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FINITENESS RESULTS CONCERNING ALGEBRAIC POWER
SERIES

FUENSANTA AROCA, JULIE DECAUP, AND GUILLAUME ROND

ABSTRACT. We construct an explicit filtration of the ring of algebraic power
series by constructible sets, measuring the complexity of these series. As an
example of use of this, we give a bound on the dimension of the set of algebraic
power series of bounded complexity lying on an algebraic variety defined over
the field of power series.

The ring of polynomials over a field k is a k-vector space filtered by finite dimen-
sional vector spaces, namely the k-vector spaces of polynomials of degree less than
d, for every d € N. In many situations, the description of the ring of polynomials as
a ring filtered by finite dimensional vector spaces is very useful, both for theoretical
and applied aspects. The main advantage of this is that the set of polynomials of
degree bounded by d is fully described by a finite amount of data. One common use
of this fact is when one tries to approximate objects by polynomials. For example,
this is the case in analysis, by the use of Weierstrass approximation theorem, or in
algebra when one deals with approximations by polynomials of solutions of differ-
ential or functional equations, or transcendental estimations of such solutions.

In several cases, dealing with polynomials is not practical or effective enough, in
particular because the implicit function theorem does not hold in the polynomial
setting. To avoid this problem, one can replace the ring of polynomials by the ring
of algebraic power series over k. This is the set of formal power series that are
algebraic over the ring of polynomials. This set is a ring (satisfying the implicit
function theorem), in particular it is a k-vector space, but there is no explicit or
effective description of a filtration of this ring by finite dimensional spaces.

In this note, we give an explicit description of a filtration of the ring of algebraic
power series by constructible sets which are not vector spaces. A constructible set
is a subset of an affine space k™ which is described by polynomial equalities and
inequalities. Here, the sets of this filtration are the sets A(d, h) of algebraic power
series whose minimal polynomial P(x,T) over k[z], is such that

deg,. (P) < h, degp(P) < d.

We prove that these sets can be seen as constructible subsets of k(4" for some
constant N (d, h) depending only on d and h (see Corollary 2.8), and the dimen-
sion of this constructible set is computed. Roughly speaking, the idea is to try to
identify an algebraic power series with its minimal polynomial. But this cannot
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work directly, since two distinct algebraic power series may have the same minimal
polynomial. Moreover, an irreducible polynomial in = and T has no power series
root in general. Therefore there is no correspondence between algebraic power se-
ries and irreducible polynomials. To overcome this problem, we first describe the
subset of A(d, h) of algebraic power series whose minimal polynomial satisfies the
implicit function theorem as a constructible subset of some k¥ (see Theorem 2.6).
And from this we deduce the same kind of result for A(d, h). Let us mention that
this kind of approach has already been used in [FS98] and [HM17].

As an example of use of this filtration by constructible sets, we give a bound on the
dimension of the set of solutions of polynomial equations with coefficients in k((x))
whose entries are in A(d, h), when k is algebraically closed (see Theorem 3.1). This
problem is a non-archimedean analogue of the problem of bounding the number of
Q-points of a complex algebraic variety.

Acknowledgment. We are very grateful to Michel Hickel and Mickaél Matusinski
for their comments and suggestions on a previous version of our paper. In particular
they pointed out that there was an essential gap in the proof of Theorem 2.8. We
are also grateful to an anonymous referee for their helpful comments.

1. PRELIMINARIES

In the whole paper k will always denote a field, and = will denote a single
indeterminate. The ring of algebraic power series will be denoted by k(x). For
every integer n, Al will denote the affine space of dimension n over k.

Definition 1.1. Let f € k(z). The morphism ¢ : klz,T] — k(z) defined by
Y(P(z,T)) = P(z, f) is not injective and its kernel is a height one prime ideal of
k[z,T]. Therefore it is generated by one polynomial. If P(z,T) is such generator,
any other generator of this ideal is a multiple of P(z,T) by a non-zero element of
k. Any such a generator is called a minimal polynomial of f. But, by abuse of
language, we will always refer to such an element by the minimal polynomial of f.

Definition 1.2. [AB13|[Rol5] Let P(T) € k[z,T]. The maximum of the degrees
of the coefficients of P(T) seen as a polynomial in 7T is called the height of P.

