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Freiheitssatz and phase transition for the density

model of random groups

TSUNG-HSUAN TSAI

IRMA, CNRS, Université de Strasbourg

Abstract

Magnus’ Freiheitssatz [19] states that if a group is defined by a presentation

with m generators and a single relator containing the last generating letter, then

the first m − 1 letters freely generate a free subgroup. We study an analogue

of this theorem in the Gromov density model of random groups [14], showing a

phase transition phenomenon at density dr = min{ 1

2
, 1− log

2m−1
(2r−1)} with

1 ≤ r ≤ m− 1: we prove that for a random group with m generators at density d,

if d < dr then the first r letters freely generate a free subgroup; whereas if d > dr

then the first r letters generate the whole group.

Contents

1 Introduction 2

2 Preliminaries on group theory 4

2.1 Stallings graphs (graphs generating subgroups) . . . . . . . . . . . . 5

2.2 Van Kampen diagrams . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.3 Distortion van Kampen diagrams . . . . . . . . . . . . . . . . . . . . 6

2.4 Hyperbolic groups . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

3 Random subsets and random groups 8

3.1 Densable sequences of random subsets . . . . . . . . . . . . . . . . . 9

3.2 The intersection formula . . . . . . . . . . . . . . . . . . . . . . . . 10

3.3 The density model of random groups . . . . . . . . . . . . . . . . . . 11

4 Abstract diagrams 12

4.1 Abstract van Kampen diagrams . . . . . . . . . . . . . . . . . . . . . 12

4.2 Abstract distortion van Kampen diagrams . . . . . . . . . . . . . . . 14

4.3 The number of fillings of an abstract distortion diagram . . . . . . . . 15

5 Freiheitssatz for random groups 18

5.1 Statement of the theorem . . . . . . . . . . . . . . . . . . . . . . . . 18

5.2 Proof of Lemma 5.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

1

http://arxiv.org/abs/2111.08958v1


1 Introduction

The Freiheitssatz (freedom theorem in German) is a fundamental theorem in combi-

natorial group theory. It was proposed by M. Dehn and proved by W. Magnus in his

doctoral thesis [19] in 1930 (see [18] II.5). The theorem states that for a group presen-

tation G = 〈x1, . . . , xm|r〉 where the single relator r is a cyclically reduced word, if

xm appears in r, then x1, . . . , xm−1 freely generate a free subgroup of G.

Random groups are groups obtained by a probabilistic construction. Its first men-

tions, in terms of ”generic property” for finitely presented groups, appear in the works

of V. S. Guba [16] and M. Gromov [13] §0.2 in the late 1980s. The simplest model of

random groups is the few relator model ([22] Definition 1). A few relator random group

is defined by a group presentation Gℓ = 〈x1, . . . , xm|r1, . . . , rk〉 where the set of gen-

erators X = {x1, . . . , xm} is fixed, and the relators r1, . . . , rk are chosen uniformly

at random among all reduced words of X± of length at most ℓ. The first well-known

result of random groups ([13] §0.2) is that asymptotically almost surely (denoted by

a.a.s., which means with probability converges to 1 when ℓ goes to infinity), a few

relator random group Gℓ is non-elementary hyperbolic.

For detailed surveys on random groups, see (in chronological order) [8] by E. Ghys,

[22] by Y. Ollivier, [17] by I. Kapovich and P. Schupp and [6] by F. Bassino, C. Nicaud

and P. Weil.

The density model of random groups

In 1993, Gromov introduced the density model of random groups in [14] 9.B. He con-

sidered a group presentation with a fixed set of m generators X = {x1, . . . , xm} and

⌊(2m− 1)dℓ⌋ randomly chosen relators, among the 2m(2m− 1)ℓ−1 reduced words of

X± of length ℓ. The parameter d ∈ [0, 1] is called the density. Compare to the few

relator model, the number of relators grows exponentially with the length ℓ. The main

result of [14] 9.B is the phase transition at density one half: if d > 1
2 , then a.a.s. the

group is trivial; if d < 1
2 , then a.a.s. the group is non-elementary hyperbolic.

In a 1996 paper [2], G. Arzhantseva and A. Ol’shanskii proved a few relator ran-

dom group version of the Freiheitssatz: a.a.s. every (m − 1)-generated subgroup of a

few relator random group Gℓ is free. Arzhantseva proved several free subgroup prop-

erties subsequently for the few relator model in [3], [4] and [5]. Kapovich-Schupp [17]

showed the existence of a small positive density d(m) such that these results ([2], [3],

[4] and [5]) can be generalized to a random group at any density d < d(m). It was

showed in [28] that the ”every (m− 1)-generated subgroup is free” property [2] holds

a.a.s. for a random group at any density d < 1
120m2 ln(2m) .

In 2003, Gromov defined the general notion of random groups in [15] and proposed

in Section 1.9 the following general problem: determining asymptotic invariants and

phase transition phenomena for random groups. Since then, several variants of the

phase transition phenomena have been discovered. For instance, A. Żuk [30] showed

the freeness-property (T ) phase transition for random triangular groups at density 1/3
(see also [1] by Antoniuk-Łuczak-Świa̧tkowski). Y. Ollivier proved in 2004 [21] the

hyperbolicity-triviality transition for hyperbolic random groups, and in 2007 [23] the

phase transition at density 1/5 for Dehn’s algorithm. In 2015 [12], D. Calegary and A.

Walker showed that a random group at density d < 1/2 contains surface subgroups.

As we shall see, the main result of this paper is to highlight a new phase tran-

sition phenomenon, giving an analogue of the Freiheitssatz in the density model of
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random groups. In particular, it partially answers Gromov’s problem [15] 1.9 (iv):

existence/nonexistence of non-free subgroups.

Main results

We say that a finite group presentation G = 〈X |R〉 satisfies the Magnus Freiheitssatz

property if every subset of X of cardinality |X |− 1 freely generates a free subgroup of

G. In particular, by Arzhantseva-Ol’shanskii’s result [2], a few-relator random group

Gℓ has this property a.a.s.. We study the Magnus Freiheitssatz property in the density

model of random groups.

Denote Bℓ as the set of cyclically reduced words of X± = {x±
1 , . . . , x

±
m} of length

at most ℓ. Let Gℓ(m, d) = 〈X |Rℓ〉 be a random group at density d. That is to say, Rℓ

is a permutation invariant random subset of Bℓ with density d (see Section 3 or [28]).

For example, it can be a uniform distribution on subsets of Bℓ of cardinality ⌊|Bℓ|
d⌋,

or a Bernoulli sampling on Bℓ of parameter |Bℓ|
d−1.

For any 1 ≤ r ≤ m− 1, let

dr = min

{
1

2
, 1− log2m−1(2r − 1)

}
.

Theorem 1 (Phase transition at density dr, cf. Theorem 5.1).

1. If d > dr, then a.a.s. x1, . . . , xr generate the whole group Gℓ(m, d).

2. If d < dr, then a.a.s. x1, . . . , xr freely generate a free subgroup of Gℓ(m, d).

By symmetry, the set {x1, . . . , xr} can be replaced by any subset Xr of X of

cardinality r. In particular, if 0 ≤ d < dm−1, then the group presentation Gℓ(m, d) =
〈X |Rℓ〉 has the Magnus Freiheitssatz property. More precisely for the first assertion,

we prove that if d > dr then a.a.s. any generator xi equals to a reduced word of X±
r of

length ℓ − 1 in Gℓ(m, d). Therefore, any relator ri ∈ Rℓ can be replaced by a reduced

word r′i of X±
r of length at most ℓ(ℓ − 1). Construct R′

ℓ by replacing every word of

Rℓ, we have the following result.

