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AMORTIZED IMPLICIT DIFFERENTIATION FOR
STOCHASTIC BILEVEL OPTIMIZATION

Michael Arbel & Julien Mairal
Université Grenoble Alpes, Inria, CNRS,Grenoble INP, LJK

ABSTRACT

We study a class of algorithms for solving bilevel optimization problems in both
stochastic and deterministic settings when the inner-level objective is strongly
convex. Specifically, we consider algorithms based on inexact implicit differenti-
ation and we exploit a warm-start strategy to amortize the estimation of the exact
gradient. We then introduce a unified theoretical framework inspired by the study
of singularly perturbed systems (Habets, 1974) to analyze such amortized algo-
rithms. By using this framework, our analysis shows these algorithms to match
the computational complexity of oracle methods that have access to an unbiased
estimate of the gradient, thus outperforming many existing results for bilevel op-
timization. We illustrate these findings on synthetic experiments and demonstrate
the efficiency of these algorithms on hyper-parameter optimization experiments
involving several thousands of variables.

1 INTRODUCTION

Bilevel optimization refers to a class of algorithms for solving problems with a hierarchical structure
involving two levels: an inner and an outer level. The inner-level problem seeks a solution y?(x)
minimizing a cost g(x, y) over a set Y given a fixed outer variable x in a set X . The outer-level
problem minimizes an objective of the form L(x)=f(x, y?(x)) over X for some upper-level cost f .
When the solution y?(x) is unique, the bilevel optimization problem takes the following form:

min
x∈X
L(x) := f(x, y?(x)), such that y?(x) = arg min

y∈Y
g(x, y). (1)

First introduced in the field of economic game theory by Stackelberg (1934), this problem has
recently received increasing attention in the machine learning community (Domke, 2012; Gould
et al., 2016; Liao et al., 2018; Blondel et al., 2021; Liu et al., 2021; Shaban et al., 2019). Indeed,
many machine learning applications can be reduced to (1) including hyper-parameter optimization
(Feurer and Hutter, 2019), meta-learning (Bertinetto et al., 2018), reinforcement learning (Hong
et al., 2020b; Liu et al., 2021) or dictionary learning (Mairal et al., 2011; Lecouat et al., 2020a;b).

The hierarchical nature of (1) introduces additional challenges compared to standard optimization
problems, such as finding a suitable trade-off between the computational budget for approximating
the inner and outer level problems (Ghadimi and Wang, 2018; Dempe and Zemkoho, 2020). These
considerations are exacerbated in machine learning applications, where the costs f and g often come
as an average of functions over a large or infinite number of data points (Franceschi et al., 2018).
All these challenges highlight the need for methods that are able to control the computational costs
inherent to (1) while dealing with the large-scale setting encountered in machine learning.

Gradient-based bilevel optimization methods appear to be viable approaches for solving (1) in large-
scale settings (Lorraine et al., 2020). They can be divided into two categories: Iterative differenti-
ation (ITD) and Approximate implicit differentiation (AID). ITD approaches approximate the map
y?(x) by a differentiable optimization algorithm A(x) viewed as a function of x. The resulting
surrogate loss L̃(x) = f(x,A(x)) is optimized instead of L(x) using reverse-mode automatic dif-
ferentiation (see Baydin et al., 2018). AID approaches (Pedregosa, 2016) rely on an expression
of the gradient ∇L resulting from the implicit function theorem (Lang, 2012, Theorem 5.9). Un-
like ITD, AID avoids differentiating the algorithm approximating y?(x) and, instead, approximately
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solves a linear system using only Hessian and Jacobian-vector products to estimate the gradient∇L
(Rajeswaran et al., 2019). These methods can also rely on stochastic approximation to increase
scalability (Franceschi et al., 2018; Grazzi et al., 2020; 2021).

In the context of machine-learning, Ghadimi and Wang (2018) provided one of the first compre-
hensive studies of the computational complexity for a class of bilevel algorithms based on AID
approaches. Subsequently, Hong et al. (2020b); Ji et al. (2021); Ji and Liang (2021); Yang et al.
(2021) proposed different algorithms for solving (1) and obtained improved overall complexity by
achieving a better trade-off between the cost of the inner and outer level problems. Still, the ques-
tion of whether these complexities can be improved by better exploiting the structure of (1) through
heuristics such as warm-start remains open (Grazzi et al., 2020). Moreover, these studies pro-
posed separate analysis of their algorithms depending on the convexity of the loss L and whether a
stochastic or deterministic setting is considered. This points out to a lack of unified and systematic
theoretical framework for analyzing bilevel problems, which is what the present work addresses.

We consider the Amortized Implicit Gradient Optimization (AmIGO) algorithm, a bilevel opti-
mization algorithm based on Approximate Implicit Differentiation (AID) approaches that exploits a
warm-start strategy when estimating the gradient of L. We then propose a unified theoretical frame-
work for analyzing the convergence of AmIGO when the inner-level problem is strongly convex in
both stochastic and deterministic settings. The proposed framework is inspired from the early work
of Habets (1974) on singularly perturbed systems and analyzes the effect of warm start by viewing
the iterates of AmIGO algorithm as a dynamical system. The evolution of such system is described
by a total energy function which allows to recover the convergence rates of unbiased oracle methods
which have access to an unbiased estimate of ∇L (c.f. Table 1). To the best of our knowledge, this
is the first time a bilevel optimization algorithm based on a warm-start strategy provably recovers
the rates of unbiased oracle methods across a wide range of settings including the stochastic ones.

2 RELATED WORK

Singularly perturbed systems (SPS) are continuous-time deterministic dynamical systems of cou-
pled variables (x(t), y(t)) with two time-scales where y(t) evolves much faster than x(t). As such,
they exhibit a hierarchical structure similar to (1). The early work of Habets (1974); Saberi and
Khalil (1984) provided convergence rates for SPS towards equilibria by studying the evolution of a
single scalar energy function summarizing these systems. The present work takes inspiration from
these works to analyze the convergence of AmIGO which involves three time-scales.

Two time-scale Stochastic Approximation (TTSA) can be viewed as a discrete-time stochastic ver-
sion of SPS. (Kaledin et al., 2020) showed that TTSA achieves a finite-time complexity of O

(
ε−1
)

for linear systems while Doan (2020) obtained a complexity of O
(
ε−3/2

)
for general non-linear

systems by extending the analysis for SPS. Hong et al. (2020b) further adapted the non-linear TTSA
for solving (1). In the present work, we obtain faster rates by taking into account the dynamics of a
third variable zk appearing in AmIGO, thus resulting in a three time-scale dynamics.

Warm-start in bilevel optimization. Ji et al. (2021); Ji and Liang (2021) used a warm-start for
the inner-level algorithm to obtain an improved computational complexity over algorithms without
warm-start. In the deterministic non-convex setting, Ji et al. (2021) used a warm-start strategy when
solving the linear system appearing in AID approaches to obtain improved convergence rates. How-
ever, it remained open whether using a warm-start when solving both inner-level problem and linear
system arising in AID approaches can yield faster algorithms in the more challenging stochastic
setting (Grazzi et al., 2020). In the present work, we provide a positive answer to this question.

3 AMORTIZED IMPLICIT GRADIENT OPTIMIZATION

3.1 GENERAL SETTING AND MAIN ASSUMPTIONS

Notations. In all what follows, X and Y are Euclidean spaces. For a differentiable function h(x, y) :
X ×Y → R, we denote by∇h its gradient w.r.t. (x, y), by ∂xh and ∂yh its partial derivatives w.r.t.
x and y and by ∂xyh and ∂yyh the partial derivatives of ∂yh w.r.t x and y, respectively.
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Geometries Setting Algorithms Complexity
BA (Ghadimi and Wang, 2018) O(κ2L ∨ κ2g log2 ε−1)

AccBio (Ji and Liang, 2021) O(κ
1/2
L κ

1/2
g log2 ε−1)(D)

AmIGO (Corollary 1) O(κLκg log ε−1)

BSA (Ghadimi and Wang, 2018) O(κ4Lε
−2)

TTSA (Hong et al., 2020b) O(κ0.5L (κ8.5g + κ3L)ε−3/2 log ε−1)

(SC)

(S)
AmIGO (Corollary 2) O(κ2Lκ

3
gε
−1 log ε−1)

BA (Ghadimi and Wang, 2018) O(κ5gε
−5/4)

AID-BiO (Ji et al., 2021) O(κ4gε
−1)(D)

AmIGO (Corollary 3) O(κ4gε
−1)

BSA (Ghadimi and Wang, 2018) O(κ9gε
−3 + κ6gε

−2)

TTSA (Hong et al., 2020b) O(κ16g ε
−5/2 log ε−1)

stocBiO (Ji et al., 2021) O(κ9gε
−2+κ6gε

−2 log ε−1)

MRBO/VRBO? (Yang et al., 2021) O(poly(κg)ε
−3/2 log ε−1)

(NC)

(S)

AmIGO (Corollary 4) O(κ9gε
−2)

Table 1: Cost of finding an ε-accurate solution as measured by E[L(xk)−L?]∧2−1µE
[
‖xk−x?‖2

]
when L is µ-strongly-convex (SC) and 1

k

∑k
i=1 E

[
‖∇L(xi)‖2

]
when L is non-convex (NC). The

settings (D) and (S) stand for the deterministic and stochastic settings. The cost corresponds to the
total number of gradients, Jacobian and Hessian-vector products used by the algorithm. κL and κg
are the conditioning numbers of L and g whenever applicable. The dependence on κL and κg for
TTSA and AccBio are derived in Proposition 11 of Appendix A.4. The rate of MRBO/VRBO is
obtained under the additional mean-squared smoothness assumption (Arjevani et al., 2019).

To ensure that (1) is well-defined, we consider the setting where the inner-level problem is strongly
convex so that the solution y?(x) is unique as stated by the following assumption:
Assumption 1. For any x ∈ X , the function y 7→ g(x, y) is Lg-smooth and µg-strongly convex.

Assumption 1 holds in the context of hyper-parameter selection when the inner-level is a kernel
regression problem (Franceschi et al., 2018), or when the variable y represents the last linear layer
of a neural network as in many meta-learning tasks (Ji et al., 2021). Under Assumption 1 and
additional smoothness assumptions on f and g, the next proposition shows that L is differentiable:
Proposition 1. Let g be a twice differentiable function satisfying Assumption 1. Assume that f is
differentiable and consider the quadratic problem:

min
z∈Rdy

Q(x, y, z) :=
1

2
z>(∂yyg(x, y))z + z>∂yf(x, y). (2)

Then, (2) admits a unique minimizer z?(x, y) for any (x, y) in X × Y . Moreover, y?(x) is unique
and well-defined for any x in X and L is differentiable with gradient given by:

∇L(x) = ∂xf(x, y?(x)) + ∂xyg(x, y?(x))z?(x, y?(x)). (3)

Proposition 1 follows by application of the implicit function theorem (Lang, 2012, Theorem 5.9)
and provides an expression for ∇L solely in terms of partial derivatives of f and g evaluated at
(x, y?(x)). Following Ghadimi and Wang (2018), we further make two smoothness assumptions on
f and g:
Assumption 2. There exist positive constants Lf and B such that for all x, x′ ∈ X and y, y′ ∈ Y:

‖∇f(x, y)−∇f(x′, y′)‖ ≤ Lf‖(x, y)− (x′, y′)‖, ‖∂yf(x, y)‖ ≤ B.

Assumption 3. There exit positive constants L′g , Mg such that for any x, x′ ∈ X and y, y′ ∈ Y:

max {‖∂xyg(x, y)− ∂xyg(x′, y′)‖, ‖∂yyg(x, y)− ∂yyg(x′, y′)‖} ≤Mg‖(x, y)− (x′, y′)‖
‖∂yg(x, y)− ∂yg(x′, y)‖ ≤ L′g‖x− x′‖.
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Assumptions 1 to 3 allow a control of the variations of y? and z? and ensure L is L-smooth for
some positive constant L as shown in Proposition 6 of Appendix B.2. As an L-smooth function, L is
necessarily weakly convex (Davis et al., 2018), meaning thatL satisfies the inequalityL(x)−L(y) ≤
∇L(x)>(x− y)− µ

2 ‖x− y‖
2 for some fixed µ ∈ R with |µ| ≤ L. In particular, L is convex when

µ ≥ 0, strongly convex when µ > 0 and generally non-convex when µ < 0. We thus consider two
cases for L, the strongly convex case (µ > 0) and the non-convex case (µ < 0). When L is convex,
we denote by L? its minimum value achieved at a point x? and define κL=L/µ when µ > 0.

Stochastic/deterministic settings. We consider the general setting where f(x, y) and g(x, y) are
expressed as an expectation of stochastic functions f̂(x, y, ξ) and ĝ(x, y, ξ) over a noise variable ξ.
We recover the deterministic setting as a particular case when the variable ξ has zero variance, thus
allowing us to treat both stochastic (S) and deterministic (D) settings in a unified framework. As
often in machine-learning, we assume we can always draw a new batch D of i.i.d. samples of the
noise variable ξ with size |D| ≥ 1 and use it to compute stochastic approximations of f and g defined
by abuse of notation as f̂(x, y,D) := 1

|D|
∑
ξ∈D f̂(x, y, ξ) and ĝ(x, y,D) := 1

|D|
∑
ξ∈D ĝ(x, y, ξ).

We make the following noise assumptions which are implied by those in Ghadimi and Wang (2018):

Assumption 4. For any batchD,∇f̂(x, y,D) and ∂y ĝ(x, y,D) are unbiased estimator of∇f(x, y)
and ∂yg(x, y) with a uniformly bounded variance, i.e. for all x, y ∈ X × Y:

E
[∥∥∥∇f̂(x, y,D)−∇f(x, y)

∥∥∥2] ≤ σ̃2
f |D|

−1
, E

[
‖∂y ĝ(x, y,D)− ∂yg(x, y)‖2

]
≤ σ̃2

g |D|
−1
.

Assumption 5. For any batch D, the matrices F1(x, y,D) := ∂xy ĝ(x, y,D) − ∂xyg(x, y) and
F2(x, y,D) := ∂yy ĝ(x, y,D)− ∂yyg(x, y) have zero mean and satisfy for all x, y ∈ X × Y:∥∥E[F1(x, y,D)>F1(x, y,D)

]∥∥
op
≤ σ̃2

gxy |D|
−1
,
∥∥E[F2(x, y,D)>F2(x, y,D)

]∥∥
op
≤ σ̃2

gyy |D|
−1
.

For conciseness, we will use the notations σ2
f :=σ̃2

f |D|
−1, σ2

g :=σ̃2
g |D|

−1, σ2
gxy :=σ̃2

gxy |D|
−1 and

σ2
gyy :=σ̃2

gyy |D|
−1, without explicit reference to the batch D. Next, we describe the algorithm.

3.2 ALGORITHMS

Amortized Implicit Gradient Optimization (AmIGO) is an iterative algorithm for solving (1). It
constructs iterates xk, yk and zk such that xk approaches a stationary point of L while yk and zk
track the quantities y?(xk) and z?(xk, yk). AmIGO computes the iterate xk+1 using an update
equation xk+1 = xk − γkψ̂k for some given step-size γk and a stochastic estimate ψ̂k of ∇L(xk)
based on (3) and defined according to (4) below for some new batches of samples Df and Dgxy .

ψ̂k := ∂xf̂(xk, yk,Df ) + ∂x,y ĝ(xk, yk,Dgxy )>zk. (4)

Algorithm 1 AmIGO
1: Inputs: x0, y−1, z−1.
2: Parameters: γk, K.
3: for k ∈ {0, ...,K} do
4: yk ← Ak(xk, yk−1)
5: Sample batches Df , Dg .
6: (uk, vk)← ∇f̂(xk, yk,Df ).
7: zk ← Bk(xk, yk, vk, zk−1)
8: wk ← ∂xy ĝ(xk, yk,Dgxy )zk

9: ψ̂k−1 ← uk + wk
10: xk ← xk−1 − γkψ̂k−1
11: end for
12: Return xK .

AmIGO computes ψ̂k in 4 steps given iterates xk, yk−1
and zk−1. A first step computes an approximation yk
to y?(xk) using a stochastic algorithm Ak initialized at
yk−1. A second step computes unbiased estimates uk =

∂xf̂(xk, yk,Df ) and vk = ∂y f̂(xk, yk,Df ) of the partial
derivatives of f w.r.t. x and y. A third step computes an
approximation zk to z?(xk, yk) using a second stochas-
tic algorithm Bk for solving (2) initialized at zk−1. To
increase efficiency, algorithm Bk uses the pre-computed
vector vk for approximating the partial derivative ∂yf in
(2). Finally, the stochastic estimate ψ̂k is computed us-
ing (4) by summing the pre-computed vector uk with the
jacobian-vector product wk = ∂xy ĝ

(
xk, yk,Dgxy

)
zk.

