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1 Introduction
This report is devoted to the continuous estimation of an ε-assignment(Definition 1).
Roughly speaking, an ε-assignment between two sets V1 and V2 may be understood as
a bijective mapping between a sub part of V1 and a sub part of V2. The remaining
elements of V1 (not included in this mapping) are mapped onto an ε pseudo element of
V2. We say that such elements are deleted. Conversely, the remaining elements of V2
correspond to the image of the ε pseudo element of V1 (Figure 1). We say that these
elements are inserted.

Let us note that if V1 and V2 have the same size, the bijective mapping induced by
an ε-assignment may involve all elements of V1, each element being mapped onto a single
element of V2. In this sense, an ε -assignment is more general than a bijective mapping.
Moreover, the main advantage of an ε-assignment is that it provides us the freedom to
not map any element which is then assigned to the ε element of V2 or belong to the
image of the ε element of V1. This last property allows us to reject some mappings if for
example, these mappings are associated to a large cost.

An ε-assignment function may be associated to an ε-assignment matrix (Figure 1(b))
just like any bijective mapping is associated to a permutation matrix. Given two sets, V1
and V2 of respective sizes n andm, an ε-assignment matrix is encoded by a (n+1)×(m+1)
matrix, where n+ 1 and m+ 1 play respectively the roles of the ε element of V1 and the
one of V2. The last column of index m+ 1 of such a matrix encodes the deletions while
the last line encodes the insertions. By construction, there is a single 1 in each of the
first n rows and m columns, the remaining elements being set to 0.

X =


a b ε

1 0 1 0
2 1 0 0
3 0 0 1
ε 0 0 1



Figure 1: (a) An example of ε-assignment function. 1 is mapped onto b, 2 onto a, 3 is
deleted. (b) its associated ε assignment matrix
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Given V1 and V2, one can define a (n+ 1)× (m+ 1) cost matrix encoding the cost of
the mapping of any element of V1 onto an element of V2 as well as the cost of deleting
each element of V1 and inserting each element of V2. Finding an ε-assignment minimizing
the sum of mappings, deletions and insertions costs is a direct extension of the Linear
Sum Assignment Problem (LSAP) called the Linear Sum Assignment Problem with
Edition [1] (LSAPE). Given an ε-assignment matrix X and a cost matrix C, this cost
may be formulated as:

min
X

n+1∑
i=1

m+1∑
j=1

ci,jxi,j

where X is taken over all ε-assignment matrices.
We define in previous works [2, 1], an adaptation of the Hungarian algorithm which

allows to find an optimal solution to the above problem in O(min(n,m)2 max(n,m)).
However, while providing an optimal solution, this algorithm does not readily allow the
computation of the gradient of the associated operation. This last drawback, does not
allow to easily insert such an algorithm into a deep learning pipeline. On the other
hand, the Sinkhorn algorithm [6], is based on a continuous relaxation of the problem
where permutation matrices are replaced by bi-stochastic matrices with an entropic
regularization. This algorithm is the workhorse of computational optimal transport [4]
and is based on iterative matrix multiplications hereby allowing the backpropagation
of the gradient [3]. The aim of this technical report is to transpose the results of the
Sinkhorn algorithm to ε assignment matrices. Just like the Sinkhorn algorithm which
does not provide a permutation matrix but rather a bi-stochastic matrix, our algorithm
will provide an ε bi-stochastic matrix (Definition 3). This last point may be of advantage
within the Neural Network framework where the hard decisions corresponding to ε-
assignment matrices may not allow a proper propagation of the gradient.

More formally, given a similarity matrix S (which may be easily deduced from a cost
matrix), we aim at finding two diagonal matrices D1 and D2 such that D1SD2 is a ε
bi-stochastic matrix. Section 2 provides the main definitions and notations used in the
remaining part of this report. The existence and uniqueness of a solution is demonstrated
in Section 3 while Section 4 provides a constructive algorithm which convergence is
demonstrated. Let us note that while Section 3 is a simple adaption of the original
proof [6], Section 4 is significantly different from [6] since the arguments used for bi-
stochastic matrices in the original proof do not hold for ε bi-stochastic matrices.

2 Definitions and notations
Definition 1 (ε-assignment).
Let n and m be two strictly positive integers. An ε-assignment is a mapping ϕ :
{1, . . . , n+ 1} → P({1, . . . ,m+ 1}) satisfying the following constraints: ∀i ∈ {1, . . . , n}, |ϕ(i)| = 1

∀j ∈ {1, . . . ,m}, |ϕ−1(j)| = 1
m+ 1 ∈ ϕ(n+ 1)

where P({1, . . . ,m+ 1}) is the power set of {1, . . . ,m+ 1}.

