
HAL Id: hal-03455268
https://hal.science/hal-03455268

Submitted on 5 Mar 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

An Inclusion-Exclusion based algorithm for the
permutation flowshop scheduling problem

Olivier Ploton, Vincent t’Kindt

To cite this version:
Olivier Ploton, Vincent t’Kindt. An Inclusion-Exclusion based algorithm for the permutation flowshop
scheduling problem. 17th International Conference on Project Management and Scheduling (PMS’21),
Apr 2021, Toulouse, France. �hal-03455268�

https://hal.science/hal-03455268
https://hal.archives-ouvertes.fr

1

An Inclusion-Exclusion based algorithm for the
permutation flowshop scheduling problem

Olivier Ploton1, Vincent T’kindt1

Université de Tours, Laboratoire d’Informatique Fondamentale et Appliquée
(LIFAT, EA 6300), ERL CNRS 7002 ROOT, Tours, France

{olivier.ploton,vincent.tkindt}@univ-tours.fr

Keywords: flowshop, exponential algorithms, Inclusion-Exclusion.

1 Introduction

In this paper we are interested in minimizing the makespan of a permutation flowshop
schedule. Following the notation of Graham et al. (1979), this problem is denoted by
F |prmu|Cmax. In this problem, there are n jobs to be scheduled on m machines. Each job
must be processed on machines 1 to m, in this order, and each machine can process only
one job at a time. All machines must process jobs in the same order, and a schedule is
essentially defined by this order. We note Oij , i ∈ {1 . . . n}, j ∈ {1 . . .m}, the operation
of job i on machine j, which has a non-negative integer processing time pij . For any given
schedule, we define Cij as the completion time of Oij in this schedule. The makespan is
the maximum completion time Cmax = max1≤i≤n Cim. The objective is to find an optimal
solution which minimizes the makespan.

We focus on the time and space worst-case complexities of algorithms to solve the
Fm|prmu|Cmax problem, i.e. when the number of machines is a parameter of the instance.
The size of an instance I is the number of jobs n. The measure of an instance is the sum
of its processing times, i.e. ||I|| =

∑
i,j pij .

Many algorithms use the branch-and-bound technique, along with specific optimiza-
tions. The bounding functions used in these branch-and-bound algorithms are more and
more precise as time goes, and some of these algorithms have the best known practical
performances (Ladhari and Haouari 2005, Ritt 2016, Gmys et al. 2020). While efficient in
practice, they often have a worst-case time complexity bound comparable to the O∗(n!)
complexity of the brute-force algorithm.

From a theoretical point of view, few algorithms have been proposed in order to provide
better worst-case complexity bounds. Jansen et al. (2013) describe a very general algorithm
class, based on a dynamic programming technique on (unordered) sets of jobs. They get
time and space worst-case complexities with respect to the number of operations m × n,
which translates into O∗(2O(n)||I||O(1)) for each fixed number of machines. Shang et al.
(2018) give a more precise result in the particular case of the F3|prmu|Cmax problem, by
a fine analysis of the number of critical paths in a schedule. They obtain time and space
complexities in O∗(2n||I||).

Our main contribution in this paper is an algorithm which, for any fixed number of
machines, runs with a moderate exponential worst-case time complexity and requires only
pseudopolynomial space. More precisely, the time complexity bound is in O∗(2n||I||m) and
the space complexity bound is in O∗(||I||m).

The algorithms we describe use the Inclusion-Exclusion technique. This rather old com-
binatorics formula received a pioneer application to computer science by Karp (1982) and
Bax (1993). More recently, Inclusion-Exclusion gained in popularity in operational re-
search (Björklund and Husfeldt 2006, Koivisto 2006). Nederlof (2013) showed the interest
of this technique to get polynomial or pseudopolynomial space and moderate exponential

2

time algorithms. Yet, the Inclusion-Exclusion technique is not widely used for schedul-
ing algorithms. To the best of our knowledge, the only scheduling problem solved by an
Inclusion-Exclusion based algorithm is the 1|ri, d̃i|-problem (Karp 1982, Nederlof 2008).
Some scheduling algorithms can be reduced to well-known classic problems solved by an
Inclusion-Exclusion algorithm, e.g. the P ||Cmax problem reduces to the bin-packing prob-
lem (Karp 1982) and the F |nowait|Cmax problem reduces to the Asymmetric Traveling
Salesman Problem (Bax 1993, Karp 1982).

