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REMARKS ON ARTIN APPROXIMATION WITH

CONSTRAINTS

DORIN POPESCU AND GUILLAUME ROND

Abstract. We study various approximation results of solutions of equations

f(x, Y ) = 0 where f(x, Y ) ∈ K[[x]][Y ]r and x and Y are two sets of variables,
and where some components of the solutions y(x) ∈ K[[x]]m do not depend on

all the variables xj . These problems were highlighted by M. Artin.

1. Introduction

Let (R,m) be a Henselian excellent Noetherian local ring, f = (f1, . . . , fr) a sys-
tem of polynomials in Y = (Y1, . . . , Ym) over R and ŷ a zero of f in the completion

R̂ of R.

Theorem 1. (Popescu [P], [P2], Swan [S]) For every c ∈ N there exists a zero y
of f in R such that y ≡ ŷ modulo mc.

M. Artin proved in [Ar1, Theorem 1.10] the most important case of this theorem,
that is when R is the algebraic power series ring in x = (x1, . . . , xn) over a field K.
Usually we rewrite Theorem 1 saying that excellent Henselian local rings have the
Artin approximation property.

Now suppose that R̂ is the formal power series ring in x = (x1, . . . , xn) over a
field K and some components of ŷ have some constraints, that is they depend only
on some of the variables xj . M. Artin asked if it is possible to find y ∈ Rm such that
the correspondent components depend on the same variables xj (see [Ar2, Question
4]). More precisely, we have the following question. For a set J ⊂ [n] we denote by
K[[xJ ]] the ring of formal power series in the xj for j ∈ J .

Question 2. (Artin Approximation with constraints [R, Problem 1, page 68]) Let
R be an excellent local subring of K[[x]], x = (x1, . . . , xn) such that the completion
of R is K[[x]] and f ∈ R[Y ]r, Y = (Y1, . . . , Ym). Assume that there exists a formal
solution ŷ ∈ K[[x]]m of f = 0 such that ŷi ∈ K[[xJi ]] for some subset Ji ⊂ [n],
i ∈ [m]. Is it possible to approximate ŷ by a solution y ∈ Rm of f = 0 such that
yi ∈ R ∩K[[xJi ]], i ∈ [m]?

If R is the algebraic power series ring in x = (x1, x2, x3) over C then Becker [Be]
gave a counterexample. If the set (Ji) is totally ordered by inclusion, that is the
so called Nested Artin Approximation then this question has a positive answer in
[P], [P2, Corollary 3.7] (see also [CPR, Theorem 3.1] for an easy proof in the linear
case). However, when R is the convergent power series ring in x = (x1, x2, x3) over
C then Gabrielov [Ga] gave a counterexample (see also [Iz] for a general account on
this problem).
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A field extension K ⊂ K′ is algebraically pure (see [P1], [BNP]) if every finite
system of polynomial equations has a solution in K if it has one in K′. Any field
extension of an algebraically closed field is algebraically pure [P1]. In connection
with Question 2 the following theorem was proved.

Theorem 3. (Kosar-Popescu [KP, Theorem 9]) Let K → K′ be an algebraically
pure morphism of fields and x = (x1, . . . , xn). Let Ji, i ∈ [m] be subsets of [n], and
Ai = K〈xJi〉, resp. A′i = K′〈xJi〉, i ∈ [m] be the algebraic power series in xjI over
K resp. K′. Set N = A1 × · · · × Am and N ′ = A′1 × · · · × A′m. Let f be a system
of polynomials from K〈x〉[Y ], Y = (Y1, . . . , Ym), and ŷ ∈ N ′, such that f(ŷ) = 0.
Then there exist y ∈ N such that f(y) = 0 and ord(yi) = ord(ŷi) for i ∈ [m].

The goal of our paper is to replace somehow in Theorem 3 the algebraic power
series by formal power series (see Theorem 14) and to state a certain Artin strong
approximation with constraints property of the formal power series ring in x over
a field K which is so-called ℵ0-complete (see Corollary 16). This condition on K
is necessary (see Remarks 15, 17). Finally we apply these results to extend ap-
proximation results due to J. Denef and L. Lipshitz for differential equations with
coefficients in the ring of univariate polynomials to the case of several indetermi-
nates (see Corollaries 18 and 20).