Each element of i ∈ {1, . . . , n} is thus mapped onto a set composed of a single
element of {1, . . . ,m + 1} (|ϕ(i)| = 1) and in the same way the set of antecedents of
each j ∈ {1, . . . ,m} is reduced to one element (|ϕ−1(j)| = 1). Hence the only element
of {1, . . . , n+ 1} which can be mapped onto a set composed of several elements is n+ 1.
In the same way, m + 1 is the only element which may have several antecedents. The
constraint m + 1 ∈ ϕ(n + 1) ensures that n + 1 is mapped to at least one element and
that m+ 1 has at least an antecedent.
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In the example of Figure 1 we have n = 3 and m = 2. Elements 1, 2, 3 are respectively
mapped onto {b}, {a}, {3}. Where the last mapping corresponds to a deletion of 3 (which
is mapped onto m+1 = 3). Consequently m+1 = 3 has two antecedents 3 and 4 = n+1.

Definition 2 (ε-row/column stochastic matrix).
A non negative (n+ 1)× (m+ 1) matrix X is called an ε-row stochastic matrix iff:

∀i ∈ {1, . . . , n}
m+1∑
j=1

Xi,j = 1

X is called an ε-column stochastic matrix iff:

∀j ∈ {1, . . . ,m}
n+1∑
i=1

Xi,j = 1

Definition 3 (ε-bi-stochastic matrix).
A non negative (n+ 1)× (m+ 1) matrix X is called an ε-bi-stochastic matrix iff:

∑m+1
j=1 Xi,j = 1 ∀i ∈ {1, . . . , n}∑n+1
i=1 Xi,j = 1 ∀j ∈ {1, . . . ,m}

xn+1,m+1 = 1

If X ∈ {0, 1}(n+1)×(m+1), X is called an ε-assignment matrix and there is a one-to-one
mapping between ε-assignments and ε-assignment matrices.

Let us note that any ε-bi-stochastic matrix is a bi-stochastic matrix on which the
bi-stochastic constraints are relaxed on the last line and last column. So any squared
bi-stochastic matrix is also an ε-bi-stochastic matrix (the reverse being obviously false).

Definition 4. ε-diagonal
If A is a (n+1)×(m+1) matrix and ϕ an ε-assignment then the set A1,ϕ(1), . . . , An+1,ϕ(n+1)
is called an ε-diagonal of A corresponding to ϕ. if A is squared and ϕ is the identity,
the diagonal is called the main diagonal.

Note that a1,ϕ(1), . . . , an,ϕ(n) is a sequence (as ϕ(i) is unique for i ∈ {1, . . . , n} while
an+1,ϕ(n+1) is a set). The above definition is a straightforward of the usual notion of
diagonal where ϕ is required to be a permutation. In the following we will only consider
ε-diagonals of matrices which will be simply called diagonal.

Definition 5. total support
If A is a nonnegative matrix, A is said to have total support if A 6= 0 and if every
positive element of A lies on a positive ε-diagonal. A nonnegative matrix that contains
a positive diagonal is said to have a support.

If µ and ν define set of indices respectively contained in {1, . . . , n+1} and {1, . . . ,m+
1} then :

• A[µ, ν] denotes the sub matrix of A restricted to indices µ and ν,

• A(µ, ν] denotes the sub matrix of A restricted to indices not contained in µ, i.e.
{1, . . . , n+ 1} − µ, and to the indices contained in ν,

• A[µ, ν) denotes the sub matrix of A restricted to indices contained in µ and not
contained in ν, i.e. {1, . . . ,m+ 1} − ν.

• A(µ, ν) denotes the sub matrix of A restricted to the indices not contained in µ
and ν.
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Definition 6. Secable rectangular matrix

A rectangular n×m non negative matrix A is said to be secable if one can find :

• a partition of {1, . . . , n} into two sets X and Y and

• a partition of {1, . . . ,m} into two sets Z and T

such that:
A[X,T ] = 0 and A[Y, Z] = 0

Z T
X A[X,Z] 0
Y 0 A[Y,T]

Let us note that this notion of secable matrix is quite close from the one of block
diagonal matrix. However, A[X,T ] is not required to be squared.