For f € k(z), the height of its minimal polynomial is called the height of f, and is
denoted by H(f). The degree of f is the degree of the field extension k(z) — k(z, f)
or, equivalently, the degree of its minimal polynomial seen as a polynomial in T'. It
is denoted by Deg(f).

Definition 1.3. We define the following sets:

e A(d,h) denotes the set of algebraic power series of degree < d and height
< h.

e A(d, h)o denotes the set of algebraic series of A(d, h) that vanish at 0.

e Z(d, h) denotes the set of algebraic power series of A(d, h)g whose minimal
polynomial satisfies the implicit function theorem.

That is, f € Z(d, h), if and only if its minimal polynomial P(x,T') satisfies

P(0,0) =0 and g—];(o, 0) #0.
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In particular we have Z(d, h) C A(d,h)o C A(d, h) for every d, h.
Recall that for an algebraic power series f € k(z), the (vanishing) order of f is

ord(f) :=sup{n e N| f € ()"} € NU {oo}.
Remark 1.4. Tt is straightforward to check that A(d, h) = Ax x A(d, h)o.

Remark 1.5. Let f be an algebraic power series with f(0) = 0 and assume that
there is P € k[z,T] such that P(0,0) = 0, 2—5(0,0) # 0 and P(z, f) = 0. Then
the minimal polynomial of f satisfies the implicit function theorem. Indeed such
a minimal polynomial is denoted by @ and should divide P: P = QR for some
polynomial R. Then

oP  0Q

T — aT
Since f(0) = 0 and Q(x, f(x)) = 0 then Q(0,0) = 0. Hence (%R) (0,0) # 0 and

99(0,0) # 0.

OR
R+Q8—T.

2. FILTRATION OF THE RING OF ALGEBRAIC SERIES BY CONSTRUCTIBLE SETS

Definition 2.1. Let k be a field and let d, h, e € N. We define A(d, h, €) to be the
subset of algebraic power series f € A(d, h)o such that if P denotes the minimal
polynomial of f, we have

So we have Z(d, h) = A(d, h,0) and A(d, h)o = UeenA(d, h, €). Indeed in positive
characteristic the minimal polynomial of an algebraic power series is separable since
k(z) is a separable extension of k[z]. This comes from the fact that k(z) is the
henselization of the local ring k[x](,). Moreover this union is finite by the following
lemma:

Lemma 2.2. [HM17, Lemma 3] If e > 2dh then A(d, h,e) = 0.
Lemma 2.3. We have an injective map
Cahe Ald, he) — A x Z(d,h + e(d — 2))
defined as follows: let f € A(d, h,e) and let us write
f=F0 4 ger®

where £ is a polynomial in x of degree < e and vanishing at 0, and fV) is an
algebraic power series vanishing at 0. Then f() € T(d,h+e(d—2)) and f(©) € A¢
by identifying the set of polynomials of degree < e vanishing at 0 with Ag. Therefore
we define

ane(f) = (£, fD).
Proof. let f € A(d, h,e) and let
P=aT"+ - +aT +ag
be its minimal polynomial. We can write

f=F0 4 ger®
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where f(©) is a polynomial in z of degree < e and f() is an algebraic power series
vanishing at 0.
We have that

oP

P(f +2) = P(f) + ﬁ(f(O))Z +Q(x, 2)

where Q(x, Z) is a polynomial in x and Z, divisible by Z2. Moreover if we write
P(fO +2)=b,2%+ -+ b
we have that
deg(b;) < h+e(d —1i).
Let us set

R(T) — P(f(O) +$6T) _ P(f(o)) iaj

(0)
x2e x2e x¢ 8T(f )T+
We have %@ € k[z, T] since Q(x,T) is divisible by T2. Moreover since f(®) —

f € (z°*1) we have ZL(f(0) — ZE(f) € (2°*1), and because & (f) is of order e

then 22 (£(0)) has order e. Finally R M) =0 so P(f;:)) € klz]. This proves that
oT T

R(T) € k[z, T].