2 The permutation flowshop decision problem

As the makespan is a regular objective, we can restrict to semi-active schedules, where
no operation could be scheduled earlier without changing the job order. So, a schedule S
is uniquely represented by the sequence of its jobs: S = (i1 . . . in).

Figure 1 presents an annotated Gantt chart showing a solution of the permutation
flowshop problem (one line per machine, one color per job).

j=1

j=2

j=3
time

i

B C = B ⊕ i

0 5 10 13

Fig. 1. A permutation schedule

Before executing job i, machines must be done with previous jobs. So, it is useful to
consider a more precise version of the problem: machines have release times (Bj)j=1...m

before which they are busy. Together, they form a time front B = (Bj). We denote by
C = B ⊕ i the completion times (Cj) of job i on machine j when executed with release
times (Bj). These are also the release times of the next job to be processed. With the
convention that C0 = 0, we have:

Cj = max(Cj−1, Bj) + pij , ∀ j = 1 . . .m. (1)

Let I be a set of jobs, B a release time front and ε a given threshold on the makespan
value. We now want to determine whether or not there exists a schedule using jobs of I,
whose makespan is at most ε when run with release times B. For that, we shall count the
number N(I,B, ε) of such schedules. We are about to do it using Inclusion-Exclusion.

3 The Inclusion-Exclusion principle

To apply the Inclusion-Exclusion principle, following Fomin and Kratsch (2010), con-
sider a problem of size n in which a solution is represented by a permutation. Relax this
problem by allowing any list of length n, with possible duplicates or missing elements. For
any J ⊂ I, count valid lists using only elements of J . By Inclusion-Exclusion, we deduce
the number of solutions of the initial problem.

We apply this principle to count schedules viewed as lists of jobs. We denote by Sn

the set of permutations schedules, where all jobs appear once, and In is the set of relaxed

3

schedules, where there may be duplicate or missing jobs. Define E ⊂ In as the set of
relaxed schedules whose makespan is at most ε when run with release times B. We derive:

cardE ∩Sn︸ ︷︷ ︸
N(I,B,ε)

=
∑
J⊂I

(−1)|I|−|J| cardE ∩ Jn︸ ︷︷ ︸
NJ (B,ε)

(2)

We determine each term NJ(B, ε) by dynamic programming. We compute NJ,ε[`,B] as
the number of relaxed schedules of length `, using only jobs of J , whose makespans are at
most ε when run with release times B. We have:

NJ(B, ε) = NJ,ε[n,B] (3)

NJ,ε[`,B] =
∑
i∈J

NJ,ε[`−1,B⊕i] if Bm ≤ ε, 0 otherwise ∀ ` = 1 . . . n (4)

NJ,ε[0,B] = 1 if Bm ≤ ε, 0 otherwise. (5)

4 From a feasible makespan value to an explicit solution

The optimal makespan can be deduced from the decision problem. It is:

C opt
max = min{ε | N(I, (Bj=0), ε) > 0} (6)

It can be computed by using a dichotomic search.
Once the optimal makespan is known, we can determine an explicit solution step by step.

We write (Algorithm 1) the recursive function Solution(σ,B, I), where σ is the sequence
of already scheduled jobs, B = (Bj)j are the completion times of already scheduled jobs,
and I is the set of jobs to be scheduled after B. We use the decision algorithm as an oracle
to systematically choose a job outside σ leading to a feasible solution. We denote by () the
empty sequence and by · the concatenation of sequences. We obtain an optimal solution of
the Fm|prmu|Cmax problem by calling Solution(σ=(), (Bj=0), I={1 . . . n}).

Function Solution(σ, B, I):
if I 6= ∅ then

for i ∈ I do
if N(I \ {i}, B ⊕ i, C opt

max) > 0 then
return Solution(σ · i, B ⊕ i, I \ {i})

else
return σ

Algorithm 1: Computation of a feasible schedule

5 Worst-case complexities

We now evaluate the worst-case time and space complexities of our algorithms:

– Each component of the timefront B involved in the dynamic programming equations
(3), (4), (5) is bounded by the sum of the processing times, i.e. ||I||. So, the number
of involved states is in O∗(||I||m).

– The decision problem uses 2n independent dynamic programming computations and it
can be solved in O∗(2n||I||m) time O∗(||I||m) space.