AmIGO is summarized in Algorithm 1.

AlgorithmsAk and Bk. While various choices forAk and Bk are possible, such as adaptive algo-
rithms (Kingma and Ba, 2015), or accelerated stochastic algorithms (Ghadimi and Lan, 2012), we
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focus on simple stochastic gradient descent algorithms with a pre-defined number of iterations T and
N . These algorithms compute intermediate iterates yt and zn optimizing the functions y 7→ g(xk, y)
and z 7→ Q(xk, yk, z) starting from some initial values y0 and z0 and returning the last iterates yT
and zN as described in Algorithms 2 and 3. Algorithm Ak updates the current iterate yt−1 using
a stochastic gradient ∂y ĝ(xk, y

t−1,Dg) for some new batch of samples Dg and a fixed step-size
αk. Algorithm Bk updates the current iterate zt−1 using a stochastic estimate of ∂zQ(xk, yk, z

t−1)
with step-size βk. The stochastic gradient is computed by evaluating the Hessian-vector product
∂yy ĝ(xk, yk,Dgyy )zt−1 for some new batch of samples Dgyy and summing it with a vector vk ap-
proximating ∂yf(xk, yk) provided as input to algorithm Bk.

Warm-start for y0 and z0. Following the intuition that y?(xk) remains close to y?(xk−1) when
xk ' xk−1, and assuming that yk−1 is an accurate approximation to y?(xk−1), it is natural to initial-
ize Ak with the iterate yk−1. The same intuition applies when initializing Bk with zk−1. Next, we
introduce a framework for analyzing the effect of warm-start on the convergence speed of AmIGO.

Algorithm 2 Ak(x, y0)

1: Parameters: αk, T
2: for t ∈ {1, ..., T} do
3: Sample batch Dgt,k.

4: yt ← yt−1 − αk∂y ĝ
(
x, yt−1,Dgt,k

)
.

5: end for
6: Return yT .

Algorithm 3 Bk(x, y, v, z0)

1: Parameters: βk, N .
2: for n ∈ {1, ..., N} do
3: Sample batch Dgyyn,k .

4: zn ← zn−1−βk
(
∂yy ĝ

(
x, y,Dgyyn,k

)
zn−1 + v

)
.

5: end for
6: Return zN .

4 ANALYSIS OF AMORTIZED IMPLICIT GRADIENT OPTIMIZATION

4.1 GENERAL APPROACH AND MAIN RESULT

The proposed approach consists in three main steps: (1) Analysis of the outer-level problem , (2)
Analysis of the inner-level problem and (3) Analysis of the joint dynamics of both levels.

Outer-level problem. We consider a quantity Exk describing the evolution of xk defined as follows:

Exk :=


δk
2γk

E
[
‖xk − x?‖2

]
+ (1− u)E[L(xk)− L?], µ ≥ 0

δk
2γkL2E

[
‖∇L(xk)‖2

]
, µ < 0.

(5)

where u ∈ {0, 1} is set to 1 in the stochastic setting and to 0 in the deterministic one and δk is a
positive sequence that determines the convergence rate of the outer-level problem and is defined by:

δk := ηkγk, ηk+1 := ηk(1 + γk+1(ηk − µ))1µ≥0 + L1µ<0.

with η0 such that γ−10 ≥η0≥µ if µ≥0 and η0=L if µ<0 and where we choose the step-size γk to be
a non-increasing sequence with γ0 ≤ 1

L . With this choice for δk and by setting u = 1 in (5), Exk re-
covers the quantity considered in the stochastic estimate sequences framework of Kulunchakov and
Mairal (2020) to analyze the convergence of stochastic optimization algorithms when L is convex.
When L is non-convex, Exk recovers a standard measure of stationarity (Davis and Drusvyatskiy,
2018). In Section 4.3, we control Exk using bias and variance error Eψk−1 and V ψk−1 of ψ̂k given by
(6) below where Ek denotes expectation conditioned on (xk, yk, zk−1).

Eψk := E
[∥∥∥Ek[ψ̂k]−∇L(xk)

∥∥∥2], V ψk := E
[∥∥∥ψ̂k − Ek

[
ψ̂k

]∥∥∥2]. (6)

Inner-level problems. We consider the mean-squared errors Eyk and Ezk between initializations
(y0=yk−1 and z0=zk−1) and stationary values (y?(xk) and z?(xk, yk)) of algorithms Ak and Bk:

Eyk := E
[∥∥y0k − y?(xk)

∥∥2], Ezk := E
[∥∥z0k − z?(xk, yk)

∥∥2].
In Section 4.3, we show that the warm-start strategy allows to control Eyk and Ezk in terms of
previous iterates Eyk−1 and Ezk−1 as well as the bias and variance errors in (6). We further prove that
such bias and variance errors are, in turn, controlled by Eyk and Ezk .
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Joint dynamics. Following Habets (1974), we consider an aggregate error Etotk defined as a linear
combination of Exk , Eyk and Ezk with carefully selected coefficients ak and bk:

Etotk = Exk + akE
y
k + bkE

z
k . (7)

As suchEtotk represents the dynamics of the whole system. The following theorem provides an error
bound for Etotk in both convex and non-convex settings for a suitable choice of the coefficients ak
and bk provided that T and N are large enough:

Theorem 1. Choose a batch-size
∣∣Dgyy ∣∣≥1∨

σ̃2
gyy

µgLg
and the step-sizes αk=L−1g , βk=(2Lg)

−1,

γk=L−1. Set the coefficients ak and bk to be ak:=δ0(1−αkµg)1/2 and bk:=δ0
(
1− 1

2βkµg
)1/2

and set the number of iterations T and N of Algorithms 2 and 3 to be of order T=O(κg) and
N=O(κg) up to a logarithmic dependence on κg . Let x̂k=u(1−δk)x̂k−1+(1−u(1−δk))xk, with
x̂0=x0. Then, under Assumptions 1 to 5, Etotk satisfies:

E[L(x̂k)− L?] + Etotk ≤
(

1− (2κL)
−1
)k[

Etot0 + E[L(x0)− L?]
]

+
2W2

L
, µ ≥ 0

1

k

k∑
t=1

Etott ≤ 2

k
(E[L(x0)− L?] + Ey0 + Ez0 ) +

2W2

L
, µ < 0,

whereW2, defined in (20) of Appendix A.2, is the effective variance of the problem withW2=0 in
the deterministic setting and, in the stochastic setting,W2>0 is of the following order:

W2 =O
(
δ−10 κ5g|Dg|

−1
σ̃2
g + κ3g

∣∣Dgyy ∣∣−1σ̃2
gyy + κ2g

∣∣Dgxy ∣∣−1σ̃2
gxy + κ2g|Df |

−1
σ̃2
f

)
,

We describe the strategy of the proof in Section 4.3 and provide a proof outline in Appendix A.1
with exact expressions for all variables including the expressions of T , N andW2. The full proof
is provided in Appendix A.2. The choice of ak and bk ensures that Eyk and Ezk contribute less to
Etotk as the algorithms Ak and Bk become more accurate. The effective varianceW2 accounts for
interactions between both levels in the presence of noise and becomes proportional to the outer-level
variance σ2

f when the inner-level problem is solved exactly. In the deterministic setting, all variances
σ̃2
f , σ̃2

g , σ̃2
gxy and σ̃2

gyy vanish so thatW2=0. Hence, we characterize such setting byW2=0 and the
stochastic one byW2>0. Next, we apply Theorem 1 to obtain the complexity of AmIGO.

4.2 COMPLEXITY ANALYSIS

We define the complexity C(ε) of a bilevel algorithm to be the total number of queries to the gradients
of f and g, Jacobian/hessian-vector products needed by the algorithm to achieve an error ε according
to some pre-defined criterion. Let the number of iterations k, T andN and sizes of the batches |Dg|,
|Df |,

∣∣Dgxy ∣∣ and
∣∣Dgyy ∣∣, be such that AmIGO achieves a precision ε. Then C(ε) is given by:

C(ε) = k
(
T |Dg|+N

∣∣Dgyy ∣∣+
∣∣Dgxy ∣∣+ |Df |

)
, (8)

We provide the complexity of AmIGO in the 4 settings of Table 1 in the form of Corrolaries 1 to 4 .

Corollary 1 (Case µ>0 andW2=0). Use batches of size 1. AchievingL(xk)−L?+µ
2 ‖xk − x

?‖2≤ε
requires C(ε)=O

(
κLκg log

(
Etot0

ε

))
.

Corollary 1 outperforms the complexities in Table 1 in terms of the dependence on ε. It is pos-
sible to improve the dependence on κg to κ1/2g using acceleration in Ak and Bk as discussed in
Appendix A.5.1, or using generic acceleration methods such as Catalyst (Lin et al., 2018).

Corollary 2 (Case µW2>0). Choose |Dg|=Θ
(
ε−1κLκ

2
gσ̃

2
g

)
,
∣∣Dgxy ∣∣=Θ

(
ε−1σ̃2

gxy

)
, |Df |=Θ

(
σ̃2
f

ε

)
and

∣∣Dgyy ∣∣=Θ
(
σ̃2
gyy

(
1
ε ∨ κg

))
. Achieving E[L(x̂k)−L?]+µ

2E
[
‖xk − x?‖2

]
≤ε requires:

C(ε) = O

(
κL

(
κLκ

3
gσ̃

2
g + κg(1 ∨ εκg)σ̃2

gyy + σ̃2
gxy + σ̃2

f

)1

ε
log

(
Etot0 + E[L(x0)− L?]

ε

))
.
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Corollary 2 improves over the results in Table 1 in the stochastic strongly-convex setting and recov-
ers the dependence on ε of stochastic gradient descent for smooth and strongly convex functions up
to a logarithmic factor.

Corollary 3 (Case µ<0 andW2=0). Choose batches of size 1. Achieving 1
k

∑k
i=1 ‖∇L(xi)‖2 ≤ ε

requires C(ε) = O
(
κ4
g

ε ((L(x0)− L?) + Ey0 + Ez0 )
)

.

Corollary 3 recovers the complexity of AID-BiO (Ji et al., 2021) in the deterministic non-convex
setting. This is expected since AID-BiO also exploits warm-start for both Ak and Bk.

Corollary 4 (Case µ<0 andW>0). Choose
∣∣Dgxy ∣∣=Θ

(
κ2
g

ε σ̃
2
gxy

)
,
∣∣Dgyy ∣∣=Θ

(
κ3
g

ε σ̃
2
gyy

(
1 ∨ εµ2

g

))
,

|Df |=Θ
(
κ2
gσ̃

2
f

ε

)
and |Dg|=Θ

(
κ5
gσ̃

2
g

ε

)
. Achieving an error 1

k

∑k
i=1 E

[
‖∇L(xi)‖2

]
≤ ε requires:

C(ε) = O

(
κ5g
ε2

(
κ4gσ̃

2
g + κ2g

(
1 ∨ εµ2

g

)
σ̃2
gyy + σ̃2

gxy + σ̃2
f

)
(E[L(xk)− L?] + Ey0 + Ez0 )

)

Corollary 4 recovers the optimal dependence on ε of O( 1
ε2 ) achieved by stochastic gradient descent

in the smooth non-convex case (Arjevani et al., 2019, Theorem 1). It also improves over the results
in (Ji et al., 2021) which involve an additional logarithmic factor log(ε−1) as N is required to be
O(κg log(ε−1)). In our case,N remains constant since Bk benefits from warm-start. The faster rates
of MRBO/VRBO? (Yang et al., 2021) are obtained under the additional mean-squared smoothness
assumption (Arjevani et al., 2019), which we do not investigate in the present work. Such assump-
tion allows to achieve the improved complexity of O(ε−3/2 log(ε−1)). However, these algorithms
still require N=O(log(ε−1)), indicating that the use of warm-start in Bk could further reduce the
complexity to O(ε−3/2) which would be an interesting direction for future work.

4.3 OUTLINE OF THE PROOF

The proof of Theorem 1 proceeds by deriving a recursion for both outer-level error Exk and inner-
level errors Eyk and Ezk and then combining those to obtain an error bound on the total error Etotk .

Outer-level recursion. To allow a unified analysis of the behavior of Exk in both convex and non-
convex settings, we define Fk as follows:

Fk :=uδkE[L(xk)− L?]1µ>0 +
(
E[L(xk)− L(xk−1)] + Exk−1 − Exk

)
1µ<0.

The following proposition, with a proof in Appendix C.1, provides a recursive inequality on Exk
involving the errors in (6) due to the inexact gradient ψ̂k:
Proposition 2. Let ρk be a non-increasing sequence with 0<ρk<2. Assumptions 1 to 3 ensure that:

Fk + Exk ≤
(
1−

(
1− 2−1ρk

)
δk
)
Exk−1 + γkskV

ψ
k−1 + γk

(
sk + ρ−1k

)
Eψk−1, (10)

with sk defined as sk := 1
2δk +

(
u
2 δk + (1− u)

)
1µ>0.

In the ideal case where yk = y?(xk) and zk = z?(xk, yk), the bias Eψk vanishes and (10) simplifies
to (Kulunchakov and Mairal, 2019, Proposition 1) which recovers the convergence rates for stochas-
tic gradient methods in the convex case. However, yk and zk are generally inexact solutions and
introduce a positive bias Eψk . Therefore, controlling the inner-level iterates is required to control the
bias Eψk which, in turn, impacts the convergence of the outer-level as we discuss next.

Controlling the inner-level iterates yk and zk. Proposition 3 below controls the expected mean
squared errors between iterates yk and zk and their limiting values y?(xk) and z?(xk, yk):
Proposition 3. Let the step-sizes αk and βk be such that αk≤L−1g and βk≤ 1

2Lg
∧ µg
µ2
g+σ

2
gyy

. Let

Λk:=(1−αkµg)T and Πk:=
(

1−βkµg2

)N
. Under Assumptions 1, 4 and 5, it holds that:

E
[
‖yk − y?(xk)‖2

]
≤ ΛkE

y
k +Ryk, E

[
‖zk − z?(xk, yk)‖2

]
≤ ΠkE

z
k +Rzk, (11)

where Ryk=O
(
κgσ

2
g

)
and Rzk=O

(
κ3gσ

2
gyy+κ2gσ

2
f

)
are defined in (14) of Appendix A.2.
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While Proposition 3 is specific to the choice of the algorithmsAk and Bk in Algorithms 2 and 3, our
analysis directly extends to other algorithms satisfying inequalities similar to (11) such as acceler-
ated or variance reduced algorithms discussed in Appendices A.5.1 and A.5.2. Proposition 4 below
controls the bias and variance terms V ψk and Eψk in terms of the warm-start error Eyk and Ezk .
Proposition 4. Under Assumptions 1 to 5, the following inequalities hold:

Eψk ≤ 2L2
ψ(ΛkE

y
k + ΠkE

z
k +Ryk), V ψk ≤ w

2
x + σ2

xΠkE
z
k ,

where w2
x=O

(
κ2g

(
σ2
f + σ2

gxy

)
+ κ3gσ

2
gyy

)
, σ2

x=O
(
σ2
gxy + κ2gσ

2
gyy

)
and Lψ=O(κ2g) are positive

constants defined in (13) and (16) of Appendix A.2 with Lψ controlling the variations of Ek[ψ̂k].

Proposition 4 highlights the dependence of Eψk and V ψk on the inner-level errors. It suggests analyz-
ing the evolution of Eyk and Ezk to quantify how large the bias and variances can get:
Proposition 5. Let ζk > 0, a 2×2 matrix Pk, two vectors Uk and Vk in R2 all independent of xk,
yk and zk be as defined in Proposition 8 of Appendix A.2. Under Assumptions 1 to 5, it holds that:(

Eyk
Ezk

)
≤ Pk

(
Λk−1E

y
k−1 +Ryk−1

Πk−1E
z
k−1 +Rzk−1

)
+ 2γk

(
Eψk−1 + V ψk−1 + ζkE

x
k−1

)
Uk + Vk. (12)

Proposition 5 describes the evolution of the inner-level errors as the number of iterations k increases.
The matrix Pk and vectors Uk and Vk arise from discretization errors and depend on the step-sizes
and constants of the problem. The second term of (12) represents interactions with the outer-level
throughExk−1, V ψk−1 andEψk−1. Propositions 2, 4 and 5 describe the joint dynamics of (Exk , E

y
k , E

z
k)

from which the evolution of Etotk can be deduced as shown in Appendices A.1 and A.2.

