
HAL Id: hal-03455459
https://hal.science/hal-03455459v1

Submitted on 29 Nov 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Verifying Table-Based Elections
David Basin, Jannik Dreier, Sofia Giampietro, Saša Radomirović

To cite this version:
David Basin, Jannik Dreier, Sofia Giampietro, Saša Radomirović. Verifying Table-Based Elections.
CCS 2021 - ACM SIGSAC Conference on Computer and Communications Security, Nov 2021, Virtual
Event, South Korea. pp.2632-2652, �10.1145/3460120.3484555�. �hal-03455459�

https://hal.science/hal-03455459v1
https://hal.archives-ouvertes.fr

Verifying Table-Based Elections
David Basin

Dept. of Computer Science, ETH Zürich

Zürich, Switzerland

basin@inf.ethz.ch

Jannik Dreier

Université de Lorraine, Inria, CNRS, Loria, UMR 7503

Vandoeuvre-lès-Nancy, France

jannik.dreier@loria.fr

Sofia Giampietro

Dept. of Computer Science, ETH Zürich

Zürich, Switzerland

sofia.giampietro@inf.ethz.ch

Saša Radomirović

Dept. of Computer Science, Heriot-Watt University

Edinburgh, UK

sasa.radomirovic@hw.ac.uk

ABSTRACT
Verifiability is a key requirement for electronic voting. However,

the use of cryptographic techniques to achieve it usually requires

specialist knowledge to understand; hence voters cannot easily

assess the validity of such arguments themselves. To address this,

solutions have been proposed using simple tables and checks, which

require only simple verification steps with almost no cryptography.

This simplicity comes at a cost: numerous verification checks

must be made on the tables to ensure their correctness, raising

the question whether the success of all the small verification steps

entails the overall goal of end-to-end verifiability while preserving

vote secrecy. Do the final results reflect the voters’ will? Moreover,

do the verification steps leak information about the voters’ choices?

In this paper, we provide mathematical foundations and an as-

sociated methodology for defining and proving verifiability and

voter privacy for table-based election protocols. We apply them to

three case studies: the Eperio protocol, Scantegrity, and Chaum’s

Random-Sample Election protocol. Our methodology helps us, in

all three cases, identify previously unknown problems that allow

an election authority to cheat and modify the election outcome.

Furthermore, it helps us formulate and verify the corrected versions.

CCS CONCEPTS
• Security and privacy→ Logic and verification; Privacy pro-
tections; Privacy-preserving protocols.

KEYWORDS
Protocol verification, Elections, Verifiability

ACM Reference Format:
David Basin, Jannik Dreier, Sofia Giampietro, and Saša Radomirović. 2021.

Verifying Table-Based Elections. In Proceedings of the 2021 ACM SIGSAC
Conference on Computer and Communications Security (CCS ’21), November
15–19, 2021, Virtual Event, Republic of Korea. ACM, New York, NY, USA,

21 pages. https://doi.org/10.1145/3460120.3484555

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

CCS ’21, November 15–19, 2021, Virtual Event, Republic of Korea
© 2021 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ACM ISBN 978-1-4503-8454-4/21/11. . . $15.00

https://doi.org/10.1145/3460120.3484555

1 INTRODUCTION
Problem context. Secure electronic voting (e-voting) has been a

topic of active research since the 1980s [5, 10, 16] with clear practical

relevance. As security is a paramount concern, governments have

imposed requirements on the verifiability of the election results.

For example, in Switzerland, when more than 30% of the electorate

votes electronically, then voters must be able to check that their

vote was recorded as cast (“individual verifiability”). Moreover,

when more than 50% vote electronically, then auditors must be able

to determine that the tally has not been manipulated (“universal

verifiability”) [8]. The questions arise of how such checks can best

be supported, how to verify that the checking procedures used

actually work as intended and themselves cannot be manipulated,

and whether information about voter choices is leaked.

Our focus is on voting protocols with verification procedures

based on data tables accompanied by simple checks that enable the
voters and auditors to verify the election results. For example, a

voter may be asked to check that a table entry matches her own

vote selection, or that some values sum up correctly. These checks

are simple for voters to understand and carry out. This is in con-

trast to more heavy-weight cryptographic protocols, which use

mechanisms like homomorphic encryption [24] or mix networks

employing zero-knowledge proofs [3, 30]. With such procedures,

the computations made are relatively complex and evidence must be

checked by programs rather than humans. The importance of using

simple, comprehensible procedures for increasing transparency and

the electorate’s trust has also been emphasized by others [4, 7] and

is a legal requirement in some countries. For example, the German

Federal Constitutional Court ruled that political elections must be

verifiable by everyone and without specialist knowledge [18].

But even using tables with simple operations and checks does not

guarantee that these checks taken together are actually sufficient

to ensure that the election result is correct, and proving the latter

can be complex. Moreover, elections typically have conflicting re-

quirements concerning the results’ integrity and the voters’ privacy.

Correctness necessitates resolving this tension and determining

that all the checks, taken together, satisfy all the given require-

ments. Prior to this work, a general proof methodology for this, in

the context of table-based election protocols, was lacking.

Approach taken.We present mathematical foundations and an

associated methodology for establishing that verification checks

for table-based protocols ensure the correctness and privacy of the

election’s results. Our foundations are based on tables, which are

https://doi.org/10.1145/3460120.3484555
https://doi.org/10.1145/3460120.3484555

multisets of tuples, and a small collection of operators for manipu-

lating, querying, and combining them. Protocols may be built from

tables using simple cryptographic operations such as commitments

and cut & choose steps. Our foundations are particularly well-suited

for cut & choose protocols, where different permuted copies of a

table are used, and each copy reveals just part of its data. We use

our operators to define general notions relevant for such elections,

for example when these partially revealed tables can be combined

in a consistent way or when two tables are indistinguishable, given

a set of their subtables or other properties.

Given a voting protocol, its analysis proceeds as follows:

(1) Specify a global integrity property 𝜙 of the election, for ex-

ample that the final tally reflects the voters’ choices.

(2) Provide a set Ψ = {𝜓1, . . . ,𝜓𝑛} of properties of the tables

used in the election, which correspond to the simple checks

agents must make as described by the protocol, and prove

that together, they are sufficient to establish 𝜙 . Hence, if

the check of each𝜓𝑖 ∈ Ψ succeeds, then the electorate can

be assured of the correctness of the overall election results

(soundness), even in presence of malicious participants.

(3) Verify that if the global integrity property 𝜙 holds, then the

checks will succeed (completeness).
(4) Prove that the checks do not violate the voters’ privacy.

These steps are general and can be applied to any table-based pro-

tocol to ensure both integrity and privacy. Moreover, our table

operators directly support formulating and proving the properties

in these steps.

To illustrate this, we present three case studies. The first case

study, which is also our running example, analyzes Eperio [22].

This protocol can be seen as a variant of e-voting protocols like

Punchscan [31], Scantegrity [12], and Aperio [21] and is based on

simple checks on tables where each check is made on a randomly

chosen subset of table elements. We have chosen Eperio to illustrate

our methodology because it is formulated directly on tables. In our

second case study, we obtain similar modeling results for the better-

known protocol Scantegrity [12].

The previous analysis of Eperio [22] focused on the probability

that each individual step𝜓𝑖 detects a malicious execution. However,

such analysis does not address the correctness of the entire proce-

dure when putting all the checks together. Ourmethodology instead

analyzes table-based protocols in a possibilistic setting, and aims to

show the correctness of the verification steps taken together. Our

analysis reveals that even if all the checks in Eperio succeed, some

initial assumptions or additional checks are needed, as otherwise

there are weaknesses that can be exploited by a malicious election

authority. Furthermore, our methodology reveals that Scantegrity

is subject to the same weaknesses.

Our third case study is a table-based version of random-sample

elections proposed by Chaum [9]. Chaum presents his protocol

informally without proofs of his security claims. We apply our

methodology to provide a rigorous analysis of his protocol. We

again uncover critical weaknesses that would allow a malicious

election authority to modify the election results and we provide

additional checks to fix them with associated proofs.

Contributions.We provide both foundations and an associated

methodology for reasoning about table-based elections. Prior to

this work such a methodology was missing. Our foundations gen-

eralize operators from database theory to handle multisets and

undefinedness and provide an expressive and concise formalism to

specify and reason about table properties. Our methodology pro-

vides a sound way to decompose global correctness properties into

locally checkable ones. We provide three substantial case studies

that illustrate its scope. These examples also show that, despite

the simplicity of the checks, table-based analysis is subtle. Our

work shows how to make this analysis precise, thereby supporting

correctness proofs or uncovering errors in proposed protocols.

One particularly novel aspect of our work, which should be of

independent interest, is the design of table-based methods for ana-

lyzing and quantifying the privacy of elements in a table. We define

a novel, combinatorial notion of privacy for the table-based setting,

called 𝐺-indistinguishability, that measures an observer’s ability

to correlate elements in one column of a table with elements in

another based on a fixed set of views and queries. This is well suited

for table-based voting protocols where privacy may be breached

by re-linking information from within a given data set and can also

be used in other applications storing private data in tables. We use

𝐺-indistinguishability to provide sufficient conditions for a pro-

tocol to achieve privacy, and we compare this notion to symbolic

equivalence-based definitions of privacy.

Organization. In Section 2 we present foundations for manipu-

lating tables. In Section 3 we introduce our first case study, Eperio,

and present protocol modeling. In Sections 4 and 5 we show how

to verify integrity and privacy properties using Eperio as a running

example. In Section 6 we obtain similar modeling results for the

Scantegrity protocol. In Section 7 we sketch the application of our

methodology to random sample elections, providing the full details

in Section E of the appendix. We discuss related work in Section 8

and draw conclusions in Section 9.

All proofs of the lemmas and theorems stated in the paper are

given in the Appendix.

2 TABLE OPERATIONS
2.1 Preliminaries
We start by defining basic operations on tables, generalizing stan-

dard notions from database theory to account for tables that are mul-

tisets and may contain missing information. We take a named per-

spective on tables, following [1]. Namely, a table𝑇 is a finitemultiset
of tuples (the table’s rows), where the table’s columns are uniquely

named. We write set(𝑇) for the set of tuples that occur at least once
in 𝑇 , #𝑇 (𝑡) to denote the multiplicity of a tuple 𝑡 in 𝑇 , and |𝑇 | for
the number of tuples in𝑇 , counting multiplicity. A table’s rows and

columns are unordered. The set of𝑇 ’s column names is called its sort
and is denoted by sort(𝑇). Given an underlying data domain 𝑑𝑜𝑚,

each column name may be associated with a subset of 𝑑𝑜𝑚 ∪ {⊥},
also written as 𝑑𝑜𝑚⊥, e.g., representing (possibly unknown) strings
or integers. We assume that 𝑑𝑜𝑚 does not contain the symbol ⊥,
which represents missing information. We refer to elements in 𝑑𝑜𝑚

as known values and to⊥ as an unknown value. Similarly, tuples and

tables without ⊥ are called known tuples and tables, respectively.

We view tuples as total functions from their sort to 𝑑𝑜𝑚⊥ where

for a tuple 𝑡 of sort 𝑁 , 𝑡 (𝐴) is 𝑡 ’s value on the column name 𝐴 ∈ 𝑁 .

We write tuples with angled brackets and include both the column

name and corresponding value, e.g., ⟨𝐴 : 3, 𝐵 : 5⟩, which we consider
to be the same tuple as ⟨𝐵 : 5, 𝐴 : 3⟩. We say that a tuple 𝑠 is a super-

tuple of a tuple 𝑡 if 𝑡 is the restriction of 𝑠 to sort(𝑡), i.e., 𝑠 |
sort(𝑡) = 𝑡 .

We denote by T the set of tables over a set 𝑑𝑜𝑚 and by T⊥ the

set of tables over 𝑑𝑜𝑚⊥. For 𝑎, 𝑏 ∈ 𝑑𝑜𝑚⊥, we write 𝑎
⊥
= 𝑏 if 𝑎 = 𝑏,

𝑎 = ⊥, or 𝑏 = ⊥. We extend
⊥
= to tuples and tables in the natural way.

We denote multiset containment by ⊆#
and by ⊆#

⊥ the canonical

extension to 𝑑𝑜𝑚⊥. Formally, for 𝑆,𝑇 ∈ T⊥, we write 𝑆 ⊆#

⊥ 𝑇 if

there is a total function𝑤 : set(𝑆) × set(𝑇) → N such that

(1) ∀(𝑠, 𝑡) ∈ 𝑆 ×𝑇 : 𝑤 (𝑠, 𝑡) ≠ 0 ⇒ 𝑠
⊥
= 𝑡 ,

(2) ∀𝑠 ∈ 𝑆 :
∑

𝑡 ∈set(𝑇)
𝑤 (𝑠, 𝑡) = #𝑆 (𝑠), and

(3) ∀𝑡 ∈ 𝑇 :

∑
𝑠∈set(𝑆)

𝑤 (𝑠, 𝑡) ≤ #𝑇 (𝑡).

This definition intuitively corresponds to a "total mapping" from

the multiset 𝑆 to the multiset 𝑇 . However instead of defining the

notion of a mapping on multisets, we defined multiset containment

directly.

2.2 Table Queries and Properties
We write table queries in the SP-algebra [1], with operators for

Selection and Projection, following a standard syntax. For example,

the selection query 𝜎𝐴=1 (𝑇) returns the table that is the multiset of

tuples in𝑇 that have a 1 in the column named 𝐴 and the projection

query 𝜋𝑁 (𝑇) returns the projection of𝑇 to the columns with names

in the set 𝑁 . If 𝑁 ⊈ sort(𝑇), then 𝜋𝑁 (𝑇) is undefined. Note that
for selection, ⊥ is treated as a literal value: 𝜎𝐴=⊥ (𝑇) is the multiset

of tuples that have ⊥ in the column𝐴 of𝑇 . To treat ⊥ as a wildcard,

we apply the selection operator with
⊥
=, e.g., 𝜎𝐴 ⊥

=1𝑇 is the multiset

of tuples in 𝑇 that have a 1 or a ⊥ in column 𝐴 of 𝑇 . We omit

parentheses when applying and composing operators and write

𝛼𝛽𝑇 for (𝛼 ◦ 𝛽) (𝑇).
A table property is a set of tables. A table 𝑇 ∈ T⊥ has a property

𝑝 ⊆ T⊥ if𝑇 ∈ 𝑝 . Notationally, we will often identify properties with

table predicates and write 𝑝 (𝑇). We also consider properties of sets
of tables, e.g. 𝑝 (S), for a set of tables S ⊆ T⊥. More generally, we

will consider properties that are𝑛-ary predicates, i.e. sets of𝑛-tuples

of tables or of sets of tables, and write 𝑝 (𝑇1, ..,𝑇𝑛) or 𝑝 (S1, ..,S𝑛).
For verifiability in voting, users and auditors often perform

checks on individual tables or collections of tables. To model this we

will work with properties whose membership is easily determined

by simple checks, and we hence often identify checks (conducted

either on tables or on sets of tables) and properties (of tables or of

sets of tables respectively).

For a table 𝑆 ∈ T⊥, the table property 𝑠ℎ𝑎𝑝𝑒𝑆 := {𝑇 ∈ T⊥ |
sort(𝑇) = sort(𝑆) ∧ |𝑇 | = |𝑆 |} is the set of tables that have the

same column names and number of tuples as 𝑆 . A central property

when combining potentially conflicting information from different

sources is the set of all known tables that are horizontal (or column)

or vertical (or row) extensions of a table𝑇 ∈ T⊥, or both. We denote

this by [𝑇], where

[𝑇] := {𝑇 ′ ∈ T | 𝑇 ⊆#

⊥ 𝜋
sort(𝑇) (𝑇 ′)}.

When information in a table𝑇 is associatedwith unique values, such

as indices or keys of a sort 𝑁 , we may then impose the additional

side-condition that any extension of 𝑇 preserves the uniqueness

of tuples of sort 𝑁 . We will write [𝑇]𝑁 for those extensions of 𝑇

where subtuples of sort 𝑁 have multiplicity 1:

[𝑇]𝑁 := [𝑇] ∩ {𝑇 ′ ∈ T | 𝑁 ⊆ sort(𝑇 ′) ∧ 𝜋𝑁 (𝑇 ′) = set(𝜋𝑁 (𝑇 ′))}.

Example 1. Consider the following tables, where column names

are written above the horizontal line:

𝑇 =
Ballot Candidate
123 Asterix

337 Obelix

𝑆 =

Voter Ballot Candidate
𝑎 123 Asterix

𝑏 337 Obelix

𝑐 337 Dogmatix

.

Then 𝑆 ∈ [𝑇], but 𝑆 ∉ [𝑇] {Ballot} , because the ballot 337 occurs

twice in 𝑆 . For the same reason, [𝑆] {Ballot} = ∅. Note that [𝑇] {Voter}
is the set of all horizontal and vertical extensions of 𝑇 with unique

entries in the column Voter. This set contains 𝑆 , but does not contain
𝑇 itself because 𝑇 does not have a Voter column. △

2.3 Table Indistinguishability
A central and novel notion in our work is a table’s indistinguish-

ability set with respect to a set of queries 𝑄 and a set of properties

𝐵. Intuitively, an indistinguishability set contains all possible expla-

nations for what a table 𝑇 could be, based on the observations an

agent has obtained about𝑇 from the queries in𝑄 and the properties

in 𝐵 that the agent knows 𝑇 must have. An indistinguishability set

is the rough analog for tables of an anonymity set from the pri-

vacy literature, where a subject is not identifiable within a group

of subjects. We will use this notion to define privacy in Section 5.

Definition 1. Let 𝑇 ∈ T⊥ be a table over 𝑑𝑜𝑚⊥ and 𝑄 a set of
queries and 𝐵 a set of properties. The indistinguishability set of 𝑇

associated with𝑄 and satisfying 𝐵 is the set of tables over 𝑑𝑜𝑚 where

𝐼𝑛𝑑𝑇 (𝑄, 𝐵) := {𝑇 ′ ∈ T | ∀𝑞 ∈ 𝑄 : 𝑞(𝑇 ′) ⊥
= 𝑞(𝑇) ∧

∀𝑏 ∈ 𝐵 : 𝑏 (𝑇 ′) }.

