Π and all
t ≥ 0 as the flow respects the sets C± and therefore φt(β0) ∈ P−n and φt(β1) ∈ P+

n

for all t ≥ 0. Define now
κ0 := inf

β∈Π
max
t∈[0,1]
βt∈K

E(βt) .

By definition of κ, one has κ0 < κ. For every β ∈ Π for time t0 := min{t ∈
[0, 1] | βt /∈ P−n } it holds that βt0 ∈ K and E(βt0) ≥ A (as E and β are continuous
and there exists a sequence (tk) ↗ t0 such that βtk ∈ P−n and dist(βtk ,W ) < δ).
Consequently, we get κ0 ≥ A. Since κ0 < κ, for ε > 0 small enough, the subset
K ∩E−1([0, κ0 + ε]) is compact and there are only finitely many S1-orbits of closed
geodesics inside (we assumed every orbit to be isolated). Let {S1 · dj}1≤j≤l denote
the critical circles of energy κ0 in K. By definition of A and by using i) when dj is
a power of some γi (otherwise this is true according to the remark just before the
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beginning of the proof), there exist disjoint neighborhoods Uj of the S1 · dj’s such
that Uj ∩ E−1([0, κ0)) is connected for all j.
We now want to argue that we can choose Uj ⊂ K. We first argue, that dj ∈ ∂K
implies dj(S1) ⊂ ∂C±. To that end suppose that dj ∈ ∂K but it is not contained in
∂C±. Then dj|[−a,0) is contained in C± for some a ∈ (0, ε/2) (where this ε denotes
the constant coming from Property (C)) and dj(0) ∈ ∂C±. There are two cases:
Either dj(bn) ∈ C± for some infinitesimal sequence bn > 0 or dj|[0,b] is contained in
∂C± for some b ∈ (0, ε/2).
In the first case: dj(bn) and dj(−a) belong to the same connected component of
C± ∩ Bε(δ(−a)) since there is a curve arbitrarily close to dj which is contained in
C± (as dj ∈ ∂K). However, the shortest geodesic connecting dj(bn) and dj(−a) is
not contained in C± which contradicts Property C.
In the second case: let γ be a short geodesic segment which is transverse to dj pass-
ing through dj(−a) and contained in C±. Then since dj is in ∂K there is a curve
completely contained in C± connecting a point x arbitrarily close to dj(b) and a
point on γ. This means that x is in the same connected component of C± ∩ Bε(x)
as are all the points of γ. If x is close enough to dj(b) however, one can find a
short geodesic segment from x to a point on γ passing through dj(0). Therefore this
geodesic segment is not contained in C± thus contradicting Property C.
If dj is an iterate of a simple closed geodesic, by the above it cannot be contained in
∂K since by assumption ∂C± do not contain simple closed geodesics. Conversely, if
it is not an iterate, it has a (transverse) self-intersection. Then all the curves close
to dj will also intersect dj and therefore ∂C±. Consequently, in this case Uj is also
contained in K.
Now because there are only finitely many closed geodesics in K ∩ E−1([0, κ0 + ε])
for ε > 0 small enough, one can take ε > 0 such that there is no closed geodesic in
K ∩ E−1((κ0, κ0 + ε]). By the definition of κ0 there exists a homotopy β ∈ Π satis-
fying E(βt) ≤ κ0 + ε for all t ∈ [0, 1] such that βt ∈ K. Choose neighborhoods Vj of
S1 ·dj such that Vj ⊂ int(Uj) and use property ii) on the neighborhood V := ⋃l

k=1 Vj
of closed geodesics of energy κ0 in K to obtain a τ > 0 with the property that for
the homotopy φτ ◦ β we have that (φτ ◦ β)t ∈ K implies E((φτ ◦ β)t) < κ0 or
(φτ ◦ β)t ∈ V . Now (φτ ◦ β)−1(V ) = ⋃m

