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Abstract: In this paper, the infinite-dimensional port-Hamiltonian modelling and control problem
of a flexible beam actuated using ionic polymer metal composite (IPMC) actuators is investigated.
The port-Hamiltonian framework is used to propose an interconnected control model of the me-
chanical flexible beam and the IPMC actuator. The mechanical flexible dynamic is modelled as a
Timoshenko beam, and the electric dynamics of the IPMCs are considered in the model. Furthermore,
a passivity-based control-strategy is used to obtain the desired configuration of the proposed inter-
connected system, and the closed-loop stability is analyzed using the early lumped approach. Lastly,
numerical simulations and experimental results are presented to validate the proposed model and
the effectiveness of the proposed control law.

Keywords: passivity-based control; flexible beam; IPMC actuators

1. Introduction

Minimally invasive surgery with the application of different types of endoscopes has
been developed in recent years. In order to avoid irreversible damage and to alleviate the
suffering of patients due to the complexity and fragility of the human body, providing
additional degrees of freedom using embedded actuators on endoscopes has garnered
particular attention over the last decade with the development of smart materials and
manufacturing techniques. A micro-endoscope model for endonasal skull base surgery was
proposed in [1], in which ionic polymer metal composites (IPMCs) were used to actuate
the bending movement of the micro-endoscope. IPMCs are widely used for their attractive
properties: ease of fabrication, fast response, large strain, and low actuation voltage [2].

An IPMC-actuated flexible structure for medical applications is proposed in this paper.
The mechanical structure of the endoscope consists primarily of a polyethylene-made
compliant inner tube. In this paper, we consider the endoscope inner tube as a flexible
beam using Timoshenko beam theory. Despite its attractive properties, the modelling and
control of an IPMC actuator are challenging due to its complexity and the flexibility of its
structure. The physical properties of IPMC-actuated endoscopes result in a complex multi-
physical modelling and non-linear infinite dimensional control problem. This motivates us
to use the port-Hamiltonian framework to address the modelling and control of an actuated
endoscope model. The port-Hamiltonian system (PHS) formalism is based on the energy
conservation and dissipation of a system and on energy exchanges between the components
of complex physical systems. Different components of the system are interconnected
through energy ports in a straight-forward and clear manner. The port-Hamiltonian
formulation was introduced for finite-dimensional systems in different physical nature
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systems [3–6] and has been further extended to infinite-dimensional systems described by
partial differential equations [7–9].

The port-Hamiltonian formulation of IPMC actuators with different assumptions was
proposed in [10,11] considering multi-scale phenomena. In the paper, an IPMC-actuated
endoscope system is described by a coupled system of sets of partial differential equations
(PDEs) interconnected with an ordinary differential equation (ODE). Different physical
parts of the system are considered interconnected by the port-Hamiltonian formalism
through the energy change ports. All of the physical natures of the components, such
as the beam’s flexibility and the physical propriety of IPMC actuators, are considered in
this formulation.

Furthermore, the port-Hamiltonian framework was shown to be able to handle
passivity-based control with a physical interpretation for finite- and infinite-dimensional
systems [12,13]. Many studies have been dedicated to the interconnection and damping
assignment passivity-based control (IDA-PBC) for physical systems [14,15].

Interconnected rigid links are used to model a flexible structure using the port-
Hamiltonian approach in [16]. The proposed model is a non-linear lumped parameter
system. However, many rigid links are needed to represent the high-frequency vibration
of the flexible structure. The model proposed in [16] becomes very complex when the
number of links increases and is impractical for control design. In [17], a passive linear
quadratic gaussian (LQG) controller and damping injection are used to achieve the desired
configuration of the flexible structure system, where the simulation results of a passive
LQG controller on a mono-IPMC-actuated flexible structure are presented.

The main contribution of this paper is that a distributed parameter interconnected
model with a multi-IPMC actuator is investigated to deal with the flexible nature of the
structure. The distributed Timoshenko beam model is used to deal with the flexible
behaviour appropriately. Furthermore, IDA-PBC feedback control is proposed for the
model and we show the asymptotic stability of the closed-loop system. Moreover, control
law is implemented in the experimental setup to validate the effectiveness of the proposed
method in the mono-actuated case. We define an integral action conserving the Hamiltonian
nature to account for steady errors due to an activity reduction of the IPMC actuator. In the
multi-actuated case, the simulation results illustrate that the proposed control law allows
us to shape the flexible beam into our desired shape.

The paper is organized as follows: In Section 2, we present the port-Hamiltonian for-
mulation of the IPMC-actuated flexible beam system modelled by sets of partial differential
equations (PDEs) and an ordinary differential equation (ODE). In Section 3, we design
an IDA-PBC-based finite-dimensional control law to improve the flexible beam system
performance. In Section 4, we give some simulation results, and an experimental validation
on a platform setup is presented to validate the proposed control law. In Section 5, some
concluding remarks and perspectives are given.