3 Existence and uniqueness
Theorem 3.1. Let A be a nonnegative (n+1)×(m+1) matrix such that A[{1, . . . , n}, {1, . . . ,m}]
does not contain any line or column filled with 0. A necessary and sufficient condition
that there exists an ε bi-stochastic matrix B of the form D1AD2 where D1 and D2 are
diagonal matrices with positive main diagonals and a last entry equal to 1 is that A has
total support. If B exists then it is unique. Also D1 and D2 are unique if and only if A
is non secable.

Proof. Let us suppose that B = D1AD2 and B′ = D′1AD
′
2 are ε-bi-stochastic matrices

where D1 = diag(x1, . . . , xn, 1), D2 = diag(y1, . . . , ym, 1) , D′1 = diag(x′1, . . . , x′n, 1) and
D′2 = diag(y′1, . . . , y′m, 1). If pi = x′

i

xi
and qi = y′i

yi
:

n+1∑
i=1

xiaijyj = 1,∀j = 1, . . . ,m; (1)

m+1∑
j=1

xiaijyj = 1,∀i = 1, . . . , n (2)

n+1∑
i=1

pixiaijqjyj = 1,∀j = 1, . . . ,m; (3)

m+1∑
j=1

pixiaijqjyj = 1,∀i = 1, . . . , n (4)

Let Ej = {i|aij > 0}, Fi = {j|aij > 0} and put

α = {i ∈ {1, . . . , n}|pi = mini pi = p}, β = {j ∈ {1, . . . ,m}|qj = maxj qj = q}

Let us note that since xn+1 = ym+1 = x′n+1 = y′m+1 = 1 we have pn+1 = qm+1 = 1, p ≤ 1
and q ≥ 1. Moreover, we have by hypothesis Ej ∩{1, . . . , n} 6= ∅ and Fi∩{1, . . . ,m} 6= ∅
for all (i, j) ∈ {1, . . . , n} × {1, . . . ,m}.

Let us fist show that α = ∅ ⇐⇒ β = ∅.
If α = ∅, then For all i ∈ {1, . . . , n} pi > 1. Then using equation (3), we have for

any j ∈ {1, . . . ,m}:

1 =
n+1∑
i=1

pixiaijqjyj > qj

n+1∑
i=1

xiaijyj = qj
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Hence qj < 1 for all j ∈ {1, . . . ,m} and thus β = ∅.
Conversely, if β = ∅, we have qj < 1 for all j ∈ {1, . . . ,m} . Using equation (4) for

i ∈ {1, . . . , n}:

1 =
m+1∑
j=1

pixiaijqjyj < pi

m+1∑
j=1

xiaijyj = pi

Hence, pi > 1 for all i ∈ {1, . . . , n} and α = ∅.
In this case we consider the alternative definitions for α and β:{

α = {i ∈ {1, . . . , n}|pi = maxi pi = p},
β = {j ∈ {1, . . . ,m}|qj = minj qj = q}

Since pi > 1 for all i ∈ {1, . . . , n} and qj < 1 for all j ∈ {1, . . . ,m}, α and β are non
empty.

Using initial definitions for α and β, let us thus consider i0 ∈ α and j0 ∈ β. Then
using (3):

qj0 = 1∑n+1
i=1 pixiaij0yj0

≤ 1
pi0
∑n+1
i=1 xiaij0yj0

= p−1
i0

where the last equality comes from (1). Similarly, using (4):

pi0 = 1∑m+1
j=1 xiaijqjyj

≥ 1
qj0

∑m+1
j=1 xiaijyj

= q−1
j0

where the last equality comes from (2). Whence qj0 = p−1
i0

= p−1. But in this case, we
have using (3):

n+1∑
i=1

pixiaij0qj0yj0 =
∑
i∈Ej0

pixiaij0qj0yj0 =
∑
i∈Ej0

pi
p
xiaij0yj0 = 1

This last equality is compatible with (1) only if pi = p for all i ∈ Ej0 . Dropping sub
indices, we have for all j ∈ β and all i ∈ Ej pi = p. Thus⋃

j∈β

Ej ⊆ α ∪ {n+ 1}.