5 EXPERIMENTS

We run three sets of experiments described in Sections 5.1 to 5.3. In all cases, we consider AmIGO
with either gradient descent (AmIGO-GD) or conjugate gradient (AmIGO-CG) for algorithm Bk.
We then compare these algorithms with AID methods without warm-start for Bk which we refer
to as (AID-GD) and (AID-CG) and with (AID-CG-WS) which uses warm-start for Bk but not for
Ak. We also consider other variants using either a fixed-point algorithm (AID-FP) (Grazzi et al.,
2020) or Neumann series expansion (AID-N) (Lorraine et al., 2020) for Bk. Finally, we consider
two algorithms based on iterative differentiation which we refer to as (ITD) (Grazzi et al., 2020) and
(Reverse) (Franceschi et al., 2017). For all methods except (AID-CG-WS), we use warm-start in
algorithm Ak, however only AmIGO, AmIGO-CG and AID-CG-WS exploits warm-start in Bk the
other AID based methods initializing Bk with z0=0. In Sections 5.2 and 5.3, we also compare with
BSA algorithm (Ghadimi and Wang, 2018), TTSA algorithm (Hong et al., 2020a) and stocBiO (Ji
et al., 2021).

5.1 SYNTHETIC PROBLEM

To study the behavior of AmIGO in a controlled setting, we consider a synthetic problem where
both inner and outer level losses are quadratic functions with thousands of variables as described
in details in Appendix F.1. Figure 1(a) shows the complexity C(ε) needed to reach 10−6 relative
error amongst the best choice for T and M over a grid as the conditioning number κg increases.
AmIGO-CG achieves the lowest time and is followed by AID-CG thus showing a favorable effect
of warm-start for Bk. The same conclusion holds for AmIGO-GD compared to AID-GD. Note that
AID-CG is still faster than AmIGO-CG for larger values of κg highlighting the advantage of using
algorithms Bk with O(

√
κg) complexity such as (CG) instead non-accelerated ones with O(κ−1g )

such as (GD). Figure 1(b) shows the relative error after 10s and maintains the same conclusions. For
moderate values of κg , only AmIGO and AID-CG reach an error of 10−20 as shown in Figure 1(c).
We refer to Figures 2 and 3 of Appendix F for additional results on the effect of the choice of T and
M showing that AmIGO consistently performs well for a wide range of values of T and M .

5.2 HYPER-PARAMETER OPTIMIZATION

We consider a classification task on the 20Newsgroup dataset using a logistic loss and a linear
model. Each dimension of the linear model is regularized using a different hyper-parameter. The
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Figure 1: Top row: performance on the synthetic task. The relative error is defined as a ratio
between current and initial errors (L(xk)− L?)/(L(x0)− L?). The complexity C(ε) as defined in
(8). Bottom row: performance on the hyper-parameter optimization task.

collection of those hyper-parameters form a vector x of dimension d=101631 optimized using an un-
regularized regression loss over the validation set while the model is learned using the training set.
We consider two evaluations settings: A default setting based on Grazzi et al. (2020); Ji et al. (2021)
and a grid-seach search setting near the default values of βk, T and N as detailed in Appendix F.2.
We also vary the batch-size from 103 ∗ {0.1, 1, 2, 4} and report the best performing choices for each
method. Figure 1(d,e,f) show AmIGO-CG to be the fastest, achieving the lowest error and highest
validation and test accuracies. The test accuracy of AmIGO-CG decreases after exceeding 80%
indicating a potential overfitting as also observed in Franceschi et al. (2018). Similarly, AmIGO-GD
outperformed all other methods that uses an algorithm Bk with O(κg) complexity. Moreover, all
remaining methods achieved comparable performance matching those reported in Ji et al. (2021),
thus indicating that the warm-start in Bk and acceleration in Bk were the determining factors for
obtaining an improved performance. Additionally, Figure 4 of Appendix F report similar results for
each choice of the batch-size indicating robustness to the choice of the batch-size.

5.3 DATASET DISTILLATION

Dataset distillation (Wang et al., 2018) consists in learning a synthetic dataset so that a model trained
on this dataset achieves a small error on the training set. Figure 5 of Appendix F.3 shows the training
loss (outer loss), the training and test accuracies of a model trained on MNIST by dataset distillation.
Similarly to Figure 1, AmIGO-CG achieves the best performance followed by AID-CG. AmIGO ob-
tains the best performance by far among methods without acceleration for Bk while all the remaining
ones fail to improve. This finding is indicative of an ill-conditioned inner-level problem as confirmed
when computing the conditioning number of the hessian ∂yyg(x, y) which we found to be of order
7×104. Indeed, when compared to the synthetic example for κg=104 as shown in Figure 2, we also
observe that only AmIGO-CG, AmIGO and AID-CG could successfully optimize the loss. Hence,
these results confirm the importance of warm-start for an improved performance.

6 CONCLUSION

We studied AmIGO, an algorithm for bilevel optimization based on amortized implicit differentia-
tion and introduced a unified framework for analyzing its convergence. Our analysis showed that
AmIGO achieves the same complexity as unbiased oracle methods, thus achieving improved rates
compared to methods without warm-start in various settings. We then illustrated empirically such
improved convergence in both synthetic and a hyper-optimization experiments. A future research
direction consists in extending the proposed framework to non-smooth objectives and analyzing
acceleration in both inner and outer level problems as well as variance reduction techniques.
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A CONVERGENCE OF AMIGO ALGORITHM

In this section, we provide a proof of Theorem 1 as well as its corollaries Corrolaries 1 to 4. In
Appendix A.1, we provide an outline of the proof Theorem 1 that states the main intermediary
results needed for the proof and provide explicit expressions for the quantities needed throughout
the rest of the paper. Appendices A.2 and A.3 provide the proofs of Theorem 1 and Corrolaries 1
to 4. The proofs of the intermediary results are deferred to Appendices B and C.

A.1 PROOF OUTLINE OF THEOREM 1

The proof of Theorem 1 proceeds in 8 steps as discussed bellow.

Step 1: Smoothness properties. This step consists in characterizing the smoothness of ∇L, y?, z?

as well as the conditional expectation E[ψ̂k|xk, yk, zk] knowing xk, yk and zk. For this purpose, we
consider the function Ψ : X × Y × Y → X defined as follows:

Ψ(x, y, z) := ∂xf(x, y) + ∂xyg(x, y)z.

Hence, by definition of ψ̂k, it is easy to see that E[ψ̂k|xk, yk, zk] = Ψ(xk, yk, zk). The following
proposition controls the smoothness of ∇L, y?, z? and Ψ and is adapted from (Ghadimi and Wang,
2018, Lemma 2.2). We provide a proof in Appendix B.2 for completeness.

Proposition 6. Under Assumptions 1 to 3, L, Ψ, y? and z? satisfy:

‖y?(x)− y?(x′)‖ ≤ Ly‖x− x′‖, ‖z?(x, y)− z?(x′, y′)‖ ≤ Lz(‖x− x′‖+ ‖y − y′‖)
‖∇L(x)−∇L(x′)‖ ≤ L‖x− x′‖, ‖Ψ(x, y, z)−∇L(x)‖ ≤ Lψ[‖y − y?(x)‖+ ‖z − z?(x, y)‖]

‖z?(x, y?(x))‖ ≤ µ−1g B,

where Ly , Lz , Lψ and L are given by:

Ly := µ−1g L′g, Lz := µ−2g MgB + µ−1g Lf , (13)

Lψ := max
((
Lf +Mgµ

−1
g B + L′gLz

)
, L′g

)
L :=

(
Lf + µ−2g L′gMgB + µ−1g

(
L′gLf +MgB

))(
1 + µ−1g L′g

)
The expressions of Ly , Lz , Lψ and L suggests the following dependence on the conditioning κg
of the inner-level problem which will be useful for the complexity analysis: Ly = O(κg), Lψ =
O(κ2g), Lz = O(κ2g) and L = O(κ3g).

Step 2: Convergence of the inner-level iterates. In this step, we control the mean squared er-
rors E

[
‖yk − y?(xk)‖2

]
and E

[
‖zk − z?(xk, yk)‖2

]
as stated in Proposition 3. In fact we prove a

slightly stronger version stated below:

Proposition 7. Let αk and βk be two positive sequences with αk≤L−1g and

βk≤ 1
2Lg

min

(
1,

2Lg
µg(1+µ

−2
g σ2

gyy
)

)
and define Λk:=(1−αkµg)T and Πk:=

(
1−βkµg2

)N
. De-

note by z̄k the conditional expectation of zk knowing xk, yk and z0k. Let Ryk and Rzk be defined
as:

Ryk := 2αkµ
−1
g σ2

g , Rzk := βkB
2µ−3g σ2

gyy + 3µ−2g σ2
f . (14)

Then, under Assumptions 1, 4 and 5 the iterates zk and z̄k satisfy:

E
[
‖yk − y?(xk)‖2

]
≤ ΛkE

y
k +Ryk

E
[
‖zk − z?(xk, yk)‖2

]
≤ ΠkE

[∥∥z0k − z?(xk, yk)
∥∥2]+Rzk,

E
[
‖z̄k − z?(xk, yk)‖2

]
≤ ΠkE

[∥∥z0k − z?(xk, yk)
∥∥2]

E
[
‖zk − z̄k‖2

]
≤ 4σ2

gµ
−2
g ΠkE

[∥∥z0k − z?(xk, yk)
∥∥2]+ 2Rzk. (15a)
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It is easy to see from the above expressions that Ryk = O
(
κgσ

2
g

)
while Rzk = O

(
κ3gσ

2
gyy + κ2gσ

2
f

)
as stated in Proposition 3. Controlling E[‖yk − y?(xk)‖]2 follows by standard results on SGD
(Kulunchakov and Mairal, 2020, Corollary 31) since the iterates of Algorithm 2 uses i.i.d. samples.
The error terms E

[
‖zk − z?(xk, yk)‖2

]
is more delicate since Algorithm 3 uses the same sample

∂y f̂(xk, yk) for updating the iterates, therefore introducing additional correlations between these
iterates. We defer the proof of Proposition 7 to Appendix B.3 which relies on a general result for
stochastic linear systems with correlated noise provided in Appendix E.

Step 3: Controlling the bias and variance errors V ψk and Eψk is achieved by Proposition 4.
The bias Eψk is controlled simply by using the smoothness of the potential Ψ near the point
(xk, y

?(xk), z?(xk, y
?(xk)) as shown in Proposition 6. The variance term V ψk is more deli-

cate to control due to the multiplicative noise resulting from the Jacobian-vector product between
∂xy ĝ(xk, yk,Dgxy )zk. We defer the proof to Appendix B.4 and provide below explicit expressions
for the constants σ2

x and w2
x:

w2
x :=

(
1 + 2L′gµ

−1
g + 6

(
σ2
gxy + (L′g)

2
)
µ−2g

)
σ2
f (16a)

+ 2
(
σ2
gxy + (L′g)

2
)
B2L−1g µ−3g σ2

gyy + 2B2µ−2g σ2
gxy .

σ2
x :=2σ2

gxy + 2(L′g)
2µ−2g σ2

gyy .

Note that w2
x=O

(
κ2g

(
σ2
f + σ2

gxy

)
+κ3gσ

2
gyy

)
and σ2

x=O
(
σ2
gxy+κ2gσ

2
gyy

)
, as stated in Proposition 4.

Step 4: Outer-level error bound. This step consists in obtaining the inequality in Proposition 2
which extends the result of (Kulunchakov and Mairal, 2020, Proposition 1) to biased gradients and
to the non-convex case. We defer the proof of such result to Appendix C.1.

Step 5: Inner-level error bound. This step consists in proving Proposition 5. For clarity, we
provide a second statement with explicit expressions for the quantities of interest:

Proposition 8. Let rk and θk be two positive non-increasing sequences no greater than 1. For any
0 ≤ v ≤ 1, denote by φk and R̃k the following non-negative scalars:

φk := (1− v)L2
gT

2α2
k + 2v, R̃yk := 2(1− v)Lgµ

−1
g T 2σ2

gα
2
k + vRyk

ζk := 2L
(
min

(
(1− u)−1, Lη−1k−1

)
1µ≥0 + 1µ<0

)
Finally, consider the following matrices and vectors:

Pk :=

(
1 + rk, 0

16L2
z
φk
θk
, 1 + θk

)
, Uk :=

(
2L2

y
γk
rk

4L2
z
γk
θk

(
1 + 4L2

y
φk
rk

)) , Vk := R̃yk

(
0

8L2
zθ
−1
k

)
.

(17)

Then, under Assumptions 1 to 5, the following holds:(
Eyk
Ezk

)
≤ Pk

(
Λk−1E

y
k−1 +Ryk−1

Πk−1E
z
k−1 +Rzk−1

)
+ 2γk

(
Eψk−1 + V ψk−1 + ζkE

x
k−1

)
Uk + Vk.

We defer the proof of the above result to Appendix C.2.

Step 6: General error bound. By combining the inequalities in Propositions 2 and 8 resulting from
the analysis of both outer and inner levels, we obtain a general error bound on Etotk in Proposition 9
with a proof in Appendix C.4.

Proposition 9. Choose the step-sizes αk and βk such that they are non-increasing in k and choose
rk and θk such that δkr−1k and δkθ−1k are non-increasing sequences. Choose the coefficients ak and
bk defining Etotk in (7) to be of the form ak = δkr

−1
k Λsk and bk = δkθ

−1
k Πs

k for some 0 < s < 1.
and fix a non-increasing sequence 0 < ρk < 1. Then, under Assumptions 1 to 5 Etotk satisfies:

Fk + Etotk ≤ ‖Ak‖∞E
tot
k−1 + V totk .
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where Vk and Ak are given by:

Ak :=


1− (1− 1

2ρk)δk + 2ζkλku
I
k

Λ1−s
k

(
1 + rk

(
1 + 16L2

zΠ
s
kθ
−2
k φk + 2L2

ψη
−1
k

(
2uIk + sk + ρ−1k

)))
Π1−s
k

(
1 + θk

(
1 + η−1k

(
2L2

ψ + σ2
x

)(
2uIk + sk + ρ−1k

)))
 (18)

V totk :=δk
(
Λsk(1 + r−1k ) + 16L2

zφkθ
−2
k Πs

k + 2L2
ψη
−1
k

(
2uIk + sk + ρ−1k

))
Ryk−1

+ δk

(
(1 + θ−1k )Πs

kR
z
k−1 + 8L2

zθ
−2
k Πs

kR̃
y
k

)
+ γk

(
sk + uIk

)
w2
x

where we introduced uIk = akU
(1)
k + bkU

(2)
k for conciseness with U (1)

k and U (2)
k being the compo-

nents of the vector Uk defined in Proposition 8.

Proposition 9 holds without conditions on the error made by Algorithms 2 and 3. The general form
of ak and bk allows to account for potentially decreasing step-sizes γk, αk and βk. However, in the
present work, we will restrict to the constant step-size for ease of presentation as we discuss next.

Step 7: Controlling the precision of the inner-level algorithms. In this step, we provide condi-
tions on T andN in Proposition 10 bellow so that ‖Ak‖∞ ≤ 1−(1−ρk)δk in the constant step-size
case. These conditions are expressed in terms of the following constants:

C1 :=1 + 2 log
(
6 + 24L2

ψη
−1
0

)
(19a)

C2 :=2 log
(
1 + 4L2

yL
−2 max (η0, 8ζ0)

)
(19b)

C3 := max

(
0,−2 log

(
5L2

ψη
−1
0

)
,−2 log

(
L

4L2
y

))
(19c)

C ′1 :=1 + 2 log
(
4 + 12η−10 (2L2

ψ + σ2
x)
)

(19d)

C ′2 :=2 log
(
1 + 2L2

zL
−2
y

(
1 + 16L2

y

))
, (19e)

C ′3 := max

(
0,−2 log

(
L2
ψ

4L2
zη0

)
,−2 log

(
γ
(
σ2
gxy + (L′g)

2
)))

(19f)

Proposition 10. Let Assumptions 1 to 5 hold. Choose ρk = 1
2 , the step-sizes to be constant:

αk=α≤ 1
Lg

, βk=β≤ 1
2Lg

and γk=γ≤ 1
L and choose the batch-size

∣∣Dgyy ∣∣ = Θ

(
σ̃2
gyy

µgLg

)
. Moreover,

set s = 1
2 , rk = θk = 1. Finally, choose T and N as follows:

T = bα−1µ−1g max (C1, C2, C3)c+ 1,

N = b2β−1µ−1g (max (C1, C2, C3) + max (C ′1, C
′
2, C

′
3))c+ 1

with C1, C2, C3, C
′
1, C

′
2 and C ′3 defined in (19a) to (19f). Then, ‖Ak‖∞ ≤ 1 − (1 − ρk)δk and

V totk ≤ γδ0W2, withW2 given by:

W2 :=

(
δ−10

1− u
2

1µ>0 + 3

)
w2
x +

60L2
ψ

δ0µgLg
σ2
g (20)

We provide a proof of Proposition 10 in Appendix D. It is easy to see from Proposition 10 that that
T=O(κg) and N=O(κg) when α= 1

Lg
and β= 1

2Lg
, where the big-O notation hides a logarithmic

dependence in κg coming from the constants {Ci, C ′i|i ∈ {1, 2, 3}}.
Step 8: Proving the main inequalities. The final step combines Propositions 9 and 10 to get the
desired inequality. We provide a full proof in Appendix A.2 assuming Propositions 9 and 10 hold.

