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We investigate the spontaneous motion of a soap film in a conical geometry connected to a long
tube and show how it can be used to measure the dynamic viscosity of air. In contrast to other
techniques that are complicated to implement and require expensive and sophisticated equipment,
this measurement method relies only on soapy water and three everyday life objects: a smartphone,
a funnel and a hose. More precisely, to determine the viscosity of air, we use a smartphone to record
the spontaneous motion of a soap film placed in a funnel when the motion of the film is quasistatic
and the flow of air escaping the geometry is viscously dominated. This simple experiment should
be of value to undergraduate physics students in learning about effects of both fluid viscosity and
surface tension (another fluid property which they could also measure with a smartphone)1, and the
usefulness of reasonable approximations in physics.

I. INTRODUCTION

Two of the main parameters associated with fluid dy-
namics are a fluid’s viscosity, which characterizes its re-
sistance to flow, and surface tension, which is the energy
needed to increase the surface area of a fluid interface
by one unit.2 We regularly see effects of surface ten-
sion in our everyday life, e.g., whenever we blow soap
bubbles.2,3 Because of surface tension, the liquid film
forming the bubble minimizes its surface area to seek
a spherical shape. Like surface tension, a fluid’s viscos-
ity originates from molecular effects and its consequences
can be seen at a macroscopic level: when shaking a jar
of honey, physics students at any level guess correctly
that it is a highly viscous liquid compared to water. So-
phisticated and expensive equipment for tensiometry and
rheology can be used to fully characterize these two fluid
parameters. It is interesting to note, however, that the
literature documents simple and inexpensive ways that
students can measure the air-liquid surface tension or the
viscosity of a liquid. Therefore, these methods could be
useful in introductory-level physics laboratories.1,4 For
instance, liquid-air surface tension can be determined
using the camera of a smartphone and a ruler to char-
acterize the shape of a pendant drop.1 Also, liquid vis-
cosity can be measured using a weight-controlled capil-
lary viscometer,4 measurements being based in this case
on the simple determination of the rate at which liquid
drains from a tank through a capillary tube.

In sharp contrast with measuring the viscosity of liq-
uids, measuring that of gases is not an easy task. For
example, the dynamic viscosity of air is ηa = 18.1 µPa
s at 20 ◦C, roughly 50 times smaller than that of water,
and too small to be measured with standard rheometry
because of the mechanical friction inherent in this type
of equipment. Instead, one can use a custom-built vis-
cometer that can be complicated to implement, such as
a friction-free electromagnetic spinning system based on

the diamagnetic levitation of graphite.5 As an alterna-
tive to these complicated experiments, in this paper, we
present a device that allows students to measure the vis-
cosity of air at low cost with simple equipment : soapy
water, a funnel, some tubing and a smartphone camera.

The experiment consists of recording and analyzing the
spontaneous motion of a soap bubble film in a funnel that
has a long and narrow neck. Such a film moves on the
sloping sides of a funnel from its wide opening toward its
narrow end, and, as it moves, it pushes air out through
the neck of the funnel. The outward motion of air is re-
sisted by its dynamic viscosity. By timing this motion,
we learn how fast the air is pushed out, and knowing the
geometric parameters of the funnel and air-liquid surface
tension, the viscosity of air can be found. This experi-
ment resembles a recent study in which we discuss differ-
ent scenarios of shrinking surface soap bubbles sitting on
a thin solid with an orifice located under the apex of the
bubble.6 In one of these scenarios, also driven by Laplace
pressure,7 a bubble remains hemispherical as it shrinks
so that the contact angle made by the bubble with the
solid remains close to π/2 as the base of the bubble moves
towards the orifice. The differences between these exper-
iments are that the soap bubble in this experiment moves
on an incline instead of a flat surface and the air flow sat-
isfies Poiseuille’s law rather than Bernoulli’s principle. It
is worthwhile noting that the described experiment can
also be seen as a simple self-propelling system with which
students would observe soap films moving against grav-
ity. Other studies found in the literature discuss meth-
ods that are often costly and difficult to implement and
rely on suitable surface chemistry or controlled surface
topography to produce the self-propulsion of fluids on
solids.8–10 For example, the use of controlled gradients
of surface chemistry of a solid can make a drop of wa-
ter run against gravity.11 Other studies have shown that
gradients of cross-sectional areas can also make capillary
forces trigger the spontaneous motion of drops, bubbles
and meniscii in conical wires and tubes and wedges.12–15
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Here, we investigate the hitherto unreported case of soap
films.
Sec. II describes the materials and procedures needed