Finite fields, uncountable algebraically closed fields and ultraproducts of fields
over N are ℵ0-complete (see Theorem 5). If (Kn)n is a sequence of fields and
F is an ultrafilter of N we denote by (Kn)∗ the ultraproduct (over the natural
numbers) defined as

(∏
n∈N Kn

)
/F , that is the factor of

(∏
n∈N Kn

)
by the ideal

{(xn)n∈N ∈
(∏

n∈N Kn
)

: {n ∈ N : xn = 0} ∈ F}. When K is a single field, K∗
denotes the ultrapower

(∏
n∈N K

)
/F .

2. Solutions of countable systems of polynomial equations

Definition 4. Let K be a field. We say that K is ℵ0-complete if every countable
system S of polynomial equations (in a countable number of indeterminates) has a
solution in K if and only if every finite sub-system of S has a solution in K.

Theorem 5. The following fields are ℵ0-complete:

a) Every finite field.
b) Every uncountable algebraically closed field.
c) Every ultraproduct of fields over the natural numbers.

Remark 6. Every ultraproduct is either finite or uncountable. So every alge-
braically closed field which is an ultraproduct is necessarily uncountable.

Proof. Let S be a system of countably many polynomial equations with coefficients
in a field K. We list the polynomial equations of S as P1, . . . , Pn, . . . which depends
on the variables x1, . . . , xl, . . ..
For any N ∈ N let DN be an integer such that the polynomials Pi, for i ≤ N ,
depend only on the xj for j ≤ DN .
Let us define the canonical projection maps:

πl,k : Kl = Kk ×Kl−k −→ Kk ∀l ≥ k ≥ 1

that sends the vector (x1, . . . , xl) onto (x1, . . . , xk). We also define the projection
maps

πk : KN −→ Kk ∀k ≥ 1
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that send the sequence (x1, . . . , xn, . . .) onto (x1, . . . , xk).
Let

V∞ := {x = (xn)n ∈ KN | Pi(x) = 0 ∀i ∈ N}
and

VN := {x = (xn)n ∈ KN | P1(x) = . . . = PN (x) = 0} ∀N ∈ N.
Then we have that V∞ = ∩N∈NVN . By assumption, for every integer N ≥ 1 we
have that

VN = πDN
(VN )×KN\{1,...,DN}.

For every positive integers N and k we define

CkN = πk(VN ).

Now set
Ck := ∩N∈NCkN .

We claim that, if for every k, Ck 6= ∅, then S has a solution; indeed, by construction
(x1, . . . , xk) ∈ Ck if and only if for every N and k there exists (xk+1, . . . , ) ∈ KN

such that (x1, . . . , xk, xk+1, . . .) ∈ VN . In particular πk+1,k(Ck+1) = Ck for every
k.
Now let x1 ∈ C1. Then there exists x2 ∈ K such that (x1, x2) ∈ C2. By induction
we can find a sequence of elements xn ∈ K such that for every k

(x1, . . . , xk) ∈ Ck.
Thus the sequence x = (xn)n ∈ VN for every N so it belongs to V∞. Hence S has
a solution.

a) Let us assume that K is a finite field.
Then the CkN are finite subsets of Kk. Since VN+1 ⊂ VN for every N , the sequence
(CkN )N is decreasing so it stabilizes. Therefore Ck 6= ∅ and S has a solution.

b) Now let us assume that K is an uncountable algebraically closed field. We
have that

CkN = πk(VN ) = πDN ,k

(
{x = (x1, . . . , xDN

) ∈ KDN | P1(x) = . . . = PN (x) = 0}
)
.

Thus the CkN are constructible subsets of Kk since K is algebraically closed (by
Chevalley’s Theorem). Let us recall that a constructible set is a finite union of sets
of the form X\Y where X and Y are Zariski closed subsets of Kk.
Thus the sequence (CkN )N is a decreasing sequence of constructible subsets of Kk.
Let F kN denote the Zariski closure of CkN . Then the sequence (F kN )N is a decreasing
sequence of Zariski closed subsets of Kk. By Noetherianity this sequence stabilizes,
i.e. F kN = F kN0

for every N ≥ N0 and some positive integer N0. By assumption

CkN0
6= ∅ so F kN0

6= ∅. Let F be an irreducible component of F kN0
.