A.2 PROOF OF THEOREM 1

In order to prove Theorem 1 in the convex case, we need the following averaging strategy lemma, a
generalization of (Kulunchakov and Mairal, 2020, Lemma 30):
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Lemma 1. Let L be a convex function onX . Let xk be a (potentially stochastic) sequence of iterates
in X . Let (Ek)k≥0 , (Vk)k≥0 and (δk)k≥0 be non-negative sequences such that δk ∈ (0, 1). Fix
some non-negative number u ∈ [0, 1] and define the following averaged iterates x̂k recursively by
x̂k = u(1−δk)x̂k−1+(1− (1− δk)u)xk and starting from any initial point x̂0. Assume the iterates
(xk)k≥1 satisfy the following relation for all k ≥ 1:

(1− u(1− δk))E[L(xk)− L?] + Ek ≤ (1− δk)(Ek−1 + (1− u)E[L(xk−1)− L?]) + Vk. (21)

Let Γk :=
∏k
t=1(1− δk). Then the averaged iterates (x̂k)k≥1 satisfy the following:

E[L(x̂k)− L?] + Ek ≤ Γk
(
E0 + E

[
L(x0)− L? + uk(L(x̂0)− L?)

])
+ Γk

∑
1≤t≤k

Γ−1t Vt.

Proof. For simplicity, we write Fk = E[L(xk)− L?] and F̂k = E[L(x̂k)− L?]. We first multiply
(21) by Γ−1k and sum the resulting inequalities for all 1 ≤ k ≤ K to get:

K∑
k=1

Γ−1k (1− u(1− δk))Fk + Γ−1k Tk ≤
K∑
k=1

Γ−1k (1− δk)(Tk−1 + (1− u)Fk−1) +

K∑
k=1

Γ−1k Vk.

Grouping the terms in Fk together and recalling that Γ−1k (1− δk) = Γ−1k−1 yields:

K∑
k=1

Γ−1k Fk − Γ−1k−1Fk−1 + u

K∑
k=1

Γ−1k−1(Fk−1 − Fk) ≤
K∑
k=1

(
Γ−1k−1Tk−1 − Γ−1k Tk

)
+

K∑
k=1

Γ−1k Vk.

Simplifying the telescoping sums and multiplying by Γk, we get:

FK + uΓK

K∑
k=1

Γ−1k−1(Fk−1 − Fk) ≤ −TK + ΓK

(
F0 + T0 +

K∑
k=1

Γ−1k Vk

)
. (22)

Consider now the quantity F̂k. Recalling that L is convex and by definition of the iterates x̂k we
apply Jensen’s inequality to write:

F̂k ≤ u(1− δk)F̂k−1 + (1− u(1− δk))Fk.

By iteratively applying the above inequality, we get that:

F̂K ≤uKΓK F̂0 + ΓK

K∑
k=1

uK−kΓ−1k (1− u(1− δk))Fk

=uKΓK F̂0 + ΓK

K∑
k=1

uK−kΓ−1k Fk −
K∑
k=1

uK−k+1Γk−1Fk

=uKΓK F̂0 + FK + ΓK

K−1∑
k=1

uK−kΓ−1k (Fk − Fk+1)

We can therefore apply (22) to the above inequality to get the desired result.

We now proceed to prove Theorem 1.

Proof of Theorem 1. By application of Proposition 9 and using the choice of T and N given by
Proposition 10, the following inequality holds:

Fk + Etotk ≤ (1− (1− ρk)δk)Etotk−1 + γδ0W2. (23)

withW defined in Proposition 10. We then distinguish two cases depending on the sign of µ:

Case µ ≥ 0. Recall that Fk and Exk are given by:

Fk = uδkE[L(xk)− L?], Exk =
δk

2γk
‖xk − x?‖2 + (1− u)E[L(xk)− L?]
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Since µ > 0, L is a convex function and we can apply Lemma 1 with Vk=γδ0W2 and
Ek= δk

2γk
‖xk − x?‖2+akE

y
k+bkE

z
k . The result follows by noting that Γk

∑k
t=1 Γ−1t ≤ δ−10 .

Case µ < 0. In this case, we recall that Fk and Exk are given by:

Fk = E[L(xk)− L(xk−1)] + Exk−1 − Exk , Exk = L−1E
[
‖∇L(xk)‖2

]
.

We then sum (23) for all iterations 0 ≤ t ≤ k which, by telescoping, yields:

E[L(xk)− L(x0)] + Ex0 − Exk + Etotk − Etot0 +
∑

1≤t≤k

(1− ρt)δtEtott ≤ kγδ0W2.

Using that E[L(xk)− L?] +Etotk −Exk is non-negative since Etotk −Exk = akE
y
k + bkE

z
k , we get:∑

1≤t≤k

(1− ρt)δtExt ≤ (E[L(x0)− L?] + a0E
y
0 + b0E

z
0 ) + kγδ0W2.

Finally, since ρt = 1
2 , δt = Lγ, the result follows after dividing both sides by 1

2kLγ.

A.3 PROOF OF CORROLARIES 1 TO 4

Proof of Corollary 1. Choosing u = 0 implies that Exk = µ
2 ‖xk − x

?‖2 +L(xk)−L? ≤ Etotk . We
can then apply Theorem 1 for µ > 0 which yields the following:

µ

2
‖xk − x?‖+ L(xk)− L? ≤

(
1− (2κL)

−1
)k
Etot0 +

2W2

L
. (24)

In the deterministic setting, it holds all variances vanish : σ2
f=σ2

g=σ2
gyy=σ2

gxy=0. Hence,W2 = 0

by definition of W2. Therefore, to achieve an error L(xk)−L?≤ε for some ε>0, (24) suggests
choosing k=O

(
κL log

(
Etot0

ε

))
. Additionally, T=Θ(κg) and N=Θ(κg) as required by Theorem 1

and since σ2
gyy=0, it holds that N=O(κg). Using batches of size 1, yields the desired complexity.

Proof of Corollary 2. Here we choose u = 1 and apply Theorem 1 for µ > 0 which yields:

E[L(x̂k)− L?] + Etotk ≤
(

1− (2κL)
−1
)k(

Etot0 + E[L(x0)− L?]
)

+ 2L−1W2

Hence, to achieve an error E[L(x̂k)− L?] ≤ ε, we need k = O
(
κL log

(
Etot0 +E[L(x0)−L?]

ε

))
to

guarantee that the first term in the l.h.s. of the above inequality is O(ε). Moreover, we recall that
L−1 = O(κ−3g ) from Proposition 6 and that Theorem 1 ensure the varianceW satisfies:

W2 =O
(
κ5gσ

2
g + κ3gσ

2
gyy + κ2gσ

2
gxy + κ2gσ

2
f

)
.

Hence, ensuring the variance term 2L−1W2 is of order ε is achieved by choosing the size of the
batches as follows:

|Df | = Θ

(
σ̃2
f

ε

)
, |Dg| = Θ

(
κLκ

2
gσ̃

2
g

ε

)
,
∣∣Dgxy ∣∣ = Θ

(
σ̃2
gxy

ε

)
,

∣∣Dgyy ∣∣ = Θ

(
σ̃2
gyy

(
1

ε
∨ κg

))
Recall that T=Θ(κg) andN=Θ(κg) as required by, Theorem 1, thus yielding the desired result.

Proof of Corollary 3. In the non-convex deterministic case, recall thatExk = 1
L‖∇L(xk)‖2 ≤ Etotk .

We thus apply Theorem 1 for µ < 0, multiply by L to get:

1

k

k∑
t=1

‖∇L(xt)‖2 ≤
2L

k
(L(x0)− L? + (Ey0 + Ez0 )) + 2W2.

The setting being deterministic, it holds that W2=0. Moreover, recall that L = O(κ3g) from
Proposition 6. Hence, to achieve an error of order min1≤t≤k ‖∇L(xt)‖2 ≤ ε, it suffice to choose

k=O
(
κ3
g

ε (L(x0)− L? + (Ey0 + Ez0 ))
)

. Thus using batches of size 1 and T and N of order κg .
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Proof of Corollary 4. In the non-convex stochastic case, Exk = 1
LE
[
‖∇L(xk)‖2

]
≤ Etotk . We thus

apply Theorem 1 for µ < 0, multiply by L to get:

1

k

k∑
t=1

E
[
‖∇L(xt)‖2

]
≤ 2L

k
(E[L(x0)− L?] + (Ey0 + Ez0 )) + 2W2.

to achieve an error of order ε, we need to ensure each term in the l.h.s. of the above inequality
is of order ε. For the first term, similarly to the deterministic setting Corollary 3, we simply need

k = O
(
κ3
g

ε (L(x0)− L? + (Ey0 + Ez0 ))
)

. For the second term, we need to haveW2=O(ε), which
is achieved using the following choice for the sizes of the batches:

|Df | = O

(
κ2gσ̃

2
f

ε

)
, |Dg| = O

(
κ5gσ̃

2
g

ε

)
,
∣∣Dgxy ∣∣ = O

(
κ2gσ̃

2
gxy

ε

)
,

∣∣Dgyy ∣∣ = O

(
κ3gσ̃

2
gyy

ε

(
1 ∨ εµ2

g

))
.

Finally, as required by Theorem 1, we set T = Θ(κg) and N = Θ(κg) thus yielding the desired
complexity.

A.4 COMPARAISONS WITH OTHER METHODS

In this subsection we derive and discuss the complexities of methods presented in Table 1.

A.4.1 COMPARAISON WITH TTSA (HONG ET AL., 2020B)

Proposition 11. strongly-convex case µ > 0. The complexity of the TTSA algorithm in Hong et al.
(2020b) to achieve an error µ

2E
[
‖xk − x?‖2

]
≤ ε is given by:

C(ε) := O

((
κ

17
2
g κ

1/2
L + κ

7/2
L

) 1

ε
3
2

log
1

ε

)
non-convex case µ < 0. The complexity of the TTSA algorithm in Hong et al. (2020b) to achieve
an error 1

k

∑
1≤i≤k E

[
‖∇L(xi)‖2

]
≤ ε is given by:

C(ε) := k(1 +N) = O

((
κ11g + κ16g

) 1

ε
5
2

log

(
1

ε

))
.

Proof. strongly-convex case µ > 0 Using the choice of step-sizes in Hong et al. (2020b), the
following bound holds:

E
[
‖xk − x?‖2

]
.

k∏
i=0

(
1− 8

3(k + kα)

)(
∆0
x + L2

ψµ
−2
g ∆y

0

)
+

L2
ψ

µgµ
4
3

(
µ−1g +

µg
µ2
L2
y

)(
1

k + kα

) 2
3

where ∆0
x = E

[
‖x0 − x?‖2

]
, E
[
‖y1 − y?(x0)‖2

]
and kα given by:

kα = max

(
35

(
L3
g

µ3
g

(1 + σ2
g)

3
2

)
,

(512)
3
2L2

ψL
2
y

µ2

)
.

By a simple calculation, it is easy to see that
∏k
i=0

(
1− 8

3(k+kα)

)
≤ (kα−1)2

(k−1+kα)2 . Moreover, using

that Lψ = O(µ−2g ), Ly = O(µ−1g ), we get that

µ

2
E
[
‖xk − x?‖2

]
.

(kα − 1)2

(k + kα − 1)2
(
µ∆0

x + µµ−6g ∆y
0

)
+ µ−6g µ−

1
3

(
1 + µ−2

)( 1

k + kα

) 2
3
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Using that L=O(µ−3g ), we get µ−6g µ−
1
3

(
1 + µ−2

)
=O
(
µ−5g κ

1
3

L + µgκ
7
3

L

)
. Hence, to reach an error

ε, we need to control both terms in the above inequality. This suggests the following condition on k
to control the second term which dominates the error:

k ≥
(
µ

3
2
g κ

7/2
L + κ

1/2
L µ

− 15
2

g

) 1

ε
3
2

.

Moreover, the result in (Hong et al., 2020b, Theorem 1) requires N = Θ
(
κg log 1

ε

)
, where N is the

number of terms in the Neumann series used to approximate the hessian inverse (∂yyg(x, y))−1 in
the expression of the gradient∇L. Hence, the total complexity is given by the following expression:

C(ε) := k(1 +N) = O

((
κ

17
2
g κ

1/2
L + κ

7/2
L

) 1

ε
3
2

log
1

ε

)
Smooth Non-convex case µ < 0. Following Hong et al. (2020b), consider the proximal map of L
for a fixed ρ > 0:

x̂(z) := arg min
x∈X

{
L(x) +

ρ

2
‖x− z‖2

}
and define the quantity ∆̃k

x := E
[
‖x̂(xk)− xk‖2

]
, where xk are the iterates produced by the TTSA

algorithm. Let K be a random variable uniformly distributed on {0, ...,K − 1} and independent
from the remaining r.v. used in the TTSA algorithm. The result in (Hong et al., 2020b, Theorem 2)
provide the following error bound on ∆̃k

x

1

k

∑
1≤i≤k

∆̃i
x .

(
L2
ψ

(
∆0 +

σ2
g

µ2
g

)
+ µg

)
k−

2
5

L2
.

where ρ is set to 2L and ∆0≤max
(
E[L(x0)−L?],E

[
‖y1−y?(x0)‖2

])
. Now, recall that by defi-

nition of the proximal map, we have the following identity:

1

k

∑
1≤i≤k

E
[
‖∇L(xi)‖2

]
≤ 2(ρ2 + L2)

1

k

∑
1≤i≤k

∆̃i
x . L2 1

k

∑
1≤i≤k

∆̃i
x.

Hence, we obtain the following error bound:

1

k

∑
1≤i≤k

E
[
‖∇L(xi)‖2

]
≤
(
κ4g
(
∆0 + κ2gσ

2
g

)
+ µg

)
k−

2
5

where we used that Lψ = O(κ2g). Therefore, to reach an error of order ε, TTSA requires:

k ≥ 1

ε
5
2

(
κ10g ∆

5
2
0 + κ15g σ

5
g

)
Moreover, controlling the bias in the estimation of the gradient requires N = O(κg log 1

ε ) terms in
the Neumann series approximating the hessian. Hence, the total complexity of the algorithm is:

C(ε) := k(1 +N) = O

((
κ11g + κ16g

) 1

ε
5
2

log

(
1

ε

))
.

A.4.2 COMPARAISON WITH ACCBIO (JI AND LIANG, 2021)

Complexity of AccBio. The bilevel algorithm AccBio introduced in Ji and Liang (2021) uses ac-
celeration for both the inner and outer loops. This allows to obtain the following conditions on k, T
and N to achieve an ε accuracy:

k = O

(
κ

1
2

L log
1

ε

)
, T = O

(
κ

1
2
g

)
, N = O

(
κ

1
2
g log

1

ε

)
.
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Note that, since AccBio do not use a warm-start strategy when solving the linear system, N is
required to grow as log 1

ε in order to achieve an ε accuracy. This contributes an additional logarithmic

factor to the total complexity so that C(ε) = O(κ
1
2

Lκ
1
2
g

(
log 1

ε

)2
). This is by contrast with AmIGO

which exploits warm start when solving the linear system and thus only needs a constant number of
iterations N = O(κg) although the dependence on κg is worse compared to AccBio. However, it is
possible to improve such dependence by using acceleration in the inner-level algorithms Ak and Bk
as we discuss in Appendix A.5.1.

Complexity of AccBio as a function of µ and µg . The authors choose to report the complexity as a
function of µ and µg instead of the conditioning numbers κL and κg . To achieve this, they observe
that, under the additional assumption that the hessian ∂yyg(x, y) is constant w.r.t. y, the Lipschitz
constant L has an improved dependence on µg: L = O(µ−2g ) instead of L = O(µ−3g ) in the general
case where ∂yyg(x, y) is only Lipschitz in y. This allows them to express κL = L

µ = O(µ−2g µ−1)

and to report the following complexities in terms of µ and µg:

C(ε) = O

(
µ−

1
2µ
− 3

2
g

(
log

1

ε

)2
)
.