2. Port-Hamiltonian Formulation for IPMC Actuated Flexible Beam

We consider the modelling of an IPMC-actuated endoscope (Figure 1) using the
port-Hamiltonian formulation.

Several IPMC actuator patches are attached to a polyethylene-made compliant inner
tube. With the voltages applied across the IPMC actuators, torques are generated to control
its configuration. The distributed Timoshenko beam model (PDE) is used to describe the
mechanical beam behavior of the endoscope. A lumped parameter RLC model (ODE)
is presented to describe the interface/polymer diffusion dynamics of the IPMC actuator.
Moreover, a power-preserving interconnection is used to obtain the coupled PDE-ODE
model to describe the overall dynamics of the system.
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Figure 1. IPMC-actuated compliant endoscope.

2.1. Flexible Beam with Distributed Control

The control objective is to shape the flexible beam into a desired configuration using
the IPMC patches. The patches are actuated by the distributed bending moment, denoted
by ud, induced by the voltage applied. The dynamics of the Timoshenko beam [18,19] with
distributed input and power conjugate output yd are given as follows:

{
ẋ = (J −R)Lx + Bud

yd = B∗Lx
(1)

with a first-order skewed symmetric differential operator J =
(

P1
∂
∂z + P0

)
on the state

space X = L2([a, b];R4) and with

P1 =




0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0


, P0 =




0 0 0 −1
0 0 0 0
0 0 0 0
1 0 0 0


 (2)

The total mechanical energy of the flexible beam is considered Hamiltonian:

Hb(x) = 1
2

∫ b
a (K(

∂w
∂z

(z, t)− φ(z, t))2 + EI(
∂φ

∂z
(z, t))2

︸ ︷︷ ︸
potential elastic energy

+
1
ρ
(ρ(z)

∂w
∂t

(z, t))2 +
1
Iρ
(Iρ

∂φ

∂t
(z, t))2

︸ ︷︷ ︸
kinetic energy

)dz
(3)

where w(z, t) is the transverse displacement and φ(z, t) is the beam rotation angle of the
beam. The coefficients ρ and Iρ are the mass per unit length and the mass moment of
inertia of the cross-section of the beams, respectively. E, I, and K are Young’s modulus, the
moment of inertia of the cross-section, and the shear modulus, respectively.

The state variable vector of the system x = [x1, x2, x3, x4]
T ∈ X is defined from the

Hamiltonian function considering the mechanical energy: x1 = ∂w
∂z (z, t) − φ(z, t) and

x2 = ∂φ
∂z (z, t), defined by the potential energy, are shear and bending strain, respectively.

x2 = ρ(z) ∂w
∂t (z, t) and x4 = Iρ

∂φ
∂t (z, t) are the transverse and rotational momenta for

z ∈ (a, b), t ≥ 0, which correspond to the kinetic energy.



Actuators 2021, 10, 236 4 of 17

Hence, the Hamiltonian function is as follows:

Hb(x) = 1
2

∫ b
a (Kx2

1 +
1
ρ x2

2 + EIx2
3 +

1
Iρ

x2
4)dz

= 1
2

∫ b
a x(z)T(Lx)(z)dz = 1

2 ‖ x ‖2
L

(4)

with the operator L = diag
[
K 1

ρ EI 1
Iρ

]
.

The dissipation operator is defined as follows:

R =




0 0 0 0
0 Rt 0 0
0 0 0 0
0 0 0 Rr




with the translational and angular viscous fraction constants Rt and Rr.
As shown in Figure 1, the IPMC-actuated structure is fixed on a base (This base can

be fixed or can be moved forward and backward by an electric motor. However, in this
work, we consider the base as fixed, and only the stabilization and shape control problem
of the flexible structure are investigated), and the tip side is controlled. In this condition,
we consider that, on fixed side a, the velocity and the angular velocity are null, while on
free side b, the strain and the moment are zero. Thus, we consider the boundary conditions
as the boundary input,

ub =
[
v(a) w(a) F(b) T(b)

]T , (5)

and the boundary power conjugate outputs are as follows:

yb =
[
F(a) T(a) −v(b) −w(b)

]T . (6)

We define B : Ci 7→ X (Ci denotes an i-dimensional complex space) as the distributed
input map; ud ∈ Ci as the distributed moment density applied to the beam, which cor-
responds to the torque generated by the IPMC patches in our case; and yd ∈ Ci as the
power conjugated output of ud, i.e., the distributed angular velocity. The distributed input
operator is given by bi(z)udi(t) on the ith spatial section Ibi = [αi, βi]. We note that bi(z) = 1
if z ∈ Ibi and bi(z) = 0 elsewhere and that i ∈ {1, 2, . . . , m} if m actuators are glued onto
the beam. We consider the angular velocity mean values as the output in the same intervals
fdi = ydi =