r=1(tr, t′r) and by our choice of the Vj we have
(φτ ◦ β)([tr, t′r]) ⊂ Uj and for the endpoints (φτ ◦ β)tr , (φτ ◦ β)t′r ∈ Uj ∩ E−1([0, κ0))
for some j ∈ {1, . . . , l} (which is why we applied ii) only to V and not to ⋃lj=1 Uj
directly). Now, by using i) if dj a power of some γi (otherwise it is true by the
remark just before the beginning of the proof), we know that Uj ∩ E−1([0, κ0)) is
connected and consequently we can replace (φτ ◦ β)|[tr,t′r] by a path in E−1([0, κ0))
with the same endpoints. After m steps we obtain a homotopy β̂ : [0, 1] → Ω
such that E(β̂t) < κ0 when β̂t ∈ K. Since (φτ ◦ β)0, (φτ ◦ β)1 /∈ K it follows that
(φτ ◦ β)0, (φτ ◦ β)1 /∈

⋃l
j=1 Uj and therefore β̂0 ∈ P−n , β̂1 ∈ P+

n , hence β̂ ∈ Π. This
contradicts the minimality of κ0.
A closed geodesic without self-intersections can be constructed like in [4, Theorem 1].
One should note that this requires a curve shortening process which takes simple
curves into simple curves. Alternatively to the one by Lusternik and Schnirelmann
quoted by Bangert, one could also use the more recent Grayson-Oaks curve short-
ening [19, 26]. �
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Lifts of c

R2

γ̃1 γ̃3

(0,−y0)

Figure 1. The family of loops (γ̃n)

4. Contractible and intersecting closed geodesics

HereM still denotes a complete Riemannian cylinder. We assume that there exists
a contractible closed geodesic c ∈ ΛM . Let us consider the unbounded components
of M \ c(S1). Since c(S1) is bounded, there are at most two distinct unbounded
components. If there are two distinct unbounded components C− and C+, one can
assume that C− is a neighborhood of −∞ and C+ is a neighborhood of +∞. By C±
we will mean any of these two neighborhoods. Then ∂C± is a broken geodesic with
angles strictly less than π inside C± since c is a closed geodesic (see Figure 2 for an
instance of ∂C+). Hence C± is satisfies Property (C). Moreover if the boundary were
a simple closed geodesic, then ∂C± would be parametrised by c which is impossible
for c is contractible. We can thus apply Theorem 1.8 in this case.

We now assume that M \ c(S1) has only one unbounded component C. Let us
identify M with S1 × R in the remainder of this proof in order to fix the notation.
Let π : R2 → S1×R be the universal cover of S1×R. By compactness of c(S1), there
exists A > 0 such that c(S1) ⊂ S1× (−A,A). Let y0 > A, since S1× (−∞,−A) and
S1 × (A,+∞) belong to the same component of M \ c(S1), there exists a smooth
path α : [0, 1]→ M \ c(S1) such that α(0) = (0,−y0) and α(1) = (0, y0). Let β0 be
the smooth lift of α in R2 such that β0(0) = (0,−y0) and β0(1) = (n0, y0) for some
n0 ∈ Z that we can take equal to n0 = 0 by chaining α with t 7→ (tn0 mod 1, y0).
Let δn,± : [0, 1] → R2 be the path t 7→ (nt,±y0) and βn : [0, 1] → R2 be the family
of lifts βn := (n, 0) + β0, n ∈ N. We define the family of loops γ̃n ∈ ΛR2 by

γ̃n := β0 · δn,+ · β−1
n · δ−1

n,−.

