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We propose and demonstrate the appearance of an effective attractive three-body interaction in
coherently-driven two-component Bose Einstein condensates. It originates from the spinor degree
of freedom that is affected by a two-body mean-field shift of the driven transition frequency. Im-
portantly, its strength can be controlled with the Rabi-coupling strength and it does not come with
additional losses. In the experiment, the three-body interactions are adjusted to play a predominant
role in the equation of state of a cigar-shaped trapped condensate. This is confirmed though two
striking observations: a downshift of the radial breathing mode frequency and the radial collapses
for positive values of the dressed-state scattering length.

Thanks to their extreme diluteness, particles in ultra-
cold gases dominantly interact pairwise. At low tem-
peratures, the thermal de Broglie wavelength is larger
than the range of the Van der Waals potential Re, and
the two-body interaction can accurately be replaced by
a contact potential [1]. Morevover, the only parameter
characterizing the interaction, i.e. the scattering length
a can be tuned via scattering resonances [2]. Thanks to
these properties, ultracold gases are ideal candidates to
quantitatively explore quantum many-body physics with
pairwise interactions [3]. For example, the superfluid to
Mott transition [4] or the BEC-BCS crossover [5–9] have
been studied.

Although three-body interactions are usually a small
correction as compared to two-body interactions in di-
lute gases, their consideration has a long history [10–12].
Theoretically, they lead to interesting non-linear dynam-
ics [13–19] and to the appearance of droplets [20]. At
low temperatures, a three-body interaction is character-
ized by a scattering hypervolume D [21]. D is a complex
number whose real part is associated with an energy shift
and its imaginary part with three-body losses. Enhance-
ment of three-body interactions, i.e. of the real part
of D is expected close to resonances due to energy co-
incidence with weakly bound three-body states [20–25].
Unfortunately, typical interatomic interaction potentials
possess numerous deeply bound two-body states and the
enhancement of the real part of D comes together with a
concomitant increase of its imaginary part due to three-
body recombination toward these states [26]. For exam-
ple, three-body Efimov resonances have been experimen-
tally observed through the enhancement of losses [27–29].
In optical lattices, the engineering of three-body inter-
actions was proposed via strong three-body losses and
quantum Zeno effect [30, 31] or via a coherent coupling
between two spin states [32].

Alternatively, an effective three-body interaction can
be induced through a density dependant two-body cou-
pling strength. This method requires an additional de-
gree of freedom, that rapidly adjusts to the local density,
and can be adiabatically eliminated. For a condensate

in quasi-one-dimensional (1D) or quasi-2D geometries,
the wave-function in the confined direction provides this
additional degree of freedom [33–35]; its size slightly in-
creases (decreases) for repulsive (attractive) two-body in-
teractions. This effect leads to an effective attractive
three-body coupling constant g3 ∝ −a2 in the equation
of state in the reduced geometry. However, it remains a
perturbative expansion, valid only when the three-body
energy is a small correction as compared the two-body
energy. Manifestations of these three-body interactions
were nevertheless observed in a frequency shift of breath-
ing oscillations in a quasi-2D geometry [35] and in break-
ing integrability in quasi-1D gases [34].

In this letter, we demonstrate that the additional
spinor degree of freedom in coherently driven two-
component condensate can similarly induce an effective
three-body interaction after its adiabatic elimination.
The method crucially relies on two facts: firstly, the scat-
tering lengths in the dressed states depends on their spin
composition [36, 37]; secondly, the spin composition is af-
fected by density-induced mean-field shifts of the driven
transition [38, 39]. In contrast to condensates in reduced
dimension, the two parameters in driven two-component
condensates (the detuning frequency δ/2π and the Rabi-
coupling frequency Ω/2π) allow the independent control
of the two-body and three-body coupling constants. The
two-body interactions can thus be reduced such that the
three-body interactions prevail in the equation of states.
In addition, these three-body interactions appear at the
mean-field level and can be made significantly larger in
magnitude than the recently studied beyond-mean field
three-body effects [40, 41].

Experimentally, we study two consequences of the ef-
fective attractive three-body interactions that appear in
the lowest energy dressed-state of a driven two compo-
nent 39K condensate. First, the radial breathing mode
frequency of an elongated condensate, which is usually in-
dependent of the two-body interaction, exhibits a down
shift. Second, we measure the threshold for radial col-
lapse as a function of δ/Ω and Ω. We find that the con-
densate collapses despite a positive scattering length due
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to the attractive three-body interactions. A quantitative
fit of experimental data requires taking into account the
saturation of the interaction energy at high density, an ef-
fect beyond the three-body approximation. Importantly,
we detect no increase of losses associated with the tun-
ing of the two-body and three-body interactions in our
system.