We write 𝐼𝑛𝑑𝑞𝑢
𝑇

(𝑄) for 𝐼𝑛𝑑𝑇 (𝑄, ∅).

Using Example 1, suppose only the columns Ballot and Candidate
of the table 𝑆 are queried. Then 𝐼𝑛𝑑𝑆 ({𝜋Ballot,Candidate}, {𝑠ℎ𝑎𝑝𝑒𝑆 })
contains all possibilities for voters to cast the three votes since

this set consists of all tables of equal shape and equal subtuples of

sort {𝐵𝑎𝑙𝑙𝑜𝑡, Candidate} as 𝑆 . The set 𝐼𝑛𝑑𝑞𝑢
𝑆

({𝜋
sort(𝑆) }) is the set

of known tables that horizontally extend 𝑆 , allowing for arbitrary

additional information to be associated with the three tuples in 𝑆 .

3 TABLE PROTOCOLS
We use our foundations to model voting protocols where:

(1) voters’ election data is stored in a table E, containing for

example the list of voters, candidates, and their choices;

(2) to enable verifiability, the election authority publishes parts

of the election data (copies of E where only a subset of its

rows or columns are revealed), denoted by tables Pauth ⊆ T⊥,
in a way that should preserve the voters’ privacy; and

(3) voters and auditors verify that an integrity property 𝜙 (stat-

ing that votes are counted as intended) is satisfied by making

a set of checks, denoted by Ψ = {𝜓1, ...,𝜓𝑘 }.

We will illustrate this on a running example, defining an additional

table operator for combining tables in the process.

There is a large family of e-voting protocols adhering to the above

scheme whose verification procedures are based on randomized

checks and do not depend on cryptographic primitives. To preserve

privacy, these checks are not made directly on the table E described

in (1), but rather, as described in (2), on permuted copies of the

table. Examples of such protocols are Scantegrity [12], Scantegrity

II [11], Punchscan [31], and Eperio [22]. The protocols’ verification

procedures rely on cut & choose techniques. Namely, in Step (2),
the authority does not know beforehand which data should be

revealed and the correctness of the verification is based on the

unpredictability of this choice. The protocols then only differ in how

the permutations, receipts, and verification checks described in (3)
are conducted. For example, Scantegrity uses a circuit-switchboard,

Scantegrity II uses invisible ink on their ballots, while Punchscan

uses two-layer ballots with holes in the top sheet. In contrast, Eperio

performs the verification checks directly on the published tables.

For the sake of clarity, we have chosen Eperio as our running

example to illustrate our methodology. Since Eperio’s verification

procedures are directly defined in terms of table checks, we can

therefore focus on our methodology itself. We use Eperio to moti-

vate and explain our formalism to represent and reason about tables.

It also shows the benefit of such rigor as our analysis reveals weak-

nesses in Eperio’s verification procedure, and provides clear and

simple proofs of the soundness and privacy of a corrected version.

Afterwards, in Section 6, we apply our methodology to analyze

Scantegrity. Once we abstract Scantegrity’s verification mechanism

based on circuit-switchboards, reducing it to table checks, we obtain

similar results. We also analyze Chaum’s Random Sample Election

Protocol [9], which operates directly on tables. This protocol is

interesting as it offers additional complexity by implementing a

random choice among possible voters and using decoy ballots to

prevent vote-buying. Prior to this work, a methodology for analyz-

ing such table-based protocols was lacking.

3.1 Eperio’s Election Procedure

U Mark

.

.

. Cand. (S)

Gs.1 c
.
.
. Asterix

Gs.2 b
.
.
. Obelix

#Gs#

.

.

. f
fill box

to audit

U Mark

.

.

. Cand. (S)

Lf.1 b
.
.
. Obelix

Lf.2 b
.
.
. Asterix

#Lf#

.

.

. g
fill box

to audit

Figure 1: Marked ballots with randomly ordered candidates.

Ballots in Eperio consist of two separable parts: the left half

contains markable bubbles with unique serial numbers and the right

half lists the corresponding candidates in a randomly permuted

order as shown in Figure 1. To vote, voters mark their choice on

the ballot. Once the marked ballot is scanned, the candidate list

is removed and destroyed. The voter keeps the remaining part as

a receipt. Alternatively, voters may abstain from voting and keep

the entire ballot to audit the election. The ballot is still scanned,

but marked as a so-called print-audit ballot. All scanned ballots are

recorded by an authority in a table E.

Observe that the vote associated to a ballot is determined only

if all three columns are known. The Eperio verification procedure

reveals two of the three columns, allowing voters to verify that their

votes were recorded correctly, while not compromising vote secrecy.

Using different row-shuffled copies of the table E, the authority
alternatively reveals the first two or the last two columns. Observe

that by the uniqueness of the ballot numbers, the authority may

not reveal the first two columns in one copy and the first and third

column in another, without revealing the ballots’ votes.

In more detail, the protocol proceeds as follows. The scanned

ballots are recorded by the election authority in a table called the

Eperio table, denoted E, which is a 𝑢 × 3 table, where 𝑢 is the

product of the number of ballots and the number 𝑠 of candidates in

an election. The three columns are named𝑈 ,𝑀 , and 𝑆 . Column𝑈

contains the serial number of a ballot and a position in the range 1

through 𝑠 . The third column 𝑆 contains the candidate names. These

two columns are fixed before the election. Column 𝑀 is initially

empty, but once ballots are recorded, it contains elements from the

set {1, 0,−1}, formalizing whether the candidate (listed in the third

column) was voted for (1), not voted for (0), or the ballot is selected

for print auditing (−1). For example, the cast ballots from Figure 1

would result in the following Eperio table:

E =

𝑈 𝑀 𝑆

Gs.1 1 Asterix

Gs.2 0 Obelix

Lf.1 −1 Obelix

Lf.2 −1 Asterix

.

The table E is known only to the authority and is never published.

Elections have three phases:

Phase 1 Prior to the election.
Before the election, the column𝑀 is empty. The authority generates

𝑥 row-permutations of the table E, where 𝑥 is a fixed parameter.

It generates next separate commitments for the first and the third

column of each of the 𝑥 copies of E, denoted by E1, . . . , E𝑥
. These

commitments are published before the election.

Phase 2 After the election, but prior to the audit.
The votes are recorded in the column𝑀 and the 𝑥 permutations of

this column are published. Print-audited ballots are identified with

a −1 entry in𝑀 . The authority generates and publishes a linkage
list 𝐿. This is a table that specifies, for each row-permuted copy

of E, the row numbers in which the print-audited ballots’ serial

number and position can be found: 𝐿𝑗 , the 𝑗-th column of the table

𝐿, contains the row numbers of the print-audited ballots in the table

E 𝑗
; see Figures 2 and 3.

Phase 3 Audit.
The auditors perform a cut & choose game over the 𝑥 commitments

of the permutations of the table E published in Phase 1 and perform

a set of checks, which we denote by Ψ. For each commitment, either

the column containing a permutation of𝑈 or the column containing

a permutation of 𝑆 is published. The corresponding permutation

of𝑀 was already published in Phase 2. The linkage list is used to

verify print-audited ballots. If the revealed column is a permutation

of𝑈 , the linkage list is used to verify the serial number and position

pair. If it is a permutation of 𝑆 , it is used to verify the candidate

order on the ballot.

𝑈 𝑀 𝐿1 . . . 𝐿𝑥
: : : :

Gs.1 -1 5 . . . 73

Gs.2 -1 20 . . . 88

Lf.1 -1 19 . . . 18

Lf.2 -1 3 . . . 100

: : : :

Figure 2: Table composed of columns 𝑈 and 𝑀 , and linkage
list 𝐿 showing data structure for two print-audited ballots.

row E1

𝑈
E1

𝑀
E1

𝑆

3 Lf.2 -1 Obelix

5 Gs.1 -1 Asterix

19 Lf.1 -1 Asterix

20 Gs.2 -1 Obelix

row E𝑥
𝑈

E𝑥
𝑀

E𝑥
𝑆

18 Lf.1 -1 Asterix

73 Gs.1 -1 Asterix

88 Gs.2 -1 Obelix

100 Lf.2 -1 Obelix

Figure 3: Entries pointed to by the linkage list in the first
and last permuted copies of the Eperio table.

When the commitments are made, the authority does not know

which columns it must reveal. Hence the auditors are ensured (with

high probability) that both columns𝑈 and 𝑆 are correct.

Formally, we use our table notation and we model the data that

the authority publishes by 𝑢 × 3 tables 𝑃1, . . . , 𝑃𝑥 whose entries

are the data in the publicly revealed columns and ⊥ otherwise. We

set Pauth := {𝑃1, . . . , 𝑃𝑥 } ⊆ T⊥. Some tables will have unknown

values in the 𝑈 columns, others in the 𝑆 columns. To model the

information revealed by Eperio’s linkage list table 𝐿, we replace

unknown values in tuples that contain𝑀 = −1 in the tables Pauth
by the information learned from the linkage list table.

The tally is a function, denoted tal, that is computed from the

election table E. For Eperio, tal := 𝜋𝑆𝜎𝑀=1 selects the rows in the

Eperio table that satisfy 𝑀 = 1 followed by a projection to the 𝑆

column containing the candidate names.

In practice, the checks done by the voters and auditors are not

performed on the secret election table E, but rather on data pub-

lished by the authority, represented by the tables in Pauth. Observe
that when the voting authority is honest, then each table in Pauth is

a submultiset of E (as the order of rows in a table is immaterial). A

dishonest authority may, however, publish arbitrary data, where

some or all tables in Pauth are unrelated to any underlying table.

3.2 An Operator for Combining Information
To combine possibly conflicting tables, we define a novel operator

?Key
on tables that merges data where the tuples of a given sort

Key are used as unique keys. In the case of conflicting information,

the operator returns the empty set.

Let Key be a set of column names and R ⊆ T⊥ be a finite set

of tables of possibly different sorts. We want to ensure that the

tables in R may contain redundant, but not conflicting information.

Namely, if 𝑇1,𝑇2 ∈ R have a tuple 𝑡 of sort Key in common, they

must also have the super-tuple of 𝑡 of sort sort(𝑇1) ∩ sort(𝑇2) in
common. Formally, we define this combination as the intersection of

all extensions of tables in R where subtuples of sort Key are unique,

?KeyR :=
⋂
𝑇 ∈R

[𝑇]Key .

Example 2. Write 𝑇 ?Key 𝑆 for ?Key{𝑇, 𝑆} for tables 𝑇 and 𝑆 .

Consider the following tables, where 𝑉 contains voter identifiers,

𝑅 :=
𝑈 𝑀 𝑆

𝐻.1 1 𝑦𝑒𝑠
𝑁 .1 1 𝑛𝑜

, 𝑆 :=
𝑈 𝑀 𝑆

𝐻.1 0 𝑦𝑒𝑠
𝑁 .1 1 𝑛𝑜

, 𝑇 :=
𝑉 𝑈 𝑀

𝑎 𝑁 .1 1

𝑏 𝐾.2 0

.

Then:

(1) 𝑅 ?{𝑈 ,𝑀 } 𝑆 = [𝑅] {𝑈 ,𝑀 } ∩ [𝑆] {𝑈 ,𝑀 } = [𝑌] {𝑈 ,𝑀 }
where

𝑌 =

𝑈 𝑀 𝑆

𝐻.1 1 𝑦𝑒𝑠
𝐻 .1 0 𝑦𝑒𝑠
𝑁 .1 1 𝑛𝑜

.

That is, 𝑅 ?{𝑈 ,𝑀 } 𝑆 contains all tables that extend 𝑌 (both

horizontally and vertically) and have unique subtuples of

sort {𝑈 ,𝑀}.
(2) 𝑅 ?{𝑈 } 𝑆 = ∅, that is, 𝑅 and 𝑆 contain conflicting infor-

mation if 𝑈 is the unique key, as is the case in Eperio. 𝑅

and 𝑆 have the ballot id 𝐻.1 in common, but 𝑅 contains the

subtuple ⟨𝑈 : 𝐻.1, 𝑀 : 1⟩, whereas 𝑆 contains the subtuple

⟨𝑈 : 𝐻.1, 𝑀 : 0⟩. So there is no extension that combines the

information present in 𝑅 and 𝑆 while preserving the unique-

ness of the subtuples of sort {𝑈 }.
(3) 𝑆 ?{𝑈 ,𝑀 } 𝑇 = [𝑍] {𝑈 ,𝑀 }

, where

𝑍 =

𝑉 𝑈 𝑀 𝑆

⊥ 𝐻.1 0 𝑦𝑒𝑠
𝑎 𝑁 .1 1 𝑛𝑜
𝑏 𝐾.2 0 ⊥

. △

The following lemma, proved constructively, states that the result

of ?Key
computed over a set of known tables, where Key is a

subsort of each table, always equals [𝑍]Key for some table 𝑍 . This

includes the possibility that the result is the empty set.

Lemma 1. Let 𝑇1, . . . ,𝑇𝑘 ∈ T , and Key ≠ ∅ be a set of column

names such that Key is a subsort of each of these tables. Then there

exists a table 𝑍 ∈ T⊥ such that ?Key{𝑇1, . . . ,𝑇𝑘 } = [𝑍]Key.

Hence if ?𝑈 Pauth ≠ ∅, the tables in Pauth are consistent with

each other, and the tables in?𝑈 Pauth represent all possible “Epe-

rio tables” from which these subtables come from. Observe that

tables in?𝑈 Pauth could also extend the tables in Pauth vertically.
However, we are often interested in the minimal such extension.

Definition 2. If S ⊆ T is a set of tables, we denote byminS the
set of all minimal elements of S, i.e., minS ⊆ T is the largest subset
of S with the property ∀𝑇 ∈ S, 𝑇 ′ ∈ minS : 𝑇 ′ ∈ [𝑇] ⇒ 𝑇 = 𝑇 ′.

For example, let {𝑇1, ...,𝑇𝑘 } ⊆ T and the sort Key be as in

Lemma 1 so that ?Key{𝑇1, ...,𝑇𝑘 } = [𝑍]Key for some 𝑍 ∈ T⊥. Then
min?Key{𝑇1, ...,𝑇𝑘 } is the set of all tables obtained by replacing the
unknown values of 𝑍 with known ones from the domain.

3.3 Modeling Table-Based Protocols
In the beginning of Section 3 we defined the tables Pauth. These
tables represent the information published by the authority and are

supposedly subtables of the authority’s table E.
To verify that this is indeed the case and that the election out-

come is correct, voters and auditors use additional information that

is given by (i) the voting protocol itself and (ii) the voters’ individual

knowledge of their cast votes. To model this additional information,

we denote by Pcon the nonempty set containing all possible tables

that satisfy publicly known constraints given by the protocol, such

as the published tables’ shape (determined when the number of

votes is known) or the tally. We denote by V the set of voters, and

for each voter 𝑣 we model the knowledge available to her, e.g. her

vote, by a smaller table 𝑅𝑣 that indicates 𝑣 ’s view of the election

and hence contains 𝑣 ’s real vote. These tables are not present in
the protocol specification itself. We denote the combined view of

all voters by Views = {𝑅𝑣 | 𝑣 ∈ V}. For each voter 𝑣 ∈ V , the table

𝑅𝑣 has a column of sort V that in every row contains the identifier

𝑣 ∈ V . This sort is used to correctly assign 𝑣 ’s ballots to 𝑣 indepen-

dently of any information published by the voting authority. Note

that tables in Pauth do not have a column V and tables in Views do
not contain information on printed, but unused ballots.

Eperio. In Eperio, Pcon encodes the tally (denote by 𝑡 , the an-

nounced outcome) and the constraints that all printed ballots must

be represented by 𝑃1, . . . , 𝑃𝑥 :

Pcon := 𝐼𝑛𝑑
𝑞𝑢
𝑡 (𝜋𝑆𝜎𝑀=1) ∩

⋂
𝑃 ∈Pauth

{𝑇 ∈ T⊥ | 𝑃 ⊥
= 𝜋

sort(𝑃)𝑇 }.

For each voter 𝑣 ∈ V , 𝑅𝑣 is a 4-column table of sort {V,𝑈 ,𝑀, 𝑆},
where column V contains 𝑣 . The entries in column𝑈 of 𝑅𝑣 contain

the serial numbers and positions on the received ballot, the entries

in column𝑀 contain the actual votes marked by 𝑣 on her cast ballot,

and column 𝑆 contains the actual candidate names printed for the

corresponding serial number and position on the ballot. We denote

the set of these tables by Views := {𝑅𝑣 | 𝑣 ∈ V}.
Ideally, we can combine the voters’ information Views. In this

case,?𝑈 Views is nonempty and contains all possible extensions

of the provided information. Since all tables in Views are of the

same sort and they do not contain ⊥ values, the proof of Lemma 1

yields a table 𝑉 such that?𝑈 Views = [𝑉]𝑈 . Then the combined

view of the voters is represented by the table 𝑉 ∈ T , which is also

the unique element in the set min?𝑈 Views.
Otherwise there is conflicting information, and the set?𝑈 Views

is empty. This should be detected by the verification procedure.

4 VERIFIABILITY PROPERTIES
In Phase 3 of the Eperio protocol, voters and auditors conduct

checks 𝜓1, . . . ,𝜓𝑘 ∈ Ψ on the sets of tables Pauth,Pcon, and Views.
These checks are intended to verify that the result published by

the election authority corresponds to the voters’ intentions, as in

global verifiability [26]. We denote this integrity property by 𝜙 and

will return to it in Section 4.2, Definition 4.

4.1 Properties of checks
We state now what we require for a general verification procedure,

consisting of a set of properties Ψ = {𝜓1, . . . ,𝜓𝑘 }, to yield correct

results. To begin with, a verification procedure is sound if all the

checks in Ψ entail𝜙 . For voting, soundness is essential as it amounts

to the outcome’s integrity and ensures that any cheating in the

production of tables and ballots (represented by the tables in Pauth
and Pcon) will be uncovered.