to record and analyze the temporal evolution of the posi-
tion of a soap film moving spontaneously towards the nar-
row end of a funnel. In Sec. IV, where we model the flow
using the assumptions and approximations discussed in
Sec. III, we show that this spontaneous motion is driven
by capillarity. Indeed, as discussed Sec. IV, capillary ef-
fects associated with the pressure drop across the curved
soap film make it move from large to small funnel radius.
This motion is resisted by viscous friction produced by
the air flowing out of the geometry. Working within ex-
perimental conditions described in Sec. III, we use these
simple physical arguments to determine the equation of
motion of a film. Our results show that the duration
of motion depends on five known geometric and physic-
ochemical parameters and only one unknown quantity,
the viscosity of air. Hence, this experiment allows the
determination of air’s viscosity from the measurements
of the duration of motion of a curved soap film in a fun-
nel. The resulting predictions compare well to systematic
experiments in Sec. V. It is interesting to note that our
experiment can be viewed as a capillary viscometer work-
ing for gases instead of liquids. A capillary viscometer is
a common laboratory apparatus employed to determine
the viscosity of a liquid by measuring the duration of
motion of a liquid meniscus over a defined distance in a
tube. Here, we measure the viscosity of a gas instead of
that of a liquid, the soap film and the funnel playing the
role of the liquid meniscus and tube, respectively. We
finish with a few concluding remarks in Sec. VI.

II. EXPERIMENTS

Figure 1(a) shows the equipment needed to conduct
experiments: soapy water, a funnel and some tubing. Be-
fore an experiment begins, the inner wall of the conical
geometry, i.e., the funnel, is wetted with the soap solution
used in our study (2 wt.% Palmolive Original (Colgate-
Palmolive) and 98 wt.% deionized water). Herein, γ de-
notes the air-soap solution surface tension. The other
relevant physicochemical parameters that are specified
in Fig. 1(b) are the density and dynamic viscosity of air,
ρa and ηa, respectively (see Fig. 1 and Fig. 2 which de-
fine the variables at play). Once the inner wall of the
funnel is wetted, the wider end of the funnel of radius
R is immersed into the solution a few millimeters below
the free surface. It is convenient to move the funnel us-
ing either a manual laboratory scissor jack or a vertical
linear stage (Aerotech ACT115DL) whose specifications
can be found in a previous study.16 However, the accu-
racy and precision of the measurements is unchanged if
the funnel is moved by hand. We then remove the geom-
etry quasistatically (the typical rate of motion is a few
mm/s) with its axis of symmetry perpendicular to the
liquid surface. When a circular ring of radius R is used
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FIG. 1. (a) Photograph taken with the camera of a smart-
phone illustrating three elements needed to perform experi-
ments to measure the viscosity of air: some tubing that can be
connected to the narrow end of a funnel and soapy water. (b)
A photograph of the preparation of an experiment: withdraw-
ing the wider end of the funnel from a pool of the soapy water
creates a curved soap film. (c) Series of photographs illustrat-
ing an experiment, i.e., the motion of a curved soap film in a
funnel. In (b) and (c) some of the geometric and physicochem-
ical parameters at play are defined. In these measurements,
the geometrical parameters are: a = 3.2 mm, ℓ = 1 m, and
α = 22 ◦.

