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Fault Trace Corrugation and Segmentation as a Measure
of Fault Structural Maturity
I. Manighetti!

, A. Mercier! (©, and L. De Barros!

1Université Cote d'Azur, Observatoire de la Cote d'Azur, IRD, CNRS, Géoazur, Valbonne, France

Abstract As faults grow over time and become more “mature,” some of their geometrical and
mechanical properties evolve, and these changes modify earthquake behavior. It is thus of prime
importance to know the degree of structural maturity of a fault that is likely to produce large earthquakes.
Although this concept is extensively used, there is no common definition or metric to measure the
structural maturity of a fault. We analyzed the heterogeneity of the surface traces of 13 large seismogenic
faults whose maturity is known qualitatively. We measured the corrugations and step-over segmentation
of the traces from ~100 m to the fault length scale. Corrugations and some properties of the segmentation
are found to vary with fault structural maturity. We provide scaling relationships that quantify the
structural maturity of a fault based on its surface trace. These results should help in parameterizing source
faults in earthquake models.

Plain Language Summary Long-term faults produce earthquakes. Measuring fault
properties could thus help us understand earthquake behavior. However, measuring properties of large-
scale faults in particular is difficult. Here, we tackle one of the major long-term properties of faults,

their structural maturity. This property relates to the overall slip longevity of the fault (generally several
million years), and it has been shown to impact earthquake behavior; mature and immature faults do not
behave similarly. For 13 large seismogenic continental faults whose structural maturity was estimated
qualitatively in earlier works, we examined the heterogeneity of the traces these faults form at the ground
surface. Using simple tools, we measured the undulations and the discrete “stepping” segmentation of
the fault traces over a broad range of scales from ~100 m to the full fault length (up to ~1,600 km in this
study). We found that the “intensity” of undulations and the density, relative width, and size diversity

of the steps separating discrete fault segments all vary with the structural maturity of the faults. These
variations are described with simple mathematical functions that characterize fault structural maturity
and can be used to better represent source faults in earthquake models.

1. Introduction

Faults are growing features: over geological time, generally, several Myrs, if submitted to tectonic stresses,
a fault grows by accumulating slip and lengthening along-strike (e.g., Fossen & Rotevatn, 2016; Manighetti
et al., 2001). Generally, the growth occurs through repeated earthquake ruptures. “Structural maturity”
is a term coined to describe qualitatively the slip longevity of a fault; the longer the slip history, the more
mature the fault. Although the concept appeared in early works (Anderson et al., 1996; Chester et al., 1993;
Stirling et al., 1996; Wesnousky, 1988), the term was established more recently (Choy & Kirby, 2004; Man-
ighetti et al., 2007) with attempts of quantification based on classifications of specific fault parameters
(initiation age, total cumulative slip, length, and slip rate; Manighetti et al., 2007). Nowadays, the concept
of fault structural maturity is extensively used, yet with no common definition nor metrics (e.g., Cheng &
Barnhart, 2021; Dascher-Cousineau et al., 2018; DuRoss et al., 2016; Huang, 2018; Kearse & Kaneko, 2020;
Materna & Blirgmann, 2016; Perrin et al., 2021; Preuss et al., 2019; Thakur et al., 2020).

Fault structural maturity is important because it impacts earthquake behavior. Overall, as a fault becomes
more mature, its 3D structure and mechanical properties change, and these changes modify the earthquake
properties (e.g., Perrin et al., 2016). In particular, the more mature the fault, the lower the slip to length ratio
and hence, possibly, the overall stress drop of the large earthquakes it produces (e.g., Choy & Kirby, 2004;
Hecker et al., 2010; Kanamori & Allen, 1986; Manighetti et al., 2007; Radiguet et al., 2009). In this work, we
aim to provide metrics to measure the structural maturity of a fault, with a focus on continental seismogenic
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faults capable of large earthquakes. Our objective is that these metrics can be used to improve earthquake
modeling and hazard assessment.