Let us consider a Bose gas in a volume V formed by N
atoms of mass m with two coupled internal states, σ =↑
, ↓. For simplicity, we suppose that interactions are sym-
metric, g↑↑ = g↓↓ = g, and we define g = (g↑↑ − g↑↓)/2,
with gσσ′ = 4π~2aσσ′/m and ~ the reduced Planck con-
stant. In an homogeneous system with density n, the
mean-field energy for a condensate in the spinor state
(φ↑, φ↓) reads

EMF

V
= −~Ω

2
(φ∗↑φ↓ + φ∗↓φ↑) +

~δ
2

(|φ↑|2 − |φ↓|2)

+
∑
σσ′

gσσ′

2
|φσ|2 |φσ′ |2 .

The ground state is found upon minimisation of the
energy. The first term fixes the relative phase of the
spinor (φ↑, φ↓) =

√
n(sin(θ/2), cos(θ/2)). The energy

thus writes

EMF

N
= −~Ω

2
sin(θ)− ~δ

2
cos(θ) +

gn

2
− gn

2
sin2(θ) (1)

with θ ∈ [0, π] found upon minimisation. Up to first
order in the ratio γ = gn

~Ω , which compares the differential
mean-field shift to the Rabi frequency, we find

θ ≈ θ0 − 2γ
δ/Ω

(1 + δ2/Ω2)
3/2

with cotan(θ0) =
δ

Ω
, (2)

where γ appears as the key parameter controlling the
modification of the spinor degree of freedom. It results
in the following mean-field energy (up to second order in
γ)

EMF

N
≈ −~

√
Ω2 + δ2

2
+ g2

n

2
+ g3

n2

3
, (3)

with g2 = g − g

1 + δ2/Ω2
(4)

and g3 = −3g2

~Ω

δ2/Ω2

(1 + δ2/Ω2)
5/2

. (5)

The first term in Eq. 3 corresponds to the energy of
the lower dressed-state |−〉 in the absence of interaction.
g2 = 4π~2a−−/m corresponds to the two-body coupling
constant in the unperturbed |−〉 state, i.e. with θ = θ0.
It is solely determined by the ratio δ/Ω (see Fig. 2b). g3

is an attractive three-body coupling constant appearing
because of the mean-field-induced change in θ (see Eq. 2).
It is zero both for large absolute value of δ/Ω when the
two states are uncoupled but also for δ = 0 as in an
equal mixture the energy is already extremal at θ = θ0.

Interestingly, g3 can be independently controlled from g2

through the value of Ω. However Ω can not be made ar-
bitrarily small as the adiabatic following of the dressed
state requires γ̇ � Ω.

Note that the energy expansion in powers of the den-
sity (Eq. 3) is only valid for γ � 1. In the opposite limit
γ � 1, the interaction energy gn

2 −
gn
2 sin2(θ) in Eq. 1

saturates for θ = π/2 and gmin = (g − g). For γ ∼ 1, the
interaction energy cannot be reduced to a sum of two
and three body coupling terms. In this case, the energy
EMF needs to be numerically calculated by minimizing
equation 1 as a function of θ.

We now turn to the experimental observation of the
three-body interactions. We work with the second
and third lowest Zeeman states of the lowest mani-
fold of 39K, namely |↑〉 = |F = 1,mF = −1〉 and |↓〉 =
|F = 1,mF = 0〉. At a magnetic field of 54.690(1) G, the
three relevant scattering lengths are a↑↑ = 37.9a0 ≈
a↓↓ = 36.9, a0 [42], and a↑↓ = −54.2 a0, where a0 is the
atomic Bohr radius [43]. With these specific parameters,
the scattering length a−− in the |−〉 dressed-state can be
tuned down to -8.4 a0 for δ ≈ 0 and has zero crossings at
|δ/Ω| ≈ 0.47 (see Fig. 3). Because of our rms magnetic
field noise of 0.8(2) mG corresponding to 0.56(14) kHz,
we choose to work with Ω/2π ≥ 7 kHz in order to keep a
good control of the parameter δ/Ω. For this value of Ω
and δ/Ω ≈ 0.8, the minimum three-body coupling con-
stant is g3/~ = −3×10−38 m6.s−1. This value is typically
larger by a factor ∼100 as compared to the dominant
three-body loss coefficient K↓↓↓3 /6 ≈ 3× 10−40 m6.s−1 in
our potassium mixtures [44]. The hypervolume D for our
parameters is thus essentially real with <(D)� =(D).