Note that, in the general case where L = O(µ−3g ), the complexity as a function of µ and µg becomes

O
(
µ−

1
2µ−2g

(
log 1

ε

)2)
, while still maintaining the same expression in terms of κL and κg . Hence,

using the expression in terms of conditioning allows a more general expression for the complexity
that is less sensitive to the specific assumptions on g and is therefore more suitable for comparaison
with other results in the literature.

A.5 CHOICE OF THE INNER-LEVEL ALGORITHMS Ak AND Bk .

The choice of Ak and Bk has an impact on the total complexity of the algorithm. We discuss two
choices for Ak and Bk which improve the total complexity of AmIGO: Accelerated algorithms (in
Appendix A.5.1) and variance reduced algorithms (in Appendix A.5.2).

A.5.1 ACCELERATION OF THE INNER-LEVEL FOR AMIGO

AmIGO could benefit from acceleration in the inner-loop by using standard acceleration schemes
Nesterov (2003) for Ak and Bk. As a consequence, and using analysis of accelerated algorithms
(Nesterov, 2003) in the deterministic setting, the error of the inner-level iterates would satisfy:

E
[
‖yk − y?(xk)‖2

]
≤ Λ̃kE

y
k , E

[
‖yk − y?(xk)‖2

]
≤ Π̃kE

z
k

where Λ̃k and Π̃k are accelerated rates of the form Λ̃k = O((1−√κg)T ) and Π̃k = O((1−√κg)N ).
The rest of the proofs are similar provided that Λk and Πk are replaced by their accelerated rates Λ̃k
and Π̃k. This implies that T and N need to be only of order T = O(

√
κg) and N = O(

√
κg) so

that the final complexity becomes:

C(ε) := O

(
κLκ

1/2
g log

1

ε

)
.

Note that using conjugate gradient for Bk also enjoys an accelerated convergence rate Shewchuk
et al. (1994). This is confirmed in our experiments of Figure 1 where AmIGO-CG enjoys the fastest
convergence.

In order to further improve the dependence on κL to κ1/2L , one would need to use an accelerated
scheme when updating the iterates xk. The analysis of such scheme along with warm-start would
be an interesting direction for future work.

A.5.2 VARIANCE REDUCED ALGORITHMS FOR Ak AND Bk

When the inner-level cost function g is a finite average of functions g(x, y) = 1
n

∑
1≤i≤n gi(x, y)

empirical average, it is possible to use variance reduced algorithms such as SAG (Schmidt et al.,
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2017). If every function gi is Lg-smooth, then by (Schmidt et al., 2017, Proposition 1), the inner
level error becomes:

E
[
‖yk − y?(xk)‖2

]
. Λ̃k(3Eyk +

9

4
L−2g σ2

g),

with Λ̃k =
(
1− κg

8n

)T
. This has the advantage that the error due to the variance decays exponentially

with the number of iterations T . As a consequence, the dependence of the effective varianceW2 on
the conditioning numbers κL and κg can be improved to:

W2 =O
(
|Dg|−1σ̃2

g + κ3g
∣∣Dgyy ∣∣−1σ̃2

gyy + κ2g
∣∣Dgxy ∣∣−1σ̃2

gxy + κ2g|Df |
−1
σ̃2
f

)
.

This can be achieved by taking T = O(nκg) up to a logarithmic dependence on the condition
numbers. As a consequence, the complexity in the strongly convex stochastic setting becomes:

C(ε) = O

(
κL

(
nσ̃2

g + κg(1 ∨ εκg)σ̃2
gyy + σ̃2

gxy + σ̃2
f

)1

ε
log

(
Etot0 + E[L(x0)− L?]

ε

))
.

In the non-convex setting, the complexity becomes:

C(ε) = O

(
κ4g
ε2

(
nσ̃2

g + κ3g
(
1 ∨ εµ2

g

)
σ̃2
gyy + κgσ̃

2
gxy + κgσ̃

2
f

)
(E[L(xk)− L?] + Ey0 + Ez0 )

)
.

The downside of this approach is the dependence on the number n of functions gi in the total com-
plexity.

B PRELIMINARY RESULTS

B.1 EXPRESSION OF THE GRADIENT

We provide a proof of Proposition 1 which shows that L is differentiable and provides an expression
of its gradient.

Proof. Assumption 1 ensures that y 7→ g(x, y) admits a unique minimizer y?(x) defined as the
unique solution to the implicit equation ∂yg(x, y?(x)) = 0. Moreover, since g is twice continu-
ously differentiable and strongly convex, it follows that ∂yyg(x, y?(x)) is invertible for any x ∈ X .
Therefore the implicit function theorem (Lang, 2012, Theorem 5.9), ensures that x 7→ y?(x) is
continuously differentiable with Jacobian given by ∇y?(x) = −∂xyg(x, y?(x))∂yyg(x, y?(x))−1.
Hence, by composition of differentiable functions, L is also differentiable with gradient given by:

∇L(x) = ∂xf(x, y?(x))− ∂xyg(x, y?(x))∂yyg(x, y?(x))−1∂yf(x, y?(x)).

We can thus define z?(x, y) = −∂yyg(x, y)−1∂yf(x, y) to get the desired expression for ∇L(x)
and note that z? is the solution to (2).

B.2 SMOOTHNESS PROPERTIES OF L, Y? , z? AND Ψ

Proof of Proposition 6. Lipschitz continuity of x 7→ y?(x). By Assumptions 1 and 3, the implicit
function theorem (Lang, 2012, Theorem 5.9) ensures y?(x) is differentiable with Jacobian given by:

∇y?(x) = −∂xyg(x, y?(x))(∂yyg(x, y?(x)))
−1
.

Moreover, by Assumption 3, we know that ∂yg(x, y) is L′g-Lipchitz in x for any y ∈ Y , hence,
‖∂xyg(x, y?(x))‖op is upper-bounded by L′g . Moreover, by Assumption 1, g is µg-strongly convex
in y uniformly on X . Therefore, it holds that

∥∥∂yyg(x, y?(x))−1
∥∥
op
≤ µ−1g . This allows to deduce

that ‖∇y?(x)‖op ≤ µ−1g L′g , and by application of the fundamental theorem of calculus that:

‖y?(x)− y?(x′)‖ ≤ µ−1g L′g‖x− x′‖.

This shows that y? is Ly-Lipschitz continuous with Ly := µ−1g L′g .
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Lipchitz continuity of x 7→ z?(x, y). Let (x, y) and (x′, y′) be two points in X × Y . Recalling the
definition of z?(x, y) in Proposition 1, it is easy to see that z?(x, y) admits the following expression:

z?(x, y) = −∂yyg(x, y)−1∂yf(x, y). (25)

Recalling the expression of z?(x, y), the following holds:

z?(x, y)− z?(x′, y′) =∂yyg(x′, y′)−1∂yf(x′, y′)− ∂yyg(x, y)−1∂yf(x, y)

=
(
∂yyg(x′, y′)−1 − ∂yyg(x, y)−1

)
∂yf(x′, y′)

+ ∂yyg(x, y)−1(∂yf(x′, y′)− ∂yf(x, y))

=∂yyg(x′, y′)−1(∂yyg(x, y)− ∂yyg(x′, y′))∂yyg(x, y)−1∂yf(x′, y′)

+ ∂yyg(x, y)−1(∂yf(x′, y′)− ∂yf(x, y))

Hence, by taking the norm of the above quantity a triangular inequality followed by operator in-
equalities, it follows that:

‖z?(x, y)− z?(x′, y′)‖ ≤
∥∥H−12

∥∥
op
‖H1 −H2‖op

∥∥H−11

∥∥
op
‖∂yf(x′, y′)‖

+
∥∥H−11

∥∥‖∂yf(x′, y′)− ∂yf(x, y)‖.

where we introduced H1 = ∂yyg(x, y) and H2 = ∂yyg(x′, y′) for conciseness. Using As-
sumption 1, we can upper-bound

∥∥H−11

∥∥
op

and
∥∥H−12

∥∥
op

by µ−1g . By Assumption 3, we
know that ‖H1 −H2‖op ≤ Mg‖(x, y)− (x′, y′)‖. Finally by Assumption 2, we also have that
‖∂yf(x′, y′)− ∂yf(x, y)‖ ≤ Lf‖(x, y)− (x′, y′)‖ and that ‖∂yf(x′, y′)‖ ≤ B ensuring that:

‖z?(x, y)− z?(x′, y′)‖ ≤
(
µ−2g MgB + µ−1g Lf

)
‖(x, y)− (x′, y′)‖.

Hence, we conclude that z? is Lz-Lipchitz continuous with Lz defined as in (13).

boundedness of z?(x, y) Recalling the expression of z? in (25), it is easy to see that ‖z?(x, y)‖ is
upper-bounded by µ−1g B since ∂yyg(x, y) is µg-strongly convex in y by Assumption 1 and ∂yf(x, y)
is bounded by B by Assumption 2.

Regularity of Ψ.

Ψ(x, y, z)−Ψ(x′, y′, z′) =∂xf(x, y)− ∂xf(x′, y′) + ∂xyg(x, y)z − ∂xyg(x′, y′)z′

=∂xf(x, y)− ∂xf(x′, y′) + ∂xyg(x, y)(z − z′)
+ (∂xyg(x, y)− ∂xyg(x′, y′))z′.

By taking the norm of the above expression and applying a triangular inequality followed by operator
inequalities, it follows that:

‖Ψ(x, y, z)−Ψ(x′, y′, z′)‖ ≤‖∂xf(x, y)− ∂xf(x′, y′)‖+ ‖∂xyg(x, y)‖op‖z − z
′‖ (26)

+ ‖∂xyg(x, y)− ∂xyg(x′, y′)‖op‖z
′‖

≤Lf (‖x− x′‖+ ‖y − y′‖) + L′g‖z − z′‖
+Mg‖z′‖(‖x− x′‖+ ‖y − y′‖).

To get the first term of the last inequality above, we used that ∂xf is Lf -Lipschitz by Assumption 2.
To get the second term, we used that ∂xyg(x, y) is bounded since ∂yg(x, y) is L′g-Lipschitz by
Assumption 3. Finally, for the last term, we used that ∂xyg(x, y) is Mg-Lipschitz by Assumption 3.

By choosing x′ = x, y′ = y?(x) and z′ = z?(x, y?(x)), it is easy to see from Proposition 1 that
Ψ(x, y?(x), z?(x, y?(x))) = ∇L(x). Hence, applying the above inequality yields:

‖Ψ(x, y, z)−∇L(x)‖ ≤(Lf +Mg‖z?(x, y?(x))‖)‖y − y?(x)‖+ L′g‖z − z?(x, y?(x))‖
≤(Lf +Mg‖z?(x, y?(x))‖)‖y − y?(x)‖+ L′g‖z − z?(x, y)‖

+ L′g‖z?(x, y)− z?(x, y?(x))‖

As shown earlier, ‖z?(x, y?(x))‖ is upper-bounded by µ−1g B, while ‖z?(x, y)− z?(x, y?(x))‖ is
bounded by Lz‖y − y?(x)‖. This allows to conclude that ‖Ψ(x, y, z)−∇L(x)‖ ≤ Lψ with Lψ
defined in (13).
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Lipschitz continuity of x 7→ ∇L(x). We apply (26) with (y, z) = (y?(x), z?(x, y?(x))) and
(y′, z′) = (y?(x′), z?(x, y?(x′))) which yields:

‖∇L(x)−∇L(x′)‖ ≤(Lf +Mg‖z?(x′, y?(x′))‖)(‖x− x′‖+ ‖y?(x)− y?(x′)‖)
+ L′g‖z?(x, y?(x))− z?(x′, y?(x′))‖
≤
(
Lf +Mgµ

−1
g B + L′gLz

)
(1 + Ly)‖x− x′‖,

where we used that ‖z?(x′, y?(x′))‖ is upper-bounded by µ−1g B, z? is Lz-Lipschitz and y? is Ly-
Lipschitz. Hence,∇L is L-Lipschitz continuous, with L as given by (13).

B.3 CONVERGENCE OF THE ITERATES OF ALGORITHMS Ak AND Bk

Proof. Controlling the iterates yt of Ak.

Consider a new batch Dg of samples ξ. We have by definition of the update equation of yt that:∥∥yt − y?(xk)
∥∥2 =

∥∥yt−1 − y?(xk)
∥∥2 + α2

k

∥∥∂y ĝ(xk, yt−1,Dg)∥∥2
− 2αk∂y ĝ

(
xk, y

t−1,Dg
)>(

yt−1 − y?(xk)
)

Taking the expectation conditionally on xk and yt−1, we get:

E
[∥∥yt − y?(xk)

∥∥2∣∣∣xk, yt−1] =(1− αkµg)
∥∥yt−1 − y?(xk)

∥∥2
+ α2

kE
[∥∥∂y ĝ(xk, yt−1,Dg)− ∂yg(xk, y

t−1)
∥∥2∣∣∣xk, yt−1]

− 2αk∂yg
(
xk, y

t−1)>(yt−1 − y?(xk)− αk
2
∂yg(xk, y

t−1)
)

≤(1− αkµg)
∥∥yt−1 − y?(xk)

∥∥2 + 2α2
kσ

2
g

The first line uses that ∂y ĝ
(
xk, y

t−1,Dg
)

is an unbiased estimator of ∂yg(xk, y
t−1). For the second

line, we use Assumption 4 which allows to upper-bound the variance of ∂y ĝ by σ2
g . Moreover, since

g is convex and Lg-smooth and since αk ≤ L−1g , it follows that the last term in the above inequality
is non-positive and can thus be upper-bounded by 0. By unrolling the resulting inequality recursively
for 1 < t ≤ k, we obtain the desired result.

Controlling the iterates zn of Bk. The poof follows by direct application of Proposition 15 with
β = βk and the following choices for An, A, b̂, b:

An =∂yy ĝ(xk, yk,Dgyy ), b̂ =∂y f̂(xk, yk,Df )

A =∂yyg(xk, yk) b =∂yf(xk, yk).

This directly yields the following inequalities:

E
[
‖zk − z?(xk, yk)‖2

]
≤Π̃kE

[∥∥z0k − z?(xk, yk)
∥∥2]+ R̃zk,

E
[
‖z̄k − z?(xk, yk)‖2

]
≤Π̃kE

[∥∥z0k − z?(xk, yk)
∥∥2].

where Π̃k and R̃zk are given by:

Π̃k := (1− βkµg)N , R̃zk := β2
k

(
σ2
gE
[
‖z?(xk, yk)‖2

]
+ 3

(
N ∧ 1

βkµg

)
σ2
f

)(
N ∧ 1

βkµg

)
.

First we have that Π̃k ≤ Πk. Moreover, Proposition 6, we have that ‖z?(xk, yk)‖ ≤ Bµ−1g hence,
R̃zk ≤ Rzk thus yielding the desired inequalities. Finally (15a) also follows similarly using (45) from
Proposition 15.
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B.4 CONTROLLING THE BIAS AND VARIANCE Eψk AND V ψk

Proof of Proposition 4 . Recall that the expressions of Eψk and V ψk in (6) involves the conditional

expectation Ek
[
ψ̂k

]
knowing xk, yk and zk−1. This can be also expressed using Ψ as follows:

Ek
[
ψ̂k

]
=E
[
E
[
ψ̂k|xk, yk, zk

]
|xk, yk, zk−1

]
=E[Ψ(xk, yk, zk)|xk, yk, zk−1]

=E[Ψ(xk, yk,E[zk||xk, yk, zk−1])]

where we used the tower property for conditional expectations in the first line, then the fact that
the expectation of ψk conditionally on xk, yk and zk is simply Ψ(xk, yk, zk). Finally, for the last
line, we use the independence of the noise and the linearity of Ψ w.r.t. the last variable. In all what
follows, we write z̄k = E[zk|xk, yk, zk−1] which is the same object as defined in Proposition 7. We
then treat Eψk and V ψk separately.

Bounding Eψk . Using Propositions 6 and 7 we directly get the desired inequality:

Eψk ≤2L2
ψ

(
E
[
‖yk − y?(xk)‖2

]
+ E

[
‖z̄k − z?(xk, yk)‖2

])
≤2L2

ψ(ΛkE
y
k + ΠkE

z
k +Ryk)

Bound on V ψk . We decompose V ψk into a sum of three terms Wk, W ′k and W ′′k given by:

Wk := E
[∥∥∥∂xf̂(xk, yk,Df )− ∂xf(xk, yk)

∥∥∥2],
W ′k := E

[∥∥∥∂xy ĝ(xk, yk, ξ̃N+1,k

)
zk − ∂xyg(xk, yk)z̄k

∥∥∥2]
W ′′k := E

[(
∂xf̂(xk, yk,Df )− ∂xf(xk, yk)

)>
∂xyg(xk, yk)(zk − z̄k)

]
.

where we used that ξ̃N+1,k is independent from zk and Df to get the last term. Hence, using
Assumption 4 to bound the first term of the above relation, we get V ψk ≤ σ2

f +W ′k + 2W ′′k . Thus, it
remains to control each of W ′k and W ′′k .