Corollary 2. If dr < d < dr−1, then a.a.s. the group Gℓ(m, d) = 〈X |Rℓ〉 admits a

presentation with r generators 〈Xr|R
′
ℓ〉 satisfying the Magnus Freiheitssatz property.

Remark 3. We emphasize that R′
ℓ contains relators of lengths varying from ℓ to ℓ2.

Such a presentation can not be studied using known methods in geometric or combi-

natorial group theory. Nevertheless, it gives us new examples of groups having the

Magnus Freiheitssatz property.

Let r = r(m, d) be the maximal number such that a.a.s. x1, . . . , xr freely generate

a free subgroup of Gℓ(m, d). By the phase transition at density 1
2 [14], if d > 1

2 then

r(m, d) = 0. If d ≤ 1
2 , by Theorem 1

(2m− 1)1−d − 1

2
≤ r(m, d) ≤

(2m− 1)1−d + 1

2
.
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As r(m, d) is an integer, there is only one choice when d is not 1/2 or one of dr.

Note that the value of r(m, d) is not clear when d ∈ {d1, . . . , dm−1, 1/2}.

Our main theorem (Theorem 5.1) is a generalized version of Theorem 1. In the

second assertion, we can replace the set {x1, . . . , xr} by any set of r words of X± of

lengths at most dr−d
5r ℓ.

Outline of the paper

In Section 2, we first recall some essential tools in combinatorial group theory (Stallings

graphs [27] and van Kampen diagrams [29]). We introduce distortion van Kampen di-

agrams to study the distortion of subgroups of a finitely presented group.

In order to give a concrete construction of random groups with density, we discuss

probabilistic models of random subsets in Section 3 and recall the intersection formula

by M. Gromov in [14]. Technical details are treated in [28].

Section 4 is dedicated to abstract van Kampen diagrams defined by Y. Ollivier in

[21]. We apply his idea to distortion diagrams and define abstract distortion diagrams.

The main technical lemma for our main theorem (Theorem 5.1) is to estimate the num-

ber of fillings of a given abstract distortion diagram (Lemma 4.12).

In the last section, we state a local result on distortion van Kampen diagrams

(Lemma 5.2) and prove the main theorem by this lemma. The last subsection is then

devoted to the proof of Lemma 5.2.

Acknowledgements. I would like to thank my supervisor, Thomas Delzant, for his

patience and guidance, and for many interesting and helpful discussions on the subject.

2 Preliminaries on group theory

In this section, we fix a finite group presentation G = 〈X |R〉 where X is the set of

generators and R is the set of relators. A word u in the alphabet X± is called reduced

if it has no sub-words of type xx−1 or x−1x for any x ∈ X . If u and v are words that

represent the same element in G, we denote u =G v.

We consider oriented combinatorial graphs and 2-complexes as defined in Chapter

III.2. of Lyndon and Schupp [18].
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2.1 Stallings graphs (graphs generating subgroups)

A graph is a pair Γ = (V,E) where V is the set of vertices (also called points) and

E is the set of (oriented) edges. Every edge e ∈ E has a starting point α(e) ∈ V ,

an ending point ω(e) ∈ V and an inverse edge e−1 ∈ E, satisfying α(e−1) = ω(e),
ω(e−1) = α(e) and (e−1)−1 = e. The vertices α(e) and ω(e) are called the endpoints

of e. An undirected edge is a pair of inverse edges {e, e−1}. The size |Γ| of a graph is

the number of its undirected edges. The rank rk(Γ) is the rank of its fundamental free

group, which equals to |Γ| − |V |+ 1 by Euler’s characteristic.

A path on a graph Γ is a non-empty finite sequence of edges p = e1 . . . ek such that

ω(ei) = α(ei+1) for i ∈ {1, . . . k − 1}. The starting point and the ending point of the

path p are defined by α(p) = α(e1) and ω(p) = ω(ek). The inverse of p is the path

p−1 = e−1
k . . . e−1

1 . A path is called reduced if there is no subsequence of the form

ee−1. A loop is a path whose starting point and ending point coincide. In this case

α(p) = ω(p) is called the starting point of the loop. A loop p = e1 . . . ek is cyclically

reduced if it is a reduced path with ek 6= e−1
1 .

An arc of a graph Γ is a reduced path passing only by vertices of degree 2, except

possibly for its endpoints. A maximal arc is an arc that can not be extended to another

arc. Note that the endpoints of a maximal arc are not of degree 2. The following

elementary fact for finite connected graphs can be deduced by Euler’s characteristic.

Lemma 2.1. Let Γ be a finite connected graph of rank r ≥ 1 with no vertices of degree

1.

1. The number of vertices of degree at least 3 is bounded by 2(r − 1).

2. The number of maximal arcs of Γ is bounded by 3(r − 1).

Lemma 2.2. The number of topological types of finite connected graphs of rank at

most r with no vertices of degree 1 is bounded by (2r)6r .

Proof. If r = 1 then the only topological type is a simple cycle. If r ≥ 2, we may draw

a ≤ 3(r − 1) arcs on a set of v ≤ 2(r − 1) vertices. There are at most (v2)a ≤ (2r)6r

ways.

A labeled graph (with respect to the alphabet X) is a graph Γ = (V,E) with a

labelling function on edges by generators ϕ : E → X±, satisfying ϕ(e−1) = ϕ(e)−1.

We denote briefly Γ = (V,E, ϕ). The labeling function ϕ extends naturally on the

paths of Γ. If p = e1 . . . ek is a path of Γ, then the word ϕ(p) = ϕ(e1) . . . ϕ(ek) is

called the labeling word of p. We say that a word u is readable on a labeled graph Γ if

there exists a path p of Γ whose labeling word is u.

Labeled graphs are considered by Stallings [27] to represent subgroups of a free

group. Let Γ = (V,E, ϕ) be a finite connected labeled graph. Labeling words of the

loops starting at a vertex o ∈ V form a subgroup H of G = 〈X |R〉, which is the image

of the fundamental group π1(Γ, o) by the group homomorphism induced by ϕ. If H
is a conjugate of the subgroup ϕ(π1(Γ, o)) in G for some o ∈ V , we say that H is

generated by the labeled graph Γ.

Conversely, any finitely generated subgroupH can be generated by a labeled graph.

One can choose a system of generators h1, . . . , hr of H , and label them on the wedge

of r simple cycles of lengths |h1|, . . . , |hr|. A labeled graph is reduced if it has no pair

of edges with the same label and starting point, and, it has no vertices of degree 1. By

doing reductions on the construction above (see [2] and [20]), if H is a subgroup of

rank r, then there is a reduced labeled graph of rank r that generates H .
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2.2 Van Kampen diagrams

We consider van Kampen diagrams defined by Lyndon and Schupp in [18] Chapter

III.9. A 2-complex is a triplet W = (V,E, F ), where (V,E) is a graph and F is the

set of (oriented) faces. Every face f ∈ F has a boundary ∂f , which is a cyclically

reduced loop of (V,E), and an inverse face f−1 ∈ F satisfying ∂(f−1) = (∂f)−1 and

(f−1)−1 = f . An undirected face is a pair of inverse faces {f, f−1}. The size |W | is

the number of undirected faces.

Note that our definition is slightly more precise then [18]: Every face f ∈ F has

a starting point and an orientation given by ∂f . If ∂f = e1 . . . ek, we say that ei is

attached to f and is the i-th boundary edge of f for 1 ≤ i ≤ k. In this case, we say

that {ei, e
−1
i } is attached to {f, f−1}. An edge is called isolated if it is not attached to

any face.