instead of a funnel, we have shown in a previous study
that the process produces a catenoid made of a soap film
between ring and free surface.17 This surface of revolu-
tion becomes unstable above a critical height (≈0.66R)
between geometry and free surface and collapses to leave
a planar film on the ring and a surface bubble on the free
surface.17,18 Here, the process produces the same surface
of revolution. However, in our experiments, the tube is
closed before the critical height is reached so that the
collapse of the catenoid yields the formation of a sur-
face bubble and a curved soap film having the shape of
a spherical cap on the wider end of the cone as shown in
Fig. 1(b). If the tube is reopened, surface tension causes
the curved film to self-propel towards the narrow end of
the funnel (Fig. 1(c)). The propulsion of the film sets the
air present in the funnel into motion.

During the preparation of our experiment, once the
film with radius of curvature Rc is formed, the tube is
reopened to allow the film to move towards the narrow
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FIG. 2. (a) Schematic of the setup of our experiment defining
the geometric and physicochemical parameters. (b) Temporal
variations of the position of a film z obtained by processing
a movie of an experiment using the method described in the
text. As shown, the motion of the film begins at z0 at t = 0 s
and ends after a period of time tf at zf = a/ tanα. This final
experimental position is close to the expected value a/ tanα =
7.7 mm. In these measurements, the geometrical parameters
are: a = 3.2 mm, ℓ = 1 m, and α = 22.5 ◦.

end of the funnel in the direction −ẑ [Fig. 1(c)]. It is
stopped by closing the tube (length ℓ and radius a) when
it reaches a desired initial position z0 (see Fig. 1(c) and
Fig. 2). We start the time (t = 0) when we reopen the
tube and we record with a smartphone the temporal evo-
lution of its position z(t) (see Fig. 1(c) and Fig. 2) until
it reaches a final one at zf = a/ tanα (Fig. 2) where it
stops; a is the radius of a tube and α is the half of its
opening angle. In the experiment, we record the position
z, but the analysis is performed in terms of Z = z/ cosα;
as shown in Fig. 2, Z is the distance between the apex of
a cone and the point of contact of a film on a funnel wall
which is also equal to the radius of curvature of the film,
Rc. For the unidimensional motion of a soap film studied
here, the free image analysis software ImageJ is used to
find Z(t).19 Image processing consists of placing a line
on an experimental movie along a soap films trajectory
and creating a single image whose vertical axis is this line
plotted for each frame of the movie as a function of time
(horizontal axis of the image). Coordinates of each pixel

of a binary version of the image can then be saved in a
file that is imported with a free graphing software20 to
plot the position of a film as a function of time.

III. EXPERIMENTAL CONDITIONS,
APPROXIMATIONS AND KEY VARIABLES

For these experiments and the interpretation of experi-
mental results, we make five assumptions and/or approxi-
mations. As mentioned earlier, this study could teach un-
dergraduate students that nontrivial measurements can
be performed with common and inexpensive equipment.
It could also teach them about the importance of approx-
imations and assumptions in physics.

– First, we assume that air is incompressible and that
a soap film is impermeable to this gas during the time
of an experiment; hence, the mass and volume of air are
conserved so that the volumetric flow rate, q, of air in a
tube is given by the temporal variations of the volume of
entrapped air in a cone.

– Second, in addition to the geometric and physico-
chemical quantities defined in Fig. 1 and Fig. 2, one
could imagine that the thickness of a soap bubble film
e or that of the film initially deposited on the inner wall
of a geometry play a role (via gravity effects) in the ex-
periment; films with different thicknesses are prepared
using a method discussed in a previous work.16 We use
a spectrometer (Avantes AvaSpec-2048) to measure the
thickness of a film. Experiments performed with the
same geometry but different thicknesses of the deposited
film (10–30 µm in our study) exhibit the same dynam-
ics. Gravity effects (i.e., the estimate of the weight of
a curved soap film 2πZ0

2e(1 − cosα)ρℓg with the grav-
itational acceleration g) should dominate over capillary
action (i.e., the estimate of the total capillary force in the
z-direction 4πZ0γ sinα) when the thickness of a film e is
larger than a threshold ec = 2κ−2Z0