– Dichotomic computation of C opt
max is in O∗(2n||I||m log ||I||) time and O∗(||I||m) space.

– When C opt
max is known, computation of an optimal solution of the Fm|prmu|Cmax prob-

lem is in O∗(2n||I||m) time and O∗(||I||m) space.
– The global algorithm is in O∗(2n||I||m log ||I||) time and O∗(||I||m) space.

4

6 Conclusions

In this paper, we study exact algorithms to minimize the makespan of permutation
flowshop schedules, and we focus on bounding worst-case time and space complexities.
These complexities are evaluated for a fixed number of machines m using job number n
as the instance size and the sum of the processing times as an instance measure ||I||. The
best general time and space complexity bounds proved so far is due to Jansen et al. (2013).
It is O∗(2O(n)||I||O(1)), for each fixed m. Shang et al. (2018) proved a more precise bound
of O∗(2n||I||), for the particular case of 3 machines.

We describe an Inclusion-Exclusion based algorithm for the Fm|prmu|Cmax problem,
using dynamic programming for enumerations. We prove that, for every fixed m, its worst-
case space complexity is pseudopolynomial, with bound O∗(||I||m), and its worst-case time
complexity is moderately exponential, with bound O∗(2n||I||m).

From this piece of research, several future research directions can be outlined: how to
optimize the computation of the sum involved in the Inclusion-Exclusion principle ? How to
get tighter bounds on the number of states used in the dynamic programming algorithm ?
These questions are of great importance to derive better worst-case complexity bounds.

References

Bax E.T., 1993, “Inclusion and exclusion algorithm for the Hamiltonian path problem”, Information
Processing Letters, Vol 17(4), pp 203–207.

Björklund A., T. Husfeldt, 2006, “Inclusion-exclusion algorithms for counting set partitions”, Pro-
ceedings of the 47th Annual IEEE Symposium on Foundations of Computer Science (FOCS
2006), pp 575–582.

Fomin F.V., D. Kratsch, 2010, “Exact exponential algorithms”,, Springer.
Gmys J., M. Mezmaz, N. Melab, D. Tuyttens, 2020, “A computationally efficient Branch-and-

Bound algorithm for the permutation flow-shop scheduling problem”, European Journal of
Operational Research, Vol 284(3), pp 814–833.

Graham R.L., E.L. Lawler, J.K. Lenstra, A.H.G. Rinnooy Kan, 1979, “Optimization and Approx-
imation in Deterministic Sequencing and Scheduling: a Survey”, Proceedings of the Advanced
Research Institute on Discrete Optimization and Systems Applications, Vol 5, pp 287–326.

Jansen K., F. Land, K. Land, 2013, “Bounding the Running Time of Algorithms for Scheduling
and Packing Problems”, Algorithms and Data Structures - 13th International Symposium, pp
439–450.

Karp R.M., 1982, “Dynamic Processing meets the principle of inclusion and exclusion”, Operational
Research Letters, Vol 1(2), pp 49–51.

Koivisto M., 2006, “An O(2n) algorithm for graph coloring and other partitioning problems via
inclusion-exclusion”, Proceedings of the 47th Annual IEEE Symposium on Foundations of
Computer Science (FOCS 2006), pp 583–590.

Ladhari T., M. Haouari, 2005, “A computational study of the permutation flow shop problem
based on a tight lower bound”, Computers & Operations Research, Vol 32, pp 1831–1847.

Nederlof J., 2008, “Inclusion-exclusion for hard problems”, Master Thesis, Utrecht University.
Nederlof J., 2013, “Fast Polynomial-Space Algorithms Using Inclusion-Exclusion”, Algorithmica,

Vol 65, pp 868–884.
Ritt M., 2016, “A branch-and-bound algorithm with cyclic best-first search for the permutation

flow shop scheduling problem”, 2016 IEEE International Conference on Automation Science
and Engineering (CASE), pp 872–877.

Ryser H.J., 1963, “Combinatorial mathematics”, The Carus Mathematical Monographs, No 14,
The Mathematical Association of America.

Shang L., C. Lenté, M. Liedloff, V. T’kindt, 2018, “Exact exponential algorithms for 3-machine
flowshop scheduling problems”, Journal of Scheduling, Vol 21, pp 227–233.

