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Abstract

Due to their physical properties, nanomechanical sensors (NEMS) can
achieve mass measurements in the mega- to gigadalton range, which is
hardly obtained with conventional mass-spectrometers. However, NEMS
signals are subject to noise, causing a loss of mass resolution and thus
emphasizing the need of noise control. We propose a denoising model
that relies on a total variation formulation, which deals with di�erent
noise models (particularly colored noise) a�ecting NEMS. The model also
takes into account the physics of NEMS, such as the non-linear coupling
between signals of individual NEMS. The performance of the proposed
model is tested on simulated data which parameters are chosen similar to
true experimental conditions. The obtained results con�rm the interest of
our model with a mass-resolution increase over 20% compared to methods
used in literature.

Keywords: Automatic parameters selection, Colored noise, Mass mea-
surement, Mass-resolution increase, Nanomechanical sensor (NEMS), Nonlinear
coupling, Resonance frequency denoising, Total Variation algorithm

1 Introduction

A nanomechanical resonator (NEMS) can measure the mass of individual par-
ticles accreting on its surface [1]: Since the device's mass is the main parameter
which de�nes resonance frequencies of NEMS oscillations at �xed NEMS sti�-
ness, a particle landing on its surface adds to its total mass and causes downshift
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of its resonance frequencies. For the geometry we consider in this report (i.e.
doubly-clamped beam), these frequency shifts depend on the particle landing
position on the NEMS surface and the frequencies of two resonance modes have
to be monitored simultaneously to resolve the two unknowns (i.e., particle mass
and position [15]). With successive landing events over time, the frequency
traces of the �rst two resonance modes are thus comparable to piecewise con-
stant time signals where each pair of resonance frequencies downshifts are used
to determine the mass and position of a single landed particle.

Authors in [15] proposed a physical model to link simultaneous resonance
frequencies downshifts with particles mass and landing position. This model is
a system where two unknowns (particle mass m and ith particle landing position
xi) are linked to the ith �rst-resonance-frequency-trace discontinuity [s1]i, and
the ith second-resonance-frequency-trace discontinuity [s2]i through:

[s1]i = mφ1(xi) (1)

[s2]i = mφ2(xi) (2)

where φi with i = 1, 2 are known functions.

As a consequence, solving the system of equations (1)-(2) enables to com-
pute particles masses from discontinuities of both NEMS resonance frequency
traces. However, solving this system also supposes a perfect knowledge of the
time locations and the amplitudes of these discontinuities. While this is not an
issue in ideal cases, it becomes less trivial in real conditions: As any actuated
devices, NEMS are subject to noise that create artifacts in discontinuities detec-
tion but also a�ect estimates of discontinuities amplitudes. Clearly, artifacts in
discontinuities detection as well as poor estimates of discontinuities amplitudes
have negative impacts on mass accuracy and resolution when solving system
(1)-(2). These impacts should thus be limited as much as possible.

Concerning the problem of artifacts in discontinuities detection, authors in
[15] proposed a simple but e�cient method: the "ellipse" denoising method.
This method is divided into three successive steps.

The �rst step consists in recording the �rst NEMS resonance frequency s1

and the second NEMS resonance frequency s2 when no particle deposition oc-
curs, to directly probe the noise a�ecting the NEMS resonance frequency traces
during experiments.

The second step is to draw a scatter plot of ∇s2 with respect to ∇s1, where
∇si for i = 1, 2 is de�ned as all di�erences of si consecutive values. Once the
scatter plot has been drawn, it is �tted with a bi-variate Gaussian distribution,
thus de�ning an ellipse encapsulating points only due to noise.

The last step is the true denoising part: While recording NEMS signals
when the particle deposition experiment is conducted, both ∇s1 and ∇s2 are
computed and drawn on the previous scatter plot. If one of the newly acquired
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points lies inside the previously de�ned ellipse (up to a user's de�ned threshold),
it is not attributed to a particle deposition but to noise e�ects. Conversely, if
the newly acquired point lies outside the ellipse, it is attributed to a particle
deposition and thus �agged as such.

As this "ellipse" method leads to satisfactory event detection, we choose
not to explore deeper this path and we consider this method as our reference
method in discontinuities detection throughout this report. Note that this de-
tection method was used in [1] for data analysis.

By contrast, the problem of poor estimates of discontinuities amplitudes due
to noise has not been entirely solved yet: [2] proposed a method to remove noise
a�ecting NEMS resonance frequencies but to this aim, introduced numerous
additional parameters which can hardly be physically explained; [1] dealt with
this discontinuities amplitudes issue by modeling noises as serially uncorrelated
random variables ... whereas noises a�ecting NEMS can also be correlated in
time as shown in [2]. Therefore, we decide to focus on this problem and propose
here a new denoising model relying on classical Total Variation (TV) algorithms
[10] but modi�ed to take into account NEMS speci�city. In particular, this
model is designed to correct main defects of previously used methods:

1. deal with di�erent type of frequency noise even when correlation in time
is not negligible,

2. de�ne parameters directly linked to physical noises properties

3. automatically compute these parameters,

4. include physical features of NEMS, especially the nonlinear coupling be-
tween NEMS resonance frequencies

2 Outline

After introducing mathematical notations needed to precisely de�ne our model,
we will tackle our denoising model. As it largely relies on classical TV models,
we decided to split this discussion into three parts, each one being a step towards
the �nal model. We will �rst describe how to include all noise features for a
single NEMS resonance frequency trace. Then, we will describe an intermediate
model for two independent NEMS resonance frequency traces but where a new
set of variables closely adapted to NEMS physical features is used. At last, we
will conclude with the �nal model focusing on two dependent NEMS resonance
frequency traces linked through a nonlinear coupling.