−1 sinα/(1 − cosα)

where κ−1 =
√
γ/(ρℓg) is the capillary length;21 ec is de-

fined as that value of e for which the film weight equals
the capillary force. Using typical values of the angle
α = 22 ◦ and initial position Z0 = 0.1 m, the threshold
thickness is larger than about 700 µm which is hundreds
of times larger than the thickest films used in our study
(e = 1–10 µm). Hence, we determine that gravity can be
neglected when compared to surface tension in our study
at the beginning of an experiment. To compare these
two effects when a film moves over time, we assume that
e remains constant between t = 0 and t = tf . In or-
der words, we assume that the liquid escapes through
the meniscus on the wetted inner wall of the conical ge-
ometry as the film moves and its width decreases over
time. Since the above expressions of the weight of a film
and surface tension vary as Z2 and Z, respectively, with
Z decreasing over time, surface tension prevails for the
whole dynamics and effects of gravity can be neglected
over time. We would have liked to dismiss gravity as an
important variable by showing that films moving in its di-
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rection or against it give the same dynamics for the same
experimental conditions. Unfortunately, results are al-
tered when films move in the direction of gravity because
some of the liquid move along the walls of the geometry
and inside the tube.
– Third, we consider the idealized motion of soap films

within a quasistatic limit that neglects the viscous drag
acting on the meniscus linking a film to the wall of a
cone. In other words, we consider the contact angle the
film makes with the inner wall of a cone is π/2 at any time
so that the radius of curvature of a soap film is Rc = Z
in our study (see Fig. 1(c) and Fig. 2 which define the
variables at play). As shown by the illustrative example
reported in Fig. 1(c), experimental observations made
when the base of a film moves on the inner wall of a cone
validate this assumption. Such an approach has been
successfully employed to describe the motion of a single
foam lamella flowing through a porous medium under
applied pressure.22,23 More recently, we have shown that
this quasistatic approach can help rationalize one of the
dynamics observed for shrinking surface bubbles.6

– Fourth, our modeling work considers that air is con-
tained inside a complete cone instead of a truncated one
attached to a tube. In other words, we model air flow
with an excess volume of air πa3/(3 tanα) corresponding
to the cone of height zf = a/ tanα and base with radius
a whose contour is shown by the dashed lines in Fig. 2.
Hence, the volume of air is V = (2π/3)Z3(1−cosα). This
approximation seems reasonable since the excess volume
is not a function of time and the model of the flow pre-
sented in Sec. IV uses the time derivative of the volume,
i.e., the flow rate.
– Finally, we will show in Sec. IV that the air flow can

be described by Poiseuille’s equation that relates the
pressure drop across the flow geometry, the flow rate,
and the hydrodynamic resistance of the funnel. The
studied geometry is a serial combination of a cone and
a cylindrical tube. Hence its total hydrodynamic resis-
tance is Rh = Rhc+Rht with Rhc and Rht the resistances
of the cone and the tube, respectively. As discussed
more quantitatively in Sec. IV, the Reynolds number Re

associated with the air flow is small enough for this flow
to be describe by the Stokes equation so that the resis-
tance of a tube can be expressed in the well-known form
Rht = 8ηaℓ/(πa

4).24,25 The resistance of the conical part

of the geometry is Rhc = −
∫ Zf

Z
8ηa cosα/(πr(Z

′)4)dZ ′ =

8ηa cosα
(
Zf

−3 − Z−3
)
/(3π(sinα)4) with r(Z) =

Z sinα the radius of a film as defined in Fig. 2; this
expression is valid for small angles α and and it is
calculated within lubrication theory assuming a no-slip
boundary condition.26 When comparing the leading
term of this resistance [8ηa/(3πa

3 tanα)] with that of a
tube, we find that Rhc can be neglected when compared
with Rht when ℓ ≫ a/(3 tanα). In our experiments, for
a typical funnel with α = 22 ◦, this condition becomes
ℓ ≫ 0.825a with a = 1.5 − 5 mm which is easily met
experimentally when working with tubes having a length
in the range ℓ = 0.01− 10 m. In this limit of long tubes,

the hydrodynamic resistance of a cone is negligible
compared to that of the tube, so we choose to work in
this simplifying limit. In other words, Rh ∼ Rht in what
follows.