Completeness is the converse: 𝜙 entails all the properties in Ψ. In
general, completeness may be too strong as an election outcome

could correspond to the voters’ intent even if errors occur. For

example, an audit could detect errors in a batch of printed but

unused ballots. The verification of this batch of printed ballots

would fail, but the election’s outcome may still be correct.

In practice, voting protocols need dispute resolution procedures [2]

to achieve soundness and completeness in the case of dishonest vot-
ers, but this is out of this paper’s scope. We assume that Views
corresponds to the voters’ intent.

Definition 3. The verification of a property 𝜙 is sound with
respect to Ψ if∧

𝜓𝑖 ∈Ψ
𝜓𝑖 (Pauth,Pcon,Views) ⇒ 𝜙 (Pauth,Pcon,Views) . (1)

The verification of 𝜙 is complete with respect to Ψ if∧
𝜓𝑖 ∈Ψ

𝜓𝑖 (Pauth,Pcon,Views) ⇐ 𝜙 (Pauth,Pcon,Views) . (2)

Together, these requirements state that the conjunction of the

properties𝜓𝑖 ∈ Ψ is equivalent to 𝜙 . This admits a trivial solution

where Ψ = {𝜙}. In practice, since one also requires voter privacy,

Ψ is instead decomposed into multiple verification checks, where

each check only accesses a strict subset of the table’s elements.

Definition 3 is specific to checks conducted on the sets of ta-

bles Pauth, Pcon, and Views that describe an election. The definition

is clearly generalizable to any property 𝜙 (S1, ..,S𝑘) and checks

{𝜓𝑖 (S1, ..,S𝑘) | 𝜓𝑖 ∈ Ψ} conducted on arbitrary finite sets of ta-

bles S1, ..,S𝑘 ⊆ T⊥ and for any property 𝜙 (𝑇1, ..,𝑇𝑘) and checks

{𝜓𝑖 (𝑇1, ..,𝑇𝑘) | 𝜓𝑖 ∈ Ψ} conducted on arbitrary tables 𝑇1, ..,𝑇𝑘 ∈ T⊥.

Example 3. Consider the tables 𝑇, 𝑆 ∈ T where, in contrast to

Eperio,𝑈 values need not be unique.

𝑇 =

𝑈 𝑀 𝑆

𝑎 1 𝑛𝑜
𝑎 0 𝑦𝑒𝑠
𝑏 1 𝑦𝑒𝑠
𝑏 0 𝑛𝑜

𝑆 =

𝑈 𝑀 𝑆

𝑎 0 𝑛𝑜
𝑎 1 𝑦𝑒𝑠
𝑏 1 𝑛𝑜
𝑏 0 𝑦𝑒𝑠

Let 𝜙 (𝑇, 𝑆) be the property that the table 𝑇 is equal to the table

𝑆 . Let 𝜓 (𝑇, 𝑆), 𝜓 ′(𝑇, 𝑆), and 𝜓 ′′(𝑇, 𝑆) be the properties that 𝑇 ’s

projection on the first two columns, the first and last columns, and

the last two columns, respectively, are equal to the corresponding

projections on 𝑆 . Then 𝜙 (𝑇, 𝑆) ⇒ 𝜓 (𝑇, 𝑆) ∧ 𝜓 ′(𝑇, 𝑆) ∧ 𝜓 ′′(𝑇, 𝑆),
but the converse is false. The tables𝑇 and 𝑆 are not equal, not even
up to permutation of rows. So 𝜙 (𝑇, 𝑆) is not satisfied. But any two
columns of 𝑇 are equal to the corresponding two columns of 𝑆 , so

𝜓 (𝑇, 𝑆), 𝜓 ′(𝑇, 𝑆), and 𝜓 ′′(𝑇, 𝑆) are satisfied. Hence a verification
procedure that aims to establish 𝜙 (𝑇, 𝑆) by checking the properties

𝜓 (𝑇, 𝑆),𝜓 ′(𝑇, 𝑆), and𝜓 ′′(𝑇, 𝑆) would be complete, but not sound.

△

The following lemma states that, in contrast to the above exam-

ple, if the tables contain a unique key, then it is possible to verify a

global property by performing checks on subsets of columns.

Lemma 2. Let R ⊆ T be a set of tables, defining a property, and

{𝑆0, 𝑆1, 𝑆2, ..., 𝑆𝑘 } a subsort of sort(𝑅) for all 𝑅 ∈ R. Let 𝑇 ∈ T be

a table such that 𝑇 ∈ ?{𝑆0 }{𝜋𝑆0,𝑆𝑖𝑅 | 𝑅 ∈ R} for all 𝑖 ∈ {1, . . . , 𝑘}.
Then

𝑇 ∈ ?{𝑆0 }{𝜋𝑆0,𝑆1,..,𝑆𝑘𝑅 | 𝑅 ∈ R}.

This lemmawill be crucial for the proof of correctness of Eperio’s

verification procedure.

4.2 Security goals
Observe that the sets of tables Pauth,Pcon, and Views may result in

different, potentially conflicting views of the overall election data.

A voting protocol must therefore ensure that:

(1) the voters’ joint view of the election can be combined (in the

sense of Section 3.2) with the published data and

(2) every election table that combines the public data and the

voters’ joint views yields the same election outcome.

We formalize these two conditions as follows.

Definition 4. Given a non-empty sort Key of unique keys, Pauth,
Views, and Pcon as in Section 3, let C = ?Key (Pauth ∪ Views) ∩ Pcon.

We say that an election’s outcome tal corresponds to the voters’

intent, and denote this property by 𝜙Key,tal (Pauth,Pcon,Views), if the
following two conditions are satisfied.

(1) C ≠ ∅ and
(2) ∀𝑇 ∈ C, ∀𝑇 ′ ∈ min?KeyViews : tal(𝑇) = tal(𝑇 ′),

where tal denotes the tally function.
For clarity, we will henceforth omit subscripts and arguments and

write 𝜙 .

As a side remark, Definition 4 also illustrates how our operators

provide a concise way to specify (and later reason about) relevant

properties of voting, formulated on tables.

The property 𝜙 covers the central integrity requirement (i.e.,

the election’s result reflects the intent of the electorate) for voting

protocols, a point we discuss further in Section 8. Establishing that

the verification checks made in a voting protocol imply 𝜙 hence

corresponds to ensuring end-to-end verifiability. Note that this

definition can still be flexibly adapted to the specifics of different

protocols as it is parametrized by the tally function tal and the

protocol-specific tables Pauth, Pcon, Views, and the unique keys Key.

4.3 Verifiability for Eperio
4.3.1 Overview. In [22], to show that the verification procedure

guarantees that the election is counted-as-intended, the authors

prove that each step of the audit is sound and complete.

In particular, they compute the probability that each check suc-

ceeds in detecting a malicious execution. For example, for the verifi-

cation step where voters check their receipts using columns 𝑈 and

𝑀 , they compute the probability of detecting ballot receipts that

have been modified. However, no other type of malicious behaviour

is considered. In other words, soundness is shown for each single

verification step, but not for the entire verification procedure.

In contrast to the original analysis [22], we analyze the sound-

ness of the overall verification procedure, where we perform a

possibilistic rather than a probabilistic analysis. Thus we assume

that if a mistake can be detected (with some probability), then this

will be the case.

As we shall see, the use of our methodology shows that to prove

that Eperio’s checks are sound, additional assumptions (or alter-

natively additional checks) are required. We shall provide such

assumptions, which can be easily fulfilled. That weaknesses for this

protocol exist, despite the proofs in [22], underscores the impor-

tance of formalizing and analyzing table protocols before conducting
a probabilistic analysis.

4.3.2 Modeling the Verification Steps. There are three verification
steps in Phase 3 in Eperio. We explain each step, formulate the cor-

responding properties𝜓𝑖 , and afterwards analyze how they relate

to 𝜙 . In addition to these steps, the voting protocol limits what the

voting authority can do. The general shape of the tables published

by the authority is fixed and will be verified by auditors. Moreover,

column 𝑀 is known for every table in Pauth, and there are tables

𝑃,𝑄 ∈ Pauth such that column 𝑈 is known in 𝑃 and column 𝑆 is

known in 𝑄 . The auditors verify that all the known columns of

sorts {𝑈 ,𝑀} and {𝑀, 𝑆} are equal in all tables and that the known

values in column𝑈 are unique. We represent the verification of all

these properties by𝜓0 and define

𝜓0 := ?{𝑈 }Pauth ∩
⋂

𝑃 ∈Pauth
𝑠ℎ𝑎𝑝𝑒𝑃 ≠ ∅.

Verification that votes were recorded as cast. Each ballot contains

a serial number that allows a voter to verify a specific range of

entries in column 𝑀 . To verify that their votes were recorded as

cast, each voter 𝑣 ∈ V must check that the marks on her ballot for

her serial numbers are present in the information Pauth revealed by

the authority for the same serial numbers.

𝜓1 :=
∧
𝑣∈V

∧
𝑃 ∈Pauth

𝜋𝑈 ,𝑀𝑃 ∈T

(𝜋𝑈 ,𝑀𝑅𝑣 ⊆# 𝜋𝑈 ,𝑀𝑃).

The conjunction of these properties is weaker than the require-

ment that the voters’ combined view is consistent with the pub-

lished tables, which is what Definition 4 requires. In particular,

𝜓1 neither implies that all serial numbers are unique nor does it

prevent ballot stuffing. We will return to these points in Section 4.4.

Verification that ballots were printed correctly. Every voter has

the option of keeping a ballot for print auditing. The individual

print-audit checks verify that the voter’s view of a print-audited

ballot matches the information in Pauth published by the author-

ity. Each voter 𝑣 ∈ V possessing a print-audit ballot checks that

𝜋𝑈 ,𝑀,𝑆𝜎𝑀=−1𝑅𝑣 ⊆# 𝜎𝑀=−1𝑃 , for all 𝑃 ∈ Pauth. Since the election
authority commits to the columns before knowing which ballots

are print audited, we will make the assumption that these random

audits force the authority to print correctly (i.e., as observed by the

voters) also the non-print-audited ballots. We denote this property

by 𝜓
print-audit

and define it as a consistency check of the voters’

combined view of the 𝑈 and 𝑆 columns matched against the public

information (see𝜓0):

𝜓
print-audit

:= ?{𝑈 }{𝜋𝑈 ,𝑆 (𝑅) | 𝑅 ∈ Views}

∩ ?{𝑈 }Pauth ∩
⋂

𝑃 ∈Pauth
𝑠ℎ𝑎𝑝𝑒𝑃 ≠ ∅.

Verification of the tally. Let 𝑡 be the announced tally, given as a

table of sort 𝑆 . Each auditor and interested voter checks that for all

𝑃 in Pauth the table 𝑡 is in the set 𝐼𝑛𝑑
𝑞𝑢

𝑃
({𝜋𝑆𝜎𝑀=1}). Thus we define

𝜓
tally

as

𝜓
tally

:= 𝑡 ∈
⋂

𝑃 ∈Pauth
𝐼𝑛𝑑

𝑞𝑢

𝑃
({𝜋𝑆𝜎𝑀=1}) .

4.4 Soundness and Completeness for Eperio
We now consider the relationship between𝜓 = 𝜓0 ∧𝜓1 ∧𝜓tally ∧
𝜓
print-audit

and 𝜙 .

4.4.1 Missing Checks in Eperio. As stated in Section 4.3.2, dupli-

cate serial numbers and stuffed ballots may fail to be detected. We

demonstrate this with a simple example. Let E be the authority’s

voting table and 𝑅 be the combined view of the voters with the

following values.

E =

𝑈 𝑀 𝑆

1.1 0 𝑥
1.2 1 𝑦
2.1 0 𝑦
2.2 1 𝑥
3.1 0 𝑦
3.2 1 𝑥

𝑅 =

𝑉 𝑈 𝑀 𝑆

𝑎 1.1 0 𝑥
𝑎 1.2 1 𝑦
𝑏 2.1 0 𝑦
𝑏 2.2 1 𝑥
𝑐 1.1 0 𝑥
𝑐 1.2 1 𝑦

Observe that voters 𝑎 and 𝑐 have been given the same ballot number

1. Suppose the voting authority publishesPauth andPcon by following
the protocol correctly, thus satisfying𝜓0. Suppose each voter knows

only what was written on her ballot and who she voted for, that is

for each voter 𝑣 ∈ {𝑎, 𝑏, 𝑐}, 𝑅𝑣 = 𝜎𝑉=𝑣 (𝑅). Then𝜓1 is satisfied since
the individual checks of all three voters are consistent with 𝜋𝑈 ,𝑀𝑃

for 𝑃 ∈ Pauth, even though voters 𝑎 and 𝑐 are both mapped to the

same ballot. Moreover, no voter has voted with ballot 3, yet a vote

for candidate 𝑦 is recorded. The properties𝜓1,𝜓tally, and𝜓print-audit
are easily seen to be satisfied.

However, 𝜙 is not satisfied since?{𝑈 } (Pauth∪{𝑅𝑎, 𝑅𝑏 , 𝑅𝑐 }) = ∅.
This is because 𝑅𝑎 ?{𝑈 } 𝑅𝑐 = ∅, since there is no extension of these

two tables with unique keys 1.1 and 1.2 and different values for

these keys in column V.
Note that even if voter 𝑐 had not voted (remove voter 𝑐’s rows), all

checks would be satisfied, but 𝜙 would still not be. This is because

of the second condition of 𝜙 , where the voter’s combined view

yields a different tally than what is announced by the authority.

We conclude that the checks in Eperio are insufficient to guaran-

tee that the election is counted as intended. For example, assume

that some dishonest officials at a polling station, colluding with

the authority, want to decrease the votes for targeted candidates. If

they expect two voters to vote for the same candidate (e.g., based

on their backgrounds or party memberships), they can give each

a copy of the same paper ballot. If both voters vote for the same

candidate, all checks succeed, but only one vote is counted.

4.4.2 Soundness of Eperio under additional assumptions. To deter-

mine whether there are further problems, we now assume that all

ballots have unique serial numbers and we call this property

𝜓unique := ?{𝑈 }{𝜋𝑉 ,𝑈 𝑅 | 𝑅 ∈ Views} ≠ ∅.

We also assume that no ballot stuffing occurs. Recalling that 𝑉 =

min?{𝑈 }Views, we set

𝜓
no-stuffing

:= ∀𝑃 ∈ Pauth : #𝜎𝑀=1𝜋𝑀𝑃 = #𝜎𝑀=1𝜋𝑀𝑉 .

These additional assumptions should be replaced by additional

checks in practice, for example by publicly tracking all used ballot

identifiers to avoid collisions.

To show soundness of the fixed version of Eperio, we now want

to show that

𝜓0 ∧𝜓1 ∧𝜓tally ∧𝜓print-audit ∧𝜓unique ∧𝜓no-stuffing
⇒ 𝜙.

Thus, under the assumption that no ballot stuffing occurs and all bal-

lots are printed with unique serial numbers, the Eperio verification

procedure is sound (in the possibilistic setting).

Let P := (?{𝑈 }Pauth) ∩ (∩𝑃 ∈Pauth𝑠ℎ𝑎𝑝𝑒𝑃), which is not empty

by𝜓0. The check𝜓print-audit gives us a table 𝑇 ∈ T such that

𝑇 ∈ (?{𝑈 }{𝜋𝑈 ,𝑆𝑅 | 𝑅 ∈ Views}) ∩ P .
Since the columns of sort {𝑈 ,𝑀} in P must be consistent with

those in each table in 𝑃 ∈ Pauth, the check𝜓1 implies that∧
𝑃 ∈P

(𝜋𝑈 ,𝑀𝑅𝑣 ⊆# 𝜋𝑈 ,𝑀𝑃) .

In particular, this also holds for 𝑇 ∈ P so that

𝑇 ∈ ?{𝑈 }{𝜋𝑈 ,𝑀𝑅 | 𝑅 ∈ Views}.
By Lemma 2 we conclude that

𝑇 ∈ ?{𝑈 }{𝜋𝑈 ,𝑀,𝑆𝑅 | 𝑅 ∈ Views}.

𝜓unique guarantees that min?{𝑈 }{𝜋𝑉 ,𝑈 𝑅 | 𝑅 ∈ Views} = [𝑍] {𝑈 }

for some table 𝑍 with unique elements of sort𝑈 . Since 𝑇 does not

have a V column, we may extend it horizontally: for the tuples

𝑡 in 𝑇 whose primary key of sort Key is in 𝑍 , we set 𝑡 (𝑉) to be

the corresponding V value in that table, and by the uniqueness

of 𝑈 values in 𝑍 , this is well defined. For the other tuples 𝑡 in

𝑇 , we set 𝑡 (𝑉) to be any arbitrary value. This gives us a table

𝐸 ∈ ?{𝑈 }Views∩?{𝑈 }Pauth that has the same number of rows as𝑇

(hence of the tables 𝑃 ∈ Pauth), so that for all 𝑃 ∈ Pauth, 𝜋sort(𝑃)𝐸
⊥
= 𝑃 .

Hence

𝐸 ∈ C′ =?{𝑈 } (Views) ∩?{𝑈 } (Pauth)

∩
⋂

𝑃 ∈Pauth
{𝑇 ∈ T | 𝑃 ⊥

= 𝜋
sort(𝑃)𝑇 } ≠ ∅.

In particular, since there is at least one table in Pauth that reveals its
columns𝑀 and 𝑆 ,

∀𝑇 ∈ C′, 𝑃 ∈ Pauth : 𝜋𝑀,𝑆 (𝑇) ⊥
= 𝜋𝑀,𝑆𝑃 .