A van Kampen diagram (with respect to G = 〈X |R〉) is a finite, planar (embedded

in R
2) and simply connected 2-complex D = (V,E, F ) with two compatible labeling

functions, on edges by generators ϕ1 : E → X± and on faces by relators ϕ2 : F →
R±. Compatible means that (V,E, ϕ1) is a labeled graph, ϕ2(f

−1) = ϕ2(f)
−1 and

ϕ1(∂f) = ϕ2(f). Note that if a diagram D has no isolated edges (for example, a disk),

then ϕ1 is determined by ϕ2. We denote briefly D = (V,E, F, ϕ1, ϕ2).
According to [11] p.159, a van Kampen diagram is either a disk or a concatena-

tion of disks and segments. The boundary ∂D is the boundary of R2\D, which is a

sub-graph of its underlying graph (V,E). A boundary path is a path on ∂D defined

in a natural way in [18] p.150. A boundary word of D is then the labeling word of a

boundary path, unique up to cyclic conjugations and inversions. The boundary length

of D is the length of a boundary path, denoted |∂D|.

Let D = (V,E, F, ϕ1, ϕ2) be a van Kampen diagram. A pair of faces f, f ′ ∈ F is

reducible if they have the same label and there is a common edge on their boundaries

at the same position. A van Kampen diagram is called reduced if there is no reducible

pair of faces.

rr

a reducible pair of faces

In 1933, E. van Kampen showed in [29] that a word u of X± is trivial in a finitely

presented group G = 〈X |R〉 if and only if it is a boundary word of a van Kampen

diagram of G. In [24] §11.6, A. Ol’shanskii improved this result to reduced diagrams.

Lemma 2.3 (Van Kampen’s lemma, Ol’shanskii’s version). A word w of X± is trivial

in G = 〈X |R〉 if and only if it is a boundary word of a reduced van Kampen diagram.

2.3 Distortion van Kampen diagrams

Let G = 〈X |R〉 be a group presentation. For any word u of X±, we denote |u| its word

length and ‖u‖G the distance between the endpoints of its image in the Cayley graph

Cay(G,X). Let Γ be a finite, connected and reduced labeled graph. Its universal
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covering Γ̃ is an infinite, connected and reduced labeled tree, with a natural label-

preserving map Γ̃ → Cay(G,X).

If the map Γ̃ → Cay(G,X) is a λ-quasi isometric embedding with some λ ≥ 1
(in other words, every reduced word u readable on Γ satisfies |u| ≤ λ‖u‖G), then any

subgroup generated by Γ is a free group. To study this question, we introduce distor-

tion van Kampen diagrams.

Definition 2.4 (Distortion diagram). A distortion van Kampen diagram of (G,Γ) is a

pair (D, p) where D is a van Kampen diagram of G and p is a cyclic sub-path ∂D
whose labeling word is readable on Γ.

p

D

Γ

Lemma 2.5. Let λ ≥ 1. If every disk-like and reduced distortion van Kampen diagram

(D, p) of (G,Γ) satisfies

|p| ≤
λ

1 + λ
|∂D|, (⋆)

then the map Γ̃ → Cay(G,X) is a λ-quasi isometric embedding.

In particular, any subgroup generated by Γ is free.

Proof. Let u be a reduced word that is readable on Γ. Let v be a shortest word (whose

image is a geodesic in G) such that uv =G 1. We shall check that |u| ≤ λ|v|.
By van Kampen’s lemma (Lemma 2.3), there exists a reduced van Kampen diagram

D whose boundary word is uv. If D is disk-like, then by the hypothesis (⋆) we have

|u| ≤ λ
1+λ

(|u|+ |v|), which gives |u| ≤ λ|v|.
Otherwise, we decomposeD into disks and segmentsD1, . . . , Dk (as in [11] p.159).

The path of v does not intersect itself because it is a geodesic in G. The path of u on

D does not intersect itself. If it did, as u is reduced, there would be a disk-like sub-

diagram whose boundary word is readable on Γ, which is impossible because of (⋆).
Hence, for any 1 ≤ i ≤ k, there are exactly two vertices on ∂Di separating u

and v, which are the only possible vertices of degree not equal to 2. The boundary

word of Di is written as uivi where ui is a subword of u and vi is a subword of v. If

Di is a segment, then it is read once by u and once by v with opposite directions, so

|ui| = |vi| ≤ λ|vi|. If Di is a disk, then |ui| ≤ λ|vi| by (⋆). We conclude that

|u| =

k∑

i=1

|ui| ≤

k∑

i=1

λ|vi| = λ|v|.

2.4 Hyperbolic groups

In this subsection we recall several facts of hyperbolic groups defined by M. Gromov

in [13]. Let G = 〈X |R〉 be a finite group presentation. The Cayley graph Cay(G,X)

7



with the usual length metric is δ-hyperbolic if each side of any geodesic triangle is

δ-close to the two other sides ([10] Chapter 1). In this case, G is called a hyperbolic

group.

We start by a criterion of hyperbolicity in [13] Chapter 2.3. See also [26] by H.

Short and [10] Chapter 6. For a precise estimation of hyperbolicity constants, see [9]

Lemma 3.11 and Lemma 3.12 by C. Champetier.

Theorem 2.6 (Isoperimetric inequality). Let ℓ be the longest relator length in R. The

group G = 〈X |R〉 is hyperbolic if and only if there exists a real number β > 0
such that every reduced van Kampen diagram D satisfies the following isoperimetric

inequality :

|∂D| ≥ βℓ|D|.

In this case, the Cayley graph Cay(G,X) is δ-hyperbolic with

δ =
4ℓ

β
.

The local-global principle of hyperbolicity is due to M. Gromov in [13]. For other

proofs, see [7] Chapter 8 by B. H. Bowditch or [25] by P. Papasoglu. We state here a

sharpened version by Y. Ollivier in [23] Proposition 8.

Theorem 2.7. (Local-global principal of hyperbolicity) For any α > 0 and ε > 0,

there exists an integer K = K(α, ε) such that, if every reduced disk-like diagram D
with |D| ≤ K satisfies

|∂D| ≥ αℓ|D|,

then every reduced diagram D satisfies

|∂D| ≥ (α− ε)ℓ|D|.

Recall that a path p in Cay(X,R) is a λ-quasi-geodesic if every sub-path u of p
satisfies |u| ≤ λ‖u‖G. It is a L-local λ-quasi geodesic if such an inequality is satisfied

by every sub-path of length at most L. Here is the local-global principle for quasi-

geodesics in hyperbolic groups, stated by Gromov in [13] 7.2.A and 7.2.B. See [10]

Chapter 3 for a proof.

Theorem 2.8. Let G = 〈X |R〉 be a group presentation such that Cay(G,X) is δ-

hyperbolic. Let λ ≥ 1, then

1. Every λ-quasi-geodesic is 100δ(1+ logλ) close to any geodesic joining its end-

points.

2. Every 1000λδ-local λ-quasi-geodesic is a (global) 2λ-quasi-geodesic.

3 Random subsets and random groups

In this section, we recall the definition of random groups with density by M. Gromov

in [14]. Proofs of Proposition 3.2, Proposition 3.3, Theorem 3.4 and Theorem 3.5 are

in [28].
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3.1 Densable sequences of random subsets

A random subset A of a finite set E is a P(E)-valued random variable, where P(E)
is the set of subsets of E. We say that A is permutation invariant if Pr(A = a) =
Pr(A = σ(a)) for any permutation σ of E and any subset a of E.

In this subsection, we consider a sequence of finite sets E = (Eℓ)ℓ∈N with |Eℓ| −−−→
ℓ→∞

∞. Let (Qℓ) be a sequence of events. We say that the event Qℓ holds asymptotically

almost surely if Pr(Qℓ) −−−→
ℓ→∞

1. We denote briefly a.a.s. Qℓ. Note that the intersec-

tion of a finite number of events that hold a.a.s. is an event that holds a.a.s.. In addition,

we have the following proposition.