We have that

Qz, 2°T)

xQe

R(T) =cqT+ -+ ¢

with
deg(c;) = deg(b;) +ie —2e < h+e(d — 2)

and g—?(o, 0) = ¢1(0) # 0. So fM) is the only power series solution of R = 0
vanishing at 0 by the implicit function theorem and

fO € Z(d h+e(d-2)).
This construction gives an injective map

A(d7 hv 6) B Aﬂi X I(da h+ e(d - 2))

as claimed. O

This proves that
kiz) = | Af x Z(d, h)

e,d,h
where Af is identified with polynomials in = of degree < e vanishing at 0 and the
inclusion Af x Z(d, h) C k(x) is given by

(fr9) — f+2%g.

Lemma 2.4. We have Af +Z(d,h) C A(d, h + ed) for all integers d, h, e.
Proof. Let e € N and let us consider a polynomial R(Z) € k[x, Z], of degree d’ < d,
such that g—g(O, 0) # 0. Assume that deg, R < h. By the implicit function theorem,

R = 0 has a unique algebraic power series solution denoted by f(!). Now let
f© € Kk[z] be a polynomial of degree < e vanishing at 0. We set

P(T)=z"R <T_f(0)> .

xe
Then P(f© + z¢f1)) = 0. Moreover if
R(T) = Cd/Td/ + e + Co
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then
P(T) = Cq’ (T — f(o))d/ + Cdlilme(T — f(o))d/_l + -+ Co.’L'd/e = a,d/Td/ + -4 ag
where

deg(a;) < max {deg(cj) +e(d — j) + deg(f)(j — z‘)} <h+e(d —i).

So fi=fO 4 2¢fM) € A(d',h+ ed') C A(d, h + ed). O

Lemma 2.5. Let k be a field. Let f € Z(d,h) and let P =37,_), .-, a; ;x'TI be
a polynomial satisfying the implicit function theorem and vanishing at f. Let us

consider
Pd,h = Z Ai,jxiT]
i<h,j<d
where the A; ; are new indeterminates and Ao o is assumed to be 0. Then Py has
a unique power series solution

fan € (2)k <j;]1,x>

)

where (i,7) runs over {0,...,d} x {0,.. h}\{(O 0),(0,1)}. Moreover, the coeffi-

cients of the x* in the expansion of fan(x) are in k {A;i , and we have

fan (Z;’Jf ) = f(=).

Proof. The existence and the unicity of fg; comes from the implicit function the-
orem.
First we prove that f;, €k [

A; oP
P(d,h)(A01 ) ()andaT<
ﬁoi,x} with

jgg} [[«]]. This implies that fu, (ggg‘ : ) is

ﬁéﬂ [[#]]. Indeed we have that

x,O) ¢ (z).

So by Hensel’

respect to the ideal (z), i.e. fqn €k [
well defined.

Finally we conclude that fq (aoi :c) = f(z) since fgp is the unique solution of
Py = 0 vanishing at * = 0 and f is the unique solution of P = 0 vanishing at
z=0. (]

Since there are (d + 1)(h + 1) — 2 = dh + d + h — 1 indeterminates ﬁ;fl the

proposition defines a surjective map
fan : AL T(d R).

This map is not injective since different polynomials can have the same power series
solution.
In fact let us identify the set of polynomials of k[z,T] (up to multiplication with
a nonzero constant of k) of degree in x less than h and of degree in T less than d
with Pﬂ({d+1)(h+1)71 with homogeneous coordinates A; ;. Then AJ"*¥H"~1 i iden-
tified with the set of polynomials P(z,T) such that P(0,0) = 0 and %(070) # 0.
Thus here Aﬂ‘ih+d+h_1 is the intersection of the affine open chart Ag; # 0 with the
hypersurface Ay o = 0.
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We can state our first main result concerning the structure of Z(d, h):

Theorem 2.6. Assume that k is algebraically closed. We have the following prop-
erties:

1) For every d > 1 and every h > 1, there is an injective map
Va,h :Z(d,h) — Aﬂfh+d+h,1

whose image is a constructible subset Cqp, that contains a non empty open
subset of Aﬂzh+d+h_1.
Here we identify Aﬁ:““hil with the set of polynomials P(z,t) such that

P
P(0,0) =0, %—t(0,0) =1,deg,(P) < h,deg,(P) <d,

and the map Yqp is defined by identifying Z(d, h) with the subset of irre-
ducible polynomials in Aﬂih+d+h71.