Moreover, since by 𝜓
tally

we have 𝑡 ∈ 𝐼𝑛𝑑
𝑞𝑢

𝑃
({𝜋𝑆𝜎𝑀=1}) for all

𝑃 ∈ Pauth, we conclude that 𝑡 ∈ 𝐼𝑛𝑑
𝑞𝑢

𝑇
({𝜋𝑆𝜎𝑀=1}) for all 𝑇 ∈ C′

so

that

C = C′ ∩ 𝐼𝑛𝑑𝑞𝑢𝑡 ({𝜋𝑆𝜎𝑀=1}) ≠ ∅.
Now consider the second predicate of 𝜙 . The above implies that

?{𝑈 }Views is not empty, so 𝑉 = min?{𝑈 }Views is well defined

and has unique entries of sort 𝑈 . Given that for all 𝑇 ∈ C and

𝑃 ∈ Pauth we have 𝜋{𝑀,𝑆 }𝑇
⊥
= 𝑃 , the property 𝜓

no-stuffing
implies

that for all 𝑇 ∈ C,

#𝜎𝑀=1𝜋𝑀𝑇 = #𝜎𝑀=1𝜋𝑀𝑉 . (3)

Since C is defined as an extension of the tables in Views, for any
𝑇 ∈ C, 𝑉 ⊆# 𝑇 . Combining this with (3) we indeed obtain that for

all such 𝑇 ,

𝜋𝑆𝜎𝑀=1𝑇 = 𝜋𝑆𝜎𝑀=1𝑉 .

4.4.3 Completeness. It is straightforward to show completeness

using contraposition. That is, if 𝜓𝑖 does not hold, for some 𝑖 ∈
{0, 1, tally, print-audit, unique, no-stuffing}, then neither does𝜙 . See
Appendix C for the proof.

5 PRIVACY
In this section we will analyze the privacy of table-based verifica-

tion procedures to ensure that no information is leaked from the

published tables Pauth and Pcon. That is, any assignment of votes

to voters should be indistinguishable from any other assignment,

based on the tables Pauth and Pcon.
In the following, we assume that the verification itself is success-

ful. In particular, we assume that:

(i) Each table 𝑃 ∈ Pauth is a subtable of E. Hence if 𝑄 is the set

of queries used for the audits, Pauth = {𝑞(E) | 𝑞 ∈ 𝑄}.
(ii) ?Key (E ∪ Views) ∩ Pcon ≠ ∅.

We justify this assumption by noting that a cheating election au-

thority can easily leak information about the voters, so typically

we cannot achieve privacy when the election authority is dis-

honest. Observe that assumptions (i) and (ii) together imply that

?Key (Pauth ∪ Views) ∩ Pcon ≠ ∅.
Note that our privacy analysis only concerns verification checks,

and not the entire protocol execution. This means that most existing

privacy definitions (see e.g., [6]) are not directly applicable in our

context: they are either defined in terms of a cryptographic game

invoking various algorithms and oracles, or the indistinguishability

of different executions of the entire voting protocol. In contrast,

here we deal with different views on a single table, representing

just the verification checks.

5.1 Defining vote privacy for table checks
We shall now define vote privacy, taking inspiration from symbolic

vote privacy definitions [19], where privacy is defined as the inabil-

ity to distinguish two instances of the protocol where two voters

swap votes. Namely, we say that a verification procedure ensures

voter privacy if any permutation of the voter’s private votes (i.e.,
ballots that are counted, rather than, e.g., print audited) is consistent

with the published data.

Let 𝑆V be a group that contains all permutations of voters

that have cast a private ballot. For each element 𝑔 ∈ 𝑆V there

is a function 𝜏 ∈ 𝑆V on the tables in Views, denoted 𝜏 (Views) :=
{𝜏 (𝑅𝑣) | 𝑅𝑣 ∈ Views}, that transforms the tables in Views by swap-

ping the votes of voters as specified by 𝑔. The formal definition of

𝑆V depends on the voting protocol and the election table, as dis-

cussed below. Given 𝑆V , we can define vote privacy for table-based

verification checks.

Definition 5. A verification procedure ensures vote privacy if
given the unique key Key, the public data Pauth and Pcon, and the
voters’ views Views = {𝑅𝑣 | 𝑣 ∈ V}, then for all 𝜏 ∈ 𝑆V ,

?Key (Pauth ∪ 𝜏 (Views)) ∩ Pcon ≠ ∅.

To define how a function 𝜏 in 𝑆V transforms the tables in Views,
it suffices to define how 𝜏 transforms a table 𝐶 ∈ min?Key (E ∪
Views) ∩ Pcon, given by assumption (ii). By definition of the merge

operator, such a table contains each voter’s view, given by the table

𝑅𝑣 = 𝜎𝑉=𝑣𝐶 (for any choice of 𝐶).

We partition the sort of the voters’ tables into two subsorts: Fixed
and Choice. Fixed contains the column names for data that is fixed

for each voter (e.g. the voter’s identity, her ballot number, etc.).

Typically, Fixed will contain V and be a superset of Key. Choice
contains column names for data that indicates the voters’ choices

(e.g. the chosen candidates) and to ensure the voter’s privacy, this

data must not all be associated with the data in Fixed as this would

reveal the voters’ votes. For a voter 𝑣 ∈ V , let vote𝑣 be the query
that returns 𝑣 ’s vote. Finally we denote by 𝜎𝑝𝑢𝑏 the query that

selects publicly audited votes, if there are any.

Concretely 𝜏 ∈ 𝑆V is then a function that permutes the subtables

{vote𝑣 (𝐶) | 𝑣 ∈ V}. To define 𝑆V it suffices to define how a function

𝜏𝑣𝑣′ ∈ 𝑆V swaps the votes of 𝑣 and 𝑣 ′, for any two voters 𝑣 and 𝑣 ′

that have cast a vote. Any permutation of votes is then obtained by

a sequence of vote swaps.

Definition 6. Let 𝑇 be a table such that sort(𝑇) = sort(𝐶) and
𝜋𝑉𝑇 = 𝜋𝑉𝐶 . For 𝑣, 𝑣 ′ ∈ 𝜋𝑉𝑇 , we define 𝜏𝑣𝑣′ (𝑇) to be the table 𝑇 ′

such that:

(1) For all 𝑣 ′′ ∈ V \ {𝑣, 𝑣 ′}: 𝜎𝑉=𝑣′′ (𝑇 ′) = 𝜎𝑉=𝑣′′ (𝑇)
(2) 𝜎𝑝𝑢𝑏 (𝑇 ′) = 𝜎𝑝𝑢𝑏 (𝑇)
(3) 𝜋Fixed𝑇

′ = 𝜋Fixed𝑇
(4) vote𝑣 (𝑇 ′) = vote𝑣′ (𝑇) and vote𝑣′ (𝑇 ′) = vote𝑣 (𝑇)

Conditions (1) and (2) fix all tuples of public ballots and of voters

other than 𝑣 and 𝑣 ′. Condition (3) fixes all tuples in 𝑇 except for

the tuples in column Choice, thus allowing the tuples in Choice
for voters 𝑣 and 𝑣 ′ to be permuted. In particular this implies that

𝜏 ∈ 𝑆V is defined as a permutation of the tuples of sort Choice in
𝐶 . Condition (4) requires that the votes of 𝑣 and 𝑣 ′ are swapped.
These four conditions do not uniquely determine the table 𝑇 ′

in

general. Thus for each pair of voters {𝑣, 𝑣 ′}, there may be several

table functions that swap their votes. We define 𝑆V by requiring

that for any transposition of voters in 𝑆V that have cast a vote,

there is a 𝜏𝑣𝑣′ ∈ 𝑆V satisfying the Conditions (1)–(4) and that the

elements of 𝑆V form a group under composition.

Eperio. In Eperio, cast votes are determined by the tuples of sort

{𝑀, 𝑆} that have a 0 or a 1 in column𝑀 . Hence

Fixed = {V,𝑈 } and Choice = {𝑀, 𝑆}.

Similarly, for a voter 𝑣 ∈ V ,

vote𝑣 = 𝜎𝑀 ∈{0,1}𝜋𝑀𝑆𝜎𝑉=𝑣

is the function that returns 𝑣 ’s choice.

Finally print-audited ballots are those marked with −1 so that

𝜎𝑝𝑢𝑏 = 𝜎𝑀=−1.

Following Definition 6, for two voters 𝑣 and 𝑣 ′, 𝜏𝑣𝑣′ ∈ 𝑆V trans-

forms the tables in Views by swapping all the tuples of columns

𝑀 and 𝑆 of the subtable 𝜎𝑉=𝑣 (𝐶) with all those of the subtable

𝜎𝑉=𝑣′ (𝐶) so as to exchange the marked candidates of the two vot-

ers. For example, the following two tables illustrate a vote swap in

Eperio’s protocol.

Example 4.

𝐶 =

V 𝑈 𝑀 𝑆

𝑣 𝐻 .1 1 𝐴𝑙𝑖𝑐𝑒
𝑣 𝐻 .2 0 𝐵𝑜𝑏
𝑣 𝐻 .3 0 𝐶ℎ𝑎𝑟𝑙𝑖𝑒
𝑣 ′ 𝑁 .1 0 𝐵𝑜𝑏
𝑣 ′ 𝑁 .2 1 𝐶ℎ𝑎𝑟𝑙𝑖𝑒
𝑣 ′ 𝑁 .3 0 𝐴𝑙𝑖𝑐𝑒

, 𝜏𝑣𝑣′ (𝐶) =

V 𝑈 𝑀 𝑆

𝑣 𝐻 .1 1 𝐶ℎ𝑎𝑟𝑙𝑖𝑒
𝑣 𝐻 .2 0 𝐵𝑜𝑏
𝑣 𝐻 .3 0 𝐴𝑙𝑖𝑐𝑒
𝑣 ′ 𝑁 .1 0 𝐵𝑜𝑏
𝑣 ′ 𝑁 .2 1 𝐴𝑙𝑖𝑐𝑒
𝑣 ′ 𝑁 .3 0 𝐶ℎ𝑎𝑟𝑙𝑖𝑒

.

△

Proving Privacy. To analyze privacy in the sense of Definition 5,

it suffices to determine how the elements of sort Choice may be

permuted while remaining consistent with both the information

Pauth revealed by the authority for auditing purposes and the pub-

licly known constraints Pcon. The information revealed during the

verification procedure is given by the set of queries 𝑄 used for the

audits, i.e., Pauth = {𝑞(E) | 𝑞 ∈ 𝑄}. Hence ensuring that

∀𝜏 ∈ 𝑆V : ?Key (Pauth ∪ 𝜏 (Views)) ∩ Pcon ≠ ∅,

corresponds to verifying that the elements of sort Choice can be

permuted as specified by 𝑆V without being detected by any of the

queries in𝑄 or excluded by the constraints in Pcon. In terms of indis-

tinguishability sets, any permutation of tuples of sort Choice in𝐶 as

specified by any element of 𝑆V should be in the indistinguishability

set 𝐼𝑛𝑑
𝐶
(𝑄,Pcon) associated to 𝑄 . In particular this means that for

all 𝜏 ∈ 𝑆V , that 𝜏 (𝐶) ∈ ?Key (Pauth ∪ 𝜏 (Views)) ∩ Pcon.

5.2 𝐺-indistinguishability
To support our privacy analysis, we formalize a novel quantitative

privacy notion in terms of indistinguishability sets (Definition 1).

This notion is easily applied to the table𝐶 and the protocol queries

𝑄 used during the audit. It accounts for information that has been re-

vealed and expresses how tables may be permuted while remaining

consistent with this revealed data.

Definition of 𝐺-indistinguishability. Let 𝑃𝑇 (𝑁) be the set of func-
tions that permute the elements of 𝑇 ∈ T within each of the

columns in 𝑁 ⊆ sort(𝑇). More precisely, 𝑃𝑇 (𝑁) is the symmet-

ric group on

⋂
𝑛∈𝑁 [𝜋𝑛𝑇] ∩ [𝜋

sort(𝑇)\𝑁] ∩ 𝑠ℎ𝑎𝑝𝑒𝑇 .

Definition 7. Let𝑄 be a subset of projection and selection queries.

• The elements of sort 𝑁 of a table 𝑇 are said to be completely

indistinguishable under the queries in𝑄 if for all 𝑝 ∈ 𝑃𝑇 (𝑁)
it holds that 𝑝 (𝑇) ∈ 𝐼𝑛𝑑𝑇 (𝑄, {𝑠ℎ𝑎𝑝𝑒𝑇 }) .

• The elements are said to be 𝐺-indistinguishable under the

queries in 𝑄 for 𝐺 a subgroup of 𝑃𝑇 (𝑁) if ∀ 𝑝 ∈ 𝐺 : 𝑝 (𝑇) ∈
𝐼𝑛𝑑𝑇 (𝑄, {𝑠ℎ𝑎𝑝𝑒𝑇 }).

Example 5. Consider the table 𝑌 in Example 2.(1) and the set of

queries 𝑄 = {𝜋{𝑈 ,𝑀 }, 𝜋{𝑀,𝑆 }}. None of 𝑌 ’s subsorts have com-

pletely indistinguishable elements under the set of queries 𝑄 , by

Definition 7. However, the elements of sort {𝑈 } are𝐺-indistinguish-
able for the group 𝐺 (of order 2) generated by the transposition

that swaps the top 𝐻.1 with 𝑁 .1 in column𝑈 of 𝑌 . △

Relationship to privacy. Observe that we have defined 𝑆V as a

subgroup of 𝑃
𝐶
(Choice), for a fixed 𝐶 ∈ min?Key (E ∪ Views) ∩

Pcon . The next theorem gives a criterion for the vote privacy (Defini-

tion 5) of a verification procedure based on 𝑆V -indistinguishability.

Theorem 1. Suppose that Pauth = {𝑞(E) | 𝑞 ∈ 𝑄} and (?Key (E ∪
Views) ∩ Pcon) ≠ ∅. Then a protocol’s verification procedure guar-

antees vote privacy as in Definition 5 provided that for any 𝐶 ∈
min(?Key (E ∪ Views) ∩ Pcon) the tuples of sort Choice of 𝐶 are

𝑆V -indistinguishable under the queries in 𝑄 and that 𝜏 (𝐶) ∈ Pcon
for all 𝜏 ∈ 𝑆V .

Fix an arbitrary 𝐶 ∈ min(?Key (E ∪ Views) ∩ Pcon). Clearly if

the tuples of sort Choice of 𝐶 are 𝐺-indistinguishable under the

queries in 𝑄 for a group 𝐺 that contains 𝑆V as a subgroup, then

these tuples are also 𝑆V -indistinguishable under the queries in 𝑄 .

Hence to prove that a protocol ensures vote privacy, we apply the

following steps:

(1) Consider the group 𝑆V described in Definition 6.

(2) Compute the group 𝐺 for which tuples of sort Choice of 𝐶
are 𝐺-indistinguishable under the query set 𝑄 .

(3) Verify that 𝑆V is indeed a subgroup of 𝐺 .

(4) Verify that for any 𝐶 ∈ min(?Key (E ∪ Views) ∩ Pcon) then
𝜏 (𝐶) ∈ Pcon for all 𝜏 ∈ 𝑆V .

We now apply these steps to the Eperio protocol. First, as de-

scribed in Section 5.1, the group 𝑆V is generated by the transposi-

tions {𝜏𝑣𝑣′ | 𝑣, 𝑣 ′ ∈ V}. A transposition 𝜏𝑣𝑣′ swaps all the tuples of
columns 𝑀 and 𝑆 belonging to a non-public vote of the subtable

𝜎𝑉=𝑣 (𝐶) with all those of the subtable 𝜎𝑉=𝑣′ (𝐶), exchanging the

votes of 𝑣 and 𝑣 ′. In particular 𝜏𝑣𝑣′ swaps the candidate marked by

𝑣 and the one marked by 𝑣 ′. As a second step, the following lemma

gives us the group for which elements of sort Choice = {𝑀, 𝑆} are
indistinguishable.

Lemma 3. In Eperio, the elements of sort Choice = {𝑀, 𝑆} in 𝐶 are

𝐺0,1-indistinguishable under the query set 𝑄 = {𝜋𝑈 , 𝜋𝑈 ,𝑀 , 𝜎𝑀=−1,
𝜋𝑀,𝑆 }, where𝐺0,1 is the product of two groups that permute tuples

of sort {𝑀, 𝑆}. The first group arbitrarily permutes elements of sort

{𝑀, 𝑆} that belong to a tuple whose value of sort𝑀 is 0, the second

group those whose value of sort𝑀 is 1.

Recall that during the Eperio verification procedure analyzed in

Section 4.3, the auditors receive table data that amounts exactly to

the queries in the set 𝑄 specified in Lemma 3.

Observe that the group 𝐺0,1 contains permutations of elements

that may result in invalid ballots. For example, consider the ta-

ble 𝑉 from Example 4. The element 𝑔 ∈ 𝐺0,1 that only swaps

⟨𝑀 : 1, 𝑆 : 𝐴𝑙𝑖𝑐𝑒⟩with ⟨𝑀 : 1, 𝑆 : 𝐶ℎ𝑎𝑟𝑙𝑖𝑒⟩ yields a table where voter
𝑣 has a candidate list that contains𝐴𝑙𝑖𝑐𝑒 twice, and 𝑣 ′ a list contain-
ing 𝐶ℎ𝑎𝑟𝑙𝑖𝑒 twice. However, for the third step, if we require that

all voters make the same number of marks (we will return to this

later) it is clear that 𝐺0,1 does contain 𝑆V as a subgroup.

As a fourth step, recall that

Pcon := 𝐼𝑛𝑑
𝑞𝑢
𝑡 (𝜋𝑆𝜎𝑀=1) ∩

⋂
𝑃 ∈Pauth

{𝑇 ∈ T⊥ | 𝑃 ⊥
= 𝜋

sort(𝑃)𝑇 }.

For any 𝜏 ∈ 𝑆V , for any table 𝐶 ∈ Pcon, 𝜋𝑠𝜎𝑀=1 (𝜏 (𝐶)) = 𝜋𝑠𝜎𝑀=1𝐶

as 𝜏 only permutes marked candidates. Similarly 𝜋𝑈 ,𝑆 (𝜏 (𝐶)) =

𝜋𝑈 ,𝑆𝐶 and by definition 𝜋𝑈 ,𝑀 (𝜏 (𝐶)) = 𝜋𝑈 ,𝑀𝐶 . Hence 𝜏 (𝐶) ∈ Pcon
for all 𝜏 ∈ 𝑆V . By Theorem 1, we obtain the following corollary.