Bound on W ′′k . Using that Df is independent from ξ̃n,k, we can apply Proposition 14 to write:

W ′′k = βkE

[
∂x(f̂ − f)(xk, yk,Df )>∂xyg(xk, yk)

(
N∑
t=1

(I − βkA)
N−t

)
∂y(f̂ − f)(xk, yk,Df )

]

where we used the simplifying notion (f̂ − f)(xk, yk,Df ) = f̂(xk, yk,Df ) − f(xk, yk).
Using Assumption 3 to bound ‖∂xyg(xk, yk)‖op by L′g , Assumption 1 to upper-bound∥∥∥(∑N

t=1 (I − βkA)
N−t

)∥∥∥
op

by
(∑N

t=1 (1− βkµg)N−t
)

we get

|W ′′k | ≤βkL′g
N−1∑
t=0

(1− βkµg)tE
[∣∣∣∂x(f̂ − f)(xk, yk,Df )>∂y(f̂ − f)(xk, yk,Df )

∣∣∣]
≤L′gµ−1g E

[∣∣∣∂x(f̂ − f)(xk, yk,Df )>∂y(f̂ − f)(xk, yk,Df )
∣∣∣]

≤L′gµ−1g E
[∥∥∥∂x(f̂ − f)(xk, yk,Df )2

∥∥∥] 1
2E
[∥∥∥∂y(f̂ − f)(xk, yk,Df )

∥∥∥2] 1
2

≤ L′gµ
−1
g σ2

f

where we used that
∑N−1
t=0 (1− βkµg)≤ 1

βkµg
for the second line, Cauchy-Schwarz inequality to get

the third line and Assumption 4 to get the last line.
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Bound on W ′k Using that ξ̃N+1,k is independent from zk, we write:

W ′k =E
[∥∥∥∂xy(ĝ − g)

(
xk, yk, ξ̃N+1,k

)
zk

∥∥∥2]+ E
[
‖∂xyg(xk, yk)(zk − z̄k)‖2

]
(i)

≤σ2
gxyE

[
‖zk‖2

]
+ (L′g)

2E
[
‖zk − z̄k‖2

]
(ii)

≤ 2σ2
gxy

(
E
[
‖zk − z?(xk, yk)‖2

]
+ E

[
‖z?(xk, yk)‖2

])
+ (L′g)

2E
[
‖zk − z̄k‖2

]
(iii)

≤ 2σ2
gxyE

[
‖zk − z?(xk, yk)‖2

]
+ (L′g)

2E
[
‖zk − z̄k‖2

]
+ 2σ2

gxyB
2µ−2g

(iv)

≤ 2σ2
gxy

(
ΠkE

[∥∥z0k − z?(xk, yk)
∥∥2 +Rzk

])
+ (L′g)

2
(

4σ2
gyyµ

−2
g ΠkE

[∥∥z0k − z?(xk, yk)
∥∥2]+ 2Rzk

)
+ 2σ2

gxyB
2µ−2g

≤2
(
σ2
gxy + 2(L′g)

2µ−2g σ2
gyy

)
ΠkE

[∥∥z0k − z?(xk, yk)
∥∥2]

+ 2
(
σ2
gxy + (L′g)

2
)
Rzk + 2σ2

gxyB
2µ−2g

(i) follows from Assumptions 3 and 5, (ii) uses that ‖zk‖2 ≤ 2
(
‖zk − z‖2 + ‖z‖2

)
, (iii) uses that

‖z?(xk, yk)‖ ≤ Bµ−1g by Proposition 6. Finally (iv) follows by application of Proposition 7. We
further have by definition of Rzk that:

Rzk ≤ B2L−1g µ−3g σ2
gyy + 3µ−2g σ2

f (29)

Combining the inequalities on W ′k, W ′′k and (29), we get that V ψk ≤w2
x+σ2

xΠkE
z
k , with w2

x and σ2
x

given by (16).

C GENERAL ANALYSIS OF AMIGO

C.1 ANALYSIS OF THE OUTER-LOOP

Proof of Proposition 2. We treat both cases µ ≥ 0 and µ < 0 separately. For simplicity we denote
by Ek the conditional expectation knowing the iterates xk, yk and zk−1 and write ψk = Ek

[
ψ̂k

]
.

Case µ ≥ 0. Recall that Exk is given by:

Exk =
ηk
2
E
[
‖xk − x?‖2

]
+ (1− u)E[L(xk)− L?].

For simplicity define εk = uδk + (1 − u), ek = (1 − u)(L(xk)− L?) + ηk
2 ‖xk − x

?‖2 and e′k =
uδk(L(xk)− L?). It is then easy to see that E[ek] is equal to the l.h.s of (10), i.e. E[ek] = Exk . We
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will start by bounding the difference between two successive iterates of ek:

e′k + ek − ek−1 ≤uδk(L(xk)− L?) + (1− u)(L(xk)− L(xk−1))

+
ηk
2
‖xk − x?‖2 −

ηk−1
2
‖xk−1 − x?‖2

(i)

≤uδk(L(xk)− L?) + (1− u)(L(xk)− L(xk−1))

− δkηk−1
2
‖xk−1 − x?‖2 + δk

(µ
2
‖xk−1 − x?‖2 −∇L(xk−1)>(xk−1 − x?)

)
+
ηk
2

(
γ2k

∥∥∥ψ̂k−1∥∥∥2 − 2γk

(
ψ̂k−1 −∇L(xk−1)

)>
(xk−1 − x?)

)
(ii)

≤ uδk(L(xk)− L?) + (1− u)(L(xk)− L(xk−1))

− δkηk−1
2
‖xk−1 − x?‖2 − δk(L(xk−1)− L?)

+
ηk
2

(
γ2k

∥∥∥ψ̂k−1∥∥∥2 − 2γk

(
ψ̂k−1 −∇L(xk−1)

)>
(xk−1 − x?)

)
≤(uδk + (1− u))(L(xk)− L(xk−1))

− δkηk−1
2
‖xk−1 − x?‖2 − δk(1− u)(L(xk−1)− L?)

+
ηk
2

(
γ2k

∥∥∥ψ̂k−1∥∥∥2 − 2γk

(
ψ̂k−1 −∇L(xk−1)

)>
(xk−1 − x?)

)
≤εk(L(xk)− L(xk−1))− δkek−1

+
ηk
2

(
γ2k

∥∥∥ψ̂k−1∥∥∥2 − 2γk

(
ψ̂k−1 −∇L(xk−1)

)>
(xk−1 − x?)

)
(iii)

≤ − δkek−1 + εk∇L(xk−1)>(xk − xk−1) +
εkL

2
‖xk − xk−1‖2

+
ηk
2

(
γ2k

∥∥∥ψ̂k−1∥∥∥2 − 2γk

(
ψ̂k−1 −∇L(xk−1)

)>
(xk−1 − x?)

)
=− δkek−1 − γkεk∇L(xk−1)>ψ̂k−1 +

εkγ
2
kL

2

∥∥∥ψ̂k−1∥∥∥2
+
ηk
2

(
γ2k

∥∥∥ψ̂k−1∥∥∥2 − 2γk

(
ψ̂k−1 −∇L(xk−1)

)>
(xk−1 − x?)

)
.

(i) follows from the update expression xk = xk−1 − γkψ̂k−1, (ii) follows from the convexity of L
and (iii) follows by L-smoothness of L. Taking the expectation conditionally on the randomness at
iteration k − 1 and using that Ek−1

[
ψ̂k−1

]
= ψk−1, we therefore get

Ek−1[e′k + ek − ek−1] ≤− δkek−1 − γkεk∇L(xk−1)>ψk−1 +
γk
2

(δk + εk)Ek−1
[∥∥∥ψ̂k−1∥∥∥2]

− δk(ψk−1 −∇L(xk−1))
>

(xk−1 − x?)

=− δkek−1 + γksk

(
Ek−1

[∥∥∥ψ̂k−1 − ψk−1∥∥∥]2 + ‖ψk−1 −∇L(xk−1)‖2
)

− δk(ψk−1 −∇L(xk−1))
>

(xk−1 − γk∇L(xk−1)− x?)

− γk
2

(εk − δk)‖∇L(xk−1)‖2

(i)

≤ − δkek−1 + γksk

(
Ek−1

[∥∥∥ψ̂k−1 − ψk−1∥∥∥]2 + ‖ψk−1 −∇L(xk−1)‖2
)

− δk(ψk−1 −∇L(xk−1))
>

(xk−1 − γk∇L(xk−1)− x?)
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where (i) follows from δk ≤ εk since by construction δk ≤ 1. Taking the expectation w.r.t. all the
randomness and applying Cauchy-Schwarz inequality to the last term yields the following inequal-
ity:

uδk(L(xk)− L?) + Exk ≤(1− δk)Exk−1 + γksk

(
V ψk−1 + Eψk−1

)
(30)

+ δk

(
Eψk−1

) 1
2E
[
‖xk−1 − γk∇L(xk−1)− x?‖2

] 1
2

.

SinceL is convex, we have the inequality: ‖xk−1 − γk∇L(xk−1)− x?‖2 ≤ ‖xk−1 − x?‖2. Hence,
we can deduce that:

δk‖xk−1 − γk∇L(xk−1)− x?‖2 ≤ δk‖xk−1 − x?‖2 ≤ 2γkηkη
−1
k−1E

x
k−1 ≤ 2γkE

x
k−1,

where we used that ηk is non-increasing by construction. Combining the above inequality with (30)
yields:

Fk + Exk ≤(1− δk)Exk−1 + γksk

(
V ψk−1 + Eψk−1

)
+
√

2γ
1
2

k δ
1
2

k

(
Eψk−1

) 1
2 (
Exk−1

) 1
2 .

Case µ < 0. Recall that for µ < 0, we set Exk = 1
LE
[
‖∇L(xk)‖2

]
. Using that L is L-smooth, we

have that:

L(xk)− L(xk−1) ≤∇L(xk−1)>(xk − xk−1) +
L

2
‖xk − xk−1‖2

≤− γk∇L(xk−1)>ψ̂k−1 +
Lγ2k

2

∥∥∥ψ̂k−1∥∥∥2
≤− γk‖∇L(xk−1)‖2 − γk∇L(xk−1)>

(
ψ̂k−1 −∇L(xk−1)

)
+
Lγ2k

2

(∥∥∥ψ̂k−1 − ψk−1∥∥∥2 + 2
(
ψ̂k−1 − ψk−1

)>
ψk−1 + ‖ψk−1‖2

)
.

Taking the expectation w.r.t. all randomness in the algorithm in the above inequality, we get:

E[L(xk)− L(xk−1)] ≤− γkE
[
‖∇L(xk−1)‖2

]
− γkE

[
∇L(xk−1)>(ψk−1 −∇L(xk−1))

]
+
Lγ2k

2

(
E
[(∥∥∥ψ̂k−1 − ψk−1∥∥∥2)]+ E

[
‖ψk−1‖2

])
=− γk(1− Lγk

2
)E
[
‖∇L(xk−1)‖2

]
+
Lγ2k

2

(
V ψk−1 + Eψk−1

)
− γk(1− Lγk)E

[
∇L(xk−1)>(ψk−1 −∇L(xk−1))

]
≤− γk

2
E
[
‖∇L(xk−1)‖2

]
+
Lγ2k

2

(
V ψk−1 + Eψk−1

)
+ γkE

[
‖∇L(xk−1)‖2

] 1
2
(
Eψk−1

) 1
2

.

=− δkExk−1 +
δkγk

2

(
V ψk−1 + Eψk−1

)
+
√

2δ
1
2

k γ
1
2

k

(
Exk−1

) 1
2

(
Eψk−1

) 1
2

.

where we used that 1− Lγk
2 ≥

1
2 and 0 ≤ 1−Lγk ≤ 1 to get the last inequality. Using the definition

of Fk yields an inequality of the form:

Fk + Exk ≤(1− δk)Exk−1 + γksk

(
V ψk−1 + Eψk−1

)
+
√

2γ
1
2

k δ
1
2

k

(
Eψk−1

) 1
2 (
Exk−1

) 1
2 .

Hence, in both cases µ ≥ 0 and µ < 0 we get an inequality of the of the same form, but with different
expressions for Fk and sk. We get the desired result using Young’s inequality, to upper-bound the
last term in the r.h.s. of the above inequality. More precisely, we use that for any 0 < ρk < 1:

√
2γ

1
2

k δ
1
2

k

(
Eψk−1

) 1
2 (
Exk−1

) 1
2 ≤ 1

2
ρkδkE

x
k−1 + ρ−1k γkE

ψ
k−1.
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C.2 INNER-LEVEL ERROR BOUND

In this section we prove Proposition 5 which controls the evolutions of the warm-start errors Eyk and
Ezk . As a first step, in Proposition 12, we provide a result controlling the mean squared error between
two successive iterates xk−1, xk and yk−1, yk which will be used in the proof of Proposition 5.

Proposition 12 (Control of the increments of xk and yk). Consider ζk, φk and R̃yk as defined in
Proposition 8 for some fixed 0 ≤ v ≤ 1. Then, the following holds:

γ2kE
[∥∥∥ψ̂k−1∥∥∥2] = E

[
‖xk − xk−1‖2

]
≤γ2k

(
V ψk−1 + 2Eψk−1 + 2ζkE

x
k−1

)
E
[
‖yk − yk−1‖2

]
≤2φkE

y
k + 2R̃yk

Proof. Proof of Proposition 12 We prove each inequality separately.

Increments of xk. By the update equation, we have that xk = xk−1− γkψ̂k−1, hence we only need

to control E
[∥∥∥ψ̂k−1∥∥∥2]. We have the following:

E
[∥∥∥ψ̂k−1∥∥∥2] ≤E[∥∥∥ψ̂k−1 − ψk−1∥∥∥2]+ 2E

[
‖ψk−1 −∇L(xk−1)‖2

]
+ 2E

[
‖∇L(xk−1)‖2

]
=V ψk−1 + 2Eψk−1 + 2E

[
‖∇L(xk−1)‖2

]
.

In the case (µ < 0), we have Exk−1 = 1
2LE

[
‖∇L(xk−1)‖2

]
, hence by setting ζk := 2L, we get the

desired inequality. In the convex case (µ ≥ 0), since L is L-smooth, we have that:

‖∇L(xk−1)‖2 ≤ 2L(L(xk−1)− L?) ≤ 2L(1− u)−1Exk−1,

provided that u < 1. We also have that (L(xk−1)− L?) ≤ L
2 ‖xk−1 − x

?‖2 ≤ Lη−1k−1E
x
k−1 which

yields ‖∇L(xk−1)‖2 ≤ 2L2η−1k−1E
x
k−1. Hence, we can set ζk = 2Lmin

(
(1− u)−1, Lη−1k−1

)
.

Increments of yk. Denoting by Dtg a batch of samples at time iteration t of algorithm Ak and using
the update equation of yt we get the following inequality by application of the triangular inequality:

E
[
‖yk − yk−1‖2

] 1
2 ≤αk

T−1∑
t=0

E
[∥∥∂y ĝ(xk, y

t,Dtg)
∥∥2] 1

2 ≤ αk
T−1∑
t=0

(
σ2
g + L2

gE
[∥∥yt − y?(xk)

∥∥2]) 1
2

≤αk
T−1∑
t=0

(
σ2
g + L2

gRk + L2
gΛt,kE

y
k

) 1
2 ≤ αkT

(
σ2
g

(
1 + 2L2

gαkµ
−1
g

)
+ L2

gE
y
k

) 1
2

where we applied Proposition 7 for every 0<t≤T−1 to get the second line with Λt,k:=(1− αkµg)t.
This directly implies the following bound:

E
[
‖ỹk − yk−1‖2

]
≤ 2α2

kT
2
(
σ2
g

(
1 + 2L2

gµ
−1
g αk

)
+ L2

gE
y
k

)
. (31)

On the other hand, using a triangular inequality and applying Proposition 7, we also have that:

E
[
‖yk − yk−1‖2

]
≤ 2E

[
‖yk − y?(xk)‖2

]
+ 2E

[
‖yk−1 − y?(xk)‖2

]
≤ (4Eyk + 2Ryk). (32)

The result follows by combining (31) and (32) using coefficients 1−v and v.