It is long known that faults are corrugated and segmented laterally at various scales (e.g., Power et al., 1987,
Schwartz & Sibson, 1989; Segall & Pollard, 1980; Wesnousky, 1988), and it has been suggested that these
geometrical heterogeneities are smoothed out as the fault accumulates more slip (Anderson et al., 1996;
Ben-Zion & Sammis, 2003; Brodsky et al., 2011; Choy & Kirby, 2004; Cooke, 1997; Dascher-Cousineau
et al., 2018; De Joussineau & Aydin, 2009; Lohr et al., 2008; Nur & Israel, 1980; Perrin et al., 2021; Sagy
etal., 2007; Stirling et al., 1996; Wechsler et al., 2010; Wesnousky, 1988). However, measurements supporting
these suggestions were generally focused on small scales (corrugations called “roughness”) and local fault
sections (Bistacchi et al., 2011; Brodsky et al., 2011, 2015; Brown & Scholz, 1985; Candela et al., 2009, 2012;
De Joussineau & Aydin, 2009; Marone & Richardson, 2016; Power et al., 1987; Sagy & Brodsky, 2009), and
they were not examined with respect to the structural maturity of the faults.

‘We approach the question by measuring the >~100 m-scale heterogeneity of the surface traces of 13 large
(>40 km long) seismogenic normal and strike-slip continental faults worldwide with different levels of
structural maturity as qualitatively estimated in earlier works. Using manual maps of the fault traces, we
measure the heterogeneity of the traces—namely their corrugation (i.e., undulation) and their lateral seg-
mentation through step-overs, and examine whether this large-scale heterogeneity varies as a function of
the supposed structural maturity. We find that both the corrugation level and the step-over size and density
vary with the structural maturity of the faults. We produce scaling relations that describe fairly quantitative-
ly the fault structural maturity. These metrics should be useful to input the structural maturity parameter in
some earthquake scaling laws (e.g., Manighetti et al., 2007; Radiguet et al., 2009) and to better parameterize
large source faults in earthquake models.

2. Data and Method

We selected 13 continental faults whose structural maturity was estimated in earlier works (Perrin
et al., 2016) (Table S1 in Supporting Information S1). They span a broad range of lengths (40-1,600 km),
initiation ages (2-70 Ma), slip modes (normal and strike-slip), total slips (0.7-400 km), locations worldwide,
and tectonic contexts, and thus represent a significant diversity. They include five faults earlier recognized
as immature, three as mature, and five as having an “intermediate” maturity. In the latter subset, two faults
are fairly mature and one fairly immature (Table S1 in Supporting Information S1).

The surface traces of most of these faults were mapped in earlier works at various resolutions. We had to re-
map them to produce a homogeneous mapping from a single source at the same resolution (~20 m, Landsat
satellite images) (Figure 1; all maps in Figures S1 in Supporting Information S1).

We analyze the main fault trace which accommodates most displacement (e.g., Chester et al., 2004; Sib-
son, 2003). These traces are generally divided into segments of various lengths, commonly separated by
step-overs (Figures 1a, 1d, and S1 in Supporting Information S1). For each fault, we take the shortest of
these segments as providing the resolution of the segmentation measures (Table S1 in Supporting Infor-
mation S1). As most fault traces have a 1-10? m thickness at the surface (e.g., Sibson, 2003), we consider
a conservative uncertainty of 300 m on the across-fault positioning of the traces (Table S1 in Supporting
Information S1). The fault maps are vector files where each trace is represented as a series of evenly spaced
nodes (Table S1 in Supporting Information S1).

The methods are described in detail in Figures S2 in Supporting Information S1, and the intermediate re-
sults are shown for each fault in Figures S3 in Supporting Information S1. First, fault traces are rotated so
that the X-axis is the along-fault length. We then analyze the rotated traces in two ways, chosen for their
simplicity and lack of a priori on fault curvature, corrugations, segments, and step-overs.

First, we measure the corrugation of the main fault trace, that is, its undulations. For that, we measure the
gradient, that is, the angle between the line connecting two consecutive nodes and the X-axis. Defining
a sliding window of length L, with L_ a variable fraction of the fault length L, we calculate the median
gradient among the n nodes at a distance <L_/2 from the central, sliding node. This allows ignoring the
strongest gradients that might result from the fault trace dividing into stepping branches. The window is
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Figure 1. Analysis examples for an immature (Dixie Valley, left) and mature (San Andreas, right) faults. (a) and (d) Main fault traces in the rotated reference
frame. Inset in (d) is a close-up on the trace at the same scale as in (a). (b) and (¢) Median gradients (absolute values) in sliding window L, of 2% of fault length
L,. (c) and (f) Across-strike distances among adjacent nodes (black) and derived from a MAX filter among 31 consecutive nodes (red).

made sliding from one node to the next. This provides a dense collection of median gradients along the fault
(Figures 1b and 1e), which can be plotted as a histogram. The more corrugated the fault trace is, the wider
is the variability in the gradients and the broader is the histogram distribution. To measure the dispersion
of the gradients, we fit the gradient histogram with a Gaussian function and use its standard deviation as
a proxy for the gradient variability and hence the corrugation level of the fault trace. We perform these
measurements with a sliding window of length L increasing by 1% steps from 1% to 50% of the total fault
length. This allows examining the fault trace corrugations of increasing size, with no a priori of what these
corrugations may be. While corrugations captured with small window lengths are primarily undulations in
the main fault trace, corrugations detected with longer window lengths also include step-overs.