They project to γn := π ◦ γ̃n in M \ c(S1). Let q0 ∈ R2 be a lift of some point of
c(S1) and define qn := q0 + (n, 0). Then the first homology group H1(R2 \ {qn}n∈Z)
is the free abelian group with generators (gn)n∈Z, and by construction the class of γ̃n
is g1 + g2 + · · ·+ gn. The covering transformations of R2 \ {qn}n∈Z → S1×R \π(q0),
which form a group isomorphic to Z, act on the first homology group by k ·gi = gi+k.
Therefore, for natural integers n 6= m and integers k, l ∈ Z∗, the fact that

k(g1+a + g2+a + · · ·+ gn+a) 6= l(g1+b + g2+b + · · ·+ gm+b), ∀a, b ∈ Z,
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implies that the iterated loops γkn and γlm are not freely homotopic in M \π(q0) and
hence in the unbounded component C of M \ c(S1). For γ ∈ ΛC, let us denote by
[γ] the free homotopy class of γ. For m ≥ 2, let us consider the infimum

em := inf
γ∈ΛC

[γ]=[γm]

E(γ).

Let K ⊂M be a compact set that contains c(S1) such that M \K has two distinct
unbounded component. Since any γ ∈ ΛC that is freely homotopic to γm must
intersect K, one can restrict the domain of the infimum to those γ which image is
inside the compact set L ⊂ M of points that are at distance at most √em of K
(which is compact by completeness of the metric on M). Indeed, if γ were a loop of
length ≥ 2√em then E(γ) ≥ 4em by Cauchy-Schwarz inequality. By compactness
of L, we can use a finite-dimensional approximation to get a closed geodesic cm on
C∪c(S1) with E(cm) = em that is a limit of broken geodesics on C freely homotopic
to γm. By uniqueness of the Cauchy problem, if cm intersect c(S1), the closed
geodesic must be a power of c (up to a translation of the parametrisation). This is
impossible since the powers of c are not in the closure of {γ ∈ ΛC | [γ] = [γm]} for
m ≥ 2 (such γ’s must intersect every line joining both ends ±∞ of M). Therefore,
the above infimum is reached by the closed geodesic cm ∈ ΛC. We thus get a family
of closed geodesics (cm) such that [ckm] 6= [cln] for all k, l ∈ Z∗ and m 6= n. Therefore
the closed geodesics (cm) are geometrically distinct. They all intersect the compact
set K. As a local minimum, every cm is homologically visible. A closed geodesic
without self-intersection can be found be choosing a simple closed curve in C which
is close to ∂C and by applying Grayson-Oaks curve shortening [19, 26] to this curve.

Now that Theorem 1.1 is proved under hypothesis 1, in order to prove it when there
is one self-intersecting closed geodesic c or two intersecting ones c1 and c2, one can
assume that these geodesics are not contractible. Therefore, in both respective cases,
M \c(S1) orM \(c1(S1)∪c2(S1)) has exactly two unbounded connected components
C− and C+, which satisfy Property (C) by construction. The intersection hypothesis
then implies that none of the boundaries ∂C± is a simple closed geodesic. Hence
the conclusion follows by applying Theorem 1.8.

5. Closed geodesic of non-zero average index

We assume that there exists a closed geodesic c ∈ ΛM of average index ind(c) > 0.
If c is contractible or self-intersecting, we already know that there are infinitely
many homologically visible closed geodesics. Let us assume that c is an embedded
curve generating π1(M) ' Z. By a slight abuse of notation, we identify the loop
c : S1 →M with its lift R→M .

Lemma 5.1. There exist a non-zero Jacobi field J : R → c∗TM of c and δ > 0
such that J(s) 6= 0 for all s ∈ (0, δ) and J(0) = J(δ) = 0.

Proof. Since ind(c) > 0, Bott iteration inequality (2) and the concavity bound (3)
imply that there exists k ∈ N∗ such that

indΩ(ck) ≥ 1.