∫ b
a bi(z) 1

Iρ
x4dz. Thus, the distributed input is given by the following:

Bud = ∑
i




0
0
0

bi(z)


udi(t) =




0
0
0

b(z)


ud(t) (7)

where B : Cm 7→ X, b(z) = [b1(z), . . . , bm(z)], and ud(z) = [ud1(z), . . . , udm(z)]T . The
output variable yd = B∗Lx is the power conjugate variable of the input. Hence, one can
compute the energy balance of the system as follows: ∂Hb

∂t ≤ yT
d ud.

2.2. The IPMC Actuator Model

The dynamics of IPMCs are modeled as the coupling of three different physical
contributions: the electric part from the electric double layer between the electrodes, the
diffusion phenomena of water and cations, and the mechanical contribution. The physical
deformation induced by the applied voltage is primarily caused by the diffusion of a cation
flux in the membrane between the electrodes (see Figure 2) [2]: when a voltage source is
applied to the edge of the IPMC actuator, the potential difference in the electric double
layer transfers the cations and water molecules to one side of the electrode in the polymer
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gel. This transfer causes the gel to swell and a bending moment to be applied to the
mechanical system.

Figure 2. Physical structure of the IPMC actuator and its electrical model.

In this work, the interconnection between the IPMC actuator and the beam is assumed
to be perfect. Thus, we consider that the mechanical contribution of the IPMC actuator is
combined with the beam as part of the Timoshenko beam model. For control purposes,
a simplified lumped RLC model [20] is used to model the electric dynamics of the IPMC.
The torque generated by the IPMC patch is proportional to the voltage applied.





ẋa =

[
−R1 −Im

Im −R2

]
∂Ha
∂xa

+

[
Im

0

]
u(t) +

[
0

Im

]
ua

y =
[

Im 0
]

∂Ha
∂xa

, ya =
[
0 Im

]
∂Ha
∂xa

(8)

with the state variables vector xa =

[
ϕ
Q

]T

, where Q is the charge of the capacitor and ϕ is

electric flux for each IPMC equivalent electrical model:

ϕ = [ϕ1 · · · ϕm]
T ∈ Rm,

Q = [Q1 · · ·Qm]
T ∈ Rm.

The dissipation matrices R1 ∈ Rm×m and R2 ∈ Rm×m of the IPMC actuator are defined
by the resistances r1i and r2i of each equivalent IPMC model, where i ∈ {1, 2, . . . , m}:

R1 =




r11 0 · · · 0
0 r12 · · · 0
...

...
. . .

...
0 0 · · · r1m


, R2 =




1
r21

0 · · · 0
0 1

r22
· · · 0

...
...

. . .
...

0 0 · · · 1
r2m




(9)

The total electrical energy of the m IPMC actuators is considered to be the Hamiltonian
of the actuator:

Ha =
1
2

Q2

C
+

1
2

ϕ2

L
(10)
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where we define the capacitance matrix C ∈ Rm×m and the inductance matrix L ∈ Rm×m

as follows:

C =




C1 0 · · · 0
0 C2 · · · 0
...

...
. . .

...
0 0 · · · Cm


, L =




L1 0 · · · 0
0 L2 · · · 0
...

...
. . .

...
0 0 · · · Lm


. (11)

The input variables u and ua are the voltage applied on the two electrodes of the
IPMC actuator and the current input due to mechanical deflection of the actuator structure,
respectively. Their power-conjugated outputs are y = ∂Ha

∂ϕ , the current over the inductance,

and ya =
∂Ha
∂Q , the voltage of the capacitor.

We define the interconnection relation between the IPMC actuator systems and the
flexible beam system:

[
ud
ua

]
=

[
0 +k
−k 0

][
yd
ya

]
, k =




k1 0 · · · 0
0 k2 · · · 0
...

...
. . .

...
0 0 · · · km




The capacitor voltage ya provides the bending moments of each actuator with a
constant factor ki. On the other hand, we assume that the power exchange between the
flexible beam and IPMC actuators is perfect, i.e., the interconnection is power-preserving.
Consequently, the beam movement generates current ua applied to the capacitor.

Considering the IPMC actuator Equation (8) and the flexible Equation (1), the port-
Hamiltonian formulation of the complete system is defined by the following:

ẋ =

[J −R Bk
−kTB∗ J − R

]

︸ ︷︷ ︸
J−R

∂H
∂x +




0
Im
0


u

y =
[
0 Im 0

]
∂H
∂x ,

(12)

where u, y ∈ Rm, x = [x, xa]T ,

J − R =

[
0 −Im
Im 0

]
−
[

R1 0
0 R2

]
,

with the appropriate dimension zero matrices 0. The state space of the coupled system is
X = L2([a, b];R4)×R2m.