Since CkN is constructible, CkN = ∪i
(
XN
i \Y Ni

)
for a finite number of Zariski closed

sets XN
i and Y Ni with XN

i \Y Ni 6= ∅ and XN
i is assumed irreducible. Since XN

i is
irreducible the Zariski closure of XN

i \Y Ni is XN
i . Therefore for N ≥ N0 we have

that
F kN0

= F kN = ∪iXN
i .

But F being irreducible, for every N ≥ N0 one of the XN
i has to be equal to F .

Thus for every N ≥ N0 there exists a closed proper subset YN ⊂ F such that

F\YN ⊂ CkN ∀N ≥ N0.
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Since K is uncountable ⋃
N≥N0

YN ( F.

This is a well known fact (see for instance Exercice 5.10, [Li] p. 76). This implies
that Ck 6= ∅ and S has a solution.

Finally c) is given as in Lemma 2.17 [P1]. �

Remark 7. It is quite straightforward to prove that a field K that is ℵ1-saturated is
ℵ0-complete (for the definition of a saturated model see [CK, Section 2.3]). One can
prove that the three fields of Theorem 5 are ℵ1-saturated providing an alternative
proof of the fact that these fields are ℵ0-complete.

Example 8. Let K = Q be the algebraic closure of Q. Since Q is countable we
may list its elements as α1, α1, . . . , αl, . . . . Let S be the system of equations:

P1 = 0, Pl = (x1 − αl)xl − 1 = 0 ∀l ≥ 2.

For every integer N ≥ 1 the vector(
αN ,

1

αN − α2
, . . . ,

1

αN − αN−1

)
∈ KN−1

is a solution of

P1 = · · · = PN−1 = 0.

But S has no solution. Indeed if x = (x1, . . . , xn, . . .) ∈ KN was a solution of S
then we would have that

(2.1) (x1 − αl)xl = 1 ∀l ≥ 2.

But x1 ∈ Q so x1 = αl0 for some l0 ≥ 0. Thus (3.2) for l = l0 would give

0 = (x1 − αl0)xl0 = 1

which is impossible. So Q is not an ℵ0-complete field.

Example 9. Let K = R be the field of real numbers. Let S be the system of
equations:

P1 = 0, Pl = x2l − (x1 − l) = 0 ∀l ≥ 2.

Then P1 = · · · = Pl = 0 has a solution x = (x1, . . . , xn) if and only if x1 − l ≥ 0.
In particular S has no solution. So R is not an ℵ0-complete field.

3. Approximation with constraints

We recall some elementary facts on algebraically pure field extensions, referring
to [P1] and [BNP, (2.3)] for details.

Remark 10. (1) If K −→ L is a field extension of real closed fields then it is
algebraically pure.

(2) If K is an infinite field and x = (x1, . . . , xn) then K −→ K(x) is algebraically
pure. [P1]

(3) If K is a field and x = (x1, . . . , xn), we denote by K〈〈x〉〉 the field of algebraic
power series, and by K{{x}} the field of convergent power series (when K
is a complete valued field). Then K〈〈x〉〉 −→ K{{x}} and K{{x}} −→ K((x))
are algebraically pure by Artin approximation theorem. [Ar1]
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(4) If K1 −→ K2 and K2 −→ K3 are algebraically pure then K1 −→ K3 is
algebraically pure. [P1]

Lemma 11. [BNP] Let K be a field and let K∗ be an ultrapower of K. Then
the morphism K −→ K∗ sending every element a ∈ K onto the constant sequence
(a, . . . , a, . . .) is algebraically pure.

Proof. Let S = (Pi)i∈I be a finite system of polynomial equations with coefficients
in K in the indeterminates Y1, . . . , Ym. Let us assume that there exists y∗ ∈ (K∗)m
such that

Pi(y
∗) = 0 ∀i ∈ I.