Finally, we will present test cases to measure the e�ciency of our new model
in comparison with the reference method presented in the introduction.
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3 Notations

3.1 Algebraic notations

We assume that all matrices and vectors are real. Bold capital letters denote
matrices and bold lower-case letters denote column vectors. Lower-case Greek
letters always denote scalars.

Space of real matrices with n rows and m columns is denoted Rn×m and
space of column vectors with n rows is denoted Rn. The superscript > used
with a matrix or a vector denotes the transposed matrix or vector. When minus
operator precedes > symbol, it refers to the inverse of the corresponding trans-
posed matrix. Following this notation, the superscript −1 used with a matrix
denotes the inverse matrix, if it exists. The coe�cient at line i and column
j of any matrix A is denoted Aij . Similar notations are used when dealing
with vectors. Euclidean dot-product (respectively norm) for vectors is denoted
< ., . >2 (resp. ||.||2). In a similar way, L1 norm for vectors is denoted ||.||1.

Some letters or symbols are reserved for speci�c vectors and matrices. Thus,
1n (respectively 0n) denotes a vector in Rn whose all components are equal to 1
(resp. 0). The identity matrix of size n is denoted Idn. F denotes the discrete
Fourier transform matrix. Once an integer n has been set, ∇ will denote the
gradient operator that maps a vector of Rn onto Rn−1:

(∇s)i := si+1 − si i = 1, . . . , n− 1, s ∈ Rn

3.2 Model notations

Let N be an integer and ]1, . . . , N [ the set of all integers strictly greater than 1
and strictly lower than N . Let JN denotes a set of n < N non-equal integers
all belonging to ]1, . . . , N [. We will suppose that JN is ordered. We then de�ne
SN as the following set:

SN :=
{
s ∈ RN | si = si+1 if i /∈ JN , si 6= si+1 if i ∈ JN

}
SN represents the space of signals which are constant piecewise with dis-

continuities exactly located at JN . Clearly, SN has dimension n+ 1 and is the
image of Rn+1 by a simple matrix E ∈ RN×(n+1). E is injective and orthogonal.

Let [s]i denote the ith (1 ≤ i ≤ n) discontinuity of any s ∈ SN . In other
words, we have [s]i := (∇s)jwhere j is the ith element of JN . We then denote
DN a subset of SN whose every element is a signal s verifying [s]i ≤ 0 for all
1 ≤ i ≤ n.

We denote g(s) the gradient-like vector associated to any s ∈ Rn+1. Its
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de�nition is given by the following equation:

g(s)i :=

{
s1 if i = 1

(∇s)i otherwise

A vector s and its gradient-like vector g(s) are linked through a gradient-
like matrix G: s = Gg(s). This matrix is lower triangular and all its non-zero
coe�cients are equal to 1: G is thus invertible.

We denote also G the set of vectors in Rn+1 whose components are all non-
positive except the �rst one:

G := {s ∈ Rn+1 | si ≤ 0 if i > 1}

4 Modeling

Let us consider two non-noisy NEMS resonance frequency traces s1 and s2 (see
Fig. 1). For the sake of simplicity, we suppose that both traces belong to
DN : The more general case where DN is replaced by SN can be treated as
in the subsequent paragraphs but with slight adaptations only. Note that a
given set DN (or SN ) implies the prior knowledge of JN , the set of NEMS
resonance frequency traces discontinuities: As mentioned in the introduction,
this hypothesis is not unrealistic since we have at our disposal a discontinuities-
detection method (see [2]).

Figure 1: Simulation of the �rst NEMS resonance frequency trace for a depo-
sition of 106 MDa particles at a average rate of 20 events per minute during
1615s. Total number of particle depositions is equal to 512. Left: trace over
1615s. Right: trace in [750s, 850s] interval (zoom). The trace is piecewise
constant over the whole interval.

In fact, s1 and s2 are not recorded exactly and only noisy versions of them,
sn,1 and sn,2, are accessible. For i = 1, 2, each sn,i is modeled as the sum of si
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with a Gaussian noise ni of mean 0 and of standard deviation σi:

sn,1 := s1 + n1

sn,2 := s2 + n2

4.1 Model for a single NEMS resonance frequency trace

To denoise a single noisy NEMS resonance frequency trace sn, we propose to
rely on a TV minimization model. The latter consists in denoising sn by �nding
a trace ŝ solution of the minimization problem (3):

arg min
v∈DN

||v−sn||2≤σ

||∇v||1 (3)

This model is chosen because it has numerous advantages when considering
the physical features of a NEMS resonance frequency trace. First, solving (3)
provides a signal estimate ŝ which is naturally piecewise constant, in agreement
with one of the main feature of a NEMS resonance frequency trace. Second,
(3) ensures ŝ is the piecewise constant signal with the smallest discontinuities
that can explain sn. Since the particle mass is directly connected to NEMS fre-
quency trace discontinuities through (1)-(2), it seemed natural to use a method
in which signal discontinuities are central. At last, (3) has been largely studied
in theory as well as in practice ( [5], [6], [10]).