Corollary 1. The modified Eperio verification procedure ensures
vote privacy according to Definition 5.

Even when a protocol fails to guarantee vote privacy,𝐺-indistin-

guishability for a group 𝐺 that does not contain 𝑆V still provides

useful information. The group structure indicates where and to

what extent privacy is preserved. We will compare this notion with

other database privacy notions, such as 𝑘-anonymity, in Section 8.3.

Example 6. While not specified in [22], it is implicitly assumed that

all voters mark the same number of candidates. In the case where

the number of marks may differ, privacy is breached. For example,

the following two tables show the action of 𝜏𝑣𝑣′ on𝐶 for two voters

𝑣 and 𝑣 ′, where 𝑣 has marked two candidates.

𝐶 =

V 𝑈 𝑀 𝑆

𝑣 𝐻 .1 1 𝐴𝑙𝑖𝑐𝑒
𝑣 𝐻 .2 0 𝐵𝑜𝑏
𝑣 𝐻 .3 1 𝐶ℎ𝑎𝑟𝑙𝑖𝑒
𝑣 ′ 𝑁 .1 0 𝐵𝑜𝑏
𝑣 ′ 𝑁 .2 1 𝐶ℎ𝑎𝑟𝑙𝑖𝑒
𝑣 ′ 𝑁 .3 0 𝐴𝑙𝑖𝑐𝑒

, 𝜏𝑣𝑣′ (𝐶) =

V 𝑈 𝑀 𝑆

𝑣 𝐻 .1 0 𝐴𝑙𝑖𝑐𝑒
𝑣 𝐻 .2 0 𝐵𝑜𝑏
𝑣 𝐻 .3 1 𝐶ℎ𝑎𝑟𝑙𝑖𝑒
𝑣 ′ 𝑁 .1 0 𝐵𝑜𝑏
𝑣 ′ 𝑁 .2 1 𝐶ℎ𝑎𝑟𝑙𝑖𝑒
𝑣 ′ 𝑁 .3 1 𝐴𝑙𝑖𝑐𝑒

.

In this case, the group 𝐺0,1 computed in Lemma 3 does not con-
tain 𝑆V as a subgroup. Indeed, the element 𝜏𝑣𝑣′ illustrated in the

tables swaps, among others, the marked tuple ⟨𝑀 : 1, 𝑆 : 𝐴𝑙𝑖𝑐𝑒⟩ with
an unmarked tuple ⟨𝑀 : 0, 𝑆 : 𝐴𝑙𝑖𝑐𝑒⟩.

When elements of 𝑆V do not belong to 𝐺0,1, these elements

provide information on how vote privacy is breached. In this simple

example, the swap of ⟨𝑀 : 1, 𝑆 : 𝐴𝑙𝑖𝑐𝑒⟩ with ⟨𝑀 : 0, 𝑆 : 𝐴𝑙𝑖𝑐𝑒⟩ does
not belong to𝐺0,1. This shows that given the columns of sort {𝑈 ,𝑀}
and the final tally containing one vote for Charlie and two for Alice,

one can indeed infer the vote ⟨𝑀 : 1, 𝑆 : 𝐴𝑙𝑖𝑐𝑒⟩ made by voter 𝑣 . △

6 SCANTEGRITY
In this section we illustrate our methodology on Scantegrity [12]

with similar results. Like Eperio, Scantegrity uses table permuta-

tions to enable end-to-end verifiability while preserving privacy.

Scantegrity ballots are identified by unique serial numbers. As in

Eperio, each ballot contains a list of candidates and a markable re-

gion (e.g. a bubble) for each candidate. Furthermore each candidate

is associated to a code letter, in a random order for each ballot. To

vote, voters mark a bubble and keep a receipt that consists of a serial

number and the letter code corresponding to the chosen candidate,

see Figure 4. We therefore model the voter’s view as a table of sort

{V, 𝐼𝐷, 𝐿,𝑀, 𝑆}. Column V contains the voter’s identity and column

𝐼𝐷 specifies the ballot serial number. Column 𝐿 contains the letters

associated to each markable region. Finally, elements in column

𝑀 indicate whether a region has been marked or not and those in

column 𝑆 specify the candidate corresponding to the region.

Figure 4: Scantegrity’s ballot with receipt.

As in Eperio, the verification procedure is conducted on a table

containing all scanned ballots. We hence model the authority’s

knowledge of the election as a table E, which contains all Scant-

egrity serial numbers, of sort {𝐼𝐷, 𝐿,𝑀, 𝑆}. A ballot may correspond

to multiple rows, with the same serial number, so the unique iden-

tifier is the sort Key = {𝐼𝐷, 𝐿}. Observe that if we consider this pair
as a unique column (i.e., we name 𝑈 = {𝐼𝐷, 𝐿}), then we obtain

exactly the same table sort as in Eperio.

Election procedure. Before the election (the column 𝑀 is still

empty), the election authority EA generates a so-called switchboard,
which is a collection of circuits that link the markable regions on

the ballots to their corresponding candidate names in permuted

order. In particular the switchboard contains a link for each row

of columns {𝐼𝐷, 𝐿,𝑀} to the corresponding candidate name in a

permuted copy of columns {𝑀, 𝑆}. The link between the code letter

and the result has an intermediate permutation of column𝑀 that

is used for auditing, see Figure 5.

Figure 5: The switchboard after votes are cast.

The EA commits to the ballots it has generated and to the connec-

tions on the switchboard. Auditors then randomly choose half the

ballots to be revealed and use these revealed ballots to check the as-

sociations on the switchboard. In particular, auditors check that the

serial number and code-letter pair is linked to the correct candidate

for each print-audited ballot. These ballots are later destroyed.

After votes are cast, column𝑀 is completed and the marks are

sent through the switchboard. The voters then perform another

audit. They challenge the EA to open one half of the switchboard

(i.e. the link between code letters and marks) or the other (the link

between marks and candidates).

We model this by having the EA publish either a table 𝑃𝐿 that

reveals the links between ballot serial numbers, code letters, and

marks (hence a table of sort {𝐼𝐷, 𝐿,𝑀, 𝑆} with unknown values for

the 𝑆 column) or a table 𝑃𝑆 that reveals the association between

marks and candidates (hence a table of sort {𝐼𝐷, 𝐿,𝑀, 𝑆} with un-

known values for the {𝐼𝐷, 𝐿} tuples). Since the authority does not

know a priori which side will be chosen, we model Pauth = {𝑃𝐿, 𝑃𝑆 }.
The authors of [12] mention that to increase the audit’s statistical

certainty, multiple copies of the switchboard (each with randomly

permuted links) may be used, giving rise to a set Pauth with multi-

ple permuted copies of 𝑃𝐿 and 𝑃𝑆 . Observe that this corresponds

exactly to the tables in Pauth in our model of Eperio.

Similarly, the tally function is tal := 𝜎𝑀=marked𝜋𝑆 . Let 𝑡 be the

announced tally. The publicly known contraints are given by

Pcon := 𝐼𝑛𝑑
𝑞𝑢
𝑡 (𝜋𝑆𝜎𝑀=marked) ∩

⋂
𝑃 ∈Pauth

{𝑇 ∈ T⊥ | 𝑃 ⊥
= 𝜋

sort(𝑃)𝑇 }.

Moreover, it is straightforward to see that the verification checks

are analogous to those carried out in Eperio. Indeed the first audit,

which checks the associations on the switchboard before marks are

recorded, corresponds to the verification check

𝜓
print-audit

:= ?{𝐼𝐷,𝐿}{𝜋𝐼𝐷,𝐿,𝑆𝑅 | 𝑅 ∈ Views}

∩?{𝐼𝐷,𝐿}Pauth ∩
⋂

𝑃 ∈Pauth 𝑠ℎ𝑎𝑝𝑒𝑃 ≠ ∅.
The verification check that reveals the left part of the switchboard

verifies that the voters’ receipts are correctly recorded. This corre-

sponds to the check

𝜓1 :=
∧
𝑣∈V

(𝜋𝐼𝐷,𝐿,𝑀𝑅𝑣 ⊆# 𝑃𝐿).

Revealing the right hand side of the switchboard ensures that marks

are associated to the correct candidate, i.e. the data on the switch-

board matches the announced tally. This corresponds to the check

𝜓
tally

:= 𝑡 ∈
⋂

𝑃 ∈Pauth
𝐼𝑛𝑑

𝑞𝑢

𝑃
({𝜋𝑆𝜎𝑀=marked}) .

The analysis of soundness and completeness of the verification

procedure is hence analogous to Eperio, which implies that Scant-

egrity has the same weaknesses as Eperio. In particular, Scantegrity

neither prevents ballot-stuffing nor does it ensure that each voter

receives a distinct ballot serial number.

As in Eperio, Scantegrity’s verification procedure becomes sound

and complete with the additional checks 𝜓unique and 𝜓
no-stuffing

from Section 4.4. Furthermore the privacy analysis conducted in

Section 5.2 for Eperio is also valid for Scantegrity. Again Choice =
{𝑀, 𝑆} and for each voter 𝑣 ∈ V , her vote is given by 𝜎V=𝑣𝜋𝑀,𝑆𝑉 .

So the action of an element 𝜏 ∈ 𝑆V is given by swapping the

tuples of sort {𝑀, 𝑆} of one voters’ table with the tuples of sort

{𝑀, 𝑆} of another voter’s table. Analogously to what is shown in

Section 5.2, the elements of sort Choice = {𝑀, 𝑆} of ballots in 𝐶 are

𝐺0,1-indistinguishable under the query set𝑄 = {𝜋𝐼𝐷,𝐿,𝑀 , 𝜋𝑀,𝑆 } and
constraints Pcon for the same group 𝐺0,1 that swaps elements that

belong to marked and unmarked tuples respectively. This implies

that Scantegrity’s verification procedure guarantees vote privacy

provided that all voters make the same number of marks.

This example illustrates the applicability of our approach to

table-based voting protocols where the verification steps are not

conducted directly on tables but instead using other means that

can be modeled with tables.

7 RANDOM SAMPLE ELECTIONS
In Section E of the appendix, we present our analysis of the random

sample election protocol proposed byDavid Chaum [9]. In a random

sample election, only a small percentage of the electorate, chosen

at random, is selected to vote. Chaum describes his protocol using

a table format that can be seen as an extended variant of Eperio

with a number of twists. In particular, there is a different ballot

verification technique and so-called decoy votes are used to counter

some forms of voter coercion. Decoy ballots are later ignored in the

final tally, and can thus be freely given to attackers trying to buy

votes. Unlike Eperio and Scantegrity, the verification procedure

ensures that each voter receives a distinct ballot number and avoids

ballot-stuffing.

As with the previous protocols, this case study illustrates how

our methodology provides a systematic approach to analyzing table-

based voting protocols. Moreover, its use also reveals weaknesses

in the protocol. Namely, the protocol checks do not detect if decoy

and non-decoy ballot are interchanged, which can be exploited by

a dishonest authority to remove ballots from the tally.

8 RELATEDWORK
8.1 Relational database theory
Our tables and operators differ in three ways from standard rela-

tional database theory [1]. First, our tables are multisets of tuples

rather than sets of tuples. Second, our unknown value (⊥) differs
from the standard NULL value. Third, our main object of study are

table properties (sets of tables) rather than the individual tables.

The standard definition of NULL [25] stems from Codd’s un-

known value ‘@’ [14] and his extension [15] of his relational data

model [13]. This treatment of unknown values does not always lead

to satisfactory results and many alternatives have been proposed.

We refer to [33] for a survey. Our approach to unknown values

differs from previous approaches in that it is tailored to a different

and narrow purpose, i.e., the combination of data in order to de-

tect conflicting information and measure the indistinguishability

of possible combinations. Our merge operator ? is a variant of a

full outer join database operator that (1) is defined on multisets of

tuples, (2) enables comparing unknown and known values using the

unknown value ⊥, and (3) returns a set of all tables that combine

the information present in the operands. In contrast, a full outer

join operator is defined on relations and returns a single table.

8.2 Verifiability definitions
In our work, the global integrity property𝜙 specifies the correctness

of the election’s outcome. Numerous other definitions have been

proposed in the literature; see [17] for an overview. Our definition

(Definition 4) compares to the guidelines from [17] as follows.

The qualitative goal from [17] essentially requires that 𝜙 holds

for an execution if and only if there is a multiset of valid choices

𝐶 such that the tallied result of 𝐶 equals the announced result, and

𝐶 (compared to the voter’s intentions) consists of actual choices of

honest voters that successfully performed their checks plus a subset

of actual choices of honest voters that did not perform their check

(successfully) and at most a fixed number of additional choices.

Our definition of verifiability follows the same ideas, but differs

in some details. First, we focus on tables, not on executions. Al-

though this difference makes a precise comparison difficult, it is

not a fundamental limitation of our approach as execution data can

be cast into tables. Second, we explicitly account for inconsistent

views inside the tables, whereas [17] implicitly assumes that there

is at least a consistent global view of the protocol execution (which

however might include contradicting events emitted by different

or dishonest parties). Finally, our definition does not account for

dishonest voters, as we do not know a priori which data in the tables

originates from honest participants, like in the real world. Handling

this would require a dispute resolution procedure deciding which

data can or must be ignored during the verification process, which

is outside the scope of our work.

8.3 Privacy definitions
Measuring privacy when information in tables is revealed is a gen-

eral problem, relevant in many domains. For example, for data sets

from clinical studies, genomics, and social networks, one would

like to release person-specific data for research, without compro-

mising the data subjects’ privacy. Researchers have observed that

removing personally identifying information from such data sets is

insufficient as relinkage is possible using publicly available outside

information [23, 28, 29].

In these domains, the privacy problem differs from that in voting.

In such data sets, all entries are revealed and personal identifying

information is removed. In contrast, table-based voting protocols

typically deal with tables containing personally identifying informa-

tion (e.g., voters’ identities), where not all entries are simultaneously

revealed. In the former case, the privacy issue is to relink the table

entries to specific individuals using external information, in the

latter we are concerned with linking the personally identifying

information present in the table to the other entries inside the table.
Hence a notion like𝐺-indistinguishability is well suited for voting

protocols as it analyzes linkages inside the table.

One can map other privacy notions onto 𝐺-indistinguishability

by adding extra columns to the original table to represent the exter-

nal information within the extended dataset. Consider, for example,

𝑘-anonymity [32], which measures privacy by a parameter 𝑘 , and

states that any quasi-identifier (a collection of attributes that can

serve to identify individuals from external information) must be

present in at least 𝑘 rows. Given a table𝑇 , if we add an extra column

with uniquely identifying keys (representing the external informa-

tion that could uniquely identify each row), 𝑘-anonymity for the

table𝑇 constitutes a special case of𝐺-indistinguishability under the

query revealing the quasi-identifiers and the added column with

the uniquely identifying keys, for a group 𝐺 that is the product of

independent symmetric groups, each of size at least 𝑘 .

Note that much of the thrust in privacy metrics and in other

approaches such as 𝑙-diversity [27], 𝑡-closeness, and differential

privacy [20], is on the mechanism side: how to transform data by

generalization or transformations like adding noise. Such privacy

notions and mechanisms are inappropriate in a voting context

where, in particular, themodification of sensitive data would change

the election results.

9 CONCLUSION
Table-based procedures, with their simple checks, hold the promise

of increasing the electorate’s trust and acceptance of e-voting. How-

ever, despite this apparent simplicity, an analysis methodology has

been lacking, with the consequence that existing proposals suffer

from weaknesses and missing assumptions. Our results fill this gap.

As followup work, we intend to build proof support for our

methodology within a higher-order logic theorem prover. This

would entail defining our operators and deriving their properties.

The result would enable machine-supported correctness proofs,

following the steps laid out in our methodology. Interesting too,

would be to use our methodology to support the design of new table-

based protocols, e.g., exploring different ways of decomposing a

global integrity property𝜙 into individual checks. Finally, extending

our privacy definitions to receipt-freeness is another practically

relevant direction for future work.

REFERENCES
[1] Serge Abiteboul, Richard Hull, and Victor Vianu (Eds.). 1995. Foundations of

Databases: The Logical Level (1st ed.). Addison-Wesley Longman Publishing Co.,

Inc., Boston, MA, USA.

[2] David A. Basin, Sasa Radomirovic, and Lara Schmid. 2020. Dispute Resolution in

Voting. In 33rd IEEE Computer Security Foundations Symposium, CSF 2020, Boston,
MA, USA, June 22-26, 2020. IEEE, 1–16.

[3] Stephanie Bayer and Jens Groth. 2012. Efficient Zero-Knowledge Argument for

Correctness of a Shuffle. In Advances in Cryptology – EUROCRYPT 2012, David
Pointcheval and Thomas Johansson (Eds.). Springer Berlin Heidelberg, Berlin,

Heidelberg, 263–280.

[4] Susan Bell, Josh Benaloh, Michael D. Byrne, Dana Debeauvoir, Bryce Eakin, Philip

Kortum, Neal McBurnett, Olivier Pereira, Philip B. Stark, Dan S. Wallach, Gail

Fisher, Julian Montoya, Michelle Parker, and Michael Winn. 2013. STAR-Vote: A

Secure, Transparent, Auditable, and Reliable Voting System. In 2013 Electronic
Voting Technology Workshop/Workshop on Trustworthy Elections (EVT/WOTE 13).
USENIX Association, Washington, D.C. https://www.usenix.org/conference/

evtwote13/workshop-program/presentation/bell

[5] Josh Daniel Cohen Benaloh. 1987. Verifiable Secret-Ballot Elections. Ph.D. Disser-
tation. Yale University, USA. AAI8809191.

[6] D. Bernhard, V. Cortier, D. Galindo, O. Pereira, and B. Warinschi. 2015. SoK: A

Comprehensive Analysis of Game-Based Ballot Privacy Definitions. In 2015 IEEE
Symposium on Security and Privacy (SP). IEEE Computer Society, Los Alamitos,

CA, USA, 499–516. https://doi.org/10.1109/SP.2015.37

[7] C. Burton, C. Culnane, and S. Schneider. 2016. vVote: Verifiable Electronic Voting

in Practice. IEEE Security & Privacy 14, 04 (jul 2016), 64–73. https://doi.org/10.