Let us fix such a k ≥ 1. The conclusion is now a direct application of the Morse
index theorem (4) to the geodesic path ck. �
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∂C+

α

R

c

Figure 2. Construction of the neighborhood C+ (α could also have
self-intersections)

In order to fix notation, let us identify the image of the loop c to S1 × {0}, with
c(s) = (s, 0) for s ∈ S1, so that M \ c(S1) is the disjoint union of the neighborhood
S1× (−∞, 0) of −∞ and the neighborhood S1× (0,+∞) of +∞ (we only need this
identification to be a homeomorphism). Let J : R→ c∗TM and δ > 0 be the Jacobi
field and the positive number given by Lemma 5.1. Let ε > 0 and I := (−ε, δ + ε).
Since there exists a smooth family (βs)s∈(−1,1) of geodesic paths I → M such that
J |I = ∂βs

∂s
|s=0, it implies that there exists a geodesic path α : [0, 1]→ S1 × [0,+∞)

intersecting c (transversally) only at its endpoints.
By construction, the unbounded component C+ of S1 × (0,+∞) \ α([0, 1]) has

a boundary which is a broken geodesic with angles strictly less than π. By sym-
metry, we get two disjoint neighborhoods of +∞ and −∞ respectively which are
locally convex and whose boundaries are not totally geodesic, we can thus apply
Theorem 1.8.

6. Two homologically visible closed geodesics

Here M denotes a complete Riemannian cylinder. We fix an identification of
π1(M) with Z and denote by [γ] ∈ Z the class of a loop γ ∈ ΛM . We assume that
there exist two geometrically distinct and homologically visible closed geodesics. We
suppose by contradiction that for any compact set K ⊂ M only a finite number of
geometrically distinct homologically visible closed geodesics intersectK. By the pre-
vious cases of Theorem 1.1, every prime closed geodesic of M must be embedded,
non-contractible, without intersections with another closed geodesic, and of zero
average index. Thus the images of closed geodesics of M ' S1×R with a homolog-
ically visible iterate are naturally ordered by their smallest intersection with ∗ × R
where ∗ denotes any point of S1. The order is independent of the choice of ∗ ∈ S1.
We will say that two closed geodesics are consecutive if they are so with respect to
this order. Since only a finite number of geometrically distinct homologically visible
closed geodesic intersect a given compact set, one can talk about the next and the
previous one with respect to this order.

Lemma 6.1. There exist two closed embedded geodesics c1 and c2 of M with degree
[c1] = [c2] = 1 bounding a compact locally convex cylinder C ' S1 × [0, 1] such that

(1) c1 is a local minimum of E|ΛC,
(2) c2 is not a local minimum of E|ΛC,
(3) c1 and c2 are the only closed geodesics of M inside C that have homologically

visible iterates.
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Proof. We first show that two consecutive closed geodesics among closed geodesics
that possess homologically visible iterates cannot be both local minima of E|ΛC′ if
C ′ is the compact cylinder that they bound. By contradiction, let us assume so and
let us call γ0 and γ1 these two geodesics. Up to a change of parametrization, one
can assume that [γ0] = [γ1] and thus that these two geodesics are homotopic in ΛC ′.
Let

Π := {h : [0, 1]→ ΛC ′ continuous | h(0) = γ0 and h(1) = γ1}
denote the set of homotopy of loops in C ′ starting at γ0 and ending at γ1. We
consider the following min-max:

τ = inf
h∈Π

maxE ◦ h.

By compactness of C ′, E|ΛC′ satisfies Palais-Smale (alternatively, one can work in
the compact finite-dimensional manifold of k-broken-geodesics of energy ≤ c+ε for a
large k ∈ N and ε > 0). Let e := max(E(γ0), E(γ1)). Since the critical orbits S1 · γ0
and S1 · γ1 are isolated local minima of E|ΛC′ that satisfies Palais-Smale, τ > e. By
local convexity of C ′, the (−∇E)-flow preserves ΛC ′. By the minimax principle, τ is
thus a critical value of E|ΛC′ and there exists a homologically visible closed geodesic
γ ∈ ΛC ′ of energy τ . Hence γ0 and γ1 are not consecutive, a contradiction.