Proposition 3.1. Let Q = (Qℓ), R = (Rℓ) be sequences of events. If a.a.s. Qℓ and

a.a.s. ”Rℓ under the condition Qℓ”, then a.a.s. Rℓ.

Proof. Denote by Qℓ the complement of Qℓ. By the two hypotheses, Pr(Qℓ) → 1
and Pr (Rℓ|Qℓ) → 1. Either Qℓ is empty and Pr(Rℓ) = Pr (Rℓ|Qℓ) → 1, or by the

formula of total probability

Pr(Rℓ) = Pr(Qℓ)Pr (Rℓ|Qℓ) +Pr(Qℓ)Pr
(
Rℓ

∣∣Qℓ

)
−−−→
ℓ→∞

1.

Let d ∈ {−∞} ∪ [0, 1]. A sequence of random subsets A = (Aℓ) of E = (Eℓ) is

densable with density d if the sequence of real-valued random variables

log|Eℓ|(|Aℓ|)

converges in probability (or in distribution) to the constant d. We denote

densA = d.

By definition, densA = d if and only if

∀ε > 0 a.a.s. |Eℓ|
d−ε ≤ |Aℓ| ≤ |Eℓ|

d+ε.

In particular, densA = −∞ if and only if a.a.s. Aℓ = Ø; densA = 0 if and only if

a.a.s. Aℓ 6= Ø and |Aℓ| is sub-exponential.

Here is the main example of a densable sequence of permutation invariant random

subsets. The proofs of Theorem 3.4 and Theorem 3.5 are much simpler in this model

(see [28]).

Proposition 3.2 (Bernoulli density model, [28] Proposition 1.12). Let 0 < d ≤ 1. Let

Aℓ be a sequence of random subsets of Eℓ such that every element e ∈ Eℓ is taken

independently with probability pℓ = |Eℓ|
d−1. Then A = (Aℓ) is a densable sequence

of permutation invariant random subsets with density d.

Note that in the case d = 0, the Bernoulli model is not densable. If Aℓ is a Bernoulli

sequence with density d > 0, then for any distinct elements e1, . . . , ek in Eℓ, we

have Pr(e1, . . . , ek ∈ Aℓ) = pkℓ = |Eℓ|
k(d−1) by independence. This property is, in

general, not true for an arbitrary densable sequence of permutation invariant random

subsets. Nevertheless, it can be approached asymptotically.

9



Proposition 3.3 (Similar to [28] Lemma 3.10). Let A = (Aℓ) be a densable sequence

of permutation invariant random subsets of E = (Eℓ) with density d. Let ε > 0.

Denote Qℓ the event |Eℓ|
d−ε ≤ |Aℓ| ≤ |Eℓ|

d+ε (we have a.a.s. Qℓ by definition). Let

e1, . . . , ek be distinct elements in Eℓ. For ℓ large enough,

|Eℓ|
k(d−1−2ε) ≤ Pr (e1, . . . , ek ∈ Aℓ|Qℓ) ≤ |Eℓ|

k(d−1+2ε).

3.2 The intersection formula

We recall here the intersection formula for random subsets. See [14] for the original

version by M. Gromov, and [28] Section 2 for a proof.

Theorem 3.4 (The intersection formula). Let A = (Aℓ), B = (Bℓ) be independent

densable sequences of permutation invariant random subsets.

1. If densA+ densB < 1, then a.a.s. Aℓ ∩Bℓ = Ø.

2. If densA + densB > 1, then A ∩B := (Aℓ ∩ Bℓ) is a densable sequence of

permutation invariant random subset and

dens(A ∩B) = densA+ densB − 1.

In particular, a.a.s. Aℓ ∩Bℓ 6= Ø.

A fixed subset can be regarded as a constant random subset. The density of a

sequence of fixed subsets can be defined by the same way. Note that a sequence of

subsets F = (Fℓ) of E = (Eℓ) is densable with density d if and only if

|Fℓ| = |Eℓ|
d+o(1).

We consider also the intersection between a sequence of random subsets and a

sequence of fixed subsets. See [28] Section 3 for a proof.

Theorem 3.5 ([28] Theorem 3.7). Let A = (Aℓ) be a densable sequence of permu-

tation invariant random subsets of E. Let F = (Fℓ) be a densable sequence of fixed

subsets.

1. If densA+ densF < 1, then a.a.s. Aℓ ∩ Fℓ = Ø.

2. If densA+densF > 1, then the sequence A∩F is densable in E, with density

densA+ densF − 1.

In addition, A ∩ F is densable and permutation invariant in F , with density

densA+ densF − 1

densF
.
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3.3 The density model of random groups

Fix an alphabet X = {x1, . . . , xm} as generators of group presentations. Let Bℓ be

the set of cyclically reduced words on X± = {x±
1 , . . . , x

±
m} of lengths at most ℓ. Note

that

|Bℓ| = (2m− 1)ℓ+o(ℓ).

We consider a sequence of random groups G(m, d) = (Gℓ(m, d)) defined by ran-

dom presentations Gℓ(m, d) := 〈X |Rℓ〉 where R = (Rℓ) is a densable sequence of

permutation invariant random subsets of B = (Bℓ) with density d. Such a sequence is

called a sequence of random groups at density d.

The number of relators |Rℓ| is a real-valued random variable and is concentrated to

(2m− 1)dℓ. More precisely, for any ε > 0 a.a.s.

(2m− 1)dℓ−εℓ ≤ |Rℓ| ≤ (2m− 1)dℓ+εℓ.

We are interested in asymptotic behaviors of a sequence of random groups. In his

book [14], Gromov observed that there is a phase transition at density 1/2.

Theorem 3.6 (Phase transition at density 1/2). Let G(m, d) = (Gℓ(m, d)) = (〈X |Rℓ〉)
be a sequence of random groups at density d.

1. If d > 1/2, then a.a.s. Gℓ(m, d) is a trivial group.

2. If d < 1/2, then a.a.s. Gℓ(m, d) is a hyperbolic group, and the Cayley graph

Cay(Gℓ, X) is δ-hyperbolic with δ = 4ℓ
1−2d .

In addition, for any s > 0, a.a.s. every reduced van Kampen diagram D of

Gℓ(m, d) satisfies the isoperimetric inequality

|∂D| ≥ (1 − 2d− s)ℓ|D|.

The proof of our main theorem (Theorem 5.1) is very similar to Ollivier’s proof

[22] for this theorem. We give here a proof for the first assertion and an idea of proof

for the second assertion.

Proof of Theorem 3.6.1. Let Sℓ be the set of cyclically reduced words of length exactly

ℓ. The sequence (Sℓ−1) is a fixed sequence of subsets of B = (Bℓ) of density 1.

By the intersection formula (Theorem 3.5), the two sequences (x1Rℓ ∩ x1Sℓ−1) and

(Rℓ ∩ x1Sℓ−1) are both sequences of random subsets of (x1Sℓ−1) with density d. By

the intersection formula between random subsets (Theorem 3.4), their intersection is

a sequence of random subsets with density (2d − 1) > 0, which is a.a.s. not empty.

Thus, a.a.s. there exists a word w ∈ Sℓ−1 such that w ∈ Rℓ and x1w ∈ Rℓ, so a.a.s.

x1 = 1 in Gℓ by canceling w.

The argument works for every generator xi ∈ X . By intersecting a finite number

of a.a.s. events, a.a.s. Gℓ is isomorphic to the trivial group.

By Theorem 2.6 and Theorem 2.7, to prove Theorem 3.6.2, it is sufficient to find a

local isoperimetric inequality. See [22] for a proof by Y. Ollivier.