Moreover, we have
fdn 0 Yan =idz,p) -

2) For every d' > d, h' > h, we denote by Wz(i}?d,h’,h :Z(d', W) — Z(d,h) and
by Wé?)d Wb Aﬂ‘ilh/+d/+h/7l — A§h+d+h71 the canonical projection maps.
Then we have that
1 2
Ya,n 0 7Té/,)d,h/,h = 7rc(l',)d,h/,h o Yar -
Remark 2.7. We can see in the proof that the map 1, is the map sending a
series of Z(d, h) onto the vector of coefficients of its minimal polynomial, which is

normalized in the sense that the coefficient of z°7! is 1.

Proof. The map fqp : Aﬂfh+d+h_l — Z(d, h) is not injective since different poly-
nomials may have the same root. To get an injective map, we need to restrict
the map to the set of irreducible polynomials. Indeed, by Remark 1.5, the minimal
polynomial of f € Z(d, h) satisfies the implicit function theorem. Therefore we have
to remove from Aﬂfh‘L‘”h*l the points corresponding to the reducible polynomials.
We can do it as follows:

For every integers dy, da, h1, ho with dy +do < d and hy + ho < h set

Quim = D, 68T, Ry = > riya'T,
i<hi,j<di i<hg,j<ds
for some variables ij ‘and pi,j- Then the product Qg, n, R4, n, is a polynomial
P = Zz‘gh,jgd a; jx*T7 where the a;; are polynomials in the ¢; ; and r; ;. The
product defines a rational map

By dy s a :Aﬂid1+1)(h1+1) % Aﬂid2+1)(h2+1) — Au((dﬂ)(hﬂ)

whose image can be identified with the polynomials P, with deg;(P) < hy + hs
and deg, (P) < dj + da, that are the product of 2 polynomials of degrees less than
(h1,d1) and (hg,d2). In fact it is straightforward to check that this map is defined
by bi-homogeneous polynomials so it induces a rational map

]P)]kq)dl,dQ,hl,hQ . Pﬂid1+1)(hl+1)_1 « Pﬂid2+1)(h2+1)—1 . Pﬂ(gd+1)(h+1)_1
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Here we want to consider only polynomials P whose constant term is zero. If such
a polynomial is the product of two polynomials @ and R then the constant term of
Q@ or of R has to be zero. We set

Cdy dyhy hy = Im(Pk(I)dl,dg,hl,hgIp(d1+1)(h1+1)—2XP(d2+1)(’L2+1)—1)U
k k

UIm(Px®a, dy,hy ho D01 Xpuidﬁl)(hﬁl)—z)

where Pﬂidlﬂ)(hl“)ﬁ (resp. Pﬂidﬁl)(hﬁl)ﬁ) is identified with the projective sub-

space of P]}((dﬁl)(hﬁl)*l of polynomials @ (resp. of ]P’ﬂ(gdﬁl)(hzﬂ)*l of polynomials
R) whose constant term is zero. Therefore the intersection of Cq, 4, h,.n, With
Au‘:h+d+h_1 corresponds exactly to the set of polynomials P with P(0,0) = 0 and
2—5(0, 0) # 0 that are the product of two polynomials whose degrees are coordi-
natewise less than or equal to (di,h1) and (dz, h2).

Let us remark that the dimension of Pﬂ((dﬁl)(hlﬂ)_z X P“(&dﬁl)(hﬁl) is
(d1 + 1)(h1 + 1) + (d2 + 1)(h2 =+ 1) — 3.

But we have that
(2.1)
(di+do)(h1 +ha)+di+do+hi+ha—1—((di +1)(h1 + 1)+ (d2 + 1)(ha + 1) — 3)

=dyhy +dahy >0
So if di +ds < d or hy + hy < h then dim(Clq, a4, 1y ,h,) < (d+1)(R+1).
If dy + do = d and hy + ha = h we have equality in (2.1) if and only if

(dl,hl) or (dg, hg) = 0,

(dla d2) = 01
or (hl,hg) =0.