Due to the energy-preserving interconnections, the total energy of the system is the
sum of the Hamiltonian function of the two coupled sun-systems:

H(x, xa) = Hb(x) + Ha(xa) =
1
2 xTQx

= 1
2 ‖ x ‖2

L + 1
2 QTC−1Q + 1

2 ϕT L−1 ϕ
(13)

where the energy operator Q of the coupled PDE-ODE system is as follows:

Q =



L 0 0
0 L−1 0
0 0 C−1


 (14)

For simulation and control design purposes, the PDE-ODE coupled system (12) needs
to be discretized. At the same time, in order to use the passivity-based control law, the
port-Hamiltonian structure should be preserved. To this end, the structure-preserving
Mixte finite element [21] discretization method is employed to discretize the system (12),
which leads to a finite dimensional system as follows:
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ẋ =




0 T 0 S 0 0
−TT 0 0 0 0 0

0 0 0 T 0 0
−ST 0 −TT 0 0 k

0 0 0 0 −R1 −Im
0 0 0 −kT Im −R2







∂H
∂x1n
∂H

∂x2n
∂H

∂x3n
∂H

∂x4n
∂H
∂φ

∂H
∂Q




+




0
0
0
0
Im
0




u (15)

where x1n, x2n, x3n, and x4n are the discretized state variables of the infinite dimensional
model of a flexible beam and where the matrices T and S are the discretization of the dif-
ferential operator and the coupling term of the PHS Timoshenko beam presented, which are

written as T =




−2 0 0 · · · · · · 0

4 −2
. . . . . . . . .

...

−4
. . . . . . . . . . . .

...
...

. . . . . . . . . . . .
...

...
. . . −4 4 −2 0

... · · · · · · −4 4 −2




, S =




− L
n 0 · · · · · · 0

0 − L
n

. . . . . .
...

...
. . . − L

n
. . .

...
...

. . . . . . − L
n 0

0 · · · · · · 0 − L
n




.

Remark 1. The discritization method used in this paper is the mixed finite element method used
to preserve the port-Hamiltonian structure such that we can use passivity-based control using the
discretized finite dimensional system (15). We can also use other structure-preserving methods to
discretize the system (12), such as the pseudo-spectral method [22], the finite difference method
on a staggered grid [23], and the finite volume structure-preserving discretization method [24].
A literature review on distributed parameter port-Hamiltonian systems and their discretization
methods can be found in [25].

3. Control Design via IDA-PBC

In this section, we propose a control law of the overall endoscope system (12). The
control objective is to achieve a desired position of the beam and to acquire a desired
performance by regulating the input voltages of the IMPC patches. The control block
diagram is depicted in Figure 3, where the coupled system to control is composed of a
flexible beam and several IPMC actuator patches interconnected by current and torque.
The control law is designed for interconnection and damping assignment passivity-based
control (IDA-PBC [14,26]). The main idea of the control law is to match the open-loop
system with a target system using state feedback control law.

Figure 3. Control diagram.
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3.1. Ida-Pbc Control Method

First, we briefly recall the basic principles of the IDA-PBC methodology developed
in [14]. We consider a open-loop port-Hamiltonian system in its general form, and we
stabilize it around a desired equilibrium point x∗.

ẋ = (J − R)
∂H
∂x

+ g(x)u (16)

Let us define an asymptotically stable PHS target system

ẋ = (Jd − Rd)
∂Hd
∂x

(17)

with matrices Jd(x) = −Jd(x)T and Rd(x) = Rd(x)T ≤ 0, and the desired Hamiltonian
function Hd verifies the PDE:

g⊥(Jd − Rd)
∂Hd
∂x

= g⊥(J − R)
∂H
∂x

(18)

g⊥ is a full rank left annihilator of g, i.e., g⊥g = 0. The PDE is a so-called matching
condition. Furthermore, the Hamiltonian function Hd(x) should satisfy the following:

x∗ = argminHd(x) (19)

The closed-loop port-controlled Hamiltonian system with the feedback law

u = β(x)=(gT g)−1gT((Jd − Rd)
∂Hd
∂x
− (J − R)

∂H
∂x

) (20)

is (locally) and asymptotically stable at the equilibrium x∗; see [14] for details.
Hereafter, with the Port-Hamiltonian formulation of the representation of the intercon-

nected total system, we propose the control laws for the stabilization of an IPMC-actuated
flexible beam.