Lemma 3.7 (Local isoperimetric inequality). Let s > 0. If d < 1/2, then for K =
K

(
1− 2d− s

2 ,
s
2

)
provided by Theorem 2.7, a.a.s. any reduced disc-like diagram D

of Gℓ(m, d) with at most K faces satisfies the isoperimetric inequality

|∂D| ≥
(
1− 2d−

s

2

)
ℓ|D|.
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4 Abstract diagrams

Two van Kampen diagrams having the same underlying 2-complex may not use the

same number of relators. For example, to check that if a group satisfies the C′(λ)
small cancellation condition ([28] Theorem 4.3), we have to consider the following

two types of diagrams. By Proposition 3.3, they have different probabilities to be a

diagram of a given random group.

r2r1 r1r1

Y. Ollivier introduced abstract van Kampen diagrams ([21] p.10) to surround this

problem.

4.1 Abstract van Kampen diagrams

Definition 4.1 (Abstract diagram, Ollivier [22]). An abstract van Kampen diagram D̃
is a finite, planar and simply-connected 2-complex (V,E, F ) with a labeling function

on faces by integer numbers ϕ̃2 : F → {1, 1−, 2, 2−, . . . , k, k−} satisfying ϕ̃2(f
−1) =

ϕ̃2(f)
−. We denote D̃ = (V,E, F, ϕ̃2),

By convention (i−)− = i for any 1 ≤ i ≤ k. The numbers {1, . . . , k} are called

abstract relators of D̃.

Similarly to a van Kampen diagram, a pair of faces f, f ′ ∈ F is reducible if they

have the same label, and they share an edge at the same position of their boundaries.

An abstract diagram is called reduced if there is no reducible pair of faces.

Let D = (V,E, F, ϕ1, ϕ2) be a van Kampen diagram of a group presentation

G = 〈X |R〉. Let {r1, . . . , rk} ⊂ R be the set of relators used in D. Define ϕ̃2 :
F → {1, 1−, . . . , k, k−} by ϕ̃2(f) = i if ϕ2(f) = ri. We obtain an abstract diagram

D̃ = (V,E, F, ϕ̃2) with k abstract relators, called an underlying abstract diagram of

D.

An abstract diagram D̃ is fillable by a group presentation G = 〈X |R〉 (or by a set

of relators R) if there exists a van Kampen diagram D of G, called a filled diagram

of D̃, whose underlying abstract diagram is D̃. That is to say, there exists k different

relators r1, . . . , rk ∈ R such that the construction ϕ2(f) = ri if and only if ϕ̃2(f) = i
gives a diagram D = (V,E, F, ϕ1, ϕ2) of G. The k-tuple (r1, . . . , rk) is called a filling

of D̃. As we picked different relators, D̃ is reduced if and only if a filled diagram D is

reduced.

21 filling
−−−−→

D̃

r2r1

D
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We assume that faces with the same label of D̃ have the same boundary length,

otherwise D̃ would never be fillable. Denote ℓi the length of the abstract relator i for

1 ≤ i ≤ k. Let ℓ = max{ℓ1, . . . , ℓk} be the maximal boundary length of faces of D̃.

Notation. The pairs of integers (i, 1), . . . , (i, ℓi) are called abstract letters of i.

The set of abstract letters of D̃, denoted X̃ , is then a subset of {1, . . . , k} ×
{1, . . . , ℓ}, endowed with the lexicographic order.

We decorate undirected edges of D̃ by abstract letters and directions. Let f ∈ F
labeled by i and let e ∈ E at the j-th position of ∂f . The edge {e, e−1} is decorated,

on the side of {f, f−1}, by an arrow indicating the direction of e and the abstract letter

(i, j). This decoration on {e, e−1} is called the decoration from f at the position j.

The number of decorations on an edge {e, e−1} is the number of its adjacent faces

{f, f−1} with multiplicity (0, 1 or 2 when D̃ is planar).

21

(2
,
3
)(1

,
4
)

For any filling (r1, . . . , rk) of D̃, we construct the canonical function φ : X̃ → X±

such that ri = φ(i, 1) . . . φ(i, ℓi) for any 1 ≤ i ≤ k. If an edge {e, e−1} is decorated

by two abstract letters (i, j), (i′, j′), then φ(i′, j′) = φ(i, j) if they have the same

direction, or φ(i′, j′) = φ(i, j)−1 if they have opposite directions. For example, the

diagram above deduce ϕ(1, 4) = ϕ(2, 3)−1.

Note that if D̃ is reduced, then by definition an abstract letter can not be decorated

twice on an edge with the same direction. If D̃ is fillable (by the set of all relators), then

an abstract letter (i, j) can not be decorated twice on an undirected edge with opposite

directions, otherwise we have φ(i, j) = φ(i, j)−1 in the set of generators X .

11

(1
,
4
)(1

,
4
)

11

(1
,
4
)(1

,
4
)

In the following we assume that D̃ is fillable and reduced, so that the abstract letters

decorated on an edge {e, e−1} are all different. In particular, there exists a unique

face {f, f−1} (at a unique position) from which the decoration is (lexicographically)

minimal. Whence the following two definitions.

Definition 4.2 (Preferred face of an edge). Let {e, e−1} be an edge of D̃. Let {f, f−1}
be the adjacent face of {e, e−1} from which the decoration is minimal. Then {f, f−1}
is called the preferred face of {e, e−1}.

Definition 4.3 (free-to-fill). An abstract letter (i, j) of D̃ is free-to-fill if, for any edge

{e, e−1} decorated by (i, j), it is the minimal decoration on {e, e−1}.

Note that an abstract letter (i, j) is free-to-fill if and only if every face f labeled by

i is the preferred face of its j-th boundary edge. In other words, if (i, j) is not free-to-

fill, then there exists an edge {e, e−1} decorated by (i, j) that has another decoration

(i′, j′) < (i, j).

13



For example, in the abstract diagram below, (1, 4), (2, 1) and (2, 2) are not free-to-

fill. The other abstract letters are free-to-fill.

11

2

Denote F+ = {f ∈ F | ϕ̃2(f) ∈ {1, . . . , k}}. It gives a preferred orientation for

each undirected face of D̃ = (V,E, F, ϕ̃2). Let E be the set of undirected edges of D̃.

Lemma 4.4. Let D̃ be a reduced fillable abstract diagram without isolated edges. For

every face f ∈ F+, let Ef be the set of edges {e, e−1} on the boundary of {f, f−1}
such that {f, f−1} is the preferred face of {e, e−1}. Then

E =
⊔

f∈F+

Ef .

Proof. For every edge {e, e−1} there exists a unique face f ∈ F+ such that {e, e−1} ∈
Ef . Hence the sets Ef with f ∈ F+ are pairwise disjoint. Their reunion is the set of

edges because every edge is adjacent to at least one face.

4.2 Abstract distortion van Kampen diagrams

We generalize the idea of abstract diagrams to distortion van Kampen diagrams.

Definition 4.5 (Abstract distortion diagram). An abstract distortion van Kampen dia-

gram is a pair (D̃, p) where D̃ is an abstract diagram and p is a path on ∂D̃.

Let G = 〈X |R〉 be a group presentation and let Γ be a labeled graph. An abstract

distortion diagram (D̃, p) is fillable by the pair (G,Γ) (or by the pair (R,Γ)) if there

exists a filled diagram D of D̃ such that (D, p) is a distortion diagram of (G,Γ). The

distortion diagram (D, p) is called a filled distortion diagram of (D̃, p).

In the following, an abstract distortion diagram (D̃, p) is reduced, fillable and with-

out isolated edges. Recall that X̃ ⊂ {1, . . . , k}×{1, . . . , ℓ} is the set of abstract letters.

Let p be the set of undirected edges given by p. In an abstract distortion diagram we

distinguish between two types of free-to-fill abstract letters: those that decorate an edge

of p and those that do not.

Definition 4.6. Let (i, j) be an abstract letter of (D̃, p).

(i) (i, j) is free-to-fill if it is free-to-fill for the abstract diagram D̃ and it does not

decorate any edge of p.