Second, we measure the step-overs along the fault and hence examine the lateral segmentation of the main
fault trace. We measure the across-strike distance between the fault nodes, that is, their separation in the
Y-axis direction (Figures 1c and 1f). Step-overs are indeed sites of across-strike distances significantly larger
than those between nodes along an undulating trace. To smooth out local meaningless irregularities, we
apply a Maximum filter that retains only the largest across-strike distance among a sliding collection of p
nodes. We have tested different p values and found that a p subset coinciding with a window length L equal
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to 2% of the fault length L; (would the latter be linear and single trace) is a good compromise. Plotting the
largest across-strike distance determined in the sliding window as a function of the window position allows
locating the step-overs along the fault (Figures 1c and 1f) while measuring their size (along-strike length
and across-fault width) and counting their number.

3. Results

The standard deviation of the median gradient distribution is shown for all faults as a function of the sliding
window length L_ in Figure 2a (additional measures in Figures S4 in Supporting Information S1, Figures
A-D). The functions are tightly grouped and similar beyond L , of 25%-30% L. This shows that none of the
faults have significant corrugations longer than 25%-30% of the fault length. By contrast, for shorter L , the
functions are markedly different, showing a gradation from fairly flat curve sections with low standard de-
viation (around 5) at the smallest L, to increasingly steeping curve sections with standard deviations from
~10 to 25 at the smallest L . The gradation seems coincident with the increasing structural maturity of the
faults (Table S1 in Supporting Information S1): the most mature faults show flat, low standard deviation
functions; conversely, the most immature faults have the largest standard deviation functions, with the
steepest decrease.

The shape of the curves in Figure 2a provides information on the fault trace heterogeneity. A fairly flat sec-
tion indicates that the fault trace has no or little corrugations at length scales of about the window length at
which the curve flattens. Conversely, a pronounced slope in the curve indicates the presence of significant
corrugations of lengths in the L range of the slope. These most prominent corrugation scales are best re-
vealed through the variations of the standard deviation of the median gradient distribution (Figure 2b). The
most mature faults have a single significant length scale of corrugations, less than ~5% of the fault length;
whereas the most immature faults show different lengths of corrugations, up to 25%-30% of L.

Figure 2c shows the number of step-overs per kilometer of fault length (which we later referred to as step-
over density), as a function of their relative width (see also Figures S4 in Supporting Information S1, Figure
E). For all step-over sizes, the density of step-overs differs by the structural maturity of the fault: immature
faults have systematically the largest step-over densities, and mature faults have the lowest. The largest
relative size of the step-overs also varies with the structural maturity of the fault, with the largest step-overs
(relative size) on immature faults, and the smallest ones (relative size) on mature faults. However, when
step-over absolute sizes are examined, an opposite relation is found (Figures S4 in Supporting Informa-
tion S1, Figure Fa). Whatever the structural maturity of a fault, the step-over density decreases with in-
creasing relative step-over size. For each fault in Figure 2c, we calculate the median step-over relative width
associated with each density value. We then estimate the power law that best fits these measures. Figure 2d
shows that not only the step-over density varies with the structural maturity of the faults, but also does the
density decay rate as a function of the step-over relative width: the decay is “faster” for immature faults and
“slower” for mature faults. As the largest relative widths of step-overs are in a narrow range (2%-9% L) for
all faults (Figure 2d), the differences in decay rate are primarily controlled by differences in step-over densi-
ties among faults; mature faults share fairly constant, low step-over densities, whereas immature faults have
higher yet markedly variable step-over densities.