The experiment starts with a quasi pure BEC with
∼ 1.4 × 105 atoms in state |↑〉 in a cigar shaped trap
with frequencies (ω⊥, ω‖)/2π = (300, 16.4) Hz. The con-
densate in the dressed state |−〉 is then prepared in an
adiabatic passage, in which the radio-frequency (rf) de-
tuning is swept from 7.5 Ω to its final value δ. Its shape
and duration of 0.4 ms are chosen in order to be adiabatic
with respect to the internal-state dynamics but it is short
as compare to 2π/ω⊥. As a consequence, the rf sweep is
equivalent to a quench of the interaction parameters and
it induces some dynamics of the cloud. In the longitudi-
nal direction, the evolution is slow and we neglect it on
the 15 ms time scale of our experiment [45]. We focus our
analysis on the radial dynamics of the condensate in its
central part where the 1D density n1D is approximately
constant.

In a first series of experiments, we chose parameters
(Ω/2π = 25.4 kHz and δ/Ω > 0.8) for which, we observe
small amplitude breathing oscillation of the radial size
(see inset in Fig.1) [46]. On the 15 ms time scale of the
experiment, we find that the atom number is reduced by a
maximum of 20%. Interestingly, we measure a reduction
of the breathing mode frequency as δ/Ω is decreased from
1.4 to 0.8 (see Fig. 1), whereas, in the absence of three-
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body interaction, it is expected to be constant and equal
to 2ω⊥ independently of the two-body contact interaction
due to a hidden symmetry of the Hamiltonian under scale
transformation [47–49]. Our observation of a frequency
downshift thus points toward a role of the three-body
interactions.
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FIG. 1. Breathing frequency at Rabi frequency Ω = 25.4 kHz
as a function of the detuning δ/Ω. The points correspond
to the experimental data. The vertical error bars correspond
to a 1.5% uncertainty in the measured frequency. The hori-
zontal error bars are linked to our 0.8(2) mG magnetic field
fluctuations. The shaded area corresponds to the theoretical
estimates for 2.3 × 109 m−1 < n1D < 2.65 × 109 m−1 taking
into account the uncertainty in the value of n1D due to exper-
imental fluctuations, losses, and uncertainty in the detection
efficiency. Inset: radial breathing oscillations for δ/Ω = 0.9.
The rms radius r of the gas is measured as a function of the
wait time t after 9.7 ms of free expansion including an initial
0.4 ms rf sweep back to δ = 7.5Ω.

Let us now compare the measured frequencies to theo-
retical expectations for a condensate for which the equa-
tion of state is given by Eq. 3. In a variational and scaling
approach [50, 51], the frequency of small breathing oscil-
lations writes

ωb = 2ω⊥

√
1 + E3/Epot, (6)

where E3 < 0 and Epot are the three-body and poten-
tial energy in the equilibrium state. We calculate these
two quantities from imaginary time evolution of a 2D
Gross-Pitaevskii equation [52] and deduce the value of
the breathing mode frequency (see Fig. 1). Within the
experimental error bars, we find a perfect agreement with
the measured values and we thus attribute the breathing
mode frequency downshift to the attractive three-body
interactions. Note that in the explored range, decreas-
ing δ/Ω corresponds both to a decrease of g2 and to an
increase of |g3|.

By lowering further the value of δ/Ω, we observe large
losses that rapidly occur around ∼1 ms after the begin-

ning of the RF sweep, i.e. when the condensate has
shrunk to a high density. In order to study this behav-
ior, we wait 3 ms after the sweep and plot the remaining
central 1D density as a function of δ/Ω for two values
of Ω (see Fig. 2a). At large value of |δ/Ω|, there are few
losses and the 1D density is close to the initial one. On
the contrary, for low value of |δ/Ω|, the 1D density is
observed to be reduced by a factor ∼3. Interestingly, the
losses appear sharply as a function of |δ/Ω| and we inter-
pret this behavior as originating from a radial collapse of
the cloud, which is certainly expected for δ/Ω ≈ 0 where
the minimum scattering length is a−− = −8.4 a0 < 0.
In the following, we do not try to precisely understand
the collapse dynamics, including the role of losses, but
rather focus our analysis on the threshold values δc/Ω
below which a collapse occurs.
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FIG. 2. (a) Remaining 1D density as a function of the final de-
tuning δ/Ω. × : Ω/2π = 7.6 kHz, ◦ : Ω/2π = 29.8 kHz. The
curves are fits with the function ncoll +(n1D −ncoll)erf( δ−δc

WΩ
),

where ncoll, n1D, W , and δc are free parameters. (b) Scatter-
ing length a−− as a function of δ/Ω.

The collapse thresholds δc/Ω are plotted as a function
of Ω in Fig. 3 and are found to be larger for lower val-
ues of Ω. Such a behavior reveals the role of three-body
interactions in the radial collapse as g2 solely depends
on the ratio δ/Ω. Moreover, for Ω/2π < 20 kHz the col-
lapse is observed for δ/Ω > 0.47, which corresponds to a
positive scattering length a−−, i.e. repulsive two-body in-
teractions (see Fig. 2b). As an example, for Ω = 7.6 kHz,
δc/Ω = 0.82(5) corresponds to a−− ≈10 a0 (see Fig. 2).