However the quadratic constraint in (3) is dedicated to the sole case of white
Gaussian noise, and thus (3) cannot be used when the noise is not entirely de-
�ned by its standard deviation, in other words when the noise is time-correlated
or colored. As the noise a�ecting NEMS can also be colored ( [2], [12]), we
have to adapt (3) to �t with a more general case.

A colored noise n can always be modeled such that every component ni
for i = 1, . . . , N is the convolution in the time domain of a given white noise
nw and a �xed convolution kernel h: This relationship exactly writes ni :=∑N
k=1 hk−in

w
k for i = 1, . . . , N . In the Fourier domain, the previous equation

equivalently rewrites (Fn)i = (Fh)i(Fn
w)i for i = 1, . . . , N . Since the Power

Spectral Density (PSD) of a white noise is by de�nition equal to a constant, we
deduce that the PSD of n is proportional to the PSD of h. Conversely, applying
the same arguments in reverse order allows to compute the PSD of a noise nw

from the PSD of any given colored noise n, once the PSD of the convolution
kernel h is known.

This remark leads us to the following idea: We propose to de�ne a matrix
W which transforms a given colored Gaussian noise n into a white Gaussian
noise Wn, and to apply the constraint in (3) not to n but rather to Wn. With
such a transform, the colored noise a�ecting NEMS would be taken into account
through the structure and coe�cient values of W.
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Consequently, let's consider a diagonal matrix D which coe�cients will be
de�ned afterward and the new Gaussian noise Wn with W := DF. Moreover,
let us assume there are two constants α and β independent of N such that
α||v||2 ≤ ||Dv||2 ≤ β||v||2 for every v belonging to RN .

Since a white Gaussian noise has uniform PSD, a solution would be to com-
pute D such that | (Wn)i |2 is also constant for every i = 1, . . . , N . D being
diagonal, it is also equivalent to �nd the coe�cients of matrix D such that
|Dii|2| (Fn)i |2 is constant. But | (Fn)i |2 is the PSD of colored noise n: This
PSD can be estimated either based on a model or using prior noise measure-
ments. As a consequence, D coe�cients are easy to compute for the equivalent
white noise Wn.

We are now able to modify (3) to deal with colored Gaussian noise. To this
end, we propose the following model:

arg min
v∈DN

||W(v−sn)||2≤σ

||∇v||1 (4)

where σ is the standard-deviation of the equivalent white noise Wn. σc is
the standard-deviation of the colored noise where:

σc = σ

√√√√ 1

N

N∑
i=1

1

D2
ii

(5)

Remark 1 Interestingly, problem (4) depends on matrix D up to a multiplica-
tive constant. This property has practical consequences: For colored noise whose
transfer functions have simple shapes (such as pink noise), determining coe�-
cients of matrix D from experiments is reduced to only determining a small
number of parameters up to a multiplicative constant.

Constrained problems such as (4) are rarely solved in this form and most
people prefer to tackle equivalent augmented-Lagrangian formulations which are
easier to solve numerically. With this kind of method, the quadratic constraint
in constrained models is removed and replaced by an additional quadratic term
into the function to minimize. For instance, minimization problem (4) formally
becomes minimization problem (6), where λ is a parameter to set:

arg min
v∈DN

||∇v||1 +
λ

2
||W (v− sn) ||22 (6)

The main issue then relies on proving a mathematical equivalence between
the original constrained model and the �nal augmented-Lagrangian model i.e.
in our case, between (4) and (6). For (3), this equivalence has been proved
in [6] which suggests that it is also possible for (4). With slight adaptations,
tools developed in [6] can indeed be used and provide an equivalence between
(6) and (4) if λ is in a one-to-one mapping with the noise standard deviation
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σ. Nevertheless, the function which links the correct value of λ with the value
of σ cannot be known analytically. Thus, ensuring exact equivalence between
(4) and (6) seems to be a dead-end. This issue has fortunately been solved
in [5] (for W = IdN ) and in [4] (for a general matrix W): If λ cannot be
directly computed, it can yet be computed as the limit of some simple iterative
procedures. In short, λ depends only on the noise parameter σ and can be
computed automatically, up to a chosen accuracy.

Remark 2 Note that the minimization problem (6) can also be seen as an a
posteriori validation test for the discontinuities detection method. Indeed, let us
denote v̂ the solution of (6) and v̄ the solution of the minimization problem (7):

arg min
v∈DN

||W (v− sn) ||22 (7)

Minimization problem (7) is easy and fast to solve since it is purely quadratic.
Moreover, since ||W (v̄− sn) ||2 is lower than ||W (v̂− sn) ||2 by de�nition of v̄,
we should also have ||W (v̄− sn) ||2 ≤ σ. If this inequality is not veri�ed, it
clearly means that the space DN is too small or in other words, that the number
of discontinuities given by the discontinuities detection method is too small: A
less restrictive discontinuities detection threshold should therefore be used.