Let (yn)n∈N ∈ (Km)N be a sequence whose image in (K∗)m is y∗. There for every
i ∈ I there exists Ui ∈ F (here F denotes the ultrafilter such that K∗ = KN/F)
such that

∀n ∈ Ui, Pi(yn) = 0.

Since I is finite the intersection U := ∩i∈IUi ∈ F . Thus for every n ∈ U we have
that

Pi(yn) = 0 ∀i ∈ I.

Hence S has a solution in Km. Therefore K −→ K∗ is algebraically pure. �

Proposition 12. Let K be a ℵ0-complete field. Let x = (x1, . . . , xn), Y = (Y1, . . . , Ym),
f = (f1, . . . , fr) ∈ K[[x]][Y ]r and Ji ⊂ [n], i ∈ [m].

If for every c ∈ N there exists y(c) ∈ K[[x]]m, with y
(c)
i ∈ K[[xJi ]] for every i, such

that

f(y(c)) ≡ 0 modulo (x)c

then there exists y ∈ K[[x]]m, with yi ∈ K[[xJi ]] for every i, such that

f(y) = 0.

Proof. Let us set

Bi := Nε1,i × · · · × Nεm,i

where εk,i = 1 if k ∈ Ji, εk,i = 0 if k /∈ Ji, and

Yi =
∑
α∈Bi

Yi,αx
α ∀i = 1, . . . ,m.

We denote by Pk,β the coefficient of xβ in fk(
∑
α∈B1

Y1,αx
α, . . . ,

∑
α∈Bm

Ym,αx
α).

Let us denote by S the system of polynomial equations

(3.1) Pk,β = 0, k ∈ [p], β ∈ Nn.

depending on the variables Yi,α for i ∈ [m] and α ∈ Bi.
Since K is a ℵ0-complete field and every finite sub-system of S has a solution, S
has a solution (yi,α)i∈[m],α∈Bi

with coefficients in K. Thus if y = (y1, . . . , ym) with

yi =
∑
α∈Bi

yi,αx
α

then we have that f(y) = 0. �
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Example 13. In [BDLD] two examples are given that show that this statement
is no longer true without the condition of K being ℵ0-complete: the first one is a
system of polynomial equations over the algebraic closure of Fp (see Example (i)
p. 200 [BDLD]) and the second one is an example of polynomial equations over Q
(see Example (ii) p. 200 [BDLD]).

Theorem 14. Let K ⊂ K′ be an algebraically pure field extension where K is ℵ0-
complete. We set x = (x1, . . . , xn) and f ∈ K[[x]][Y ]r, Y = (Y1, . . . , Ym).
Assume that there exists a solution ŷ ∈ K′[[x]]m of f = 0 such that

ŷi ∈ K′[[xJi ]]
for some subsets Ji ⊂ [n], i ∈ [m]. Then there is a solution y ∈ K[[x]]m of f = 0
such that yi ∈ K[[xJi ]] and ord(yi) = ord(ŷi), i ∈ [m].

Proof. Let us write ŷi =
∑
α∈Bi

ŷi,αx
α where Bi ⊂ Nn denotes the support of ŷi.

We have that
f(ŷ) = 0⇐⇒ fk(ŷ) = 0 ∀k = 1, . . . , r

⇐⇒ ∀k, ∀β ∈ Nn the coefficient of xβ in fk(ŷ) is 0

Let us denote by Pk,β the coefficient of xβ in fk after replacing each Yi by the term∑
α∈Bi

Yi,αx
α, and let S be the system of equations

Pk,β = 0 ∀k ∈ N, ∀β ∈ Nn

in the indeterminates Yi,α for i = 1, . . . ,m and α ∈ Bi. Since S has a solution
in K′ every finite sub-system of S has a solution in K′ and, since K −→ K′ is
algebraically pure, every finite sub-system of S has a solution in K. Then, since K
is a ℵ0-complete field the system S has a solution (yi,α)i∈[m],α∈Bi

with coefficients
in K. This means that if y = (y1, . . . , ym) with

yi =
∑
α∈Bi

yi,αx
α

then f(y) = 0. Since Bi is the support of ŷi,the support of yi is included in the
support of ŷi for every i. In particular we have that ord(ŷi) ≤ ord(yi) for every i.
Now let us assume moreover that ord(ŷi) = ci and that, for every i = 1, . . . ,m,
ŷi,αi

6= 0 with |αi| = ci (here for β = (β1, . . . , βn) we set |β| := β1 + · · ·+βn). Then
there exists, for i = 1, . . . ,m, an element ẑi ∈ K′ such that

ŷi,αi
ẑi = 1, ∀i = 1, . . . ,m.