In the first case @ or R is a nonzero constant of k. In the second case we have that
P = QR is of degree 0 in T" and so it does not correspond to a point in Auf(lh+d+h_1.
In the last case P = QR is of degree 0 in x so its roots are in the algebraic closure
of k, and the only algebraic power series vanishing at 0 which is in k is 0, and this

case cannot occur if h > 1.
Hence, in all the cases we need to consider, we have

(2.2) dim(C’dth,hhhg) <dh+d+h-—1.
So, when h > 1, we can identify Z(d, h) with
Cap = AP U Cy da b b

dy,dg,hy,ho
dy+dy<d,hy+ho<h

dyhg+dohy>0

which is a constructible set by Chevalley’s Theorem. Finally this former set con-
tains an open subset of AT =1 1y (2.2). This proves 1).

Let d’ > d and h' > h. From the construction of fg 5/ and ¥y ps, it is straightfor-
ward to see that

farw

|adhtdth—1
k

= fan and wd/,h" = Yd,h-

This proves 2). O

AII?h,-%—d+h—1
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Our second result describes the structure of A(d, h)y as a constructible set.
Theorem 2.8. Assume that k is algebraically closed. Let d, h, and e € N. Then
we have the following properties:

i) The image Cq e of the injective map

(Idae X®a pte(da—2)) © e - Ald, hye) — A, X Cqpyea—2)

is constructible in Af, X Cq pqe(d—2)-
ii) The set A(d, h)o can be identified with the constructible set

U Cah,e C Aniv(d’h)
e<2dh
for some N(d,h) € N.
i11) The dimension of this constructible set is dh +d + h — 1.

Remark 2.9. In particular, the map

((Tdag Xtpa pte(a—2)) © sﬁd,h,e)71 :Cahe — Ald, hye)

is a regular map in the sense that all the coefficients of the series f € A(d, h,e) are

d,h) (

polynomial functions into the coordinates on Aﬂiv ( by Lemma 2.5) and are well

defined on Cgq p -
Remark 2.10. In the proof we show that we can choose
N(d,h) =2dh(d—2)(d+1)+3dh+d+h—1.

Proof of Theorem 2.8. We do the following: let f(©) € k¢, f() € Z(d, h+e(d - 2)),
and f := f© 4+ z¢f(M We want to find necessary and sufficient conditions for f
to be in A(d, h, e), that is we want to describe the image of the map ¢4 5, defined
in Lemma 2.3.

Let R(Z) € k[x, Z] be a polynomial such that

degZ(R) < d? dEgz(R) < h+ €(d - 2)a

R(fM) =0, and %(070) #0.

We assume that R(Z) is irreducible. For such a f € A(d, h,e), we set
T — £(0)
P(T) = 2*R (f ) :
:I;(i
Then P(f© 4 2°f(1)) =0, i.e P vanishes at f. Moreover deg,(P) < h + ed. The
map
T— O
0 . ed
(f©, R(T)) —s P(T) := 2°’R (x)

is a polynomial map from A x Pﬂ({d+1)(h+e(d72)+1)fl to ]P’E((h+6d+1)(d+1)71.

Let S(T') be an irreducible polynomial vanishing at f. Since the following field
extensions degrees are equal:

k(@) (f) : k(2)] = k(@) (fP) :k(=)],
we have degp(S) = degp(R). Since degp(P) = degp(R), there is a polynomial
a(x) € k[z] such that

(2.3) P(z,T) =a(x)S(x,T),
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oP oS
O (r.0) = ale) 2
Then, f € A(d,h, e) if and only if S and R are irreducible, deg,(S) < h and
ord( (z, fO)) =

(2.4) x,0).

We denote by Pn‘il (resp. Pﬂidﬁl)(dﬂ)*l) the projective space of nonzero poly-
nomials of k[z] (resp. k[z,T]) of degree < dy (resp. < dp in z and < d in T)
modulo multiplication by elements of k*. For every di, ds, d, e, h, we denote by
Vi, do.d,e,n the algebraic set of elements