C.3 PROOF OF PROPOSITION 5

Proof of Proposition 5 . We will control each of Eyk and Ezk separately.
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Upper-bound on Eyk . Let rk be a non-increasing sequences between 0 and 1. The following holds:

Eyk =E
[
‖yk−1 − y?(xk−1)‖2

]
+ E

[
‖y?(xk − y?(xk−1)‖2

]
+ 2E

[
(yk−1 − y?(xk−1))

>
(y?(xk − y?(xk−1))

]
(i)

≤(1 + rk)E
[
‖yk−1 − y?(xk−1)‖2

]
+
(
1 + r−1k

)
E
[
‖y?(xk − y?(xk−1)‖2

]
(ii)

≤ (1 + rk)
(
Λk−1E

y
k−1 +Ryk−1

)
+ 2r−1k E

[
‖y?(xk)− y?(xk−1)‖2

]
(iii)

≤ (1 + rk)
(
Λk−1E

y
k−1 +Ryk−1

)
+ 2L2

yr
−1
k E

[
‖xk − xk−1‖2

]
(iv)

≤ (1 + rk)
(
Λk−1E

y
k−1 +Ryk−1

)
+ 2L2

yr
−1
k γ2kE

[∥∥∥ψ̂k−1∥∥∥2] (33a)

(i) follows by Young’s inequality, (ii) uses Proposition 7 to bound the first term and that (1+r−1k ) ≤
2r−1k for the second term, (iii) uses that y? is Ly-Lipschitz by Proposition 6 and (iv) uses the update
equation xk = xk−1 − γkψ̂k−1.

Upper-bound on Ezk . Similarly, for a non-increasing sequence 0 < θk ≤ 1, we have that:

Ezk =E
[
‖zk−1 − z?(xk−1, yk−1)‖2

]
+ E

[∥∥∥z?(xk, yk)− z?(xk−1, yk−1)
2
∥∥∥]

+ 2E
[
(zk−1 − z?(xk−1, yk−1))

>
(z?(xk, yk)− z?(xk−1, yk−1))

]
(i)

≤(1 + θk)E
[
‖zk−1 − z?(xk−1, yk−1)‖2

]
+ (1 + θ−1k )E

[
‖z?(xk, yk)− z?(xk−1, yk−1)‖2

]
(ii)

≤ (1 + θk)
(
Πk−1E

z
k−1 +Rzk−1

)
+ 2θ−1k E

[
‖z?(xk, yk)− z?(xk−1, yk−1)‖2

]
(iii)

≤ (1 + θk)
(
Πk−1E

z
k−1 +Rzk−1

)
+ 4L2

zθ
−1
k

(
E
[
‖xk − xk−1‖2 + ‖yk − yk−1‖2

])
(iv)

≤ (1 + θk)
(
Πk−1E

z
k−1 +Rzk−1

)
+ 4L2

zθ
−1
k

(
γ2kE

[∥∥∥ψ̂k−1∥∥∥2]+ 2φkE
y
k + 2R̃yk

)
(34a)

(i) follows by Young’s inequality, (ii) uses Proposition 7 to bound the first term and that (1+θ−1k ) ≤
2θ−1k for the second term, (iii) uses that z?(x, y) is Lz-Lipschitz in x and y by Proposition 6 and,

finally, (iv) uses the update equation xk = xk−1 − γkψ̂k−1 for the term E
[
‖xk − xk−1‖2

]
and

Proposition 12 to control the increments E
[
‖yk − yk−1‖2

]
.

In order to express the upper-bound on Ezk in terms of Eyk−1 instead of Eyk , we substitute Eyk in
(34a) by its upper-bound in (33a) and use that (1 + rk) ≤ 2 to write:

Ezk ≤(1 + θk)
(
Πk−1E

z
k−1 +Rzk−1

)
+ 4L2

zθ
−1
k γ2k

(
1 + 4L2

yφkr
−1
k

)
E
[∥∥∥ψ̂k−1∥∥∥2]

+ 8L2
zθ
−1
k

(
2φk

(
Λk−1E

y
k−1 +Ryk−1

)
+ R̃yk

)
(35)

We can then express (33a) and (35) jointly in matrix form as follows:(
Eyk
Ezk

)
≤ Pk

(
Λk−1E

y
k−1 +Ryk−1

Πk−1E
z
k−1 +Rzk−1

)
+ γkE

[∥∥∥ψ̂k−1∥∥∥2]Uk + Vk

where the Pk is a 2× 2 matrix and Uk and Vk are 2-dimensional vectors given by (17). The desired

result follows directly by substituting E
[∥∥∥ψ̂k−1∥∥∥2] by its upper-bound from Proposition 12 in the

above inequality.
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C.4 GENERAL ERROR BOUND

Proof of Proposition 9. First note that, by assumption, we have that δkr−1k ≤ δk−1r
−1
k−1 and

δkθ
−1
k ≤ δk−1θ

−1
k−1. Moreover, since αk and βk are non-increasing, we also have that Λk−1 ≤ Λk

and Πk−1 ≤ Πk. This implies the following inequalities which will be used in the rest of the proof:

a−1k−1Λk−1 ≤ a−1k Λk, b−1k−1Πk−1 ≤ b−1k Πk. (36)

Now, let ρk be a non-increasing sequence with 0 < ρk < 1. By Proposition 2, it follows that Exk
satisfies the inequality:

Fk + Exk ≤
(

1−
(

1− 1

2
ρk

)
δk

)
Exk−1 + γkskV

ψ
k−1 + γk

(
sk + ρ−1k

)
Eψk−1 (37)

On the other hand, by Proposition 5 we know that Eyk and Ezk satisfy:(
Eyk
Ezk

)
≤ Pk

(
Λk−1E

y
k−1 +Ryk−1

Πk−1E
z
k−1 +Rzk−1

)
+ γk

(
V ψk−1 + 2Eψk−1 + 2ζkE

x
k−1

)
Uk + Vk (38)

where the Pk, Uk and Vk are defined in (17). For conciseness, define Sk and EI
k to be:

Sk :=

(
ak 0
0 bk

)
, EI

k = Sk

(
Eyk
Ezk

)
By (36), we directly have that:

SkPkS
−1
k−1

(
Λk−1 0

0 Πk−1

)
≤ SkPkS

−1
k

(
Λk 0
0 Πk

)
:= P̃k, (39)

where the inequality in (39) holds component-wise. Therefore, multiplying (38) by Sk and using
(39) yields:

EI
k ≤P̃kE

I
k−1 + Sk

(
Pk

(
Ryk−1
Rzk−1

)
+ γk

(
V ψk−1 + 2Eψk−1 + 2ζkE

x
k−1

)
Uk + Vk

)
(40)

Furthermore, by Proposition 4 we can bound Eψk−1 and V ψk−1 as follows:

Eψk−1 ≤2L2
ψ

(
Λk(ak)

−1
ak−1E

y
k−1 + Πk(bk)

−1
bk−1E

z
k−1

)
+ 2L2

ψR
y
k−1

V ψk−1 ≤w
2
x + σ2

xΠk(bk)
−1
bk−1E

z
k−1,

where we used (36) a second time to replace Λk−1(ak−1)
−1 and Πk−1(bk−1)

−1 by Λk(ak)
−1 and

Πk(bk)
−1. By summing both inequalities (37) and (40) and substituting all terms Eψk−1 and V ψk−1

by their upper-bounds we obtain an inequality of the form:

Fk + Etotk ≤AxkExk−1 +Aykak−1E
y
k−1 +Azkbk−1E

z
k−1 + V totk

where Axk , Ayk , Azk are the components of the vector Ak defined in (18) and V totk is the variance
term also defined in (18). The desired inequality follows by upper-bounding Axk , Ayk , Azk by their
maximum value ‖Ak‖∞ .

D CONTROLLING THE PRECISION OF THE INNER-LEVEL ALGORITHMS.

In this section, we prove Proposition 10. To achieve this, we first provide general conditions on Λk
and Πk for controlling the rate ‖Ak‖∞ and which hold regardless of the choice of step-sizes. This
is achieved in Proposition 13 of Appendix D.1. Then we prove Proposition 10 in Appendix D.2.
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D.1 CONTROLLING Πk AND Λk .

We introduce the following quantities:

D
(1)
k :=

1

1− s

log

 1− (1− ρk)δk

1 + 2rk

[
1 + 2L2

ψγkδ
−1
k

[
sk + 1 + [2ρk]

−1
]]
 (41a)

D
(2)
k :=

1

s
log
(
(16L2

y)−1ρkζ
−1
k γ−2k r2k

)
(41b)

D
(3)
k :=− 1

s
log
(
4L2

yδkγkr
−2
k

)
(41c)

D
(4)
k :=

1

1− s
log

 1− (1− ρk)δk

1 + θk

[
1 + 2γkδ

−1
k

(
2L2

ψ + σ2
x

)[
sk + 1 + (2ρk)

−1
]]
 (41d)

D
(5)
k :=− 1

s
log
(
16L2

zθ
−2
k φk

)
(41e)

D
(6)
k :=− 1

s
log
(
2L2

zL
−2
y θ−2k r2k

(
1 + 4L2

yr
−1
k φk

))
(41f)

Proposition 13. Let ρk be a non-increasing sequence of positive numbers smaller than 1. Consider
Λk and Πk so that:

log Λk ≤min
(
D

(1)
k , D

(2)
k , D

(3)
k

)
, (42a)

log Πk ≤min
(
D

(1)
k , D

(2)
k , log Λk +D

(3)
k

)
. (42b)

Then, the following inequalities holds:

‖Ak‖∞ ≤ (1− (1− ρk)δk), V totk ≤ Ṽ totk .

where Ak and V totk are defined in (18) of Proposition 9 and Ṽ totk is defined as:

Ṽ totk :=δk
(
3r−1k + 2L2

ψγkδ
−1
k

(
2 + (sk + ρ−1k )

))
Ryk−1

+ δkΠs
k

(
2θ−1k Rzk−1 + 8L2

zθ
−2
k R̃yk

)
+ γk

(
sk + 4L2

yΛskδkγkr
−2
k

)
w2
x

Proof. We first prove that uIk≤u
+
k ≤1 and p+k ≤1 under (42a) and (42b) with u+k , p+k given by:

u+k := 4L2
yδkγkr

−2
k Λsk, p+k = 16L2

zΠ
s
kθ
−2
k φk.

A direct calculation shows u+k ≤1 whenever (42a) holds. Moreover, recall that uIk=akU
(1)
k +bkU

(2)
k

with U (1)
k and U (2)

k being the components of the vector Uk defined in (17). Thus by direct substitu-
tion, we get the following expression for uIk:

uIk = 2L2
yδkγkr

−2
k Λsk

(
1 + 2L2

zL
−2
y θ−2k r2k

(
1 + 4L2

yr
−1
k φk

)Πs
k

Λsk

)
.

Therefore, (42b) suffices to ensure that uIk ≤ u
+
k . Finally, (42b) implies directly that p+k ≤ 1.

We will control each component Axk , Ayk and Azk of the vector Ak separately.

Controlling Axk . Recalling the expression of Axk , the first component of Ak in (18), it holds that:

Axk = 1−
(

1− 1

2
ρk

)
δk + 2ζkλku

I
k

(i)

≤1−
(

1− 1

2
ρk

)
δk + 2ζkγku

+
k

(ii)

≤ 1−
(

1− 1

2
ρk

)
δk +

1

2
ρkδk = 1− (1− ρk)δk.

(i) holds since uIk≤u
+
k while (ii) follows from (42a) which ensures that 2ζkγku

+
k ≤

1
2ρkδk.
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Controlling Ayk. Recall the expression of second component of Ayk in (18), we have:

Ayk =Λ1−s
k

(
1 + rk

(
1 + 16L2

zΠ
s
kθ
−2
k φk + 2L2

ψγkδ
−1
k

(
2uIk + (sk + ρ−1k )

)))
(i)

≤
(

1 + 2rk

(
1 + 2L2

ψγkδ
−1
k (sk + 1 + (2ρk)

−1
)
))

Λ1−s
k

(ii)

≤ 1− (1− ρk)δk.

(i) holds since p+k := 16L2
zΠ

s
kθ
−2
k φk ≤ 1 and uIk ≤ 1 while (ii) is a consequence of (42a).

Controlling Azk. Similarly, recalling the expression of the third component of Ak we get that:

Azk =Π1−s
k

(
1 + θk

(
1 + γkδ

−1
k

(
2L2

ψ + σ2
x

)(
2uIk + (sk + ρ−1k )

)))
(i)

≤Π1−s
k

(
1 + θk

(
1 + 2γkδ

−1
k

(
2L2

ψ + σ2
x

)(
1 + (sk + (2ρk)−1)

))) (ii)

≤ 1− (1− ρk)δk,

where (i) uses that uIk ≤ 1 and (ii) follows from (42b).

Controlling V totk . Recalling the expression of V totk from (18), we have that:

V totk :=δk
(
Λsk(1 + r−1k ) + 16L2

zφkθ
−2
k Πs

k + 2L2
ψγkδ

−1
k

(
2uIk + (sk + ρ−1k )

))
Ryk−1

+ δk

(
(1 + θ−1k )Πs

kR
z
k−1 + 8L2

zθ
−2
k Πs

kR̃
y
k

)
+ γk

(
sk + uIk

)
w2
x

≤δk
(
3r−1k + 2L2

ψγkδ
−1
k

(
2 + (sk + ρ−1k )

))
Ryk−1

+ δk

(
2θ−1k Πs

kR
z
k−1 + 8L2

zθ
−2
k Πs

kR̃
y
k

)
+ γk

(
sk + u+k

)
w2
x = Ṽ totk .

where we use 16L2
zφkθ

−2
k Πs

k ≤ 1 and uIk ≤ 1 for the first line and uIk ≤ u
+
k for the last line.

D.2 CONTROLLING THE NUMBER OF INNER-LEVEL ITERATIONS

We provide now a proof of Proposition 10 which is a consequence of Proposition 13.

Proof of Proposition 10. We first provide conditions on the number of iterations T and N of algo-
rithms Ak and Bk to control the rate ‖Ak‖∞ and then provide an upper-bound on V totk .

Conditions on T and N . We consider the setting with constant step-size γk=γ, αk=α and βk=β
and choose rk=θk = 1 and δk=δ0 for some 0<δ0<1. We also take v=1 so that φk=2 and R̃yk=Ryk.
By direct substitution of the parameters rk, θk, φk, γk, δk, ρk and ζk, in the expressions of D(1)

k ,
D

(2)
k , D(3)

k , D(4)
k , D(5)

k and D(6)
k defined in (41a) to (41f), we verify that:

−C1 ≤ D(1)
k , −C ′1 ≤ D

(4)
k , −C2 ≤ min

(
D

(2)
k , D

(3)
k

)
, −C ′2 ≤ min

(
D

(5)
k , D

(6)
k

)
.

Hence, we can ensure the conditions of Proposition 13 hold by choosing T and N so that:
log Λk ≤ −max (1, C1, C2), log Πk ≤ − log Λk −max (1, C ′1, C

′
2).

This is achieved by for the following choice:
T = bα−1µ−1g max (C1, C2, C3)c+ 1, (43)

N = b2β−1µ−1g (max (C1, C2, C3) + max (C ′1, C
′
2, C

′
3))c+ 1

Hence, for such choice, we are guaranteed by Proposition 13 that ‖Ak‖∞ ≤ 1− (1− ρk)δk.

Bound on the variance V totk . By choosing T and N as in (43), we know that Λk and Πk satisfy
(42), so that the variance term V totk is upper-bounded by Ṽ totk . Moreover, by direct substitution of
the sequences appearing in the expression of Ṽ totk by their values, we get:

V totk ≤ Ṽ totk =δk
(
Λsk(1 + r−1k ) + 16L2

zφkθ
−2
k Πs

k + 2L2
ψη
−1
k

(
2uIk + (sk + ρ−1k )

))
Ryk−1

+ δk

(
(1 + θ−1k )Πs

kR
z
k−1 + 8L2

zθ
−2
k Πs

kR̃
y
k

)
+ γk

(
sk + uIk

)
w2
x

≤δ0
(
η−10

1− u
2

+

(
1 + u

2
γ + 4L2

yΛskγ
2

))
w2
x

+ δ0
(
2Λsk + 32L2

zΠ
s
k + 10L2

ψη
−1
0

)
Ryk−1 + δ0

(
2Πs

kR
z
k−1 + 8L2

zΠ
s
kR̃

y
k

)
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Furthermore, by definition of Ryk−1 and Rzk−1, we have that:

Ryk−1 ≤ 2µ−1g L−1g σ2
g , Rzk−1 ≤ µ−3g

(
B2L−1g σ2

gyy + 3µgσ
2
f

)
.