4.2 Model for two uncoupled NEMS resonance frequency

traces

The easiest way to generalize a TV minimization model to simultaneously
smooth two uncoupled NEMS resonance frequency traces is to compute two
estimates ŝ1 and ŝ2 of true signals s1 and s2 as solutions of:

arg min
(v1,v2)∈D2

N

||∇v1||1 + ||∇v2||1 +
λ1
2
||W1(v1 − sn,1)||22 +

λ2
2
||W2(v2 − sn,2)||22

(8)

Indeed, model (8) straightforwardly splits into two independent TV mini-
mization models (6), if signals ŝ1 and ŝ2 can be considered independent.

Since every v1 and every v2 in (8) belong to DN , both direction and time
location of signals discontinuities are known. As a consequence, absolute values
in (8) can be dropped and L1 terms are in fact linear terms. Conversely, L2 terms
can be rewritten as dot-products so that, gathering all these terms with their
new formulation, we are able to rewrite (8) as a simple constrained quadratic
(CQ) model:

arg min
(v1,v2)∈D2

N

1

2

〈(
A1 0

0 A2

)(
v1

v2

)
,

(
v1

v2

)〉
2

−
〈(

b1

b2

)
,

(
v1

v2

)〉
2

(9)

where we have set for k = 1, 2:

Ak := λkW
k>Wk
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bk :=

 −1
0N−2

1

+Aksn,k

We then replace vectors vj for j = 1, 2 in equation (9) by their discontinuities
[vj ]i for i = 1, . . . , n: This step is necessary to allow further developments on
NEMS resonance frequencies coupling. To this aim, we �rst notice that for every
v ∈ RN , there is a unique vector r ∈ Rn+1 such that:

v := Er

This mapping o�ers two important advantages: It drastically reduces the
number of degrees of freedom (from N to n+ 1) and discontinuities of v verify
[v]i = (∇r)i for i = 1, . . . , n. The next step is to rewrite r in term of its
gradient to get the desired change of variable. Using our notations, the vector
r is rewritten as:

r = Gg(r)

Gathering both relationships, we �nally �nd that v = EGg(r). Note that
g(r) has a special structure due to the fact that v belongs to DN : All its
components but the �rst one are non-positive and thus g(r) ∈ G. Applying this
last algebraic relation to vectors vj for j = 1, 2 in (9), we are �nally led to the

following minimization problem whose solutions ĝ(r)
1
∈ G and ĝ(r)

2
∈ G are

estimates of NEMS resonance frequencies discontinuities amplitudes:

arg min
(q1,q2)∈G2

1

2

〈(
Ã

1
0

0 Ã
2

)(
q1

q2

)
,

(
q1

q2

)〉
2

−

〈(
b̃
1

b̃
2

)
,

(
q1

q2

)〉
2

(10)

where we have set for k = 1, 2:

Ã
k

:= G>E>AkEG

b̃
k

:=

(
0
1n

)
+G>E>Aksn,k

Model (10) is a CQ model the constraints of which are very simple: Indeed,
they only impose, for vectors in Rn+1, non-positive values on all components
but the �rst one. This kind of constrained problem can be solved with iterative
algorithms: Projected steepest gradient algorithm is perfectly adapted or to
get estimates even faster, the more recent Nesterov's algorithm can be also
used [8], [9]. Note that for both these iterative algorithms, every iterate exactly
veri�es the non-positive constraints. When user's accuracy threshold is reached,
every signal discontinuity is consistently estimated, which should lead (after
applying resonance-frequencies-discontinuities-to-mass mapping) to a smaller
number of inconsistent mass estimates. This is another argument in favor of the
proposed change of variables.

9



4.3 Model for two coupled NEMS resonance frequency

traces

Let us now take into account the coupling between NEMS resonance frequency
traces s1 and s2. According to the system of equations (1)-(2), s1 is linked to
s2 through a known real ψ0 and a known function Ψ which only depends on
particle landing positions:{

s21 := ψ0s
1
1

[s2]i = Ψ(xi)[s
1]i i = 1, . . . , n

(11)

where xi denotes the particle landing position corresponding to the ith dis-
continuity in JN .

This equation suggests to introduce xi as a variable in our desired nonlinear
model to deal with resonance frequencies coupling. But in doing so, we introduce
an additional degree of complexity: Indeed, the use of the function Ψ requires
additional computations at every step of our iterative process. However it is not
strictly necessary to get a perfect signal estimate. It has been shown in [2] that
despite its complex shape, function Ψ is a one-to-one mapping between possible
landing positions interval [0, 12 ] and a known interval I, the form of which is
I := [0, ψmax]. As a consequence, it is possible to replace every Ψ(xi) with a
number ψi belonging to I: The cost of our algorithm is thus less important and
if landing positions are needed in further applications, they can be computed
after signal denoising has been performed through solving the inverse problem
ψi = Ψ(xi). Moreover, since I is a �nite and closed interval, the corresponding
constraint on ψi is very easy to deal with in our TV minimization model.

Let us modify (10) to include resonance frequencies coupling. Recalling that
sk := EGg

(
rk
)
for k = 1, 2, we de�ne a diagonal matrix Ψ such that:

g
(
r2
)

= Ψg
(
r1
)

(12)

Using signals coupling equations, Ψ coe�cients verify the following equa-
tions: {

Ψ11 := ψ0

Ψii := ψi−1 i = 2, . . . , n+ 1

As a consequence, equation (12) suggests to use g
(
r1
)
and Ψ as variables in

(10) instead of the gradient-like variables g
(
r1
)
and g

(
r2
)
. In doing so, model

(10) becomes the nonlinear model (13), whose solutions are simply denoted

ĝ(r)
1
and Ψ̂:

arg min
(q1,Φ)∈G×P

1

2

〈(
Ã

1
+ Φ>Ã

2
Φ
)
q1,q1

〉
2
−
〈
b̃
1

+ Φ>b̃
2
,q1
〉
2

(13)

In (13), P stands for the space of diagonal matrices the non-zero coe�cients
of which all belong to I but the �rst one; matrices and vectors attached to the
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�rst signal (i.e. with superscript 1) and the second signal (i.e. with superscript
2) are unmodi�ed in comparison with (10).