(a(a:),S(x,T),f(O),R(T)) c P}ltil % ]P)u((d2+1)(d+1)*1 % Aﬂi ~ Pﬂ(gd+1)(h+e(d*2)+1)*1
such that
T — O
(2.5) a(z)S(z, T) — 2°’R (e) =
x
Recall that f € A(d, h, ) is identified with (f(©), R(z, T)) € Ag x Pl (teld=2+0=1
Therefore f € A(d, h, e) if and only if there is (a(z), S(z,T)) € P& XIP’E((dQH)(dH)*l,
for some dy, do with d; + do < h + ed and ds < h, such that
R(z,T) and S(z,T) are irreducible,
R(0,0) =0, 2%(0,0) #0,
(a(x), S(z,T), £ )( ) R(z,T)) € le,d2,d,e,h

and ord (82 (z, f(©)) =

The set of irreducible polynomials S(z,T'), with degm(S) < dg, degp(S) < d, is

a constructible subset C’émd - IP’E(&dQH)(dH)_l as shown in the proof of Lemma

2.6. Moreover, by Lemma 2.6, the set of irreducible polynomials R(x,T) such that

R(0,0) =0, g? (0,0) # 0, deg,(R) < h, degy(R) < d, is a constructible subset C7 ,

f]P,(d+1)(h+e(ul 2)+1)-1
The condltlon ord ( (x fO )) = e defines a constructible set

Ol ge CPLETDEDTL o e

Now, we consider the following projections:

T4 ]P,ﬂ(:l ><]P,E((d2+1)(d+1)71 XA]E ><]P)E(gdqtl)(h+e(d72)+1)71 . Aﬂ@( ><}P)E({dJrl)(h+e(c172)+1)71
Mg : P x PUHD@HD=1 g pli+D(ibe(d=241)=1 _ pld+1)(d+1)=1 , pe

and we set

By dyden i= (]P’Effl X Chy ge X IP’H((dH)(the(d*z)H)*l)ﬁle,dQ,d,e,hﬁ(Pﬂffl x Cj, q X Af x Cfl’h) )

Then we have that A(d, h, e) is equal to

U 74 (Bavasden)

di+dy<h+ed

do<h

that is a constructible subset Cq p . of Af X A,(Cdﬂ)(hﬂ(d*z)“)*l

We claim that w3 A, is injective. Indeed, for (f©, R(z,T)) € A(d, h,e),

dy,dg,d,e,h

by (2.5) there is a unique couple (a(x), S(z,T)), where S(x,T) is irreducible, such
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that ((l(ZII), S(.’L’, T)a f(0)7 R(JL‘, T)) € Ed1,d2,d,e,h~
On the other hand, the fiber of 723 over (S(z,T), f(¥)) € Chyae N (C’é%d X Ai) is
finite. Indeed, if there is (a(z), R(x,T)) € P x ]P’Hifm)(hﬂ(dfz)ﬂ)*1 such that

a(z)S(z, T) — 2°’R (T_;f(O)) =0,

x
then, f(© 4 2¢ £ is a root of S(z, T) where f(!) is the unique solution of R(x,T) =
0 vanishing at « = 0. Therefore 7, 3((S, f(?))) is finite because S(z,T) has a finite
number of roots. 7

Therefore the dimension of Fg, 4,.d..,n is equal to the dimension of its image under
Tg.3. First let us assume that (S(x,T), f©) € 723(Fd, dy.d.en). Indeed, by (2.5),
we have that S(z, f(©) + 2¢f(M)) = 0 where f() is the unique solution of some
polynomial equation R(z,T) = 0 with R(0,0) = 0 and %(0,0) # 0. Therefore
S5(0,0) = 0. We denote by C’S’%d the set of polynomials S such that S(0,0) = 0.
Then 72 3(Fd, ,dy.d.e,h) is included in C’é%d’e N (ng,d x Af).

We are going to bound the dimension of C, ;. N (ng,d x Af) as follows:

We denote by Fj, the coefficient of z¥ in the expansion of f(© for 1 < k < e.
We denote by S; ; the coeflicient of 277 in S(z,T), for 0 <i < dy and 0 < j <
d. The coefficient of z! in S(z, f(*)) is a polynomial G; with integer coefficients
depending on the indeterminates Fy for & < [, and S;; for ¢ <1 — 1. Therefore
Cly.a.e N (CF, 4 x Af) is defined by the equations :

50’0 =0
Gi(F, Sije<ii<i =0, I <e
Ge(Fr, Sij)r<ei<e—1 # 0

and the ideal defining the Zariski closure of Cy, ;, ,N(C3, ;< Af) is the radical ideal
of the ideal generated by Sp o and the G; for [ < e. For any p < e, we set

I, :== (S0,0,Go,...,Gp)
and I_q1 = (Sp,0).
These are ideals depending only on the following indeterminates (if p > 0):
Fy, for k <p, and S;; for ¢ <p.