3.2. Control Design

In this subsection, we propose an IDA-PBC control law to stabilize the complete
system (12). The control design is applied on the discretized port-Hamiltonian system (15),
which allows us to preserve the structure. We match the open-loop system with a target
system using state feedback control law, as described in Figure 3.

First, we consider not modifying the closed-loop interconnection matrix Jd = J. As
the system has a sensitive oscillator due to the mechanical nature of the beam, we consider
additional energy damping Rd = R + Rc.

In order to find the set of desired Hamiltonian functions Hd as proposed in [14],
Equation (15) is projected onto the orthogonal space corresponding to the matching condi-
tion with input matrix gu:

g⊥u (Jd − Rd)
∂Hd
∂x

= g⊥u (J − R)
∂H
∂x

(21)

where g⊥u is a full rank annihilator. To facilitate the calculation, we set g⊥u as follows:

g⊥u =




In 0 0 0 0 0
0 In 0 0 0 0
0 0 In 0 0 0
0 0 0 In 0 0
0 0 0 0 0 Im



∈ R(4n+m)×(4n+2m) (22)
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We define the desired closed-loop Hamiltonian in the quadratic form:

Hd(x) =
1
2

xdQdxd (23)

The equilibrium profile vector is defined as follows:

xd = ( x1 x2 x3 − x∗3 x4 φ− φ∗ Q−Q∗ )T . (24)

We set the symmetric matrix Qd as follows:

Qd =




Q1 0 0 0 0 0
0 Q2 0 0 0 0
0 0 Q̄3 0 k3 k1
0 0 0 Q4 0 0
0 0 kT

3 0 L′−1 k2
0 0 kT

1 0 k2 Q′−1




(25)

with the desired equilibrium position of the system as xd =

(
0 0 x∗3 0 φ∗ Q∗

)T

.

Remark 2. Q̄3, C′, and L′ are the desired stiffness vector, desired capacitance vector, and desired
inductance vector of the closed-system to be calculated. ki, k = 1, 2, 3 are constant vectors. We
show later that these vectors are control parameters, and the parametrization of Qd is used for the
resolution of matching equations so that the matching conditions are satisfied.

We set Hd(x) = H(x) + Hc(x) using the discretized system (15), and we find the
developed form from the matching condition (21):

∂Hc

∂x1
=

∂Hc

∂x2
=

∂Hc

∂x4
= 0 (26)

−T
∂Hc

∂x3
+ bK

∂Hc

∂Q
= 0 (27)

∂Hc

∂φ
− R2

∂Hc

∂Q
= 0 (28)

where Q ∈ <m×m, φ ∈ <m×m, and xi ∈ <n×1.

We find that the desired Hamiltonian function is independent from x1, x2, and x3 and
has cross terms among x3, φ, and Q from the matching Equations (26)–(28). Thus, we set
the gradients of the desired Hamiltonian as follows:

∂Hd
∂x3

= Q̄3(x3 − x∗3) + k1(Q−Q∗) + k3(φ− φ∗) (29)

∂Hd
∂φ

= L′−1(φ− φ∗) + kT
3 (x3 − x∗3) + k2(Q−Q∗) (30)

∂Hd
∂Q

= C′−1(Q−Q∗) + kT
1 (x3 − x∗3) + k2(φ− φ∗) (31)

Taking Equations (29)–(31); the set gradients of the closed-loop Hamiltonian; and
the gradients of open-loop Hamiltonians ∂H

∂x3
= Q3x3, ∂H

∂Q = C−1Q, and ∂H
∂φ = L−1φ into

account, we have the gradients of Hc:
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∂Hc

∂x3
= Q̃x3 − Q̄3x∗3 + k1(Q−Q∗) + k3(φ− φ∗) (32)

∂Hc

∂φ
= L̃φ− L′−1φ∗ + kT

3 (x3 − x∗3) + k2(Q−Q∗) (33)

∂Hc

∂Q
= C̃Q− C′−1Q∗ + kT

1 (x3 − x∗3) + k2(φ− φ∗) (34)

where Q̃ = (Q̄3 −Q3), L̃ = (L′−1 − L−1), and C̃ = (C′−1 − C−1)
In order to find a solution in which Hc satisfies the matching conditions (26)–(28), we set

k1 = T−1bKC̃

k2 = R2C̃

k3 = RT
2 k1 = RT

2 T−1bKC̃

Q̄3 = Q3 + T−1bKkT
1

L′−1 = L−1 + R2k2 = L−1 + R2
2C̃ (35)

Remark 3. The set gradients of Hc in Equations (32)–(34) are taken into account to calculate the
matching conditions (27) and (28). Then, the choice is made by fixing C̃ and by satisfying the
equations obtained.