The length and the total displacement on a fault are commonly taken as proxies of its structural maturity
(e.g., Perrin et al., 2021 and references therein). Figures 3a and 3b show the standard deviation of the medi-
an gradient distribution (at L_, of 2% L, thus small scale) as a function of fault length and total displacement,
respectively (other L_ in Figures S4 in Supporting Information S1, Figures G-H). A power law function fits
the data reasonably well, suggesting that a relation exists between the fault length or the total displacement
and the small-scale corrugation level of the fault trace. Figures 3c and 3d show the density of step-overs
wider than 0.1% L, as a function of fault length and total displacement, respectively (other step-over widths
in Figures S4 in Supporting Information S1, Figure I). As step-overs are examined here down to very small
scales (minimum width of 0.1% L), the total numbers of step-overs used to build Figures 3c and 3d well rep-
resent the total numbers of step-overs along the faults. In both Figures 3c and 3d, a power law function fits
the data fairly well, suggesting a relation between step-over density and both fault length and total displace-
ment. However, as the slope is about —1 in Figure 3c, the relation may be primarily controlled by the fault
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Figure 2. Corrugation and step-over segmentation of main fault traces. In all graphs, colors indicate a priori knowledge of fault structural maturity (Table S1
in Supporting Information S1), with red, blue, and green tones for mature, “intermediate,” and immature faults, respectively. Some faults are named as their
most recent large earthquake. (a) Corrugation measured with standard deviation (Sd) of median gradient distribution, as a function of sliding window length
L, normalized to L. All curves are corrected from the overall curvature of the fault trace by setting Sd to 0 at L, of 50%L, (see Figures S2-S4 in Supporting
Information S1). Hector Mine is dotted because Sd is poorly constrained at small L. (b) Dominant corrugation length scales along faults. The graph shows the
peaks higher than 0.25 in the variations of the standard deviation of the median gradient distribution (Figures S3 in Supporting Information S1, Figure 9). Line
thickness increases with the height of the peaks, thus with the most prominent corrugation length scales. Dotted for Denali is a peak resulting from the overall
fault curvature. (c) Number of step-overs per km of fault length as a function of their across-fault width. The graph shows the number of step-overs having a
width larger than a threshold size, which varies along X by 0.01 steps (in % L,). Original measures in Figures S3 in Supporting Information S1, Figure 13c. Here,
these original values have been smoothed with a Median filter on a 100-sample sliding window (other filters in Figures S4 in Supporting Information S1, Figure
E). (d) Best power-law fit of functions in (c). For each fault, to each plateau at constant density Y, in Figure 2c, we assign the median step-over width W,__, (see
Figures S2 in Supporting Information S1). We then calculate the power law function that best-fits the Y-W__, points.

length. The inset graphs in Figures 3c and 3d confirm that the total number of step-overs wider than 0.1% L
is fairly similar among faults regardless of their structural maturity, with most faults having 6-12 step-overs.
As the total number of step-overs, the length-to-width ratio of the step-overs, of ~4, is fairly similar among
faults regardless of their maturity (Figures S4 in Supporting Information S1, Figure J).
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4. Discussion and Conclusions

Our results confirm that surface fault traces are significantly undulated and segmented at various scales,
here greater than ~100 m. We additionally show that these corrugation and segmentation vary with the
structural maturity of the faults, independently of the type of faulting (strike-slip and normal faults analyz-
ed here). Furthermore, the scaling relations that we find demonstrate that fault traces at the ground surface
record and preserve fundamental features of the fault and earthquake processes that occur at greater depth.

Figure 2a demonstrates that, as a fault becomes more mature, the corrugation level of its surface trace de-
creases; that is, the fault trace becomes smoother. This has been suggested in earlier works, mainly based
on measurements at small outcrop scales (references in Section 1), but never shown at such a large scale on
major seismogenic faults that furthermore span a large diversity. Additionally, the smoothing of the small-
est corrugations is at least partly deterministic: a simple relation describes it fairly well, as a function of both
fault length and total displacement (Figures 3a and 3b).

The relation between fault lateral segmentation and structural maturity is more complex. Several features
of the fault segmentation seem to be independent of fault maturity. While the total number of step-overs
varies with the size range examined (Figures S4 in Supporting Information S1, Figure F), for every size
range the total number of step-overs, and hence of fault segments, is fairly similar among faults regardless
of their maturity (insets, Figures 3c and 3d). When largest step-overs are considered, their number is few
and similar among faults, <6 and more generally <3, indicating that, regardless of their maturity, faults are
divided into a similar, limited number of major segments, generally 2-4 (inset, Figure 3e). This is in keeping
with earlier findings that showed that the number of largest segments along faults is generic, ~2-4 (De
Joussineau & Aydin, 2009; Otsuki & Dilov, 2005; Manighetti et al., 2009, 2015). The length to width ratio of
the step-overs also seems to be fairly constant (~4), as suggested in earlier works (e.g., Aydin & Nur, 1982;
De Joussineau & Aydin, 2009; Long & Imber, 2011; Fossen & Rotevatn, 2016), and thus independent of the
fault structural maturity. Consequently, as more mature faults tend to be longer, the step-over density along
a fault decreases with its structural maturity (Figures 3c and 3d), as does the largest relative width of the
step-overs (Figure 2c) and the variability of the step-over sizes along the fault (Figures 2b and 2d).