1109/MSP.2016.69

[8] Swiss Federal Chancellery. [n.d.]. Anforderungskatalog für eidgenössische

Volksabstimmungen mit der elektronischen Stimmabgabe. https://www.bk.

admin.ch/themen/pore/evoting/07979/index.html

[9] David Chaum. [n.d.]. Random-Sample Voting - More democratic, better quality,

and far lower cost. https://rsvoting.org/whitepaper/white_paper.pdf. Last

accessed on 2021-01-20.

[10] David Chaum. 1988. Elections with Unconditionally-Secret Ballots and Disrup-

tion Equivalent to Breaking RSA. In Advances in Cryptology — EUROCRYPT
’88, D. Barstow, W. Brauer, P. Brinch Hansen, D. Gries, D. Luckham, C. Moler,

A. Pnueli, G. Seegmüller, J. Stoer, N. Wirth, and Christoph G. Günther (Eds.).

Springer Berlin Heidelberg, Berlin, Heidelberg, 177–182.

[11] David Chaum, Richard Carback, Jeremy Clark, Aleksander Essex, Stefan Popove-

niuc, Ronald L. Rivest, Peter Y. A. Ryan, Emily Shen, and Alan T. Sherman. 2008.

Scantegrity II: End-to-end Verifiability for Optical Scan Election Systems Using

Invisible Ink Confirmation Codes. In Proceedings of the Conference on Electronic
Voting Technology (San Jose, CA) (EVT’08). USENIX Association, Berkeley, CA,

USA, Article 14, 13 pages. http://dl.acm.org/citation.cfm?id=1496739.1496753

[12] David Chaum, Aleksander Essex, Richard Carback, Jeremy Clark, Stefan Popove-

niuc, Alan T. Sherman, and P. Vora. 2008. Scantegrity: End-to-end voter verifiable

optical-scan voting. IEEE Security Privacy 6, Article 3, 40–46 pages.

[13] E. F. Codd. 1970. A Relational Model of Data for Large Shared Data Banks.

Commun. ACM 13, 6 (1970), 377–387. https://doi.org/10.1145/362384.362685

[14] E. F. Codd. 1975. Understanding Relations (Installment #7). FDT Bull. ACM
SIGFIDET SIGMOD 7, 3 (1975), 23–28.

[15] E. F. Codd. 1979. Extending the Database Relational Model to Capture More

Meaning. ACM Transactions of Database Systems 4, 4 (1979), 397 – 434.

[16] Josh D. Cohen and Michael J. Fischer. 1985. A Robust and Verifiable Crypto-

graphically Secure Election Scheme. In Proceedings of the 26th Annual Symposium
on Foundations of Computer Science (SFCS ’85). IEEE Computer Society, USA,

372–382. https://doi.org/10.1109/SFCS.1985.2

[17] Véronique Cortier, David Galindo, Ralf Küsters, Johannes Müller, and Tomasz

Truderung. 2016. SoK: Verifiability Notions for E-Voting Protocols. In IEEE

https://www.usenix.org/conference/evtwote13/workshop-program/presentation/bell
https://www.usenix.org/conference/evtwote13/workshop-program/presentation/bell
https://doi.org/10.1109/SP.2015.37
https://doi.org/10.1109/MSP.2016.69
https://doi.org/10.1109/MSP.2016.69
https://www.bk.admin.ch/themen/pore/evoting/07979/index.html
https://www.bk.admin.ch/themen/pore/evoting/07979/index.html
https://rsvoting.org/whitepaper/white_paper.pdf
http://dl.acm.org/citation.cfm?id=1496739.1496753
https://doi.org/10.1145/362384.362685
https://doi.org/10.1109/SFCS.1985.2

Symposium on Security and Privacy, SP 2016, San Jose, CA, USA, May 22-26, 2016.
IEEE Computer Society, 779–798. https://doi.org/10.1109/SP.2016.52

[18] German Federal Constitutional Court. 2009. Use of voting computers in 2005

Bundestag election unconstitutional. Press Release No. 19/2009, available

at https://www.bundesverfassungsgericht.de/SharedDocs/Pressemitteilungen/

EN/2009/bvg09-019.html. Last visited 2021-01-18.

[19] Stéphanie Delaune, Steve Kremer, and Mark Ryan. 2010. Verifying Privacy-Type
Properties of Electronic Voting Protocols: A Taster. Springer Berlin Heidelberg,

Berlin, Heidelberg, 289–309. https://doi.org/10.1007/978-3-642-12980-3_18

[20] Cynthia Dwork. 2006. Differential Privacy. In 33rd International Colloquium on
Automata, Languages and Programming, part II (ICALP 2006) (Lecture Notes in
Computer Science, Vol. 4052). Springer Verlag, Venice, Italy, 1–12. http://research.

microsoft.com/apps/pubs/default.aspx?id=64346

[21] Aleksander Essex, Jeremy Clark, and Carlisle Adams. 2010. Towards Trustworthy

Elections, New Directions in Electronic Voting. In Towards Trustworthy Elections,
New Directions in Electronic Voting (Lecture Notes in Computer Science, Vol. 6000).
Springer, 388–401.

[22] Aleksander Essex, Jeremy Clark, Urs Hengartner, and Carlisle Adams. 2010. Epe-

rio: Mitigating Technical Complexity in Cryptographic Election Verification.

In Proceedings of the 2010 International Conference on Electronic Voting Tech-
nology/Workshop on Trustworthy Elections (Washington, DC) (EVT/WOTE’10).
USENIX Association, Berkeley, CA, USA, 1–16. http://dl.acm.org/citation.cfm?

id=1924892.1924905

[23] Michael Hay, Gerome Miklau, David Jensen, Don Towsley, and Philipp Weis.

2008. Resisting Structural Re-Identification in Anonymized Social Networks. Proc.
VLDB Endow. 1, 1 (Aug. 2008), 102–114. https://doi.org/10.14778/1453856.1453873

[24] Martin Hirt and Kazue Sako. 2000. Efficient Receipt-Free Voting Based on Ho-

momorphic Encryption. In Advances in Cryptology — EUROCRYPT 2000, Bart
Preneel (Ed.). Springer Berlin Heidelberg, Berlin, Heidelberg, 539–556.

[25] ISO/IEC 9075:2016 2016. Information technology — Database languages — SQL.
Standard. International Organization for Standardization, Geneva, CH.

[26] Ralf Küsters, Tomasz Truderung, and Andreas Vogt. 2010. Accountability: defini-

tion and relationship to verifiability. In Proceedings of the 17th ACM Conference on
Computer and Communications Security, CCS 2010, Chicago, Illinois, USA, October
4-8, 2010, Ehab Al-Shaer, Angelos D. Keromytis, and Vitaly Shmatikov (Eds.).

ACM, 526–535. https://doi.org/10.1145/1866307.1866366

[27] Ashwin Machanavajjhala, Daniel Kifer, Johannes Gehrke, and Muthuramakrish-

nan Venkitasubramaniam. 2007. L-diversity: Privacy Beyond K-anonymity. ACM
Trans. Knowl. Discov. Data 1, 1, Article 3 (March 2007).

[28] Bradley Malin and Latanya Sweeney. 2004. How (not) to protect genomic data

privacy in a distributed network: using trail re-identification to evaluate and

design anonymity protection systems. Journal of Biomedical Informatics 37, 3
(2004), 179 – 192. https://doi.org/10.1016/j.jbi.2004.04.005

[29] Arvind Narayanan and Vitaly Shmatikov. 2008. Robust De-Anonymization of

Large Sparse Datasets. In Proceedings of the 2008 IEEE Symposium on Security and
Privacy (SP ’08). IEEE Computer Society, USA, 111–125. https://doi.org/10.1109/

SP.2008.33

[30] C. Andrew Neff. 2001. A Verifiable Secret Shuffle and Its Application to E-Voting.

In Proceedings of the 8th ACM Conference on Computer and Communications
Security (Philadelphia, PA, USA) (CCS ’01). Association for Computing Machinery,

New York, NY, USA, 116–125. https://doi.org/10.1145/501983.502000

[31] Stefan Popoveniuc and Benjamin Hosp. 2010. An Introduction to PunchScan. In

Towards Trustworthy Elections, New Directions in Electronic Voting (Lecture Notes
in Computer Science, Vol. 6000). Springer, 242–259.

[32] Latanya Sweeney. 2002. k-ANONYMITY: A MODEL FOR PROTECTING PRI-

VACY. International Journal of Uncertainty, Fuzziness and Knowledge-Based Sys-
tems 10, 05 (2002), 557–570.

[33] Ron van der Meyden. 1998. Logical Approaches to Incomplete Information: A
survey. Springer Berlin Heidelberg, 307–356.

https://doi.org/10.1109/SP.2016.52
https://www.bundesverfassungsgericht.de/SharedDocs/Pressemitteilungen/EN/2009/bvg09-019.html
https://www.bundesverfassungsgericht.de/SharedDocs/Pressemitteilungen/EN/2009/bvg09-019.html
https://doi.org/10.1007/978-3-642-12980-3_18
http://research.microsoft.com/apps/pubs/default.aspx?id=64346
http://research.microsoft.com/apps/pubs/default.aspx?id=64346
http://dl.acm.org/citation.cfm?id=1924892.1924905
http://dl.acm.org/citation.cfm?id=1924892.1924905
https://doi.org/10.14778/1453856.1453873
https://doi.org/10.1145/1866307.1866366
https://doi.org/10.1016/j.jbi.2004.04.005
https://doi.org/10.1109/SP.2008.33
https://doi.org/10.1109/SP.2008.33
https://doi.org/10.1145/501983.502000

A PRELIMINARY LEMMAS
The following lemma summarizes properties of [𝑇] and [𝑇]𝑁 ,

which we will use later.

Lemma A.1. Let 𝑆,𝑇 ∈ T⊥ be tables and 𝑁 an arbitrary sort. Then

(1) If 𝑇 ∈ T then 𝑇 ∈ [𝑇].
(2) If 𝑇 ∈ [𝑆] then [𝑇] ⊆ [𝑆].
(3) [𝑇]𝑁 ⊆ [𝑇]
(4) If [𝑇] ⊆ [𝑆], then [𝑇]𝑁 ⊆ [𝑆]𝑁 .

(5) If 𝑇 ∈ T and 𝑆 ⊆#

⊥ 𝑇 then [𝑇] ⊆ [𝑆].
(6) If ∀𝑇 ′ ∈ T : 𝑇 ′ ⊥

= 𝑇 ⇒ 𝑆 ⊆#

⊥ 𝑇
′
then [𝑇] ⊆ [𝑆].

(7) If 𝑆 = 𝜋𝑁 (𝑇) then [𝑇] ⊆ [𝑆].

Proof. Properties (1) – (4) and (7) follow immediately from their

definitions. It remains to show (5) and (6).

(5) Let 𝑆 ′ ∈ T such that 𝑆 ′ ⊥
= 𝑆 and 𝑆 ′ ⊆# 𝑇 . Then 𝑇 ∈ [𝑆 ′] ⊆

[𝑆], thus [𝑇] ⊆ [𝑆] by property (2).
(6) Let 𝑇 ′′ ∈ [𝑇]. By definition, 𝑇 ⊆#

⊥ 𝜋
sort(𝑇) (𝑇 ′′). Thus, there

is 𝑇 ′ ∈ T such that 𝑇 ′ ⊥
= 𝑇 and 𝑇 ′ ⊆# 𝜋

sort(𝑇) (𝑇 ′′). There-
fore 𝑇 ′′ ∈ [𝑇 ′]. It follows that

[𝑇] ⊆
⋃

𝑇 ′∈T
𝑇 ′ ⊥

=𝑇

[𝑇 ′].

Suppose that ∀𝑇 ′ ∈ T : 𝑇 ′ ⊥
= 𝑇 ⇒ 𝑆 ⊆#

⊥ 𝑇
′
. Then

[𝑇] ⊆
⋃

𝑇 ′∈T
𝑇 ′ ⊥

=𝑇

[𝑇 ′] ⊆ [𝑆],

where the second inclusion follows from Property (5). Thus
[𝑇] ⊆ [𝑆]. □

The following lemma follows immediately from Definition 1.

Lemma A.2. Let 𝑄1, 𝑄2 be sets of queries and 𝐵 a set of properties.

Then

𝐼𝑛𝑑𝑇 (𝑄1 ∪𝑄2, 𝐵) = 𝐼𝑛𝑑𝑇 (𝑄1, 𝐵) ∩ 𝐼𝑛𝑑𝑇 (𝑄2, 𝐵) .

B PROOFS FOR SECTION 3
Lemma 1. Let 𝑇1, . . . ,𝑇𝑘 ∈ T , and Key ≠ ∅ be a set of column

names such that Key is a subsort of each of these tables. Then there

exists a table 𝑍 ∈ T⊥ such that ?Key{𝑇1, . . . ,𝑇𝑘 } = [𝑍]Key.

Proof. We give an explicit construction of such a table 𝑍 . For

readability of formulae let 𝑁 = Key. If 𝑘 = 1, the statement is

trivial as by definition ?𝑁 {𝑇 } = [𝑇]𝑁 . We may hence assume

𝑘 > 1. Observe that?𝑁
is an associative and commutative operator.

Therefore it suffices to prove the hypothesis for two known tables

𝑇1 and 𝑇2. The lemma then follows by induction.

We consider two cases. The first case is that 𝑇1 ?𝑁 𝑇2 = ∅. Let
𝑍 = 𝑍0 ∈ T be a table of sort 𝑁 that contains a tuple of multiplicity

2. Then [𝑍0]𝑁 = ∅.
In the second case, 𝑇1 ?𝑁 𝑇2 ≠ ∅ (∗). We construct a table 𝑍

such that [𝑍]𝑁 = 𝑇1 ?𝑁 𝑇2, by matching common subtuples of

𝑇1 and 𝑇2, then horizontally extending 𝑇1 and 𝑇2 to include each

other’s missing columns, and filling up missing entries with the

unknown value ⊥.

Let 𝑀 = sort(𝑇1) ∩ sort(𝑇2) and note that 𝑁 ⊆ 𝑀 , since 𝑁 ⊆
sort(𝑇1) and 𝑁 ⊆ sort(𝑇2) by hypothesis. By (∗) the multiplicity of

each tuple in 𝜋𝑀 (𝑇1) and 𝜋𝑀 (𝑇2) is 1. Thus, for𝑍𝑀 = set(𝜋𝑀 (𝑇1))∪
set(𝜋𝑀 (𝑇2)) we have 𝜋𝑁 (𝑍𝑀) = set(𝜋𝑁 (𝑍𝑀)). Hence, for each
𝑖 ∈ {1, 2}, the function 𝑓𝑖 : set(𝑇𝑖) → set(𝑍𝑀), such that 𝑓𝑖 (𝑧) =
𝜋𝑀 (𝑧), is an injective function. Let 𝑔1 be a function from set(𝑍𝑀)
to the set of tuples of the sort sort(𝑇1) \ sort(𝑇2) defined by 𝑔1 (𝑧) =
𝜋
sort(𝑇1)\sort(𝑇2) 𝑓

−1
1

(𝑧) if the pre-image exists, and the tuple of un-

known values otherwise. We define 𝑔2 (𝑧) analogously. Let 𝑍 =

{𝑔1 (𝑧) · 𝑧 · 𝑔2 (𝑧) | 𝑧 ∈ 𝑍𝑀 }, where · denotes tuple concatenation.
It remains to show that [𝑇1]𝑁 ∩ [𝑇2]𝑁 = [𝑍]𝑁 . Let 𝑖 ∈ {1, 2}.

By the construction of 𝑍 , ∀𝑍 ′ ∈ T : 𝑍 ′ ⊥
= 𝜋

sort(𝑇𝑖) (𝑍) ⇒ 𝑇𝑖 ⊆# 𝑍 ′
.

By Lemma A.1 (6) and (7), [𝑍] ⊆ [𝜋
sort(𝑇𝑖) (𝑍)] ⊆ [𝑇𝑖]. Thus [𝑍] ⊆

[𝑇1] ∩ [𝑇2]. By Lemma A.1 (4), [𝑍]𝑁 ⊆ [𝑇1]𝑁 ∩ [𝑇2]𝑁 . Conversely,

let 𝑇 ∈ [𝑇1]𝑁 ∩ [𝑇2]𝑁 . Then 𝑍𝑀 ⊆# 𝜋𝑀 (𝑇). Let 𝑇𝑀 be the table of

tuples in 𝑇 that horizontally extend a tuple in 𝑍𝑀 . Since each tuple

of sort 𝑁 is unique in 𝑇 , it follows that 𝜋𝑀 (𝑍) = 𝑍𝑀 = 𝜋𝑀 (𝑇𝑀).
By the construction of 𝑍 , 𝑍

⊥
= 𝜋

sort(𝑍) (𝑇). Thus 𝑇 ∈ [𝑍]. □

C PROOFS FOR SECTION 4
Lemma 2. Let R ⊆ T be a set of tables, defining a property, and

{𝑆0, 𝑆1, 𝑆2, ..., 𝑆𝑘 } a subsort of sort(𝑅) for all 𝑅 ∈ R. Let 𝑇 ∈ T be

a table such that 𝑇 ∈ ?{𝑆0 }{𝜋𝑆0,𝑆𝑖𝑅 | 𝑅 ∈ R} for all 𝑖 ∈ {1, . . . , 𝑘}.
Then

𝑇 ∈ ?{𝑆0 }{𝜋𝑆0,𝑆1,..,𝑆𝑘𝑅 | 𝑅 ∈ R}.