By a similar argument, we show that one out of two consecutive closed geodesics
among those that possess homologically visible iterates is a local minimum of E|ΛC′ .
Indeed, otherwise one has that

inf
γ∈ΛC′
[γ]=1

E(γ) < min(E(γ0), E(γ1)),

and this infimum is reached for some closed geodesic in C ′ by compactness and
local convexity of C ′ (and this is not a point since E(γ) ≥ (2r)2 for all γ ∈ ΛC ′ of
degree [γ] = 1 where r > 0 denotes the injectivity radius of the compact Riemannian
manifold with boundary C ′). This new closed geodesic is a local minimum of E by
definition and thus homologically visible.

The requirements of the lemma are thus fulfilled by taking any two consecutive
closed geodesics among those with homologically visible iterates. �

Proof of Theorem 1.1. Let c1 and c2 be closed geodesics ofM satisfying Lemma 6.1.
We will reach a contradiction by finding a homologically visible geodesic which is
not c1 or c2 and arbitrarily close to C.

Let x ∈ Int(C) be outside the image of the isolated set of closed geodesics and
let γ1 ∈ ΛC be the loop of degree [γ1] = 1 based at x of minimal length. It exists
by local convexity and compactness of C. The loop γ1 is not a periodic geodesic
(this is a geodesic as a path [0, 1] → C but not as a loop S1 → C) by our specific
choice of x. This loop lies inside Int(C) so that either the connected component
of C \ γ1(S1) containing c1 or the connected component containing c2 is locally
convex – depending on the angle of γ1 at γ1(0) = γ1(1) = x. If the connected
component containing c2 were locally convex, then the infimum of E among loops
of degree one lying inside the locally convex compact cylinder bounded by γ1 and
c2 would give a closed geodesic loop 6= c1 which would be a local minimum. Thus
the connected component of C \ γ1(S1) containing c1 is a locally convex compact
cylinder. Hence the unbounded component of M \ γ1(S1) containing c1 is a locally
convex neighborhood of −∞ which is not totally geodesic since γ1 is not a closed
geodesic.
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Figure 3. Construction of cylinder Z

Let c3 be the homologically visible closed geodesic succeeding c2 if it exists. Let
C ′ be either the compact cylinder that c2 and c3 bound or the infinite cylinder
' S1 × [0,+∞) with boundary c2 and ending at +∞, depending on the existence
of c3 (so that C ∩ C ′ = c2(S1) in both cases). Let y ∈ Int(C ′) be outside the
image of any closed geodesic and let γ2 ∈ ΛC ′ be a loop of degree [γ2] = 1 based
at y of minimal length. Since C ′ is complete and locally convex, γ2 exists. It
cannot be a closed geodesic by our specific choice of y. One of the two unbounded
components of M \ γ2(S1) is thus locally convex, depending on the angle of γ2 at
γ2(0) = γ2(1) = y. If the neighborhood of +∞ was the locally convex one, by
Theorem 1.8 applied to the locally convex neighborhood of −∞ defined above with
γ1 and this neighborhood of +∞, there would be infinitely many homologically
visible and geometrically distinct closed geodesics intersecting some compact set of
M . Thus the neighborhood of −∞ is the locally convex unbounded component of
M \ γ2(S1). Restricting this neighborhood to the compact cylinder C ∪C ′, one gets
a compact locally convex cylinder Z intersecting only two geodesics c1 and c2 that
possess homologically visible iterates, moreover c1(S1) ⊂ ∂Z and c2(S1) ⊂ Int(Z).