IV. MODEL OF THE FLOW

We consider that the motion of a film is driven by its
curvature, i.e., by the Laplace pressure

∆p =
4γ

Z
, (1)

which is the pressure difference across the curved film,
from the air on one side of the film to the air on the
other; γ is the air-liquid surface tension.2 Indeed, sur-
face tension, which an energy per unit surface area, can
also be interpreted as a force per unit length acting on
curved fluid-fluid interfaces such as the studied soap film
moving in a conical flow geometry. In this case, sur-
face tension produces an overpressure (well-known as the
Laplace pressure) between the front of a film and the
end of a tube at atmospheric pressure. The Laplace
pressure is equal to the surface tension γ multiplied by
(i) the sum of the two principal radii of curvature (here
1/(Z + e) + 1/Z ≃ 1/Z + 1/Z) and (ii) a factor 2 that
accounts for the two fluid-fluid interfaces forming a film;
hence, equation (1) reads ∆p = 2×2γ/Z.2,27 Such a film
then moves from high pressure (position of a film) to low
pressure (end of a tube) regions.

The motion of a film is limited by the air flow that we
consider to be one-dimensional and viscously dominated.
Hence, the considered laminar air flow should satisfy the
Poiseuille’s equation that reads

∆p = Rhq, (2)

where q is the air flow rate and ∆p is the pressure differ-
ence between the position of a curved film and the end of
a tubing which is at atmospheric pressure. For this exper-
iment, as discussed in Sec. III, the flow can be considered
to be laminar when the characteristic Reynolds number
Re is smaller than 2000.24,28,29 In our experiment, this
dimensionless quantity is obtained by comparing inertial
[∝ ρav

2/(2a)] and viscous [∝ ηav/(2a)
2] body forces and

reads Re = 2aρav/ηa;
29 v is the average velocity of the

air flow and ρa is the air density, as illustrated in Fig.1(b)
and Fig.2. The velocity v can be written q/(πa2) and, us-
ing Eqs. (1) and (2), q can be written 4γ/(ZRh) so that
Re = 8ρaγ/(πaZRhηa). As we have shown in Sec. III
that it is reasonable to approximate the total resistance
Rh by that of the tube Rht = 8ηaℓ/(πa

4), the Reynolds
number reads

Re =
γρa
η2a

a3

Zℓ
. (3)
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At the beginning of the motion of a film, Z = Z0 is typi-
cally 0.1 m in our experiments. Also, for the soap solution
used in our study, the air-liquid surface tension γ = 25
mN.m−1; we measure γ with a simple method that in-
volves recording a pendant drop of the soap solution with
a smartphone.1 Hence, using Eq.(3), the condition for
laminar flow Re < 2000 is satisfied when ℓ > 1.7 mm for
the tube of smallest radius a = 1.5 mm and ℓ > 62.5 mm
for the largest tube’s radius a = 5 mm.
Working within these limits and using the physical ar-

guments described above, the combination of Eqs. (1)
and (2) with the expression of the resistance of a tube
gives

4γ

Z
=

8ηaℓ

πa4
q. (4)

The flow rate is given by the temporal variation of the
total volume of entrapped air,

q = −dV

dt
= −2πZ2 dZ

dt
(1− cosα), (5)

and substituting this expression into Eq. (4), we can
write

dt = −4ηaℓ(1− cosα)

γa4
Z3dZ. (6)

The integration of Eq.(6) gives the following formula that
describes the motion of a film

(
Z(t)

Z0(t = 0)