From the complete system dynamic (12), by computing ẋ(x∗, u∗) = 0, we find the
equilibrium relation among x∗3 , φ∗, and Q∗ :

φ∗ =
LR2Q3x∗3

T−1bK
(36)

Q∗ =
CQ3x∗3
T−1bK

(37)

The condition (19) guarantees that, in the closed-loop Hamiltonian system, the equi-
librium x∗ is the strict minimum, and the following equation interprets this condition:

∂Hd
∂x

(x∗) = 0,
∂2Hd
∂x2 (x∗) > 0 (38)

The left side of Equation (38) is verified naturally by setting the gradient Hd in
Equation (29) to that in Equation (31). The inequality on the right side of Equation (38)
indicates that the Hessian of Hd should be positive definite at the desired equilibrium,
which yields the following condition on the control design parameter C′:

Q̄3 = Q3 + T−1bKkT
1 > 0

( Q̄3 k1
kT

1 C′−1

)
> 0;



Q̄3 k1 k3
kT

1 C′−1 k2
kT

3 k2 L′−1


 > 0

From the gradients of Hd, Hc, and H, we apply the set control parameters to the
matching condition (21). Then, we obtain the control law that behaves as the target
system (17) with a(n) (asymptotically) stable x∗.
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u = (−R1L′−1 − k2)(φ− φ∗)− (R1kT
3 + kT

1 )(x3 − x∗3)

−(R1k2 + C′−1)(Q−Q∗) + R1L−1φ + C−1Q

= (−R1L′−1 − R2C̃)(φ− φ∗) (39)

−(R1(RT
2 T−1bK)T + (T−1bK)T)(x3 − x∗3)

−(R1R2C̃ + C′−1)(Q−Q∗)

+R1L−1φ + C−1Q

4. Control Validation by Experimentation and Simulation

In this section, through experimentation and simulations, we present the performances
of the closed-loop system with the designed nonlinear state feedback controls for the one-
IPMC patch case and for the multi-actuation case of the flexible beam. The control objective
here is to stabilize the coupled system (12) with one or several IPMC actuators to a specific

steady state
(

x∗1 x∗2 x∗3 x∗4 φ∗Q∗
)T

using the finite dimensional IPA-PBC controller (39). The

desired position profile is computed by the transverse momentum distribution x2.
Figure 4 presents the experimental setup. We use a dSPACE control interface and a PC

with MATLAB and the Simulink software to acquire the measurements and to implement
the controller by generating the voltage across the IPMC patch. The measurement of
displacement is acquired by the KEYENCE (LK-G152) laser displacement sensor.

The physical parameters and the identified parameters are shown in Table 1. All
these parameters are obtained by identification from the experiment setup of Femto Lab,
Besancon, France.

Figure 4. Experimental setup.

Table 1. Numerical values of the parameters.

L Length 1.6× 10−1 m
W Width 7× 10−3 m
T Thickness 2.2× 10−4 m
ρ Mass density 936 kg·m3

I Inertia moment of area 4.7× 10−15 m4

Iρ Angular moment of inertia 4.34× 10−12 kg·m2

E Young’s modulus 4.14× 109 Pa
K shear modulus 1.418× 109 Pa
Rt Traversal viscous fraction 2× 105 kg·m3/s
Rr Angular viscous fraction 1× 105 kg·m/s
C Capacitance 5.8× 10−2 F
r1 Resistance r1 29.75 Ω
r2 Resistance r2 700 Ω
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4.1. Control of a Single IPMC-Actuated Flexible Beam

This subsection illustrates the closed-loop behavior of the system obtained through
experimentation with the IDA-PBC control law (39) from Section 3 for a flexible beam
actuated by a single IPMC actuator using the voltage across the IPMC as the control input.
The control objective is to drive the system to this desired profile and to reduce the beam
vibration. In this case, the length of the IPMC patch is 0.045 m, and the IPMC patch is
placed in the middle of the flexible beam between 0.0575 m and 0.01025 m along a total
length of 0.16 m. In the following, the tip displacements are measured experimentally by
the laser sensor.

In Figure 5, we present the experimental results using the IDA-PBC control law
without changing the control parameter C′, i.e., C′ = C = 0.058F, and only the desired
beam tip position is set at 5 mm.
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position stays the same. The raising time is drastically reduced compared with the closed
looped system without changing C in Figure 5 .