Let k ∈ N∗ be such that C∗(S1 · ck2) 6= 0. Let Λh ⊂ ΛZ be the connected
component of loops γ ∈ ΛZ of degree [γ] = h. For all m ∈ N∗, let ψm : Λk → Λkm

be the iteration map ψm(γ) := γm. According to the Bangert-Klingenberg theorem
(7), there exists m0 ∈ N above which for all m ≥ m0 there exists em > m2E(ck2)
such that the composition

C∗(S1 · ck2) (ψm)∗−−−→ C∗(S1 · ckm2 ) inc∗−−→ H∗
({
E|Λkm < em

}
,
{
E|Λkm < m2E(ck2)

})
is zero. According to the Gromoll-Meyer theorem (6), since ind(ck2) = k ind(c2) = 0,
there exist infinitely many m such that

(ψm)∗ : C∗(S1 · ck2)→ C∗(S1 · ckm2 )
is an isomorphism. Let m ≥ m0 be such an integer, then the inclusion induces a
zero map

C∗(S1 · ckm2 ) inc∗−−→ H∗
({
E|Λkm < em

}
,
{
E|Λkm < m2E(ck2)

})
,

which contradicts the fact that ckm2 is the homologically visible critical point of
E|Λkm of maximal value. Critical points of E|Λkm are closed geodesics of Z of degree
km. Thus S1 · ckm1 and S1 · ckm2 are the only homologically visible critical circles of
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E|Λkm (and E(ckm2 ) > E(ckm1 ) since c1 is the only local minimum in C). Since Z
is locally convex, the (−∇E)-flow preserves ΛZ. Moreover Z is compact and has
only isolated closed geodesics, we can thus apply Morse theoretical arguments since
E|Λkm has isolated critical circles and satisfies Palais-Smale or, alternatively, one can
restrict E to the finite-dimensional subspace of j-broken-geodesics of Λkm of energy
less than em+ε for some large j ∈ N and some ε > 0. Thus, if S1 · ckm2 were the only
homologically visible critical circle of energy ≥ m2E(ck2), Morse deformation lemma
would imply inc∗ to be an isomorphism. �

7. The case of the Möbius band

Assuming Theorem 1.1 concerning complete cylinders, we deduce Corollary 1.3.
Let (M, g) be a complete Möbius band and let us denote by π : M̃ → M its

connected double cover. Hence, (M̃, g̃) with g̃ := π∗g is a complete cylinder. Let us
denote by E : ΛM → R and Ẽ : ΛM̃ → R the respective energy functionals of M
and M̃ . Any closed geodesic of M is covered by one or two closed geodesics of M̃ .
The proof would be obvious if the homological visibility of one of the iterates of the
geodesic on M were equivalent to the homological visibility of one of the iterates of
the covering geodesics. However, it is not clear whether this is the case when only
one closed geodesic covers the closed geodesic on M . We will see that the Smith
inequality (8) will yield equivalence over the field R = Z/2Z.

In the statements of the following two lemmas, we use the above notation M ,
M̃ , E, Ẽ where π : M̃ → M denotes any Riemannian cover of some Riemannian
manifold M .

Lemma 7.1. Let c̃ ∈ ΛM̃ be a closed geodesic and let c := π ◦ c̃. Then the map
π] : ΛM̃ → ΛM , γ̃ 7→ π ◦ γ̃, induces an isomorphism

C∗(S1 · c̃) '−→ C∗(S1 · c).

Moreover, ind(c̃) = ind(c).

Proof. Since π is a covering map, the map π] is a diffeomorphism in a small neigh-
borhood Ũ of S1 · c̃ by the uniqueness of the lift to Ũ of a loop belonging to the
neighborhood U := π](Ũ) of S1 · c. Since Ẽ = E ◦ π], the Morse indices ind(c) and
ind(c̃) are equal. The conclusion now follows from the local property (5) of the local
homologies of S1 · c̃ and S1 · c. �

Given a group G acting on a space X, let XG ⊂ X be the set of fixed points of
G. According to the Smith inequality,

dimH∗
(
X;Z/pZ

)
≥ dimH∗

(
XZ/pZ;Z/pZ

)
, (8)

where X is a locally compact space or pair such that H∗(X;Z/pZ) is finitely gen-
erated, a space on which acts the group Z/pZ with p prime (see for instance [11,
Chapter IV, §4.1]). Here dimH∗ denotes the total dimension ∑

k dimHk. The
following lemma is a counterpart of a result of Çineli-Ginzburg relating the local
homologies of a Hamiltonian orbit and its p-iterate [15].