Proof. Let 𝑡 = ⟨𝑆0 : 𝑠0, 𝑆1 : 𝑠1, ..., 𝑆𝑘 : 𝑠𝑘 ⟩ be a tuple in

𝜋𝑆0,𝑆1,..,𝑆𝑘𝑅 for some table 𝑅 ∈ R. We need to show it is also a tuple

of 𝑇 . By hypothesis, for each 𝑖 , the subtuple 𝑡𝑖 = ⟨𝑆0 : 𝑠0, 𝑆𝑖 : 𝑠𝑖 ⟩ is a
tuple of 𝜋𝑆0,𝑆𝑖𝑇 . However, since there is at most one tuple 𝑡 ′ in 𝑇
with 𝑡 ′(𝑆0) = 𝑠0, then 𝑡𝑖 = 𝜋𝑆0,𝑆𝑖 𝑡 ′ for each 𝑖 , so 𝑡 ′ = 𝑡 is indeed a

tuple of 𝑇 . □

Theorem C.1. The Eperio verification procedure under the addi-

tional assumptions of Section 4.4.2 is complete: If𝜓𝑖 does not hold,

for some 𝑖 ∈ {0, 1, tally, print-audit, unique, no-stuffing}, then nei-

ther does 𝜙 .

Proof. (1) The check𝜓0 states that

?{𝑈 }Pauth ∩
⋂

𝑃 ∈Pauth
𝑠ℎ𝑎𝑝𝑒𝑃 ≠ ∅.

Since C is a subset of this set, ¬𝜓0 implies C = ∅.
(2) If the check 𝜓1 does not hold, then there is a voter 𝑤 ∈ V

and a table 𝑃 ∈ Pauth with 𝜋𝑈 ,𝑀𝑃 ∈ T such that

𝜋𝑈 ,𝑀𝑅𝑤 ̸⊆# 𝜋𝑈 ,𝑀𝑃 .

Let ⟨𝑈 : 𝑢𝑤 , 𝑀 : 𝑚𝑤⟩ ∈ 𝑅𝑤 be the tuple that is not in 𝑃 .

Suppose 𝑢𝑤 does not appear in 𝜋𝑈 ,𝑀𝑃 , then any table in

?{𝑈 } (Pauth∪Views) must contain all the unique serial num-

bers in 𝑃 and an extra row containing 𝑢𝑤 . Any such table

does not have the shape of 𝑃 , so Pcon would not be satisfied

and C would be empty.

Now suppose𝑢𝑤 appears in 𝜋𝑈 ,𝑀𝑃 but𝑚𝑤 does not. Then it

is not possible to merge tuple ⟨𝑈 : 𝑢𝑤 , 𝑀 : 𝑚𝑤⟩ ∈ 𝑅𝑤 with a

different tuple ⟨𝑈 : 𝑢𝑤 , 𝑀 : 𝑚𝑝 ⟩ ∈ 𝜋𝑈 ,𝑀𝑃 while maintaining

unique𝑈 values; hence C would again be empty.

(3) If𝜓
tally

does not hold, then for some 𝑃 , 𝑡 ∉ 𝐼𝑛𝑑
𝑞𝑢

𝑃
({𝜋𝑆𝜎𝑀=1}).

Clearly any table that extends such 𝑃 ∈ Pauth does not belong
to 𝐼𝑛𝑑

𝑞𝑢
𝑡 ({𝜋𝑆𝜎𝑀=1}), hence not to Pcon, and again C = ∅.

(4) By definition ¬𝜓
print-audit

states that

?{𝑈 } (Pauth ∪ {𝜋𝑈 ,𝑆𝑅 | 𝑅 ∈ Views})
⋂

𝑃 ∈Pauth
𝑠ℎ𝑎𝑝𝑒𝑃 = ∅.

In this case C is empty too as it is a subset of the empty set

described above.

(5) Suppose 𝜓unique does not hold. Then ?Key{𝜋𝑉 ,𝑈 𝑅 | 𝑅 ∈
Views} = ∅ and hence clearly also ?KeyViews is empty.

Again this implies C is empty as it is a subset of the former.

(6) Suppose the 𝜓
no-stuffing

is not satisfied. Then the number

of marks in 𝑉 is different than that of one of the tables

in Pauth, say 𝑃 . If C is not empty, this implies that for any

table 𝑇 ∈ C, 𝑇 must have the same number of marks as 𝑃

(since 𝑇 both extends 𝑃 and is of its same shape). Hence

𝜋𝑆𝜎𝑀=1𝑇 ≠ 𝜋𝑆𝜎𝑀=1𝑉 simply because they are of different

shape, so the second predicate of 𝜙 does not hold. Otherwise

C is empty and 𝜙 does not hold either.

□

D PROOFS FOR SECTION 5
Theorem 1. Suppose that Pauth = {𝑞(E) | 𝑞 ∈ 𝑄} and (?Key (E ∪
Views) ∩ Pcon) ≠ ∅. Then a protocol’s verification procedure guar-

antees vote privacy as in Definition 5 provided that for any 𝐶 ∈
min(?Key (E ∪ Views) ∩ Pcon) the tuples of sort Choice of 𝐶 are

𝑆V -indistinguishable under the queries in 𝑄 and that 𝜏 (𝐶) ∈ Pcon
for all 𝜏 ∈ 𝑆V .

Proof. Fix a 𝐶 ∈ min?Key (E ∪ Views) and a 𝜏 ∈ 𝑆V . By

definition of 𝜏 ’s operation on Views, 𝜏 (𝐶) ∈ [𝜏 (𝑅𝑣)] for all 𝑅𝑣 ∈
Views. By definition of the merge operator, 𝐶 ∈ [E] and hence

𝐶 ∈ [𝑞(E)] for all 𝑞 ∈ 𝑄 . By definition of 𝑆V -indistinguishability,

for all 𝑞 ∈ 𝑄 : 𝑞(𝜏 (𝐶)) = 𝑞(𝐶). We thus obtain that 𝜏 (𝐶) ∈ [𝑞(E)]
for all 𝑞 ∈ 𝑄 . Using that Pauth = {𝑞(E) | 𝑞 ∈ 𝑄} gives

𝜏 (𝐶) ∈ ?Key (Pauth ∪ 𝜏 (Views)) .
Since by hypothesis all permutations of votes satisfy the constraints

in Pcon, we also have 𝜏 (𝐶) ∈ Pcon and therefore

?Key (Pauth ∪ 𝜏 (Views)) ∩ Pcon ≠ ∅.
□

Lemma 3. In Eperio, the elements of sort Choice = {𝑀, 𝑆} in 𝐶 are

𝐺0,1-indistinguishable under the query set 𝑄 = {𝜋𝑈 , 𝜋𝑈 ,𝑀 , 𝜎𝑀=−1,
𝜋𝑀,𝑆 }, where𝐺0,1 is the product of two groups that permute tuples

of sort {𝑀, 𝑆}. The first group arbitrarily permutes elements of sort

{𝑀, 𝑆} that belong to a tuple whose value of sort𝑀 is 0, the second

group those whose value of sort𝑀 is 1.

Proof. To compute the group under which Choice = {𝑀, 𝑆}
elements are indistinguishable, we must analyze the indistinguish-

ability set 𝐼𝑛𝑑
𝐶
(𝑄, {𝑠ℎ𝑎𝑝𝑒

𝐶
}). We can achieve this by computing

the sets 𝐻𝑖 = 𝐼𝑛𝑑𝐶 ({𝑞𝑖 }, {𝑠ℎ𝑎𝑝𝑒𝐶 }) for 𝑞𝑖 ∈ 𝑄 and the groups 𝐺𝑖

under which the elements of columns {𝑀, 𝑆} are indistinguishable
in 𝐻𝑖 . We then apply Lemma D.1.

(1) 𝐻0 = 𝐼𝑛𝑑
𝐶
({𝜋𝑈 }, {𝑠ℎ𝑎𝑝𝑒

𝐶
}) contains all tables with the

same number of rows as 𝐶 in which all 𝑡 ∈ 𝜋𝑈 (𝐶) occur
exactly once. Hence 𝐺0 = 𝑃𝐶 ({𝑀, 𝑆}), since the columns𝑀

and 𝑆 are not observed.

(2) 𝐻1 = 𝐼𝑛𝑑
𝐶
({𝜋𝑈 ,𝑀 }, {𝑠ℎ𝑎𝑝𝑒

𝐶
}) contains all tables with tu-

ples of sort {𝑈 ,𝑀} that are equal to those of𝐶 . Since𝑈 values

are unique, this consists of all tables where the𝑀 value as-

sociated to each 𝑈 value does not change. 𝐺1 is hence the

product of three subgroups 𝐽1, 𝐽0, and 𝐽−1 of 𝑃𝐶 ({𝑀, 𝑆}) that
permute the tuples of sort {𝑀, 𝑆} that contain 1, 0, and −1,
respectively, in column𝑀 .

(3) 𝐻2 = 𝐼𝑛𝑑
𝐶
({𝜎𝑀=−1 (𝐶)}, {𝑠ℎ𝑎𝑝𝑒𝐶 }) contains all tables that

are the disjoint union of the multiset 𝜎𝑀=−1 (𝐶) and a multi-

set of tuples of sort sort(𝐶) whose subtuples of sort {𝑀} do
not contain −1. Hence 𝐺2 is the permutation group of ele-

ments in columns𝑀 and 𝑆 that are not part of a print-audited

ballot.

(4) 𝐻3 = 𝐼𝑛𝑑
𝐶
({𝜋𝑀,𝑆 }, {𝑠ℎ𝑎𝑝𝑒𝐶 }) contains all tables that con-

tain the same columns of sort {𝑀, 𝑆} as 𝐶 . Since tables are
row-wise unordered, 𝐺3 = 𝑃𝐶 ({𝑀, 𝑆}).

By Lemma D.1, the elements in column 𝑆 are𝐺0,1-indistinguishable,

where 𝐺0,1 is the product of the groups 𝐽1 and 𝐽0. This is because

𝐺0,1 is a subgroup of each of the groups 𝐺0, 𝐺1, 𝐺2 and 𝐺3. □

Lemma D.1. Let𝐺1 and𝐺2 be subgroups of 𝑃𝑇 (𝑁) for 𝑁 ⊆ sort(𝑇).
If the entries of a table𝑇 are𝐺1-indistinguishable under the queries

𝑄1 and 𝐺2-indistinguishable under the queries 𝑄2, then the entries

are 𝐺1 ∩𝐺2-indistinguishable under the queries 𝑄1 ∪𝑄2.

Proof. Let 𝑔 ∈ 𝐺1 ∩𝐺2. Then 𝑔(𝑇) ∈ 𝐼𝑛𝑑𝑇 (𝑄1, {𝑠ℎ𝑎𝑝𝑒𝑇 }) and
𝑔(𝑇) ∈ 𝐼𝑛𝑑𝑇 (𝑄2, {𝑠ℎ𝑎𝑝𝑒𝑇 }). Thus by LemmaA.2,𝑔(𝑇) ∈ 𝐼𝑛𝑑𝑇 (𝑄1∪
𝑄2, {𝑠ℎ𝑎𝑝𝑒𝑇 }). □

E RANDOM SAMPLE ELECTIONS
David Chaum proposed random sample elections [9] as a way

to run elections where only a small percentage of the electorate,

chosen at random, are selected to vote. The list of all registered

voters is public and is referred to by Chaum as the voter roster. He
formulated the protocol in a table format, and it can be seen as an

extended variant of Eperio that supports decoy votes to counter

some forms of coercion. As with Eperio, this case study illustrates

how our methodology provides a systematic approach to analyzing

table-based voting protocols.

E.1 Election procedure
The election and verification procedure revolves around a series of

encrypted permutations of a 2𝑢 × 8 table E, where 𝑢 denotes the

pre-determined total number of ballots. To prevent vote buying, the

protocol dictates that a fixed number of these ballots, called decoy
ballots, are ignored in the final tally, and can thus freely be given

to attackers trying to buy votes. Voters and auditors should not be

able to prove which ballots are decoys. Randomly chosen voters

receive two (non-decoy) ballots, which should each be labeled with

unique serial numbers, one used for voting, the other for print

auditing. Voters may also ask for a decoy ballot. Each column of

each permutation of the table is encrypted with a different unique

secret key. The authority later reveals some of these keys for some

subset of permutations for the audit, as in Eperio.

The election process consists of nine steps, decomposed into

four phases. The steps are illustrated in Figure 6.

Phase 1 Prior to the election (steps 1 - 3 in Figure 6):
The encryption (each column with a distinct unique secret key)

of 5𝑥 row-permutations of columns 1, 3, 5, and 6 of the table E,
are generated and published (Step 1), where 𝑥 is a fixed parameter.

Columns 1 and 3 indicate ballot serial numbers and their respective

candidate/vote (for example YES or NO). Columns 5 and 6 indicate

which of these ballots are decoy and the rows corresponding to real

ballots contain random numbers whose sum is used to determine

the voter to whom the ballot will be sent. The sum of these numbers

must be the same for each copy of E, but the summands themselves

differ for each different permutation.

A public random draw, i.e., a draw from a public source of ran-

domness, is then executed (Step 2) and the result is published (unen-

crypted) as table D, which is a 𝑢 × 2 table that links ballot numbers

to a random summand used to select voters. The sum of this number

and the elements of columns 5 and 6 corresponding to the same

ballot row, determine the position of a voter in the voter roster.

The fact that the random draw is public and that commitments of

columns 5 and 6 are published before the draw (hence cannot be

modified) ensures that the selected sample of voters is truly random.

Columns 7 and 8 are then completed by the authority by copying

the values of columns 5 and 6 in the case of non-decoy votes, and in

the case of decoy votes by computing the number such that its sum

with the corresponding row in D corresponds to the position of a

voter who requested the decoy vote. Finally encryptions of the 5𝑥

row-permutations (using the same permutations as for the previous

columns) of these columns are also published, and the ballots are

printed and mailed to the voters (Step 3).

Phase 2 During the election (Step 4):
Each voter in the sample receives two ballots, each identified by a

unique serial number. He chooses one of them to vote, and audits

the second one (Step 4 in Figure 6). Ballots associate vote options to

vote codes. To vote, each voter publishes the ballot’s serial number

together with the vote code on a public platform (called the bulletin

board 𝐵𝐵). To audit a ballot, he publishes the serial number of the

ballot together with both vote codes and their associated vote on

the bulletin board.

Phase 3 After the election, prior to the audit (Step 5):
Encryptions of columns 2 and 4 and their 5𝑥 permutations are

generated from the bulletin board and published (Step 5). These

columns indicate which votes are print audited and for the non-

audited ones, they indicate the voters’ choices.

Phase 4 Audit (Steps 6 - 9):
The auditors perform a cut & choose game over the 5𝑥 permutations

of the table E published in Phases 1 and 3, also using the bulletin

board and the random draw. The 5𝑥 encrypted tables are randomly

split into five batches (each of 𝑥 tables) using the public random

draw that is executed in Step 6. As indicated in the bottom of

Figure 6, for all tables in the first batch the columns 1, 2, and 4 are

revealed, for the second batch columns 2 and 3 are revealed, for the

third batch columns 3, 4, 5, and 7, for the fourth batch columns 3, 4,

6, and 8, and finally for the fifth batch columns 1, 7, and 8. We will

detail the verification steps (Steps 7 to 9) in the following section.

In his paper, Chaum informally describes the properties his pro-

tocol achieves: votes are counted as intended and kept private. How-

ever, no proofs are given. We illustrate next how our methodology

again leads to clear and rigorous analysis of correctness and privacy.

E.2 Model and verification procedure
As with Eperio, we analyze the soundness of the verification of

the integrity property 𝜙 . However, we abstract slightly the han-

dling of the summands in the last columns of the table. Namely, we

model Chaum’s 8 column table using a 6 column table E of sort

{1, 2, 3, 4, 5,V}:
• The first four columns match Chaum’s table columns.

• Columns 5 and 6 of Chaum’s table are only used in the

protocol to distinguish decoy votes from non-decoy ones and

to ensure the randomness of the voter selection. To maintain

the anonymity of non-decoy ballots, these two columns are

never revealed at the same time. Since the random summands

for non-decoy ballots can be any number and can be different

in different copies of the table, the only information obtained

by revealing only one of the columns 5 or 6 is whether ballots

are decoy or not. In our model, we model this by merging

columns 5 and 6 in a unique column of sort5, whose elements

are either the value “decoy” as indicated in the protocol or

the value “non-decoy”, instead of a random summand.

• For the same reasons as for columns 5 and 6, and since the

sums of columns 7 and 8 are not directly linked to decoy or

non-decoy ballots, we merge columns 7 and 8, to a unique

column of sort V containing the numbers of voters as indi-

cated by D. This still allows auditors to check that ballots

have been sent to the voter chosen in the public draw D.

Since the values in columns 5 and 6 can be chosen arbitrarily by the

election authority, the only source of randomness for the selection

of voters comes from the public draw D. In our modeling of D, we

will again abstract away the summands and model the table D ∈ T
as a 2𝑢 × 2 table of sort {1,V} where for each row corresponding to

a ballot serial number, V directly contains the number of the voter

linked to the ballot (instead of a random summand). We also assume

that the elements in V corresponding to a real ballot are indeed

random, but note that this is only important for the randomness of

the sample, not for the correctness of the result.

Finally we represent the bulletin board 𝐵𝐵 ∈ T⊥ as a 2𝑢 × 4 table of

sort {1, 2, 3, 4}, where we have unknown values in column 3 for

votes that are not print audited.

The permutations of the table E are grouped in 5 batches of 𝑥 tables

each, and we denote each batch by 𝑃 (𝑘) = {𝑃 (𝑘)
1
, ..., 𝑃

(𝑘)
𝑥 } ∈ T⊥

for 1 ≤ 𝑘 ≤ 5. Each batch has unknown values for the encrypted

values, and known values in the columns whose secret key has

been revealed, as described in Phase 4. In particular, the fifth batch

will have known values for columns 1 and V. As the table D is

public and unencrypted, revealing column V in the batch where in

Chaum’s table both column 7 and 8 are revealed, correctly repre-

sents Chaum’s protocol.