)4

= 1− γa4

ηaℓZ4
0

1

(1− cosα)
t = 1− t

tf
, (7)

with tf = ηaℓZ0
4(1− cosα)/(γa4) the time at which air

has escaped out of the cone and the film has reached its
final position z = zf . As discussed Appendix A, although
we model the air flow with an initial volume of air larger
than the experimental one (see Sec. III), the predicted
time tf should be very close to its experimental coun-
terpart. Hence, knowing the geometric parameters of an
experiment and the values of the liquid-air surface ten-
sion, measurements of tf should allow one to determine
the viscosity of air.
Similar physical arguments are used to determine

the collapse time of a bubble in a deflating bubble
experiment.29 In such an experiment, a bubble placed on
one end of a cylindrical tube deflates when the other end
of the tube is opened and the pressured air in the bubble
escapes through the tube.29 The predicted collapse time
can be used to determine the air-liquid surface tension
of soap solutions.30,31 However, these experiments with
a non-moving bubble foot require a good image analysis
program to obtain accurate data.29 Here, as discussed at
the end of Sec. II, analyzing an experiment only requires
simple image processing performed with a free software.

V. EXPERIMENTAL RESULTS AND
DISCUSSION

In this section we compare our model to experimental
results. We investigate the motion of a film by varying
either the opening angle of a cone 2α [Fig. 3(a)], or the
length of a tube ℓ [Fig. 3(b)], or its its radius a [Fig. 3(c)],
while maintaining other parameters fixed. As shown in
these figures that report the temporal variations of the
normalized position Z/Z0 for these sets of experiments,
the response qualitatively resembles that of Fig. 2(b) for
all varied parameters: the normalized position is a mono-
tonically decreasing function of time until the final po-
sition of a film is reached. When the experimental final
time tf is plotted as a function of α for given values of
Z0, ℓ and a, we find experiments are in qualitative agree-
ment with predictions. Indeed, the inset of figure 3(a)
shows that tf increases with α and its predicted expres-
sion derived in Sec. IV varies as (1 − cosα) which for
small enough α increases as α2. Similar to these results,
when the motion of a film is investigated for various ℓ
and fixed α, Z0 and a [see the inset of Fig. 3(b)], the re-
sults obtained for a wide range of tube length suggest tf
increases linearly with ℓ as predicted. Our experimental
findings show much stronger dependence of the time tf
on the radius a [see the inset of Fig. 3(c) which reports
these variations for fixed Z0, ℓ and α] when compared to
its variations with the length ℓ [inset of Fig. 3(b)]. In-
deed, to increase the time at which a film stops by an
order of magnitude, one can either increase the length
of a tube by a factor of 50 or divide its radius by 2 [see
Fig. 3(b) and Fig. 3(c)]. This result is also consistent
with the predicted time tf which varies both as ℓ and
1/a4.

To provide a more quantitative comparison between
experiments and modeling, Figure 4 shows the variations
with time of (Z(t)/Z0)

4 for the experiments shown in
Fig. 3. As expected by the form of Eq. (7), we find that
the plotted quantity is a linearly decreasing function of
time. Hence, the motion of a film is well-described by the
quasistatic model with an air flow that satisfies Darcy’s
law and we can now compare measurements of the dura-
tion of motion with our prediction.

Figure 5 shows the evolution of the measured time
texpf as a function of the prediction tthf = ηaℓZ0

4(1 −
cosα)/(γa4) derived in Sec. IV. As shown in this figure,
our simple model well describes the duration of motion
since experiments mirror predictions for our whole set of
data obtained with α = 15 − 30 ◦, Z0 = 60 − 120 mm,
a = 1.5− 5 mm and the length of a tube ℓ that is varied
over more than three orders of magnitude (0.01− 12 m).
As shown in Fig. 6, these data can be used to deter-
mine the dynamic viscosity of air. All of our data points
are within 20 % of the tabulated value of air viscosity
(ηa = 18.1 µPa s) for the temperature at which data
were taken (20 ◦C); more than 80 % of the data are
within 10 % of this expected value (see Fig. 6). It is
also important to note that the average value (17.75 µPa
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FIG. 4. Variations with time of (Z(t)/Z0)
4 for (a) three half-opening angles α [data points correspond to those shown in