Lemma 7.2. For every isolated closed geodesic c ∈ ΛM and every prime number p,

dimC∗(S1 · cp;Z/pZ) ≥ dimC∗(S1 · c;Z/pZ).
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Let us notice that this last inequality is an equality when p is large enough ac-
cording to Gromoll-Meyer theory [22, Theorem 3] (the coefficients field Z/pZ can
be replaced by any ring R in this case).

Proof. Since the local homology of S1 · c only depends on a small neighborhood of
S1 ·c (local property (5)), one can assume thatM is a closed manifold. Let X ⊂ ΛM
be the topological pair

X :=
(
{E < E(cp)} ∪ S1 · cp, {E < E(cp)}

)
.

This pair retracts on a locally compact pair by using a finite-dimensional approxima-
tion. According to the Gromoll-Meyer theory, the homology group H∗(X;Z/pZ) =
C∗(S1 · c;Z/pZ) is finitely generated (see Section 2). By viewing Z/pZ as the sub-
group of p-th roots of unity, Z/pZ ⊂ S1 acts on ΛM . This action preserves the
sublevel sets of E so it preserves X and γ 7→ γp induces a homeomorphism(

{E < E(c)} ∪ S1 · c, {E < E(c)}
) '−→ XZ/pZ.

This is now a direct consequence of the Smith inequality (8). �

Proof of Corollary 1.3. Let π : M̃ → M be the connected double cover of the com-
plete Möbius band M . Let us identify H1(M ;Z) and H1(M̃ ;Z) with Z, so that the
induced morphism π∗ : H1(M̃ ;Z) → H1(M ;Z) is the multiplication by 2. Given a
closed geodesic γ ∈ ΛM , we denote by [γ] ∈ Z its homology class. By the lifting
property of covers, there exists γ̃ ∈ ΛM̃ such that γ = π ◦ γ̃ if and only if [γ] is even
(we recall that π1(M) ' H1(M ;Z) for M and for M̃ as well).

A contractible closed geodesic of M is covered by contractible closed geodesics of
M̃ thus hypothesis 1 on M implies hypothesis 1 on M̃ . A self-intersecting closed
geodesic of M is either covered by a self-intersecting closed geodesic or two inter-
secting closed geodesics of M̃ thus hypothesis 2 on M either implies hypothesis 2
or hypothesis 3 on M̃ . Two intersecting closed geodesics on M admit intersecting
lifts on M̃ thus hypothesis 3 on M implies hypothesis 3 on M̃ . If hypothesis 4 is
satisfied on M , let c ∈ ΛM be a closed geodesic with ind(c) > 0. Now [c2] = 2[c]
is even so there exists a closed geodesic γ̃ ∈ ΛM̃ such that c2 = π ◦ γ̃. According
to Lemma 7.1, ind(γ̃) = ind(c2) = 2 ind(c) > 0 and therefore hypothesis 4 is also
satisfied on M̃ . Finally, if hypothesis 5 is satisfied on M and c1, c2 ∈ ΛM denote
the two closed geodesics that are homologically visible over Z/2Z, c2

1 and c2
2 are also

homologically visible over Z/2Z by Lemma 7.2 and one can apply Lemma 7.1 as
before to get that hypothesis 5 is satisfied on M̃ over Z/2Z.

According to Theorem 1.1, in any of the above cases M̃ contains infinitely many
closed geodesics intersecting some common compact set K̃ that are homologically
visible over Z/2Z. By Lemma 7.1, the projection of these closed geodesics gives
infinitely many closed geodesics intersecting the compact set π(K̃) that are homo-
logically visible over Z/2Z. �

8. The case of the plane

LetM ' R2 be a complete Riemannian plane with isolated closed geodesics. Using
what we have seen in the previous sections, we now give the proof of Theorem 1.5.
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Proof of Theorem 1.5. When hypothesis 1, 2 or 3 is assumed, the conclusion follows
from the same argument as in the case of the cylinder: by construction of an open
neighborhood C 6= M of infinity. More precisely, this neighborhood C is the un-
bounded component of M \ c(S1) or M \ (c1(S1)∪ c2(S1)) if c is self-intersecting or
c1 and c2 are intersecting closed geodesics. In the case when there exists a closed
geodesic c of non-zero average index, C is constructed by “integrating a Jacobi field”
along c as was done in Section 5.