To discuss these observations, we come back to the original definition of structural maturity, that is, the slip
longevity of a fault. Immature faults are those with a short slip history (<a few Ma, Manighetti et al., 2007),
and as such, they provide information on the early stages of fault growth. Our findings suggest that, in these
early stages, a fault is relatively short and its surface trace is both highly corrugated and showing a great
density (number of step-overs per kilometer of fault) of segments of various lengths from <1 to 25%-30%
L, (Figure 2b). The largest step-overs are wide, up to 10% L, (Figure 2c). In contrast, mature faults, which
represent much later stages of fault growth, are longer and have a smooth trace in between the step-overs.
While they have about the same number of step-overs as immature faults (insets, Figures 3c and 3d), due
to their longer length their step-overs are much less dense and have much smaller relative width than on
immature faults. However, as the length to width ratio of step-overs is fairly constant, step-overs on mature
faults can have large absolute widths, up to 40 km on Kunlun and Denali (see also Figure 1f).

That fault traces are highly corrugated in the early stages of fault growth implies that faults are originally
made of very short sections with different strikes, all in all forming an undulating trace. This is consistent
with the observation of faulted laboratory rock samples (e.g., Moore & Lockner, 1995) and confirming that
faults grow and propagate out-of-plane (Cooke & Madden, 2014; Fossen & Rotevatn, 2016; Jackson, 1987;
Preuss et al., 2019).

Figure 3. Corrugation level and step-over density as a function of fault length and total displacement (at sliding window L, = 2%L,). In all graphs, fault lengths
and displacements from Table S1 in Supporting Information S1; red curve is the best-fitting regression with power law. In (a)-(d) colors show a priori knowledge
of fault structural maturity, as in Figure 2. (a)-(b) Standard deviation (Sd) of median gradient distribution (from Figure 2a) as a function of fault length L, and
total displacement D, , respectively. (c)-(d) Density of step-overs wider than 0.1% of L; (from Figures S3 in Supporting Information S1, Figure 13), as a function
of fault length L, and total displacement D, _, respectively. Insets present the total number N of step-overs wider than 0.1% L, as a function of L, or D . (e)~(f)
Density of step-overs wider than 1% of L, as a function of fault length L, and total displacement D, , respectively. Red and black, data from this study and from
Stirling et al. (1996), respectively. Inset shows the distribution of the total number of largest step-overs along the faults. In brown and green, step-overs in our
data that are wider than 1% and 2% L, respectively. In gray, data from Stirling et al. (1996). While the threshold size of step-overs is not indicated in Stirling

et al. (1996), they are the largest along the faults, mapped at low resolution.
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As a fault matures, the corrugations of its trace are smoothed out, making the fault more continuous and
straighter. How this happens is unclear but the fracturing of step-over zones allowing fault segments
to coalesce and abrasional wear have been proposed as likely mechanisms (e.g., Brodsky et al., 2011;
Dascher-Cousineau et al., 2018; Fossen & Rotevatn, 2016; Lee & Bruhn, 1996; Power et al., 1987, 1988; Sagy
et al., 2007). The smoothing of the smallest corrugations observed here seems to be partly deterministic,
increasing with fault slip (Figure 3b).

That the number of step-overs, but also their length to width ratio, are similar among faults with different
maturity and among step-overs of different sizes, suggests that step-overs are a generic and deterministic
output of the fault mechanics. Over the long-term, faults grow through alternating phases of slip accumu-
lation at fairly constant length-producing increasing stress and damage at fault tips, and of along-strike
lengthening-through prior damage (Bull et al., 2006; Giba et al., 2012; Nicol et al., 2005; Schlagenhauf
et al., 2008). Such a bimodal growth may explain the generic segmentation as it may progressively create
new step-overs ahead of the growing fault with a size increasing with stress at fault tips and hence with fault
length (Aydin & Berryman, 2010; Manighetti et al., 2009, 2015; Schlagenhauf et al., 2008). That the total
number of step-overs is constant along faults suggests however that, as new step-overs are created, some of
the pre-existing ones, likely the smallest step-overs, are smoothed out (De Joussineau & Aydin, 2009; Fossen
& Rotevatn, 2016; Lohr et al., 2008; Sagy et al., 2007; Stirling et al., 1996; Wesnousky, 1988). This smoothing
likely leaves a corrugated, yet more continuous fault trace.