Fig. 3(a)], (b) three values of ℓ [data points are those of Fig. 3(b)] and (c) three different radii a [data points are those reported
in Fig. 3(c)]; other parameters are identical to those of Fig. 3. As predicted by our model, the plotted quantity in the three
figures is a linearly decreasing function of time.

s) of the air viscosity deduced using our method is only
2.5 % smaller than the tabulated value which is remark-
able considering the numerous approximations made to
establish our model based on simple physical arguments.
It is also worth mentioning that the standard deviation
ση for the measurements shown in Fig. 6 is quite small,
ση = 1.54 µPa s. Hence, our experiment offers a simple
and inexpensive way to measure the dynamic viscosity of
air.
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FIG. 5. Variations of the experimental time at which a film
stops texpf as a function of its theoretical counterpart tthf de-
rived in the main text. Inset: magnification for times smaller
than 100 s. The solid lines correspond to the best linear fit
predicted by our model: texpf = tthf . Each data point cor-
responds to a value of ℓ = 0.01 − 12 m, a = 1.5 − 5 mm,
α = 15− 30 ◦, and Z0 = 60− 120 mm.
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FIG. 6. Evolution with the length ℓ of a tube of the dynamic
viscosity ηa of air determined from the measurements of the
duration of motion of a film in a funnel as explained in the
text. Parameters are identical to those of Fig. 5. The tab-
ulated value of the viscosity of air (18.1 µPa s at 20 ◦C) is
indicated by the black solid line. The average value of these
measurements is 17.75 µPa s (red solid line).

VI. CONCLUSION

We have discussed a simple method to measure the
viscosity of air that is directly applicable to the class-
room. The experiments are easy to perform and ana-
lyze at low cost and the physics behind them can be
taught to student in undergraduate physics courses. We
have described five key assumptions and/or approxima-
tions so that students can also learn about the impor-
tance of reasonable approximations in physics research.
In addition, using the setup described here, students will
have the opportunity to observe a soap film propel itself
against gravity. While beyond the scope of our paper,
it is worthwhile mentioning this experiment can be ex-
tended to other situations that would require a more so-
phisticated experimental system. For instance, it could
be used to determine the viscosity of other gases or that
of air at different temperatures or relative humidity since
a gas viscosity is a function of these physical quantities.
Of course in that case, these measurements would de-
mand not only a more refined setup but also the sys-
tematic determination of surface tension which decreases
with increasing temperature (at a given relative humid-
ity) or relative humidity (for a given temperature).
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Appendix A: Comparison between predicted and
experimental times tf

Here, we discuss the validity of our model which
is based on several assumptions and approximations,
including a slightly overestimated volume of air (see
Sec. III). In what follows, texpf and tthf denote experi-
mental and theoretical times, respectively.

Using the physical arguments discussed in the main
text, Eq. (7) describing the motion of a film is the solution
of the following first-order ordinary differential equation:

Z3dZ = − γa4

4ηaℓ(1− cosα)
dt. (A1)

Using tthf = ηaℓZ0
4(1−cosα)/(γa4) the predicted period

of time after which a film stops moving, Eq.(A1) can be
written

dt

dZ
= −4Z3

tthf
Z4
0

.

Hence, the experimental time texpf =
∫ tf
0

dt reads

texpf =

∫ Zf

Z0

(
dt

dZ

)
dZ = −tthf

4

Z4
0

∫ Zf

Z0

Z3dZ

so that

texpf = tthf

[
1−

(
Zf

Z0

)4
]
. (A2)

In our experiments, typical values of the initial (Z0)
and final (Zf ) positions of a film are 10−1 m and 10−2 m,

respectively. Hence, the value of the term (Zf/Z0)
4

in Eq. (A2) is 10−4 so that texpf should typically be

99.99% tthf . To conclude, the assumptions and approx-
imations made to establish our model seem reasonable
since the predicted time should compare very well with
the measured one.
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