This change of variables has important e�ects on both solution estimates
and numerical methods to compute them. First, the non fully quadratic nature
of our coupling model implies that we will only reach a local minimum and
not necessarily the optimum: As a consequence, the question arises of how to
increase the chance of getting the global minimum among all the local minima.
Second, we need to redesign our iterative algorithm since projected steepest
gradient method as well as Nesterov's method are designed for pure CQ models.

Let us consider the problem of a global and local minima. To enhance our
chances to reach a global optimum, iterative algorithms dedicated to solving
(13) have to be initialized with a starting point already close to the desired
global minimum. If no true guarantee can be given with such a choice, a start-
ing point sets with solutions of model (10) seems both natural and e�cient:
Indeed, solutions of (10) already satisfy almost all requirements of (13) but are
also unique and easy to compute due to the quadratic nature of (10). A slight
transformation is nevertheless needed to make solutions of (10) acceptable start-

ing points for (13). The solution Ψ̂ of (13) has to be estimated by solving (12),
where Ψ is the variable belonging to P and where g

(
r1
)
and g

(
r2
)
are equal to

the previously computed solutions of (10).

Let us now focus on the non fully quadratic nature of (13). A closer look
at it shows that if q1 (respectively Φ) is set as a given �xed parameter, the
resulting problem is then quadratic in the single variable Φ (resp. q1) and thus,
can be solved using either the projected steepest gradient method or Nesterov's
method. This property suggests not to solve (13) as as whole but rather to split
it into two single-variable quadratic problems (one dedicated to q1, the other
to Φ) and solve them consecutively, until reaching simultaneous stationarity in
both variables. Using an alternating direction algorithm such as Algorithm 1 is
then perfectly suitable.

The nonlinear model proposed here respects the physics of NEMS: We de-
rived a model where the coupling between the �rst and the second resonance
frequencies is explicit and where the intensity of this coupling is also controlled
and lies in the right interval. Besides, Algorithm 1 ensures that this coupling
and its intensity will be exactly taken into account in every iterative step,
thanks to the simplicity of the constraint Φ ∈ P. Note also that the way we
took into account the nonlinear coupling between NEMS frequency traces is
original: To our knowledge, the closest method was described in [3] and relied
on a Bayesian formulation, which requires additional parameters compared to
the proposed method and is more complex.
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Algorithm 1 Compute ĝ(r)
1
and Ψ̂, solutions of (13)

j ← 0

repeat

j ←j + 1

v
j ← argmin

q1∈G

1

2

〈(
Ã

1
+Ψj−1>

Ã
2
Ψj−1

)
q
1,q1

〉
2
−
〈
b̃
1
+Ψj−1>

b̃
2
,q1
〉
2

Ψj ← argmin
Φ∈P

1

2

〈
D(vj)

>
Ã

2
D(vj)Φ,Φ

〉
2
−
〈
D(vj)

>
b̃
2
,Φ
〉
2

until user's threshold is reached

ĝ(r)
1
← vj

Ψ̂← Ψj

D(v) denoting a diagonal matrix with D(v)ii = vi for all i = 1, . . . , n+ 1

5 Numerical experiments

In the subsequent paragraphs, we will show a comparison between a reference
denoising model used in [1] and the model proposed in this report. Since our
goal is to provide a denoising method whose e�ects imply a better mass esti-
mate and/or mass resolution, all results will be expressed in terms of gain/loss
of particles mass estimations and not in terms of signal-denoising e�ciency.

5.1 Tests description

To test the e�ect of our denoising model, we generated two simulated NEMS
resonance frequency traces s1 and s2 which correspond to depositions of 106
MDa (Mega Dalton) particles at an average rate of 20 events per minute during
1615 seconds (see Fig. 1): The exact number of particle deposited is equal to
512. The �rst and second NEMS frequencies prior to the particles deposition
are respectively equal to 2.6 107 Hz and 7.046 107 Hz. This set of parameters
has been chosen to approach values commonly observed in experimental condi-
tions. Note also that the 106 MDa mass corresponds to the average mass of the
bacteriophage T5 which is studied in our laboratory.

Signals s1 and s2 are simulated by using equations (1)-(2) where mass m and
landing positions xi are not unknowns but given parameters. If m is set to 106
MDa, the set of landing positions requires a method to be generated: We used
a uniform probability distribution on the possible normalized landing positions
interval [0, 1] to generate every xi. Time locations of frequency traces disconti-
nuities are determined with an exponential distribution of rate parameter equal
to 20 events per minute. All these parameters being set, the corresponding mass
distribution is illustrated in Fig. 2. Note that for the sake of completeness, we
also draw a graph on Fig. 2 showing the nonlinear coupling (12) for the same
parameters set.
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Figure 2: Left: Histogram of mass distribution computed from exact NEMS
resonance frequency traces shown in Fig. 1. Low masses are due to the ill-
conditioning of the system (1)-(2) which implies poor mass resolution for some
particle landing positions. Right: Graph showing the nonlinear coupling be-
tween discontinuities amplitudes of both NEMS frequency traces with no per-
turbations due to noise.