Now, let us assume that all the closed geodesics ofM are without self-intersection,
with zero average index and do not intersect any other closed geodesic. Moreover, let
us assume that only finitely many (geometrically distinct) closed geodesics intersect
any given compact set among homologically visible closed geodesics. Let us show by
contradiction that it cannot occur whenever M possesses at least one homologically
visible closed geodesic. Let c be a simple closed geodesic that has a homologically
visible iterate and such that there is not any homologically visible closed geodesic
inside the disk D bounded by c. Let G = ⋃

γ γ(S1) ⊂M be the union of the images
of the closed geodesics γ of M . Let U be the connected component of M \ (D ∪G)
that contains c(S1) in its boundary. Since U contains loops that are not contractible
in R2 \D (by taking loops close to the boundary c(S1)), U is not simply connected.
Let y ∈ U and let γ ∈ ΛU be a loop minimizing the length among the loop of U
based at y that are freely homotopic to c (it exists since U is complete). Since ∂U
is a disjoint union of closed geodesics, γ lies in the interior of U and is a geodesic
path. Depending on the angle that γ makes at y, either the unbounded component
of M \ γ(S1) is locally convex and not totally geodesic or the bounded component
containing c is locally convex. In the first case, one can apply Bangert’s theorem to
get a contradiction.

Let us now apply an argument similar to the one given in [6, Theorem 3] in
order to conclude the proof. We can thus assume that c lies in the interior of a
compact and locally convex subset K ⊂ M and that some powers of c are the only
homologically visible closed geodesics of K. Since ind(c) = 0, the local homology
groups Cd(S1 · cm) are trivial in degrees d ≥ 4 for all m ∈ N. Let d ∈ {0, 1, 2, 3}
be the maximal degree such that Cd(S1 · cm) 6= 0 for some m ∈ N∗. Let k ∈ N∗ be
such that Cd(S1 · ck) 6= 0. According to Gromoll-Meyer theory, there exist infinitely
many m ∈ N∗ such that the map induced by the iteration map

(ψm)∗ : C∗(S1 · ck)→ C∗(S1 · ckm)

is an isomorphism. As above, according to the Bangert-Klingenberg theorem (7),
there exists m0 ∈ N∗ such that, for all such m ∈ N∗ greater than m0, the inclusion
of sublevel sets of E|ΛK

C∗(S1 · ckm) inc∗−−→ H∗
({
E|ΛK < em

}
,
{
E|ΛK < m2E(ck)

})
induces the zero map, for some em > m2E(ck). Thus, for such an m, the long exact
sequence of the triple({

E|ΛK < em
}
,
{
E|ΛK < m2E(ck)

}
∪ S1 · ckm,

{
E|ΛK < m2E(ck)

})
implies that

Hd+1
({
E|ΛK < em

}
,
{
E|ΛK < m2E(ck)

}
∪ S1 · ckm

)
6= 0.
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Therefore, by the Morse deformation lemma applied to the C2 function E|ΛK which
satisfies the Palais-Smale condition and whose anti-gradient flow preserves ΛK (by
compactness and local convexity of K), there must be a closed geodesic γ ∈ ΛK
such that Cd+1(S1 ·γ) 6= 0 (see for instance [16, Theorems 4.2 and 4.3 p. 35-36] where
one can replace isolated critical points by isolated critical S1-orbits verbatim). By
maximality of d, γ and c are geometrically distinct. But c is the only homologically
visible closed geodesic of K, a contradiction. �
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