(ii) (i, j) is semi-free-to-fill if it is free-to-fill for the abstract diagram D̃ and it

decorates an edge of p.

14



(iii) Otherwise (i, j) is not free-to-fill.

Notation. Let i be an abstract relator of D̃. We denote αi the number of faces labeled

by i, ηi the number of free-to-fill abstract letters of i, and η′i the number of semi-free-

to-fill abstract letters of i.

Note that ℓi − ηi − η′i is the number of non free-to-fill edges.

Lemma 4.7. Recall that Ef is the set of edges on the boundary of f that prefers

{f, f−1}. Let i be an abstract relator. For any face f ∈ F with ϕ̃2(f) = i, we have

η′i ≤ |Ef ∩ p| and ηi ≤ |Ef | − |Ef ∩ p|.

Proof. Let {e, e−1} be the edge at the j-th position of ∂f . It is decorated by (i, j). If

{f, f−1} is not preferred by {e, e−1}, then (i, j) is not free-to-fill because there is a

smaller decoration on {e, e−1}.

Thus, if {e, e−1} ∈ Ef ∩ p then (i, j) is semi-free-to-fill, which gives the first

inequality. Similarly, if {e, e−1} ∈ Ef\p, then (i, j) is free-to-fill and we have the

second inequality.

Lemma 4.8. Recall that E is the set of undirected edges. The following two inequali-

ties hold.
k∑

i=1

αiη
′
i ≤ |p|,

k∑

i=1

αiηi ≤ |E| − |p|.

Proof. By Lemma 4.7, for every 1 ≤ i ≤ k

αiη
′
i ≤

∑

f∈F,ϕ̃2(f)=i

|Ef ∩ p|.

Apply Lemma 4.4,
k∑

i=1

αiη
′
i ≤

∑

f∈F+

|Ef ∩ p| ≤ |p|.

We get the second inequality by replacing η′i by ηi and |p| by |E\p|.

4.3 The number of fillings of an abstract distortion diagram

Recall that Bℓ is the set of cyclically reduced words on X± = {x±
1 , . . . , x

±
m} of length

at most ℓ. Let Γ be a graph labeled by X with rk(Γ) ≤ r.

Let (D̃, p) be an abstract distortion diagram with k abstract relators. Assume that

D̃ is reduced, fillable and has no isolated edges. Let ℓ be the longest boundary length

of faces of D̃.

Denote Nℓ(D̃, p,Γ) the set of fillings (r1, . . . , rk) of (D̃, p) by (Bℓ,Γ). In this

subsection, we give an upper bound of the number of fillings |Nℓ(D̃, p,Γ)|.

Lemma 4.9. The number of reduced words u of length L that is readable on Γ is at

most 2|Γ|(2r − 1)L.
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Proof. We estimate the number of paths p on Γ whose labeling word can be reduced.

Take an oriented edge of Γ as the first edge of p, there are 2|Γ| choices. Every vertex

is of degree at most 2r because rk(Γ) ≤ r. As p is reduced, every time we take the

next edge, there are at most (2r − 1) choices. Hence there are at most 2|Γ|(2r − 1)L

paths.

A vertex of (D̃, p) is called distinguished if it is either of degree at least 3, or the

starting point of a face, or an endpoint of p. Let i be an abstract letter of (D̃, p). It can be

regarded as a 2-complex with two inverse faces {i, i−} and 2ℓi edges (i, 1), . . . , (i, ℓi)
with their inverses, such that ∂i = (i, 1) . . . (i, ℓi).

i

(i
,
j
)

A vertex of ∂i is marked if there exists a face f of D̃ labeled by i such that the

corresponding vertex is distinguished. Note that the starting point of ∂i is marked.

Marked vertices divide the loop ∂i into segments, called elementary segments.

Consequently, an elementary segment is a sequence of abstract letters (i, j)(i, j +

1) . . . (i, j + t) such that, if a path ej . . . ej+t on D̃ is decorated by (i, j) . . . (i, j + t),
then it passes by no distinguished points except for its endpoints.

Lemma 4.10. Let (i, j) . . . (i, j + t) be an elementary segment. The abstract letters

(i, j), . . . , (i, j+t) are either all free-to-fill, or all semi-free-to-fill, or all not free-to-fill.

Proof. We shall check that if the vertex between two consecutive abstract letters (i, j)
and (i, j + 1) is not marked, then they are of the same type.

Recall that if an edge {e1, e
−1
1 } is decorated by (i, j) from the face {f, f−1}, then

there is an edge {e2, e
−1
2 } next to {e1, e

−1
1 }, decorated by (i, j+1) from the same face

{f, f−1}. Assume that the vertex between (i, j) and (i, j+1) is not marked so that the

vertex between {e1, e
−1
1 } and {e2, e

−1
2 } is not distinguished.

We suppose by contradiction that (i, j) and (i, j + 1) are not of the same type.

There are 32 − 3 = 6 cases, grouped into three cases.

case 1. (i, j) is semi-free-to-fill and (i, j + 1) is free-to-fill, or inversely:

Recall that if (i, j) is semi-free-to-fill in the abstract distortion diagram (D̃, p),
then it decorates an undirected edge {e1, e

−1
1 } on p. As (i, j+1) is free-to-fill,

the edge {e2, e
−1
2 } decorated by (i, j + 1) from the same face is not on p. So

the vertex between {e1, e
−1
1 } and {e2, e

−1
2 } is distinguished, contradiction.

p

(i, j)(i, j + 1)

i

case 1.

case 2. (i, j) is not free-to-fill, and (i, j + 1) is free-to-fill or semi-free-to-fill:
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By definition, there is an edge {e1, e
−1
1 } decorated by (i, j) having a smaller

decoration (i′, j′) < (i, j). Let {f, f−1}, {f ′, f ′−1
} be the faces attached by

{e1, e
−1
1 } such that f is labeled by i and f ′ is labeled by i′.

Let {e2, e
−1
2 } be the edge next to {e1, e

−1
1 }, decorated by (i, j + 1) from the

face {f, f−1}. As the vertex between e1 and e2 is not distinguished, {e2, e
−1
2 }

is attached to the face {f ′, f ′−1
}. It is then decorated by (i′, j′+1) or (i′, j′−1)

from {f ′, f ′−1}. Because (i, j+1) is free-to-fill, we have (i, j+1) < (i′, j′+
1) or (i, j + 1) < (i′, j′ − 1). Both are impossible because (i, j) > (i′, j′).

(i, j)

(i′, j′)

(i, j + 1)
i

i′

case 2.

(i, j)

(i′, j′)

(i, j + 1)
i

i′

case 3.

case 3. (i, j) is free-to-fill or semi-free-to-fill, and (i, j + 1) is not free-to-fill:

By the same argument, there exists an abstract letter (i′, j′) < (i, j + 1) such

that (i, j) < (i′, j′ + 1) or (i, j) < (i′, j′ − 1). The second one is obviously

impossible. If the first one held, then (i′, j′) < (i, j + 1) < (i′, j′ + 2), so

(i′, j′) = (i, j), and there was an edge decorated by (i, j) and (i, j + 1) with

opposite directions. The canonical function φ : X̃ → X gives φ(i, j + 1) =
φ(i, j)−1, which is impossible because ri = φ(i, 1) . . . φ(i, ℓi) should be a

reduced word.

Lemma 4.11. Let (D̃, p) be an abstract distortion diagram with no isolated edges.

(i) The number of distinguished vertices of (D̃, p) is at most 3|D̃|.

(ii) The number of elementary segments of an abstract letter i is at most 3|D̃|2.

Proof. The underlying 1-complex of D̃ is a graph of rank |D̃| without isolated edges.