We then generated two Gaussian noises n1 and n2 and added them to s1 and
s2 respectively: Resulting frequencies sn,1 and sn,2 are the ones to be denoised
to get particles mass estimates. Noise features are thus known a priori: They
will be described below for every test case.

Estimating the e�ciency of the proposed denoising model for particle mass
estimation required additional tools: a reference denoising model, a �xed set of
detected frequency traces discontinuities JN to enable unbiased comparisons
and a frequencies-discontinuities-to-mass conversion method.

Selecting JN as well as computing particles masses from JN are methods
extensively described in [2]: As we will use them as prede�ned tools, we will not
go into further details and advise interested readers to refer to this document
for technical explanations.

The denoising method we choose as a reference is the one used in [1]: For
the ith discontinuity in JN , corresponding discontinuities amplitudes are simply
set as [sn,1]i for the �rst NEMS resonance frequency trace and [sn,2]i for the
second NEMS resonance frequency trace. It means that the reference method
does not apply any �ltering on recorded frequencies before mass estimation.
Despite its simplicity, this way of estimating discontinuities amplitudes is yet
consistent: As the number of detected particles deposited increases, the mean
of the particles mass distribution will converge towards the expected value (106
MDa here). However we expect its resolution (i.e. the spread of the computed
mass distribution around its mean) to be in�uenced by noise level and features.

To get masses from resonance frequency traces discontinuities, the nonlinear
system of equations (1)-(2) has to be solved: Since φ1 and φ2 functions are com-
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plex, it can only be done using numerical algorithms. Therefore, we decided to
use a classical L-BFGS-B algorithm ( [13], [14]) because of its low memory re-
quirements and its ability to handle simple constraints, but every quasi-Newton
algorithm which deals with simple constraints would work as well.

Once NEMS data have been converted into masses, we applied an additional
�lter to the computed masses. This �ltering is a consequence of the mathemat-
ical properties of the system (1)-(2), which derives from the NEMS geometry
and physical properties. For a doubly-clamped-beam NEMS for instance, the
portions of the beam close to a clamp have low sensitivity due to the nearby
constraint [2], [15]. When a particle landing position is close to a clamp, the
NEMS low sensitivity is translated into an ill-conditioning of the system (1)-(2)
at the corresponding position: A small error in the computation of this position
is ampli�ed into a huge error in mass estimate.

As we use numerical algorithms with �nite precision by essence, errors in
positions computations are unavoidable and very high/very low non-physical
masses are then obtained. Note that this error ampli�cation e�ect is solely due
to the NEMS itself and thus, even occurs in the absence of noise a�ecting the
NEMS traces, or with any other choice of nonlinear solving algorithm (see Fig.
2).

Consequently, some computed positions have to be discarded to keep a good
mass resolution: Authors in [2] and [15] showed that the best resolution in term
of mass is obtained for particles that land on the position intervals [0.27, 0.48]
and [0.52, 0.73] (for a total beam length normalized to 1). Following these
reports, we chose to discard particles whose computed landing positions lie
outside [0.27, 0.48] ∪ [0.52, 0.73] and to keep for analysis only particles whose
computed landing positions are in [0.27, 0.48] ∪ [0.52, 0.73]. The position �lter
e�ect is shown in Fig. 3 where the mass histogram computed from signals s1

and s2 does not have inconsistent mass estimates anymore:
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Figure 3: Histogram (4 bins per mass unit) and cumulative function of mass
distribution computed from exact NEMS resonance frequency traces shown in
Fig. 1, after applying a �lter on particle landing positions: particles landing
outside [0.27, 0.48]∪ [0.52, 0.73] are not taken into account because of a low mass
accuracy. The mean of the resulting mass distribution µ is equal to 106 MDa
and the standard deviation σ is equal to 1.2 10−3 MDa. Note that the number
of mass events in the range [100, 112] MDa is lower (210) than the expected
value (512).

5.2 Tests validation

5.2.1 White noise case

For this test case, noise n1 and n2 are white Gaussian noise with zero mean and
standard deviation σ1 = 45.76 Hz and σ2 = 125.38 Hz respectively. These values
are representative of measured means and standard deviations in experiments.
To measure how noise impact NEMS resonance frequency traces discontinuities,
we de�ned an equivalent to the classical Signal-to-Noise-Ratio (which will also be
denoted SNR in the following): For a given resonance frequency, this indicator is
computed as the ratio of trace discontinuities power when the NEMS trace is not
a�ected by noise to trace discontinuities power when the NEMS trace is a�ected
by noise. In the present case, SNR is equal to 1.001 for the �rst NEMS resonance
frequency and is equal to 0.996 for the NEMS second resonance frequency.