Moreover G, has the form

Gp = Spo + Gp(Fi, Sijzpizp1-
Therefore we have, for all p < e:
ht(Ip—1) < ht(Lp N Q[Fk, Sijlk<p-1.i<p-1) <ht(lp).
In particular we have that ht(I.) > e 4+ 2. Hence
dim(Cy, 4. N(CH ax Ap)) <[e+ (d+1)(d2+1)—1]—e—2< (d+1)(h+1)—3.

Therefore

dim(A(d, h,e)) < (d+1)(h+1) —2.
Moreover, when e = 0, we know that A(d, h,0) = Z(d, h) and by Theorem 2.6, this
set is a constructible set of dimension (d + 1)(h + 1) — 2. Thus,

A(d,h)o = | A(d,he)

e<2dh
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is a constructible set of dimension equal to (d+ 1)(h + 1) — 2. O

3. POINTS OF BOUNDED COMPLEXITY IN VARIETIES OVER k((z))

Let E be a subset of k((z))™. For all non negative integers d and h, we set
Ed,h =FnN A(d, h)n
and we denote by ng ,(E) the dimension of the Zariski closure of Ey ;, in the affine

space AHZN(d’h) where N(d, h) is given in Remark 2.10.

Theorem 3.1. Let k be an algebraically closed field and let X be an algebraic
subvariety of Aﬂ’;‘((x)) of dimension m. Then

nd,h(X) < m(dh +d+h).

Remark 3.2. This result is an analogue of Lemma [CCL15, 5.1.1] (that gives the
same kind of bound on the dimension of the polynomial solutions of degree < d).
The proof is based on the use of linear projections. But, on the contrary of the
polynomials of degree < d, the difficulty comes from the fact that the sets A(d, h)
are not stable by linear change of coordinates with coefficients in k (since these sets
are not k-vector spaces).

Proof of Theorem 3.1. We will prove the statement by induction on m. If m = 0,
then X is finite and n(d, h) = 0.

Now assume that the statement is true for every integer less than m and let X
be of dimension m. For every E C {1,...,n} with Card(E) = m, we denote by
m: A" — A™ the projection defined by wg(x1,...,2,) := (2;)icp. For such a
set I/, we define Bg to be the subset of points of 75 (X) where 7z x is not finite.
Then 7 (X)\ B contains an open set of the Zariski closure of 7g(X) by the upper
semi-continuity of the dimension of the fibers of 7g.

Therefore the dimension of the Zariski closure of the set of A(d, h)-points of X \
75" (Bg) has dimension less or equal to dim(.A(d, h)™), which is equal to m(dh +
d + h) by Remark 1.4 and Theorem 2.8. Thus we can replace X by X N7'(Bg).
We repeat this operation for every F as above and we assume that

X c N 75 (Bg).
EC{1,...,n}, Card(E)=m
By considering the different irreducible components of the Bg separately, we may

assume that all the Br are irreducible. Therefore the ideal of ng(BE) is a prime
ideal Jg generated by polynomials depending only on the z; for i € E.

We fix such a set FE that we denote by F;. We also fix an index iy € Fj such
that Jg, is generated by polynomials of K[z;,i € F1] but not by polynomials of
K[ZL’Z,Z S E1 \ {Zl}]
Then we pick Ea C {1,...,n}\ {i1} such that Card(E;) = m, and we fix an index
io € Fy such that Jg, is generated by polynomials of K[z;,7 € Es] but not by
polynomials of K[z;,7 € Ea \ {i2}].
We repeat this process and construct a sequence

Ela-~-aEn—m+1 - {1,,77,}
of subsets of cardinal m, and a sequence

i1 € By \ (UP"E), dg € By \ (U™ EY), - yinomy1 € Bpoma
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such that Jg, is generated by polynomials of K[z;,7 € Ej] but not by polynomials
of K[z;,i € Ei \ {ix}]. Hence, by Krull’s principal ideal theorem we have

ht (Jg, + Jgy + -+ JEp iy) =n—m+ 1
Equivalently we have
dim(Nj" ! (B,)) < m — 1.

Therefore, the result follows by induction. ([l
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