By adding the equations

(3.2) Yi,αiZi = 1, ∀i = 1, . . . ,m.

to the system S we can suppose that there exists zi ∈ K for every i such that
Equations (3.2) are satisfied. Thus

ord(yi) = ci = ord(ŷi) ∀i = 1, . . . ,m

and the theorem is proven. �

Remark 15. By Lemmas 5.1 and 5.2 [R] every system T of partial polynomial
differential equations with coefficients in K[[x]] (with x = (x1, . . . , xn)) and indeter-
minates Y1, . . . , Ym, provides a system S of polynomial equations with coefficients
in K[[x]][t] (with t = (t1, . . . , tl)) and indeterminates Y1, . . . , Ym, Z1,. . . , Zk such
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that y ∈ K[[x]]m is a solution of T if and only if there exists z ∈ K[[x, t]]k such that
(y, z) is a solution of S and z satisfies some constraints conditions as in Proposition
12.
By Corollary 4.7 [DL] there exists a system of partial differential equations T de-
fined over Q having a solution whose components are in C[[x]] but no solution whose
components are in Q[[x]]m. So it shows that there exists a system of polynomial
equations S with coefficients in Q[x] which has no solution y ∈ Q[[x]]m such that
yi ∈ Q[[xJi ]] for every i for some Ji ⊂ [n], but has a solution y′ ∈ C[[x]]m such that
y′i ∈ C[[xJi ]] for every i.
This shows that Theorem 14 is no longer true in general if K is not ℵ0-complete.
Moreover since this system S has a solution with coefficients in C satisfying the
constraints conditions and since Q −→ C is algebraically pure, for every c ∈ N there
exists y(c) ∈ Q[[x]]m (satisfying the constraints conditions) such that f(y(c)) ∈ (x)c.
But there is no y ∈ Q[[x]]m (satisfying the constraints conditions) such that f(y) = 0.
This also provides an example showing that Proposition 12 is not true if k = Q.

Corollary 16. Let K be a ℵ0-complete field. Let us set x = (x1, . . . , xn), f =
(f1, . . . , fr) ∈ K[[x]][Y ]r, Y = (Y1, . . . , Ym) and Ji ⊂ [n], i ∈ [m]. Then there exists
a map ν : Nm → N such that if y′ = (y′1, . . . , y

′
m), y′i ∈ K[[xJi ]], i ∈ [m] satisfies

f(y′) ≡ 0 modulo (x)ν(c) for some c = (c1, . . . , cm) ∈ Nm and ord(y′i) = ci, i ∈ [m]
then there exists yi ∈ K[[xJi ]] for all i ∈ [m] such that y = (y1, . . . , ym) is a zero of
f and ord(yi) = ci for all i ∈ [m].

Proof. Let c be as above. For proof by contradiction suppose that for each q ∈ N
there exists ŷq ∈ K[[x]]m with f(ŷ) ≡ 0 modulo xq, ŷq,i ∈ K[[xJi ]], ord(ŷq,i) = ci,
but there exists no solution y′ in K[[x]] with y′i ∈ K[[xJi ]], ord(y′i) = ci. Then let us
define y∗i = [(yqi)q] ∈ K[[xJi ]]

∗. So we have that f(y∗) ∈ ∩qxqK[[x]]∗. Set ȳ = y∗

modulo ∩qxqK[[x]]∗ which corresponds to an element in K∗[[x]] with f(ȳ) = 0 (see
Lemma 3.4 [BDLD]), ord(ȳi) = ci and ȳi ∈ K∗[[xJi ]]. By Lemma 11 and Theorem
14 there exists y ∈ K[[x]]m with f(y) = 0, ord(yi) = ci and yi ∈ K[[xJi ]]. We obtain
a contradiction, so the theorem is true. �

Remark 17. In Example (iii) p. 201 [BDLD] an example of a system of polynomial
equations over C with constraints is given for which the following is shown: there
is no ν ∈ N such that if there exists ŷ ∈ C[[x]]m with f(x, ŷ) ∈ (x)ν with the given
constraints then there exists a solution y ∈ C[[x]] of f = 0 with same constraints
and such that y ≡ ŷ modulo (x).

4. Approximation for differential equations

Corollary 18. Let K be a ℵ0-complete field. Let F be a system of polynomial equa-
tions in z1, . . . , zq and some of their differentials ∂|j1|zi1/∂x

j1 , . . . , ∂|js|zis/∂x
js ,

i1, . . . , is ∈ [q], and j1, . . . , js ∈ Nn, with coefficients in K[[x]]. If F = 0 has ap-
proximate solutions up to any order then F = 0 has a solution with coefficients in
K[[x]].

Proof. Exactly as in Remark 15, Lemmas 5.1 and 5.2 [R] show that for such a
system F = 0 there is a system of polynomial equations G = 0 with coefficients in
K[[x]][t] (with t = (t1, . . . , tl)) and indeterminates Y1, . . . , Ym, Z1,. . . , Zk such that
y ∈ K[[x]]m is a solution of F = 0 if and only if there is z ∈ K[[x, t]]k such that (y, z)
is a solution of G = 0 with constraints.
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Moreover y ∈ K[[x]]m is an approximate solution of F = 0 up to order c if and only
if there is z ∈ K[[x, t]]k such that (y, z) is an approximate solution of G = 0 up
to degree c with constraints. This shows that Proposition 12 implies Corollary 18.

�

Remark 19. This theorem has been proven in [DL] in the case of a single indeter-
minate x under some different hypothesis on K, namely K has to be a characteristic
zero field which is either algebraically closed, a real closed field or a Henselian val-
ued field. Still in [DL] they remark that this theorem is quite easy to prove when
K = C.
Again in [DL] is given an example of a system of partial differential equations
with coefficients in R[[x1, . . . , xn]] for n ≥ 2 having approximate solution up to any
degree, but no exact solution (see Corollary 4.10 [DL]). And Corollary 4.7 [DL]
provides an analogous example in the case where K = Q. These examples show
that the univariate case and the case of several variables x are different.

Corollary 20. Let K be a ℵ0-complete field. Let F be a system of differential equa-
tions in z1, . . . , zq and some of their differentials ∂|j1|zi1/∂x

j1 , . . . , ∂|js|zis/∂x
js ,

i1, . . . , is ∈ [q], and j1, . . . , js ∈ Nn with coefficients in K[[x]]. Then there exists a
map τ : Nq+s → N such that if z′ = (z′1, . . . , z

′
q), satisfies

F (z′, ∂|j1|z′i1/∂x
j1 , . . . , ∂|js|zis/∂x

js) ≡ 0 modulo (x)τ(c)

for some c = (c1, . . . , cq, ci1,j1 , . . . , cis,js) ∈ Nq+s and ord(z′i) = ci, i ∈ [q],

ord

(
∂|jk|z′ik
∂xjk

)
= cik,jk ,

k ∈ [s] then there exists z = (z1, . . . , zq) ∈ K[[x]]q a solution of F together with its
corresponding differentials such that ord(zi) = ci for all i ∈ [q] and

ord

(
∂|jk|zik
∂xjk

)
= cik,jk , k ∈ [s].

Proof. Let f ∈ K[[x]][Y ]r, Y = (Y1, . . . , Ym), m > q+s be the transformation of F in
an algebraic system of equations with constraints as done in the proof of Corollary
18. Assume that zi corresponds to Yi and ∂|jk|zik/∂x

jk corresponds to Yq+k. Then
applying Corollary 16 to f we get a function τ : Nq+s → N which works also in
our case F . �
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