Figure 4 shows the obtained mass distribution for our model as well as for
the reference model after all data processing steps.
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Figure 4: Case of white Gaussian noise with means equal to 0 Hz and standard
deviations equal to 45.76 Hz and 125.39 Hz. Left: Histogram of mass distribu-
tion computed from reference model (4 bins per mass unit). The mean of the
resulting mass distribution is equal to 105.95 MDa and its standard deviation is
equal to 1.56 MDa. The number of mass events in the range [100, 112] MDa is
equal to 211. Right: Histogram of mass distribution computed from proposed
model (4 bins per mass unit). The mean of the resulting mass distribution is
equal to 105.66 MDa and its standard deviation is equal to 0.97 MDa. The
number of mass events in the range [100, 112] MDa is equal to 210.

Figure 5: Case of white Gaussian noise with means equal to 0 Hz and standard
deviations equal to 45.76 Hz and 125.39 Hz. Cumulative functions of mass
distribution computed from exact distribution, reference method and proposed
method.

Table 1 summarizes main results of computed mass distributions for the
di�erent methods :
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expected values reference model proposed model

mean (MDa) 106 105.95 105.66

std dev. (MDa) 1.2 10−3 1.56 0.97

nb events 210 211 210

Table 1: Table of mass distribution statistics for exact case, reference method
case and proposed method case for the white Gaussian noise described in Fig.
4.

At this stage, some comments have to be made on table 1. Considering the
mean of computed mass distributions, we see that the reference method provides
better results. But the loss of accuracy for our model is still acceptable: The
relative error on the mass distribution mean for our method is indeed 0.32%
compared to 0.05% for the reference method. In contrast, all other criteria are
in favor of our method as expected: We get a 37, 8% gain in term of standard
deviation.

We then explain why we will focus our interpretation on empirical cumulative
distributions in the following. Empirical cumulative distributions are e�cient
concepts in the present situation since they avoid two interpretation biases and
have some useful mathematical properties.

First, their plotting is independent on any user's parameter choice unlike
histograms with the bin size issue. As a consequence, a data analysis that relies
on empirical cumulative distributions is more robust and free from visual bias.
In the present report, we kept histograms for visual purposes only.

Second, empirical cumulative distributions allow comparisons between di�er-
ent probability distributions without requiring prior knowledge of these distri-
butions. Without cumulative functions, we could have been tempted to choose
arbitrarily a probability distribution which �ts our data and then try to analyze
them with respect to this choice. As cumulative distributions do not require to
know the underlying distributions of the data, we are not subjected to interpre-
tation biases.

Let us focus on Fig. 5 where the exact, reference model and proposed model
cumulative distributions are plotted. We �rst observe that the distance between
the cumulative distribution of the proposed model and the exact cumulative
distribution is less than the distance between the cumulative distribution of the
reference model and the exact cumulative distribution: Our model thus better
approximates the data underlying probability distribution than the reference
model. Moreover, the cumulative distribution of the proposed model is sharper
than in the reference model. It con�rms that the standard deviation is smaller
with our model and reinforces the standard deviation comparison in table 1 as
well as our visual impression from Fig. 4.

5.2.2 Pink noise case

As pink noise depends not only on its mean and standard deviation but also
on its PSD, we show here two examples where the di�erences between reference
method and proposed method are emphasized. Each pink noise has been gen-
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erated from a known white noise convoluted by a given transfer function, which
enforces the resulting PSD to behave as expected. For the sake of completeness,
we will provide this transfer function, original-white-noise main features and the
�nal PSD every time.

Let us �rst consider pink noise for �rst and second NEMS resonance frequen-
cies whose transfer functions and PSD are shown in �g 6. Their means are both
equal to 0 Hz and their standard deviations are equal to 45.36 Hz and 125.13
Hz respectively, in agreement with the observed values in experiments. The cor-
responding SNR is equal to 1.001 for the �rst NEMS resonance frequency and
is equal to 0.996 for the NEMS second resonance frequency. These noises have
pretty much the same energies as the white Gaussian noises above, so results
can thus be compared without bias. Note also that the pink noise shown here
were generated from white noise of mean 0 Hz and standard deviations 28.94
Hz and 73.5 Hz.

Figure 6: First line: Transfer function and PSD of generated pink noise for
�rst NEMS resonance frequency trace. The resulting pink Gaussian noise has a
mean equal to 0 Hz and a standard deviation equal to 45.36 Hz. Second line :
Transfer function and PSD of generated pink noise for second NEMS resonance
frequency trace. The resulting pink Gaussian noise has a mean equal to 0 Hz
and a standard deviation equal to 125.13 Hz.

The main statistical features of the resulting mass distribution are given
in table 2 for every method, and a view of the mass distribution is also given
with Fig. 7. As we can see, the results are very similar to the case of white
Gaussian noise. If the accuracy of our method is here slightly lower than the
one of the reference method, it is still not of great importance according to the
level reached. There is a 28% gain in resolution, which is of the same order of
magnitude as the 37.8% found for the white Gaussian noise. This is visually
con�rmed by the mass histograms in Fig. 7 where the mass distribution looks
sharper with our proposed method.

Figure 8 shows a comparison of the empirical cumulative distributions of our
method and the reference method, for the case of pink noise. It is then clear
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that our proposed method produces a cumulative distribution closer in shape to
the true cumulative distribution. This is further proof that our method better
approximates the true underlying mass distribution than the reference method.

expected values reference model proposed model

mean (MDa) 106 105.96 105.95

std dev. (MDa) 1.2 10−3 1.25 0.90

nb events 210 211 210

Table 2: Table of mass distribution statistics for exact case, reference method
case and proposed method case for pink Gaussian noise describe in �g 6.