Thus, while faults are divided into a similar number of major segments whatever their maturity (insets in
Figure 3), these segments become longer (bimodal fault growth), more planar (less corrugations, Figures 2a,
2b, 3a and 3b), and smoother (punctuated with less dense and relatively smaller step-overs, Figures 2c, 2d,
3c and 3d) as the fault becomes more mature. Major segments along mature faults thus form longer asperi-
ties with more homogeneous strength and lower fracture energy than those on immature faults. This makes
mature faults more prone to produce long earthquake ruptures propagating easily and at fast speed on the
fault plane and having fairly low stress drop (e.g., Manighetti et al., 2007; Perrin et al., 2016, 2021). Con-
versely, immature faults are expected to produce shorter, slower, yet more energetic ruptures (Bose & He-
aton, 2010; Choy & Kirby, 2004; Fang & Dunham, 2013; Manighetti et al., 2007; Newman & Griffith, 2014;
Perrin et al., 2016; Radiguet et al., 2009; Sagy et al., 2007).

We show here that the corrugation level and the step-over density of a surface fault trace are two relevant
metrics to quantify the structural maturity of the fault. The measurements were done at a fairly low resolu-
tion, demonstrating that there is no need to map a fault at a high resolution to derive the metrics properly.
Furthermore, as the corrugation level and step-over density can be expressed in units of fault length, there is
no need either to map a fault trace entirely: as faults do not seem to have corrugations and hence segments
longer than 25%-30% of their length (Figures 2a and 2b), analyzing a third of a fault trace should be suffi-
cient to derive the metrics, provided that this section encloses the most mature part of the fault (demonstra-
tion in Figures S4 in Supporting Information S1, Figure K). However, while these should reduce the time of
analysis, mapping a third a long fault may still be time consuming.

In a fault trace map, the standard deviation of the median gradient distribution can be measured. For the
smallest window lengths, it is expected to be 5 + 1 for a mature fault, 10 + 1 for a fault with intermediate
maturity, and 14-25 for an immature fault (Figure 2a). Meanwhile, the step-over density (as in Figure 2c)
is expected to be ~1073 for a mature fault, ~10~2 for a fault with intermediate maturity, and ~10~! for an
immature fault (Figure 2c). The scaling relations of Figure 3 can also be used to derive the maturity of a
fault. As it is easier to identify and measure step-overs than corrugations, especially the largest step-overs,
we suggest that the scaling relations in Figures 3e and 3f may be more practical (see also Figures S4 in Sup-
porting Information S1, Figure L). They combine our measurements of the largest step-overs and those of
Stirling et al. (1996) that also concern the largest step-overs identified in low-resolution, published maps.
Although the structural maturity is not informed in the figures, data falling in the upper left and lower right
parts of the graphs represent immature and mature faults, respectively.

Nowadays, deep learning can efficiently assist geologists to map surface fault traces automatically at high
resolution and accuracy in optical images of the ground (Mattéo et al., 2021). This provides the opportunity
to rapidly map the surface traces of many faults worldwide, and to analyze them as described here to recover
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the structural maturity of these faults. As fault structural maturity impacts earthquake behavior (references
in Introduction), its knowledge should improve earthquake hazard assessment. One way may be to input
the maturity knowledge into the few available empirical relations that link fault maturity and earthquake
slip or ground motions (Manighetti et al., 2007; Radiguet et al., 2009), and derive the expected largest earth-
quake magnitudes. Another way may be to use the functions in Figures 2 and 3 to parameterize the model
of a fault so as to provide realistic dynamic rupture scenarios prior to its rupture. The a priori knowledge of
the structural maturity of a fault being ruptured may also improve Earthquake Early Warning, as recently
suggested by Bose et al. (2021) and Hutchison et al. (2020).

Data Availability Statement

Fault trace data are provided as QGIS shapefiles on a repository at https://doi.org/10.5281/zenodo.5411798.
All other information is provided as Supplementary documents (Table S1 and Figures S1-S4 in Supporting
Information S1).
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