By Lemma 2.1 there are at most 2(|D̃| − 1) vertices of degree ≥ 3. We add k ≤ |D̃|

starting points and 2 endpoints of p, there are at most 3|D̃| distinguished vertices on

(D̃, p).

The number of faces of D̃ labeled by i is at most |D̃|. Every face brings at most

3|D̃| marked vertices to ∂i, so there are at most 3|D̃|2 marked vertices on ∂i.

Lemma 4.12. Let (D̃, p) be a reduced abstract distortion diagram with no isolated

edges and with k abstract relators. Let Γ be a labeled graph with rk(Γ) ≤ r. Recall

that ηi is the number of free-to-fill abstract letters of i and η′i is the number of semi-

free-to-fill abstract letters of i.

|Nℓ(D̃, p,Γ)| ≤

(
2m

2m− 1

)k

(2|Γ|)3|D̃|2k(2m− 1)
∑

k

i=1
ηi(2r − 1)

∑
k

i=1
η′

i .
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Proof. We fill abstract letters of D̃ in lexicographic order. We shall prove that if the

abstract relators 1, . . . , i− 1 are filled, then there are at most

(
2m

2m− 1

)
(2|Γ|)3|D̃|2(2m− 1)ηi(2r − 1)η

′

i

ways to fill the i-th abstract relator.

By Lemma 4.10, we fill elementary segments of i in order. Let u be an elementary

segment of i. If u is free-to-fill, then there are at most (2m− 1)|u| ways to fill u, or at

most 2m(2m− 1)|u|−1 ways if u is the first segment of i. If u is semi-free-to-fill, then

there are at most 2|Γ|(2r − 1)|u| ways to fill u by lemma 4.9. If u is not free-to-fill

there is only one choice.

The sum of the lengths of free-to-fill segments is ηi, and the sum of the lengths of

semi-free-to-fill segments is η′i. As the number of semi-free-to-fill segments is at most

3|D̃|2 (Lemma 4.11), there are at most 2m(2m− 1)ηi−1(2|Γ|)3|D̃|2(2r− 1)η
′

i ways to

fill the abstract relator i.

5 Freiheitssatz for random groups

Recall that Bℓ is the set of cyclically reduced words of X± = {x±
1 , . . . , x

±
m}, and that

|Bℓ| = (2m− 1)ℓ+o(ℓ). The set of cyclically reduced words on X±
r = {x±

1 , . . . , x
±
r }

of length at most ℓ is of cardinality (2r − 1)ℓ+o(ℓ). Its density in Bℓ is

cr = log2m−1(2r − 1).

In this section, we prove that there is a phase transition at density

dr = min

{
1

2
, 1− cr

}
.

5.1 Statement of the theorem

Theorem 5.1 (Phase transition at density dr). Let G(m, d) = (Gℓ(m, d)) be a se-

quence of random groups at density d.

1. If d > dr, then a.a.s., Gℓ(m, d) is generated by x1, . . . , xr (or by any subset of

X of cardinality r).

2. If d < dr, then a.a.s., for every reduced labeled graph Γ with rk(Γ) ≤ r and

|Γ| ≤ dr−d
5 ℓ, the canonical map Γ̃ → Cay(Gℓ, X) is a 10

dr−d
-quasi-isometric

embedding.

In particular, a.s.s. every subgroup of Gℓ(m, d) generated by a reduced labeled

graph Γ with rk(Γ) ≤ r and |Γ| ≤ dr−d
5 ℓ is a free group of rank r.

In particular, a.a.s. x1, . . . , xr freely generate a free subgroup of Gℓ(m, d).

Proof of theorem 5.1.1. We assume that d < 1/2, otherwise a.a.s. Gℓ(m, d) is trivial

by Theorem 3.6. Recall that X = {x1, . . . , xm} and Xr = {x1, . . . , xr}.

Let Aℓ be the set of words of type xr+1w where w is a cyclically reduced word of

X±
r of length ℓ − 1. The density of (Aℓ) in (Bℓ) is cr. By hypothesis cr + d > 1.
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Apply the intersection formula (Theorem 3.4), a.a.s. the intersection Rℓ ∩ Aℓ is not

empty. Hence a.a.s. there exists a cyclically reduced word wr+1 of X±
r such that

xr+1wr+1 ∈ Rℓ, which implies xr+1 =Gℓ
wr+1.

Apply the same argument to the other generators xr+2, . . . , xm. A.a.s. there are

cyclically words wr+1, . . . , wm of X±
r such that xi =Gℓ

wi for any r + 1 ≤ i ≤ m.

Hence a.a.s. every word of X± equals to a word of X±
r in Gℓ.

The proof of the second assertion is similar to the proof of Theorem 3.6.2. We work

first on a local result.

Lemma 5.2 (Local diagrams). Let K > 0. Let (Gℓ) = (Gℓ(m, d)) be a sequence

of random groups with d < dr. Then a.a.s. for every reduced labeled graph Γ with

rk(Γ) ≤ r and |Γ| ≤ dr−d
5 ℓ, every disc-like reduced distortion diagram (D, p) of

(Gℓ,Γ) with |D| ≤ K satisfies

|p| ≤

(
1−

dr − d

5

)
|∂D|. (⋆)

The proof of this lemma is in the next subsection.

Proof of Theorem 5.1.2 by Lemma 5.2.

By Lemma 3.1 and Theorem 3.6, we can assume that every diagram D of Gℓ(m, d)
satisfies |∂D| ≥ (1− 2d)/2|D|ℓ and that Gℓ(m, d) is δ-hyperbolic with δ = 4ℓ

1−2d .

Let Γ be a reduced labeled graph with |Γ| ≤ dr−d
5 ℓ and rk(Γ) ≤ r. Let λ = 5

dr−d
.

By the local-global principle of quasi-geodesics (Theorem 2.8), in order to prove that

Γ̃ → Cay(X,Gℓ) is a (global) 2λ-quasi-isometric embedding, we prove that every

reduced word u readable on Γ is a 4000λℓ
1−2d -local λ-quasi-geodesic.

Let u be a reduced word read on Γ with |u| ≤ 4000λℓ
1−2d . Let v be a geodesic in Gℓ

joining endpoints of the image of u in Gℓ. We shall prove that |u| ≤ λ|v|. By van

Kampen’s lemma (Lemma 2.3) there exists a diagram D of Gℓ whose boundary word

is uv. By the isoperimetric inequality (Theorem 3.6.2),

|D| ≤
2|∂D|

(1 − 2d)ℓ
≤

4|u|

(1− 2d)ℓ
≤

50000λ

(1 − 2d)2
.

Apply Lemma 5.2 with K = 50000λ
(1−2d)2 = 250000

(1−2d)2(dr−d) . If D is disk-like, then by

(⋆) we have

|u| ≤

(
1−

dr − d

5

)
(|u|+ |v|) ≤

λ

1 + λ
(|u|+ |v|),

which implies |u| ≤ λ|v|.
Otherwise we decompose D into discs and segments. By the same argument of

Lemma 2.5, because every disc-like sub-diagram is a distortion diagram satisfying (⋆),
we still have |u| ≤ λ|v|.
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5.2 Proof of Lemma 5.2

Let (Gℓ) = (Gℓ(m, d)) = (〈X |Rℓ〉) be a sequence of random groups with density d <
dr. To prove Proposition 5.2, we work first on the fillability of an abstract distortion

diagram. Denote

εd =
dr − d

5
.

Let Qℓ be the a.a.s. event (2m− 1)(d−εd)ℓ ≤ |Rℓ| ≤ (2m− 1)(d+εd)ℓ.

Lemma 5.3 (Fillability of an abstract distortion diagram). Let K > 0. Let Γ be a

reduced labeled graph with rk(Γ) ≤ r and |Γ| ≤ εdℓ. Let (D̃, p) be a disc-like

abstract distortion diagram with |D̃| ≤ K that satisfies

|p| > (1− εd) |∂D̃|.