Figure 7: Case of pink Gaussian noise of means equal to 0 Hz and standard
deviations equal to 45.36 Hz and 125.13 Hz. Left: Histogram of mass distribu-
tion computed using the reference model (4 bins per mass unit). The mean of
the resulting mass distribution is equal to 105.96 MDa and its standard devia-
tion is equal to 1.25 MDa. The number of mass events in the range [100, 112]
MDa is equal to 211. Right: Histogram of mass distribution computed using
the proposed model (4 bins per mass unit). The mean of the resulting mass
distribution is equal to 105.95 MDa and its standard deviation is equal to 0.90
MDa. The number of mass events in the range [100, 112] MDa is equal to 210.
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Figure 8: Case of pink Gaussian noise of means equal to 0 Hz and standard
deviations equal to 45.36 Hz and 125.13 Hz. Cumulative functions of mass
distribution computed from exact distribution, reference method and proposed
method.

We also considered pink noise for �rst and second NEMS resonance frequency
traces which transfer functions and PSD are shown in Fig. 9.

Figure 9: First line: Transfer function and PSD of generated pink noise for
�rst NEMS resonance frequency trace. The resulting pink Gaussian noise has a
mean equal to 0 Hz and a standard deviation equal to 45.22 Hz. Second line :
Transfer function and PSD of generated pink noise for second NEMS resonance
frequency trace. The resulting pink Gaussian noise has a mean equal to 0 Hz
and a standard deviation equal to 125.05 Hz.

The noise means are both equal to 0 Hz and their standard deviations are
equal to 45.22 Hz and 125.05 Hz respectively. As previously, noises energies
are pretty similar to the ones described above. The SNR is equal to 1.0 for
the �rst NEMS resonance frequency and is equal to 0.998 for the NEMS second
resonance frequency. At last, note that the pink noise were generated from
white noises of mean 0 Hz and standard deviations 28.94 Hz and 73.5 Hz. As
shown in table 3, our method keeps its advantages: We have a gain of 24.1% in
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resolution, with only a 0.09% loss of accuracy.

expected values reference model proposed model

mean (MDa) 106 105.98 105.90

std dev. (MDa) 1.2 10−3 1.33 1.01

nb events 210 209 211

Table 3: Table of mass distribution statistics for exact case, reference method
case and proposed method case for pink Gaussian noise describe in �g 9.

As in the previous pink noise test case, the empirical cumulative distribution
we get with our denoising model is closer to the true cumulative distribution
(see Fig. 11). It means that the true underlying mass distribution is better
approximated with our method than with the reference one. Similarly, the
cumulative distribution obtained with our method is sharper than with the
reference method: It graphically con�rms what was already shown in table 3
for standard deviations.

Figure 10: Case of pink Gaussian noise with means equal to 0 Hz and standard
deviations equal to 45.22 Hz and 125.05 Hz. Left: Histogram of mass distribu-
tion computed from reference model (4 bins per mass unit). The mean of the
resulting mass distribution is equal to 105.98 MDa and its standard deviation is
equal to 1.33 MDa. The number of mass events in the range [100, 112] MDa is
equal to 209. Right: Histogram of mass distribution computed from proposed
model (4 bins per mass unit). The mean of the resulting mass distribution is
equal to 105.90 MDa and its standard deviation is equal to 1.01 MDa. The
number of mass events in the range [100, 112] MDa is equal to 211.
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Figure 11: Case of pink Gaussian noise with means equal to 0 Hz and standard
deviations equal to 45.22 Hz and 125.05 Hz. Cumulative functions of mass
distribution computed from exact distribution, reference method and proposed
method.

6 Conclusion

The model presented in this report improves the denoising of NEMS signals for
mass measurements by taking into account the NEMS physical properties. In
particular, this model deals with the di�erent types of noise a�ecting a NEMS
and uses a single mathematical framework to treat them. An automatic compu-
tation of the model parameters is also proposed and we showed that these model
parameters are directly linked to noise standard deviations, and thus have a sim-
ple physical meaning. We then upgraded our initial model to take into account
the nonlinear coupling between NEMS signals. At last our speci�c numerical
experiments showed a non-negligible gain in mass resolution compared to the
standard method while keeping a good mass accuracy.

However we did not compare here the computational or time cost of our
model with respect to the ones of the reference model. Clearly, we do not
propose here an on-the-�y method: By essence, we require the whole NEMS
signals to apply our denoising model and therefore, mass measurement exper-
iments have to be completed to enable analysis. But in addition, the required
computational e�ort is more important. Indeed, every step we described re-
quires either solving a minimization problem or iterating on parameters to keep
consistency with physics constraints whereas the reference method requires only
a few elementary operations to work. However, the use of simple parallelization
techniques can decrease the overall computation time of the proposed method,
making it competitive compared to the reference method.

In daily experiments, the NEMS resonance frequency traces are also a�ected
by other physical phenomena called drifts. These drifts would prevent us from
using the proposed model in a straightforward way, as NEMS traces cannot be
considered as constant piecewise functions over time. Capturing these drifts
in a dedicated model could bring additional information on the NEMS physics
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or on the experimental conditions of a mass measurement. Hence, the issue of
frequency drift is our next challenge, for which we will propose a new model in
a future report.
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