Moreover, recall that R̃yk=Ryk since we chose v=1. Thus R̃yk ≤ 2µ−1g ασ2
g . This implies that:

V totk δ−10 γ−1 ≤
(
δ−10

1− u
2

+
(
1 + 4L2

yΛskγ
))
w2
x + 2Πs

kγ
−1µ−3g

(
B2βσ2

gyy + 3µgσ
2
f

)
(44)

+
(
4Λsk + 80L2

zΠ
s
k + 20L2

ψη
−1
0

)
µ−1g αγ−1σ2

g

By choosing T and N as in (43), the following conditions hold:

Λsk ≤
L

4L2
y

, Λsk ≤ 5L2
ψη
−1
0 , Πs

k ≤ γ
(
σ2
gxy + (L′g)

2
)
, Πs

k ≤
1

4L2
z

L2
ψη
−1
0 .

By applying these inequalities in (44), we get:

V totk δ−10 γ−1 ≤
(
δ−10

1− u
2

+ 2

)
w2
x + 2µ−3g

(
σ2
gxy + (L′g)

2
)(
B2βσ2

gyy + 3µgσ
2
f

)
+ 60L2

ψη
−1
0 µ−1g L−1g γ−1σ2

g

≤
(
δ−10

1− u
2

+ 3

)
w2
x +

60L2
ψ

δ0µgLg
σ2
g =W2

where we used that 2µ−3g

(
σ2
gxy + (L′g)

2
)(
B2βσ2

gyy + 3µgσ
2
f

)
≤ w2

x by definition of w2
x in (16a).

Therefore, we have shown that V totk ≤ γδ0W2, withW2 given by (20).

E STOCHASTIC LINEAR DYNAMICAL SYSTEM WITH CORRELATED NOISE

Let A be a positive definite matrix in Rd × Rd satisfying 0 < µg ≥ |σi(A)| ≤ Lg and b a vector in
Rd. We denote by z? = −A−1b. Consider Am be a sequence of i.i.d. positive symmetric matrices
in Rd × Rd such that E[Am] = A, and b̂ a random vector in Rd such that E

[
b̂
]

= b, with Am and

b̂ being mutually independent. Define ΣA = E
[
(An −A)

>
(An −A)

]
and denote by σA and LA

the largest singular values of ΣA and A−1ΣAA
−1. Let β be such that β ≤ 1

Lg
. Finally let σ2

c be an

upper-bound on E
[∥∥∥b̂− b∥∥∥2]. Let z and z′ be two vectors in Rd and define the iterates zn and z̄n

such that z0 = z and z̄0 = z′ and using the recursion:

zn = (I − βAn)zn−1 − βb̂, z̄n = (I − βA)z̄n−1 − βb.

Hence, from the definition of zn and z̄n we directly have that:

zn =

n∏
t=1

(I − βAn)z −
n∑
t=1

n∏
j=t+1

β(I − βAj)b̂, z̄n =

n∏
t=1

(I − βA)z′ −
n∑
t=1

n∏
j=t+1

β(I − βA)b.

The next proposition computes the bias E
[
zn − z̄n

∣∣∣b̂].
Proposition 14. The following identities hold:

E
[
zn − z̄n

∣∣∣b̂] =(I − βA)n(z − z′)− β

(
n∑
t=1

(I − βA)n−t

)(
b̂− b

)
E[zn − z̄n] =(I − βA)n(z − z′)

Proof. The proof is a consequence of An and b̂ being i.i.d. and unbiased estimates of A and b.
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The next proposition controls the mean squared errors E
[
‖zn − z?‖2

]
and E

[
‖zn − z̄n‖2

]
.

Proposition 15. Define n?(n, β) = min(n, 1
βµg

). Let β such that:

β ≤ 1

2Lg
min

(
1,

2Lg

µg
(
1 + µ−2g σ2

A

))
Then, the following inequalities holds:

E
[
‖zn − z?‖2

]
≤(1− βµg)n‖z − z?‖2 + β2

(
σ2
A‖z?‖

2
+ 3

(
n ∧ 1

βµg

)
σ2
c

)(
n ∧ 1

βµg

)
,

‖z̄n − z?‖2 ≤(1− βµg)n‖z′ − z?‖
2
.

Moreover, if z′ = z, then we have:

E
[
‖zn − z̄n‖2

]
≤4µ−2g σ2

A(1− βµg
2

)n‖z − z?‖2 (45)

+ 2β2

(
σ2
A‖z?‖

2
+ 3

(
n ∧ 1

βµg

)
σ2
c

)(
n ∧ 1

βµg

)
.

Proof. It is straightforward to see that:

‖z̄n − z?‖2 ≤ (1− βµg)‖z′ − z?‖
2
.

Now, let’s control E
[
‖zn − z̄n‖2

]
. The following identity holds by definition of zn and z̄n:

E
[
‖zn − z̄n‖2

]
=E
[(
zn−1 − z̄n−1

)>(
(I − βA)2 + β2ΣA

)(
zn−1 − z̄n−1

)]
− 2βE

[
(zn−1 − z̄n−1)>(I − βA)(b̂− b)

]
+ β2

(
E
[∥∥∥b̂− b∥∥∥2]+ E

[(
z̄n−1

)>
ΣAz̄

n−1
])

=E
[(
zn−1 − z̄n−1

)>(
(I − βA)2 + β2ΣA

)(
zn−1 − z̄n−1

)]
+ β2

((
z̄n−1

)>
ΣAz̄

n−1 + E
[(
b̂− b

)>
(I + 2(I − βA)Dn)

(
b̂− b

)])
where ΣA = E

[
(An −A)

>
(An −A)

]
and Dn =

∑n−1
t=0 (I − βA)t. By simple calculation we can

upper-bound the last term by:

β2E
[(
b̂− b

)>
(I + 2(I − βA)Dn)

(
b̂− b

)]
≤ 3

(
n ∧ 1

βµg

)
β2E

[∥∥∥b̂− b∥∥∥2].
Moreover, provided that β ≤ 1

Lg(1+LA) , where LA is the highest eigenvalue of A−1ΣAA
−1, then

we have the following:

E
[
‖zn − z̄n‖2

]
≤(1− βµg)E

[∥∥zn−1 − z̄n−1∥∥2]
+ β2

((
z̄n−1

)>
ΣAz̄

n−1 + 3

(
n ∧ 1

βµg

)
E
[∥∥∥b̂− b∥∥∥2])

≤(1− βµg)E
[∥∥zn−1 − z̄n−1∥∥2]+ β2

(
σ2
A

∥∥z̄n−1∥∥2 + 3

(
n ∧ 1

βµg

)
σ2
c

)
,

Unrolling the recursion, it follows that:

E
[
‖zn − z̄n‖2

]
≤(1− βµg)n‖z − z′‖

2
+ β2

n∑
t=1

(1− βµg)n−t
(
σ2
A

∥∥z̄n−1∥∥2 + 3

(
n ∧ 1

βµg

)
σ2
c

)
(46)
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In particular, if z
′

= z?, then z̄n = z? and we get:

E
[
‖zn − z?‖2

]
≤(1− βµg)n‖z − z?‖2 + β2

(
σ2
A‖z?‖

2
+ 3

(
n ∧ 1

βµg

)
σ2
c

)(
n ∧ 1

βµg

)
.

To get the last inequality, we simply choose z′ = z and recall that:∥∥z̄t−1∥∥ ≤ 2
(
(1− βµg)t−1‖z′ − z?‖+ ‖z?‖

)
.

Using the above in in (46) yields:

E
[
‖zn − z̄n‖2

]
≤2nβ2σ2

A(1− βµg)n−1‖z − z?‖2 + 2β2

(
σ2
A‖z?‖

2
+ 3

(
n ∧ 1

βµg

)
σ2
c

)(
n ∧ 1

βµg

)
.

Moreover, by Lemma 3 we know that nβ2µ2
g(1−βµg)n−1 ≤ (1− βµg

2 )n−1 and since βµg ≤ 1, we
have that (1− βµg

2 )−1 ≤ 2 so that (1− βµg
2 )n−1 ≤ 2(1− βµg

2 )n. Hence, we can write:

E
[
‖zn − z̄n‖2

]
≤4µ−2g σ2

A(1− βµg
2

)n‖z − z?‖2 + 2β2

(
σ2
A‖z?‖

2
+ 3

(
n ∧ 1

βµg

)
σ2
c

)(
n ∧ 1

βµg

)
.

Lemma 2. Let A and ΣA be symmetric positive matrix in Rd × Rd with σ2
A its largest singular

value of ΣA and 0 < µg ≤ σi(A) ≤ Lg . Let β be a positive number such that:

β ≤ 1

2Lg
min

(
1,

2Lg

µg
(
1 + µ−2g σ2

A

))
Then the following holds: ∥∥(I − βA)2 + β2ΣA

∥∥
op
≤ 1− βµg.

Proof. First note that β ≤ 1
Lg

, so that I − βA is positive. Now, we observe that∥∥(I − βA)2 + β2ΣA
∥∥
op
≤ (1 − βµg)2 + β2σ2

A which holds since I − βA is positive. And since
β ≤ µg

µ2
g+σ

2
A

, we further have (1− βµg)2 + β2σ2
A ≤ 1− βµg , which yields the desired result.

Lemma 3. Let 0 ≤ b < 1 and n ≥ 1, then the following inequality holds:

nb2(1− b)n−1 ≤ (1− b

2
)n−1.

Proof. We consider the function h(n, b) defined by:

h(n, b) := (n− 1) log

(
1− b

2

1− b

)
− log(nb2).

We need to show that h(n, b) is non-negative for any n ≥ 1 and 0 ≤ b < 1. For this purpose, we fix
b and consider the variations of h(n, b) in n:

∂nh(n, b) = log

(
1− b

2

1− b

)
− 1

n
.

∂nh(n, b) is non-negative for n ≥ n? = log
(

1− b2
1−b

)−1
and non-positive for all n ≤ n?. Hence,

h(n, b) achieves its minimum value in n? over the (0,+∞). We distinguish two case depending on
whether n? is greater of smaller than 1.

Case n? ≤ 1. In this case n 7→ h(n, b) is increasing on the interval [1,+∞) since ∂nh(n, b) ≥ 0
for n ≥ n?. Hence, h(n, b) ≥ h(1, b) for all n ≥ 1. Moreover, since h(1, b) = − log(b2) ≥ 0 the
result follows directly.
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Case n? > 1. In this case we still have h(n, b) ≥ h(n?, b) for all n ≥ 1, since n? achieves the
minimum value of h. Thus we only need to show that h(n?, b) ≥ 0. Using the expression of n?, we
have:

h(n?, b) =1− log

(
1− b

2

1− b

)
− log

(
n?b2

)
=1− 1

n?
− log

(
n?b2

)
Since n? > 1, the first term 1− 1

n? is non-negative, thus we only need to show that n?b2 ≤ 1 so that
the last term is also non-negative. It is easy to see that n?b2 ≤ 1 is equivalent to having h̃(b) ≥ 0,
where we define the function h̃(b) as:

h̃(b) = log
1− b

2

1− b
− b2.

We can analyze the variations of b̃ be computing its derivative which is given by:

∂bh̃(b) =
1

(1− b)(2− b)
− 2b.

Hence, we have the following equivalence:

∂bh̃(b) ≥ 0 ⇐⇒ 2b(1− b)(2− b) ≤ 1

This is always true for 0 ≤ b < 1 since b(1 − b) ≤ 1
4 so that 2b(1 − b)(2 − b) ≤ 2−b

2 ≤ 1. Thus
we have shown that h̃ is increasing over [0, 1) so that h̃(b) ≥ h̃(0) = 0. As discussed above, this is
equivalent to having n?b2 ≤ 1, so that h(n?, b) ≥ 0 which concludes the proof.

F EXPERIMENTS

F.1 DETAILS OF THE SYNTHETIC EXAMPLE

We choose the functions f and g to be of the form: f(x, y) := 1
2x
>Afx + y>Cf and g(x, y) :=

1
2y
>Agy + y>Bgx where Af and Ag are symmetric definite positive matrices of size dx × dx and

dy × dy , Bg is a dy × dx matrix and Cf is a dy vector with dx = 2000 and dy = 1000.

We generate the parameters of the problem so that the smoothness constants L and Lg are fixed to
1, κL=10 and κg taking values in {10i, i ∈ {0, .., 7}}. We then solve each problem using different
methods and perform a grid-search on the number of iterations T and M of algorithms Ak and Bk .

We fix the step-sizes to γk=1/L and αk=βk=1/Lg and perform a grid-search on the number of
iterations T and M of algorithms Ak and Bk from {10i, i ∈ 0, 1, 2, 3}. For AID methods without
warm-start in Bk, we consider an additional setting where M increases logarithmically with k,
as suggested in Ji et al. (2021), with M=b103 log(k)c. Similarly, for (ITD) and (Reverse), we
additionally use an increasing T of the same form.

F.2 EXPERIMENTAL DETAILS FOR LOGISTIC REGRESSION

The inner-level and outer-level cost functions for such task take the following form:

f(x, y) =
1

|Dval|
∑

ξ∈Dval

L(y, ξ), g(x, y) =
1

|Dtr|
∑
ξ∈Dtr

L(y, ξ) +
1

pd

∑
i=1

exp(xi)‖y.,i‖2

For the default setting, we use the well-chosen parameters reported in Grazzi et al. (2020); Ji et al.
(2021) where αk=γk=100, βk=0.5, and T=N=10. For the grid-search setting, we select the best
performing parameters T , M and βk from a grid {10, 20} × {5, 10} × {0.5, 10}, while the batch-
size (chosen to be the same for all steps of the algorithms) varies from 10 ∗ {0.1, 1, 2, 4}. We also
compared with VRBO (Yang et al., 2021) using the implementation available online and noticed
instabilities for large values of T and N , as reported by the authors, but also a drop in performance
compared to stocBiO for smaller T and N due to inexact estimates of the gradient.
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Figure 2: Evolution of the relative error vs. time in seconds for different AID based methods on
the synthetic example. Each column corresponds to a method (AID-CG, AmIGO-CG, AmIGO-GD,
AID-N, AID-FP) and each row corresponds to a choice of the conditioning number κg . For each
method we consider T and N from a grid {1, 10, 102, 103} × {1, 10, 102, 103}. Lightest colors
corresponds to smaller values of N while nuances within each color correspond to increasing values
of T .
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Figure 3: Evolution of the relative error vs. time in seconds for different ITD based methods on the
synthetic example. From the left to the right, the first two columns correspond to Reverse and ITD
method small conditioning numbers κg ∈ {1, 10, 103}, last two column are for higher conditioning
numbers κg ∈ {104, 105, 107}. For each method we consider T ∈ {1, 10, 102, 103}. Lightest colors
correspond to smaller values of T .

F.3 DATASET DISTILLATION

Dataset distillation (Wang et al., 2018; Lorraine et al., 2020) consists in learning a small synthetic
dataset such that a model trained on this dataset achieves a small error on the training set. Specifi-
cally, we consider a classification problem of C classes using a linear model and a training dataset
Dtr where each training point ξ ∈ Dtr is a d-dimensional vector with a class cξ ∈ {1, ..., C}. The
linear model is represented by a matrix y ∈ Rc×d multiplying a data point yξ and providing the
logits of each class. The dataset distillation can be cas as a bilevel problem of the form:

min
x∈Rc×d,λ∈Rd

1

|Dtr|
∑
ξ∈Dtr

CE(y?(x, λ)ξ, cξ),

y?(x, λ) ∈ arg min
y∈Rc×d

1

C

C∑
c=1

CE(yxc, c) +
1

Cd

d∑
i=1

exp(λi)‖y.,i‖2.

where λ ∈ Rd is a vector of hyper-parameter for regularizing the inner-level problem which we
found beneficial to add.

Experimental setup. We perform the distillation task on MNIST dataset. We set the step-
sizes αk=βk=0.1 and T=N=10. We perform a grid-search on the outer-level step-size
γk∈{0.01, 0.001, 0.0001} and run the algorithms for k = 10000 iterations.
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Figure 4: Evolution of the validation loss (left column), validation accuracy (middle column) and
test accuracy (right column) in time (s) for different methods on the logistic regression task. Each
row correspond to different choices for the size of the batch |D| ∈ {100, 1000, 2000, 4000} chosen
to be the same for all gradient, Hessian and Jacobian-vector products evaluations. Time is reported
in seconds.
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Figure 5: Performance of various bi-level algorithms on the dataset distillation task on MNIST
dataset.
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