The endpoint of the IPMC-actuated structure is presented in Figure 6. One can observe
that, without a damping injection, the response oscillates a lot due to the beam flexibility
(the solid black line). To cope with this oscillation, the damping injection is introduced
into the control law. The oscillation is reduced significantly while the added damper rc
increases.
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It is well known that the activity of IPMC actuators depends on their humidity
(the concentration of the water molecule), which decreases during their actuation. It
is validated by experiment in [27] that as the humidity level goes down, the Young’s
modulus continuously increases, the strain-rate damping coefficient and dielectric constant
continuously decrease, which lead to the activity reduction of IPMC. This phenomenon
has been observed during the experimental validation of the proposed IDA-PBC controller
shown in 7. We can see that, at the end of the actuation, the activity of the IPMC actuator
is visibly reduced. To overcome this default, we propose adding an integral action on the
controller (38). The integral of the error between the desired tip position q∗ and the real tip
position q is added as follow:

ure f = u + Ki

∫ t

0
(q− q∗)dt. (39)

where u is the IDA-PBC control law obtained in (38). In this case, the control diagram
becomes the following (Figure 8):

Figure 5. IDA-PBC closed-loop response without changing the control parameter C.

In order to improve the time response, we shape the closed-loop energy by varying
the control parameter C′. In Figure 6, we present the experimental results using the IDA
PBC control law with energy shaping. The control design parameter to assign the closed-
loop dynamic is chosen as C′ = 0.01 F, and the desired beam tip position stays the same.
The raising time is drastically reduced compared with the closed-looped system without
changing C in Figure 5.

The endpoint of the IPMC-actuated structure is presented in Figure 6. One can observe
that, without a damping injection, the response oscillates a lot due to the beam flexibility
(the solid black line). To cope with this oscillation, the damping injection is introduced
into the control law. The oscillation is reduced significantly while the added damper
rc increases.
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that, without a damping injection, the response oscillates a lot due to the beam flexibility
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It is well known that the activity of IPMC actuators depends on their humidity
(the concentration of the water molecule), which decreases during their actuation. It
is validated by experiment in [27] that as the humidity level goes down, the Young’s
modulus continuously increases, the strain-rate damping coefficient and dielectric constant
continuously decrease, which lead to the activity reduction of IPMC. This phenomenon
has been observed during the experimental validation of the proposed IDA-PBC controller
shown in 7. We can see that, at the end of the actuation, the activity of the IPMC actuator
is visibly reduced. To overcome this default, we propose adding an integral action on the
controller (38). The integral of the error between the desired tip position q∗ and the real tip
position q is added as follow:

ure f = u + Ki

∫ t

0
(q− q∗)dt. (39)

where u is the IDA-PBC control law obtained in (38). In this case, the control diagram
becomes the following (Figure 8):
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It is well known that the activity of IPMC actuators depends on their humidity
(the concentration of the water molecule), which decreases during their actuation. It
is validated by experiment in [27] that as the humidity level goes down, the Young’s
modulus continuously increases, the strain-rate damping coefficient and dielectric constant
continuously decrease, which lead to the activity reduction of IPMC. This phenomenon
has been observed during the experimental validation of the proposed IDA-PBC controller
shown in Figure 7. We can see that, at the end of the actuation, the activity of the IPMC
actuator is visibly reduced. To overcome this default, we propose adding an integral action
on the controller (39). The integral of the error between the desired tip position q∗ and the
real tip position q is added as follows:

ure f = u + Ki

∫ t

0
(q− q∗)dt. (40)

where u is the IDA-PBC control law obtained in Equation (39). In this case, the control
diagram becomes the following (Figure 8):
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Figure 8. Control diagram with integral action.

Figure 7. Closed loop response with the fatigue of the IPMC actuator.
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Figure 8. Control diagram with integral action.

The above proposed controller (40) is also implemented in the experimental setup. In
Figure 9, the integral action is added to two IDA-PBC different controllers. The blue
dashed line presents a closed-loop response with the IDA PBC controller parameter
C′ = C = 0.058 F. The integral action is activated at 25 s when the IPMC starts to lose
its activity and the beam tip position starts to decline. One can see that the beam tip
returns to the desired position. The red solid line shows the closed-loop response with
IDA-PBC controller parameter C′ = 0.02 F 6= C. The integral action can overcome the
default when the IPMC actuator becomes less efficient due to the decrease in the water
molecule concentration of the actuator.
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4.2. Multi-actuation of a flexible beam

In order to improve the spatial accessibility to satisfy the endoscope working condition,
the flexible beam should be capable of being shaped into a desired shape. We proposed a
multi-actuated flexible structure. The flexible beam is actuated by four IPMC patches. The
IPMC patches are placed along the clamped side at 0m− 0.018m, and the others are placed
between 0.036m and 0.054m, between 0.072m and 0.09m, and between 0.108m and 0.126m,
as shown in the top half of Figure (10). The control objective is to converge the system to
the desired configuration of the endoscope (Figure 10), defined by the joint and tip position
[0.01, 0.5, 1, 0.57,−0.8]mm, and to reduce the beam vibration meanwhile.