In order to quantitatively interpret our findings, we de-
velop a model which assumes, for simplicity, a Gaussian
radial density profile at all times t with a rms radial size
s(t)aho/

√
2, where aho =

√
~/mω⊥. The energy of the

system can then be cast as

EMF

N~ωr
=
ṡ2

2
+
s2

2
+

1

2s2
+
n1Da−−

s2
+ Vcorr(s)︸ ︷︷ ︸

V (s)

, (7)
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FIG. 3. Collapse threshold as a function of the Rabi frequency
Ω/2π. The squares are the experimental data. The dotted
blue (green) line at δ/Ω = 0.47 corresponds to a−− = 0. The
solid purple (dashed red) line corresponds to the theoretical
prediction taking into account the mean-field effect on the
internal state with (and without) the renormalization of the
two-body interaction (see text). Inset: Effective potentials V
for Ω/2π = 30 kHz for δ/Ω = 0.54 (top curve), δ/Ω = 0.49 =
δc/Ω (middle curve), δ/Ω = 0.44 (bottom curve). The dotted
line is the initial energy for the middle curve corresponding
to s(0) = 1.7.

where the terms on the right hand side respectively corre-
sponds to current kinetic energy, potential energy, zero-
point kinetic energy [53], two-body interactions and cor-
rections to the interaction energy due to the mean-field
induced change in the internal state. For γ � 1, this
last term corresponds to attractive three-body interac-
tions Vcorr(s) ∝ g3n

2
1D/s

4. Since we only see important
losses when the collapse has occurred, we do not include
a loss term in the initial dynamics. In this framework,
the latter reduces to the one of a classical particle in an
effective potential V (s) given by the four last terms in
Eq. 7.

Typical effective potentials V (s) close to the collapse
threshold are plotted in the inset of figure 3. They ex-
hibit a local maximum for low value of s that may be
overcome or not depending on the initial energy, which
is given by the initial rms size of the cloud. The latter is
numerically computed [52] and is 1.1µm corresponding
to s(0) = 1.7. Note that at the position of the maximum
of V (s), the density is such that γ & 1 and we have to rely
on numerical calculation of Vcorr(s) for a precise deter-
mination of the effective potential V (s). For each value
of Ω, we find the collapse threshold δc/Ω for which the
local maximum of V (s) is equal to V (s(0)). This model
for the collapse threshold (dashed curve in Fig. 3) cap-
tures the trend of the threshold values δc/Ω but slightly
overestimates them. As an improvement to our model,
we may introduce repulsive beyond-mean field effects in

the equation of state that are neglected in our mean-field
approach [41]. Since they are complex to evaluate in full
generality, as a first estimate, we solely take into account
the additional two-body correction associated with the
modification of a−− originating from virtual transitions
to the high-energy dressed state |+〉 [41, 54]. A better
match to the experimental data is then obtained (see the
solid line in Fig. 3).

To conclude, we have shown that a Rabi-coupled two
component Bose-Einstein condensate with different scat-
tering lengths offers a way to induce an attractive three-
body term in the equation of state. The latter appears, at
the mean-field level, because of a density-dependent de-
tuning of the drive and is tunable through the strength
of the Rabi drive. The attractive three-body energy can
be made large as compared to the three-body loss rate
which does not depend on Ω. Experimentally, we study
two striking consequences of the attractive three-body
term: a shift of the radial breathing mode frequency and
the observation of radial collapses despite repulsive two-
body couplings g2 > 0. The precise collapse dynamics
including spin dynamics, losses and beyond-mean-field
effects could be the object of future studies.

Finally, we discuss the possibility to create a repul-
sive three-body term with a condensate in the excited
dressed state |+〉. In this case, θ ∈ [−π, 0] is found
upon maximization of equation 1 and the sign of g3

is reversed. Unfortunately, a condensate in |+〉 suffers
from large two-body losses [37]. The two-body loss rate
is Γ ∝ na2

√
Ω ∝ na2/lΩ, where a = a↑↑ − a↑↓ and

lΩ =
√

~/mΩ is a length scale associated with Ω. Re-
ducing the value of Ω would open a window where the
repulsive three-body energy could dominate over the two-
body loss rate for E3/~Γ ∝ nl3Ω � 1 & nal2Ω, where the
second inequality ensures that γ . 1. Experimentally,
this requires a reduction of the role of magnetic fluctua-
tions. Repulsive three-body interactions produced in this
manner would offer an alternative way to create gaseous
(potentially more strongly bound) droplets as compared
to beyond-mean field effects [55–60]. Quantum droplets
[61] and few-body bound states [62, 63] were also recently
discussed in the case of 1D bosons with three-body inter-
actions.
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CE30-0003), Simons foundation (award number 563916:
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