We denote the union of all these batches and the publicly available

Figure 6: Random Sample Elections, from [9], reproduced with permission from the author.

information by

Pbatches ={𝑃
(1)
1
, ..., 𝑃

(1)
𝑥 , 𝑃

(2)
1
, ..., 𝑃

(2)
𝑥 , ..., 𝑃

(5)
𝑥 },

Pauth ={D, 𝐵𝐵} ∪ Pbatches .
The outcome function is given by tal := 𝜋3𝜎4=voted𝜎5=non-decoy

and may hence be computed from the third or fourth batch. Let

𝑠ℎ𝑎𝑝𝑒P =
⋂

𝑃 ∈Pbatches {𝑠ℎ𝑎𝑝𝑒𝑃 }. If 𝑡 indicates the outputted tally,

we have

Pcon = 𝐼𝑛𝑑
𝑞𝑢
𝑡 ({tal}) ∩ 𝑠ℎ𝑎𝑝𝑒P .

Let V be the random sample of voters who receive a ballot (decoy

or not). Each voter’s view is represented by a table 𝑅𝑣 ∈ T that

contains information about their double ballot and hence is of sort

{V, 1, 2, 3, 4, 5}, where V again indicates the voter’s position in the

voter roster and columns of sort 5 have a “decoy” value in the row

of decoy ballots in case they have asked for a decoy ballot and

the “non-decoy” value in case they believe their ballot is real. Let

Views = {𝑅𝑣 | 𝑣 ∈ V}. As in Eperio, Lemma 1 implies that when the

combination of these tables is consistent, then it is represented by a

table𝑉 ∈ T given by the unique element in the setmin?KeyViews.

The unique key is the ballot number, of sort 1. Our goal is again
to ensure that the election is counted as intended, as indicated by

the property 𝜙 specified in Definition 4. As in Eperio, the protocol

itself ensures that the shape of all tables is correct and that all serial

numbers are unique. We again set P := ?{1}Pbatches ∩ 𝑠ℎ𝑎𝑝𝑒P ,
and denote this verification step by𝜓0 := P ≠ ∅.

The verification steps detailed by Chaum are grouped in 3 sec-

tions (corresponding respectively to Steps 7, 8, and 9) as follows.

Audit casting and printing. Using tables from the first batch,

everyone checks that the values in the columns 1, 2, and 4 of the

tables in 𝑃 (1) match the values published on the bulletin board 𝐵𝐵.

Since all tables in P extend the tables {𝜋{1,2,4}𝑃
(1)
𝑖

| 𝑖 = 1, ..., 𝑥}
and have the same shape, we conclude that 𝜋{1,2,4}𝐵𝐵 = 𝜋{1,2,4}𝑃
for each table 𝑃 ∈ P. In his paper, Chaum assumes that the bulletin

board correctly reflects the voter’s views. In particular this means

that for each voter 𝑣 ∈ V , 𝜋{1,2,4}𝑅𝑣 ⊆# 𝜋{1,2,4}𝐵𝐵. Combining

with the above we may write this verification step as

𝜓1 :=
∧
𝑣∈V

∧
𝑃 ∈P

𝜋{1,2,4}𝑅𝑣 ⊆# 𝜋{1,2,4}𝑃 .

Using tables of batch 2, everyone can check that the second and

third column of E match the audited ballots on the bulletin board.

Since the choice of which ballots are print-audited is made after the

publication of columns 1 and 3, we will make the assumption that

this implies that the possible votes and vote codes on the ballots

match the ones on the permuted tables for all ballots of column 1

and not only for the print audited ones of column 2. Again assuming

correctness of 𝐵𝐵, we may rewrite this verification step as

𝜓2 :=?{1} ({𝜋{1,3}𝐵𝐵} ∪ {𝜋{1,3}𝑅 | 𝑅 ∈ R} ∪ Pbatches)
∩ 𝑠ℎ𝑎𝑝𝑒P ≠ ∅.

Audit voter selection and tally. In Step 8, batches 3 and 4 are used.

From these checks, the announced tally 𝑡 is verified (i.e. decoy votes

are revealed) and voters verify that their choice has been counted.

Thus we define𝜓𝑡 and𝜓3 to be the following properties

𝜓𝑡 := 𝑡 ∈
⋂
𝑃 ∈P

𝐼𝑛𝑑
𝑞𝑢

𝑃
({𝜋3𝜎4=voted𝜎5=non-decoy});

𝜓3 :=
∧
𝑣∈𝑉

∧
𝑃 ∈P

(𝜋{3,4,5}𝑅𝑣 ⊆ 𝜋{3,4,5}𝑃).

As specified by Chaum, these batches should also be used to check

that values in columns 7 and 8 correspond to the values in columns

5 and 6 and hence to verify the correctness of voter selection, but we

have abstracted these verification steps away by merging columns

7 and 8 in the unique column V.

Audit all voters. Finally in step 9, batch 5 is used. Columns 1,

7 and 8 of Chaum’s table (hence columns 1 and V in our model)

reveal which voter corresponds to each ballot. Chaum specifies that

these voters must be contacted to verify they have received the

correct ballot and have effectively voted. This also ensures that no

other votes have been added to the table. We model this check by

𝜓voter :=?{1} (P ∪ {𝜋{V,1}𝑅 | 𝑅 ∈ Views} ∪ D) ∩ 𝑠ℎ𝑎𝑝𝑒P ≠ ∅

∧ 𝜋{V,1}𝑉 = D.

E.3 Soundness
As mentioned, to achieve soundness and completeness, we must

assume correctness of the table D and of the bulletin board 𝐵𝐵. For

example, the table 𝐵𝐵 could contain an altered vote of an honest

voter, resulting in the verification succeeding although the vote is

incorrect. Similarly a corrupted voter could post a different vote on

the bulletin board, making verification fail although the result is

correct. We have already included these assumptions in the formu-

lation of the verification properties𝜓1,𝜓2 and𝜓voter.

In contrast to Eperio, the check 𝜓voter ensures that no ballot

stuffing occurs and that there is a unique ballot for each voter.

Ideally we would like to use Lemma 2 to show the protocol’s

soundness. To do so, the verification steps must ensure the correct

association of elements of the uniquely identifying sort 1 with each

other sort individually. However, none of the verification steps

associate elements of sort 5 to elements of sort 1. To illustrate

that this problem is not a consequence of our protocol modeling,

Example 7 shows that the simple protocol as described by Chaum

indeed allows the authority to exchange decoy and real ballots at

its discretion, as the summands in columns 5, 6, 7, and 8 are not

required to be unique, and are chosen freely by the authority.

Example 7. Consider the following twoChaum tables (for simplicity,

only columns 1, 5, 6, 7, and 8 are shown).

𝐴 =

1 5 6 7 8
#1𝑎 − 9343 0000 5555 0000 5555

#1𝑎 − 1134 1111 4444 1111 4444

#1𝑏 − 7653 2222 3333 2222 3333

#1𝑏 − 8584 3333 2222 3333 2222

#2𝑎 − 8243 decoy decoy 0000 5555

#2𝑎 − 5634 decoy decoy 1111 4444

#2𝑏 − 1253 decoy decoy 2222 3333

#2𝑏 − 8684 decoy decoy 3333 2222

𝐵 =

1 5 6 7 8
#1𝑎 − 9343 decoy decoy 0000 5555

#1𝑎 − 1134 decoy decoy 1111 4444

#1𝑏 − 7653 decoy decoy 2222 3333

#1𝑏 − 8584 decoy decoy 3333 2222

#2𝑎 − 8243 0000 5555 0000 5555

#2𝑎 − 5634 1111 4444 1111 4444

#2𝑏 − 1253 2222 3333 2222 3333

#2𝑏 − 8684 3333 2222 3333 2222

The two tables are not equal up to permutation of rows. But pro-

vided there is a vote corresponding to the voters’ expectations (a

decoy ballot with the same vote), all verification steps succeed on

both tables. △
This weakness can easily be exploited by a malicious authority

who can tell voters with real ballots that they are decoy and tell an

attacker to buy them, using the votes to influence the result.

To the best of our knowledge, this issue has not been described

in the different versions of Chaum’s paper. However in some ver-

sions of the paper, Chaum proposes an additional check to im-

prove security against vote buying that partially fixes the problem.

To prove a decoy ballot is actually a decoy, the authority can re-

veal its corresponding line numbers in all permuted tables to a

voter using a secure channel. The voter can then verify that in

all tables his ballot shows up in these lines, and verify that it is

actually a decoy when checking 𝜓3. Formally, this would imply

𝜋{1,5}𝜎5=decoy𝑅𝑣 ⊆#

⊥ 𝜋{1,5}𝑃 for each 𝑣 ∈ V and 𝑃 ∈ P.

However this fix does not prevent the authority from telling

a voter with a decoy ballot that he has a real ballot (this would

correspond to a voter having a “non-decoy” value in its column of

sort 5, while the public table having a “decoy” value in the same

row) and 𝜙 is still not satisfied, as the voter’s view and the public

information cannot be combined. To the best of our knowledge,

this latter issue has neither been described in the different versions

of Chaum’s paper nor elsewhere.

It is clear that the authority cannot provide the voters with a

(transferable) proof that their ballot is real together with the ballot,

as this would render the decoys useless. A possible fix would be

to construct a non-transferable proof. For example, the authority

could commit to the line numbers associated to all real ballots, e.g.

by inserting them into envelopes and depositing these at a trusted

third party. Once the election is over, they can be sent to the voters

(using a secure channel) who can then verify they actually received

a real ballot. Also, since the numbers are only sent after the election,

the voters can create fake receipts by choosing table entries that fit

the desired results, making the proof meaningless for anybody else.

This step ensures correctness of column 5 for all ballots:

𝜓
decoy

:=
∧
𝑣∈V

∧
𝑃 ∈P

𝜋{1,5}𝑅𝑣 ⊆#

⊥ 𝜋{1,5}𝑃 .

E.3.1 Soundness of Chaum’s protocol under additional assumptions.
We now show that assuming the bulletin board 𝐵𝐵 and the random

draw D are correct, then the above checks are sufficient to establish

soundness of the verification procedure, i.e.

𝜓0 ∧𝜓1 ∧𝜓2 ∧𝜓𝑡 ∧𝜓voter ∧𝜓decoy ⇒ 𝜙. (4)

Observe that the tables in P and the table D have the same number

of rows, and since by𝜓voter,?{1} (P ∪ D) ≠ ∅, it must be that for

every 𝑃 ∈ P, 𝜋{V,1}𝑃 = D.

The check𝜓2 gives us a table 𝑇 ∈ T such that

𝑇 ∈ (?{1}{𝜋1,3𝑅 | 𝑅 ∈ Views}) ∩ P .
Since 𝑇 ∈ P, check𝜓1 implies that for all 𝑣 ∈ V , 𝜋{1,2,4}𝑅𝑣 ⊆#

𝜋{1,2,4}𝑇, so that

𝑇 ∈ ?{1}{𝜋{1,2,4}𝑅 | 𝑅 ∈ Views}.
The check𝜓voter also implies that for each voter 𝑣 ∈ V , 𝜋{V,1}𝑅𝑣 ⊆#

𝜋{V,1}𝑇 . Hence we also have

𝑇 ∈ ?{1}{𝜋{V,1}𝑅 | 𝑅 ∈ Views}.
Finally the additional check𝜓

decoy
also implies that for all 𝑣 ∈ V ,

𝜋{1,5}𝑅𝑣 ⊆# 𝜋{1,5}𝑇 , and hence

𝑇 ∈ ?{1}{𝜋{1,5}𝑅 | 𝑅 ∈ Views}.
By Lemma 2 we conclude that

𝑇 ∈ ?{1}Views.

Finally𝜓𝑡 implies that tal(𝑇) = 𝑡, so that 𝑇 ∈ Pcon. This shows

𝑇 ∈ C = ?{1} (Pauth ∪ Views) ∩ Pcon ≠ ∅.

This also shows that ?{1}Views ≠ ∅, so we may consider the

unique table𝑉 ∈ T given by Lemma 1 such that {𝑉 } = min(?{1}Views).
With regards to the second property of 𝜙 , for any 𝑇 ∈ C, by𝜓voter,
𝜋{V,1}𝑇 = 𝜋{V,1}𝑉 and therefore the tables have the same number

of rows. Also, since by definition of the merge operator, 𝑉 ⊆# 𝑇 ,

these tables must be equal and hence tal(𝑇) = tal(𝑉) .

E.3.2 Completeness. Similarly to Eperio, it is straightforward to

show that ¬𝜓𝑖 implies ¬𝜙 for any property𝜓𝑖 in (4).

E.4 Privacy
We analyze privacy in Chaum’s protocol following themethodology

of Section 5.2. To do so we must first (1) understand the group

𝑆V . We fix a table 𝐶 ∈ ?Key (Pauth ∪ 𝜏 (Views)) ∩ Pcon. Given a

voter 𝑣 ∈ V , his vote is given by 𝑣𝑜𝑡𝑒𝑣 = 𝜎2=notchecked𝜋{3,4,5}𝜎𝑉=𝑣 .

Hence the sort that indicates the voter’s vote is Choice = {2, 3, 4, 5},
whereas 𝐹𝑖𝑥𝑒𝑑 = {1,V}.
𝑆V is generated by the functions 𝜏𝑣𝑣′ that swap votes between

two voters 𝑣, 𝑣 ′ ∈ V that have cast a private vote. In particular 𝜏𝑣𝑣′

swaps the tuples of sort {2, 3, 4, 5} between the subtables 𝜎𝑉=𝑣 (𝐶)
and 𝜎𝑉=𝑣′ (𝐶) by exchanging their votes.

Observe that during the verification procedure analyzed above,

the auditors receive table data that amounts to the queries in the

set 𝑄 = {𝜋{1,2,4}, 𝜋{2,3}, 𝜋{3,4,5}, 𝜋{1,V}}. For the second step (2)

we prove the following.

Theorem E.1. The elements of sort {2, 3, 4, 5} of not print-audited
ballots are𝐺-indistinguishable under the query set𝑄 and constrains

Pcon, where 𝐺 is the product of the group of permutations of all

such tuples that are marked “notvoted” in column 4, and those that
are instead marked “voted”.

Proof. To show this, we again first consider the indistinguisha-

bility set of elements of sort Choice = {2, 3, 4, 5} in the table 𝐶

under all queries used in the election process. These are

𝑄 = {𝜋{1,2,4}, 𝜋{2,3}, 𝜋{3,4,5}, 𝜋{1,V}}.
Applying the same strategy as in Eperio, we examine the indistin-

guishability set for each query separately.

• 𝐻1 = 𝐼𝑛𝑑𝐶 ({𝜋{1,2,4}}, {𝑠ℎ𝑎𝑝𝑒𝐶 }) is the set of tables whose
columns of sort {1, 2, 4} are equal to those of 𝐶 . Since 1-
values are unique, tuples of sort {2, 3, 4, 5} are 𝐺1 indistin-

guishable in 𝐻1, where 𝐺1 is the product of the two sub-

groups 𝐽voted, 𝐽notvoted of 𝑃𝐶 ({𝑀, 𝑆}). These groups permute

tuples of sort {2, 3, 4, 5} that contain “notchecked” in column

2 and “voted”, or “notvoted” respectively in column 4.
• 𝐻2 = 𝐼𝑛𝑑

𝐶
({𝜋{2,3}}, {𝑠ℎ𝑎𝑝𝑒𝐶 }) is the set of tables whose

columns {2, 3}, indicating whether votes are print audited
or not, match those of𝐶 . Since tables are row-wise unordered,

tuples of sort {2, 3, 4, 5} are completely indistinguishable in

𝐻2, so 𝐺2 = 𝑃𝐶 (Choice).

• 𝐻3 = 𝐼𝑛𝑑𝐶 ({𝜋{3,4,5}}, {𝑠ℎ𝑎𝑝𝑒𝐶 }) is the set of tables whose
columns {2, 3, 4, 5} are equal to those of 𝐶 . Similarly to the

above case, 𝐺3 = 𝑃𝐶 (Choice).
• Finally, 𝐻4 = 𝐼𝑛𝑑

𝐶
({𝜋{1,V}}, {𝑠ℎ𝑎𝑝𝑒𝐶 }). Elements of sort

{2, 3, 4, 5} are completely indistinguishable in 𝐻4 as this

last set is only concerned with columns of sort 1 and V:
𝐺4 = 𝑃𝐶 (Choice).

The result then follows again from Lemma D.1, as 𝐺 = 𝐺1 is a

subgroup of each of the groups 𝐺1, 𝐺2, 𝐺3 and 𝐺4. □

As required by (3), it is straightforward to see that 𝑆V is a sub-

group of 𝐺 .

Finally, for the last step (4), let

tal = 𝜋{3}𝜎4=voted𝜎5=non-decoy

and recall that

Pcon = 𝐼𝑛𝑑
𝑞𝑢
𝑡 ({tal}) ∩ 𝑠ℎ𝑎𝑝𝑒P .

For any given 𝐶 ∈ Pcon, and any 𝜏 ∈ 𝑆V , we have that tal(𝐶) =

tal(𝜏 (𝐶)) since 𝜏 does not change the {3, 5} tuples and only per-

mutes marked ones with marked ones. Clearly 𝜏 does not change

the shape of the table 𝐶 . Hence for any 𝜏 ∈ 𝑆V , 𝜏 (𝐶) ∈ Pcon.

Corollary 2. By Theorem 1, Chaum’s protocol ensures vote pri-
vacy as defined in Definition 5.

	Abstract
	1 Introduction
	2 Table Operations
	2.1 Preliminaries
	2.2 Table Queries and Properties
	2.3 Table Indistinguishability

	3 Table Protocols
	3.1 Eperio's Election Procedure
	3.2 An Operator for Combining Information
	3.3 Modeling Table-Based Protocols

	4 Verifiability Properties
	4.1 Properties of checks
	4.2 Security goals
	4.3 Verifiability for Eperio
	4.4 Soundness and Completeness for Eperio

	5 Privacy
	5.1 Defining vote privacy for table checks
	5.2 G-indistinguishability

	6 Scantegrity
	7 Random Sample Elections
	8 Related Work
	8.1 Relational database theory
	8.2 Verifiability definitions
	8.3 Privacy definitions

	9 Conclusion
	References
	A Preliminary Lemmas
	B Proofs for Section 3
	C Proofs for Section 4
	D Proofs for Section 5
	E Random Sample Elections
	E.1 Election procedure
	E.2 Model and verification procedure
	E.3 Soundness
	E.4 Privacy