We recall the distributed input map B of the flexible beam model:

Bud =




0 0 0 0
0 0 0 0
0 0 0 0

b1(z) b2(z) b3(z) b4(z)


udi(t) (40)

where i ∈ {1, 2, · · · , 4} represent the ith patch of the IPMC actuators glued onto the beam.
The distributed input variables are the distributed moment: bi(z)udi(t) on the ith small
intervals Ibi ∈ αi, βi of the spatial space [a, b]. bi(z) = 1 if z ∈ Ibi, which means an IPMC
actuator is in the interval Ibi ∈ αi, βi, and bi(z) = 0 elsewhere.

We choose the design parameter C′ = 0.0058F. Different IPMC patches were actuated
sequentially from the clamped side to the free-hand side. Different IPMC patches are
actuated at 0, 15, 30, and 45 seconds. The bottom left side of Figure 10 illustrates the different
positional displacements of the beam for the control law with (rc = 100Ω) or without
damping injection. The bottom right side of Figure 10 illustrates the tip displacement
for the control law with and without damping injection. We can conclude that, with the
proposed control law, we can shape the beam to the desired shape.

Figure 9. Closed-loop response with the IDA PBC control and the integral action.

4.2. Multi-Actuation of a Flexible Beam

In order to improve the spatial accessibility to satisfy the endoscope working condition,
the flexible beam should be capable of being shaped into a desired shape. We proposed a
multi-actuated flexible structure. The flexible beam is actuated by four IPMC patches. The
IPMC patches are placed along the clamped side at 0–0.018 m, and the others are placed



Actuators 2021, 10, 236 15 of 17

between 0.036 and 0.054 m, between 0.072 and 0.09 m, and between 0.108 and 0.126 m, as
shown in the top half of Figure 10. The control objective is to converge the system to the
desired configuration of the endoscope (Figure 10), defined by the joint and tip position
[0.01, 0.5, 1, 0.57,−0.8] mm, and to reduce the beam vibration simultaneously.

Figure 10. Desired configuration of the endoscope (control objective).

We recall the distributed input map B of the flexible beam model:

Bud =




0 0 0 0
0 0 0 0
0 0 0 0

b1(z) b2(z) b3(z) b4(z)


udi(t) (41)

where i ∈ {1, 2, . . . , 4} represent the ith patch of the IPMC actuators glued onto the beam.
The distributed input variables are the distributed moment: bi(z)udi(t) on the ith small
intervals Ibi ∈ αi, βi of the spatial space [a, b]. bi(z) = 1 if z ∈ Ibi, which means an IPMC
actuator is in the interval Ibi ∈ αi, βi, and bi(z) = 0 elsewhere.

We choose the design parameter C′ = 0.0058F. Different IPMC patches were actuated
sequentially from the clamped side to the free-hand side. Different IPMC patches are
actuated at 0, 15, 30, and 45 s. The bottom left side of Figure 10 illustrates the different
positional displacements of the beam for the control law with (rc = 100 Ω) or without
damping injection. The bottom right side of Figure 10 illustrates the tip displacement
for the control law with and without damping injection. We can conclude that, with the
proposed control law, we can shape the beam to the desired shape.

5. Conclusion and Perspectives

We investigate the modeling and the control design problem of a IPMC-actuated
flexible beam using the port-Hamiltonian approach. The flexible beam dynamic is modelled
by a Timoshenko beam model, while the IPMC actuator dynamic is described by a lumped
RLC equivalent circuit model. It has been shown that the PDE-described flexible beams
are interconnected with the ODE-described IPMC actuator model. The control strategy
is composed of an IDA-PBC passive control method coupled with damping injection.
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The closed-loop response time of the system is accelerated by energy shaping, while the
damping injection is used to compensate for the oscillation of the flexible beam. Finally, an
experimental setup was applied to validate the proposed control law. In the mono-actuation
case, the control law implemented stabilizes the system to the desired position. The closed-
loop response was visibly faster, and the vibration of beam was reduced significantly with
the damping injection. However, at the end of actuation, the activity of the IPMC actuator
was visibly reduced due to its physical nature, which causes the lack of humidity to reduce
the activity of the material. An integral action was added to the controller in order to
overcome this limitation. Furthermore, a multi-actuation case with four IPMC patches was
simulated in order to shape the beam to a desired shape. The simulation result shows the
effectiveness of the control method presented.

As a prospective work, we shall consider the parameter uncertainty and the effect of
external perturbations as the actuation of IPMC is sensitive to humid working conditions.
We shall complete the study with an analysis and demonstration of the integral action
for the designed controls. The robustness of the control law will also be investigated in
future work. Furthermore, the complete IPMC actuator model under a port-Hamiltonian
framework was proposed in [11], where the diffusion of water and the cations of the
polymer were considered. How this complete actuator model can be used to control the
flexible beam will be considered.
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