Then for ℓ large enough,

P = Pr

(
(D̃, p) is fillable by (Gℓ,Γ)

∣∣∣Qℓ

)
≤ ℓ10K

3

(2m− 1)−2εdℓ.

Proof. We shall prove the lemma in four steps. We omit ”for ℓ large enough” in every

step. Recall that αi is the number of faces labeled by i, ηi the number of free-to-fill

abstract letters of i, and η′i the number of semi-free-to-fill abstract letters of i.

Step 1: log2m−1 P ≤

k∑

i=1

(ηi + crη
′
i + (d− 1 + 2εd)ℓ) + 10K3 log2m−1 ℓ. (1)

According to Proposition 3.3, if (r1, . . . , rk) is a filling of D̃ by Bℓ, then for

ℓ large enough Pr (r1, . . . , rk ∈ Rℓ |Qℓ) ≤ (2m− 1)k(d−1+2εd)ℓ. Recall that

Nℓ(D̃, p,Γ) is the set of fillings of (D̃, p) by (Bℓ,Γ).

Apply Lemma 4.12 with |Γ| ≤ εdℓ and |D̃| ≤ K ,

Pr

(
(D̃, p) is fillable by (Gℓ,Γ)

∣∣∣Qℓ

)

≤
∑

(r1,...,rk)∈Nℓ(D̃,p,Γ)

Pr (r1, . . . , rk ∈ Rℓ |Qℓ)

≤|Nℓ(D̃, p,Γ)|(2m− 1)k(d−1+2εd)ℓ

≤ℓ10K
3

(2m− 1)
∑

k

i=1
ηi(2r − 1)

∑
k

i=1
η′

i(2m− 1)k(d−1+2εd)ℓ.

Hence the inequality (1) by applying log2m−1.

Step 2: |D̃|
(
log2m−1 P− 10K3 log2m−1 ℓ

)
≤

k∑

i=1

αi(ηi + crη
′
i + (d− 1 + 2εd)ℓ). (2)

Let D̃i be the sub-diagram of D̃ consisting of the faces labeled by the first i
abstract relators 1±, . . . , i± and the edges attached to them. Apply (1) to D̃i,

and denote Pi the probability obtained. We have

log2m−1 P ≤ log2m−1 Pi ≤

i∑

s=1

(ηs+crη
′
s+(d−1+2εd)ℓ)+10K3 log2m−1 ℓ.
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Without loss of generality, we assume α1 ≥ α2 ≥ · · · ≥ αk. Note that

log2m−1 P is negative and that α1 ≤ |D̃|. By Abel’s summation formula,

with convention αk+1 = 0,

k∑

i=1

αi (crη
′
i + ηi + (d− 1 + 2εd)ℓ)

=

k∑

i=1

[
(αi − αi+1)

i∑

s=1

(crη
′
s + ηs + (d− 1 + 2εd)ℓ)

]

≥

k∑

i=1

[
(αi − αi+1)(log2m−1 P− 10K3 log2m−1 ℓ)

]

≥α1(log2m−1 P− 10K3 log2m−1 ℓ)

≥|D̃|(log2m−1 P− 10K3 log2m−1 ℓ).

Step 3: log2m−1 P ≤

(
d−

1

2
+ 2εd

)
ℓ +

(
cr −

1

2
+ εd

)
|∂D̃|

|D̃|
+ 10K3 log2m−1 ℓ. (3)

Let ε′d > 0 such that |p| = (1 − ε′d)|∂D̃|. By hypothesis ε′d < εd. Because

D̃ is disc-like and the boundary length of every face is ≤ ℓ, the number of

undirected edges |E| is less then
|D̃|ℓ−|∂D̃|

2 + |∂D̃|. Apply Lemma 4.8, we get

k∑

i=1

αiη
′
i ≤ |p| = (1 − ε′d)|∂D̃|,

k∑

i=1

αiηi ≤ |E| − |p| ≤
|D̃|ℓ

2
+

(
ε′d −

1

2

)
|∂D̃|.

Note that
∑k

i=1 αi = |D̃|. So we have

k∑

i=1

αi (crη
′
i + ηi + (d− 1 + 2εd)ℓ)

≤cr(1− ε′d)|∂D̃|+
|D̃|ℓ

2
+

(
ε′d −

1

2

)
|∂D̃|+ (d− 1 + 2εd)|D̃|ℓ

≤

(
d−

1

2
+ 2εd

)
|D̃|ℓ +

(
cr −

1

2
+ εd

)
|∂D̃|.

Combine with (2) we get the inequality (3)

Step 4:

(
d−

1

2
+ 2εd

)
ℓ+

(
cr −

1

2
+ εd

)
|∂D̃|

|D̃|
≤ −2εdℓ. (4)

Recall that cr = log2m−1(2r − 1). Note that |∂D̃| ≤ ℓ|D̃| and that d =
dr − 5εd. There are two cases:

21



(a) If cr ≥ 1
2 , then d = 1− cr − 5εd and cr −

1
2 + εd ≥ 0, so

(
d−

1

2
+ 2εd

)
|D̃|ℓ+

(
cr −

1

2
+ εd

)
|∂D̃|

≤ (d+ cr − 1 + 3εd) |D̃|ℓ

≤− 2εd|D̃|ℓ

(b) If cr < 1
2 , then d = 1

2 − 5εd and cr −
1
2 + εd ≤ εd, so

(
d−

1

2
+ 2εd

)
|D̃|ℓ+

(
cr −

1

2
+ εd

)
|∂D̃|

≤

(
d−

1

2
+ 3εd

)
|D̃|ℓ

≤− 2εd|D̃|ℓ

By (3) and (4), for ℓ large enough log2m−1(P) ≤ −2εdℓ+ 10K3 log2m−1 ℓ.

By Lemma 2.1 and Lemma 2.2, we have the following two results.

Lemma 5.4. For ℓ large enough, the number of reduced labeled connected graphs Γ
(with respect to X) with |Γ| ≤ εdℓ and rk(Γ) ≤ r is bounded by

(2m− 1)εdℓℓ3r.

Lemma 5.5. For ℓ large enough, the number of disc-like abstract distortion diagrams

(D̃, p) with |D̃| ≤ K and |∂f | ≤ ℓ for all faces f ∈ F is bounded by

ℓ5K .

Proof of Lemma 5.2. Recall that εd = dr−d
5 .

We shall prove that a.a.s. for every reduced labeled graph Γ with rk(Γ) ≤ r and

|Γ| ≤ εdℓ, every reduced distortion diagram (D, p) of (Gℓ,Γ) with |D| ≤ K satisfies

|p| ≤ (1− εd) |∂D|.
Apply Lemma 5.3, Lemma 5.4 and Lemma 5.5. The probability that there exists a

reduced labeled graph Γ with rk(Γ) ≤ r, |Γ| ≤ εdℓ and there exists a disc-like reduced

abstract distortion diagram (D̃, p) with |D̃| ≤ K , |p| > (1− εd) |∂D̃| such that (D̃, p)
is fillable by (Gℓ,Γ) is bounded by

(2m− 1)εdℓℓ3r × ℓ5K × ℓ10K
3

(2m− 1)−2εdℓ = (2m− 1)−εdℓ+O(log ℓ).

So the probability that there exists a reduced labeled graph Γ with rk(Γ) ≤ r,

|Γ| ≤ εdℓ and there exists a disc-like reduced distortion diagram (D, p) of (Gℓ,Γ)

with |D| ≤ K that satisfies |p| > (1− εd) |∂D̃| is bounded by

(2m− 1)−εdℓ+O(log ℓ),

which goes to 0 when ℓ goes to infinity.

This completes the proof of Theorem 5.1.
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