Hence if j ∈ β and i 6∈ α ∪ {n + 1}, i 6∈
⋃
j∈β Ej . So aij = 0. More concisely, we have:

A(α ∪ {n+ 1}, β] = 0.
In the same way, pi0 = q−1

j0
= q−1 implies using (4):

m+1∑
j=1

pi0xi0ai0jqjyj =
∑
j∈Fi0

qj
q
xi0ai0jyj = 1

which is compatible with (2) only if qj = q for all j ∈ Fi0 . Thus for all i ∈ α and for all
j ∈ Fi we have qj = q. Thus⋃

i∈α
Fi ⊂ β ∪ {m+ 1} and A[α, β ∪ {m+ 1}) = 0

On α× β we have piqj = pq = 1. Thus:

aij = bij
xiyj

=
b′ij
x′iy
′
j

⇒ piqjbij = b′ij ⇒ bij = b′ij

Hence B[α, β] = B′[α, β]
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Moreover, for any j ∈ β we have:

n+1∑
i=1

bi,j =
n+1∑
i=1

xiai,jyj =
∑

i∈Ej⊂α∪{n+1}

xiai,jyj =
∑

i∈α∪{n+1}

xiai,jyj =
∑

i∈α∪{n+1}

bi,j = 1

In the same way, we have for any j ∈ β,
∑
i∈α∪{n+1} b

′
i,j = 1. But in this case using

B[α, β] = B′[α, β], we have for j ∈ β:

1 =
∑

i∈α∪{n+1}

b′i,j =
∑
i∈α

b′i,j + b′n+1,j =
∑
i∈α

bij + b′n+1,j

Thus 1−bn+1,j +b′n+1,j = 1 which induces bn+1,j = b′n+1,j which imposes q = 1. Indeed,
since j ∈ β, we have qj = q and qjbn+1,j = qbn+1,j = b′n+1,j .

In the same way for i ∈ α:

m+1∑
j=1

bij =
m+1∑
j=1

xiai,jyj =
∑

j∈Fi⊂β∪{m+1}

xiai,jyj =
∑

j∈β∪{m+1}

xiai,jyj =
∑

j∈β∪{m+1}

bi,j = 1

and we have in the same way for i ∈ α,
∑
j∈β∪{m+1} b

′
i,j = 1. We then obtain for i ∈ α:∑

j∈β∪{m+1}

b′i,j =
∑
j∈β

b′i,j + b′i,m+1 =
∑
j∈β

bi,j + b′i,m+1

Using the previous equality 1 − bi,m+1 + b′i,m+1 = 1, hence bi,m+1 = b′i,m+1 and p = 1
(since pbi,n+1 = b′i,n+1).

Thus B[α∪{n+ 1}, β ∪{m+ 1}] = B′[α∪{n+ 1}, β ∪{m+ 1}] is an ε bi-stochastic
matrix (where n+ 1 and m+ 1 plays the role of the last row and column respectively).

Let us briefly show that {1, . . . , n}−α and {1, . . . ,m}−β are simultaneously empty
or non empty. Let us fist suppose that α = {1, . . . , n} and let us consider j 6∈ β∪{m+1}.
Since Ej ∩ {1, . . . , n} 6= ∅ by hypothesis, it exists i ∈ {1, . . . , n} = α such that j ∈ Fi.
But since i ∈ α, we have Fi ⊂ β ∪ {m+ 1} and thus a contradiction. In the same way,
if β = {1, . . . ,m}, let us consider i 6∈ α ∪ {n + 1}. Since Fi ∩ {1, . . . ,m} 6= ∅, it exists
j ∈ {1, . . . ,m} = β such that i ∈ Ej ⊂ α ∪ {n+ 1}. Again a contradiction.

If A is non secable the configuration where both {1, . . . , n} − α and {1, . . . ,m} − β
are non empty correspond to a partition of {1, . . . , n + 1} into α ∪ {n + 1} and its
complementary and a partition of {1, . . . ,m+1} into β∪{m+1} and its complementary
with no connections between α ∪ {n + 1} and the complementary of β ∪ {m + 1} nor
any connection between β ∪ {m+ 1} and the complementary of α ∪ {n+ 1} (Figure 2).
Such a decomposition being refused, we have α = {1, . . . , n} and β = {1, . . . ,m} Hence
A[α ∪ {n + 1}, β ∪ {m + 1}] = A and D1AD2 = D′1AD

′
2 and D1 and D2 are unique

(p = q = pn+1 = qm+1 = 1).
If the non secable property of A does not hold and A(α ∪ {n + 1}, β] and A[α, β ∪

{m+ 1}) exist, B(α, β) and B′(α, β) exist, include the row n+ 1 and the column m+ 1,
are ε bi-stochastic matrices and have a size lower than the one of A. Furthermore,
B(α, β) = D”1A(α, β)D′′2 and B′(α, β) = D′′′1 A(α, β)D′′′2 where D′′i and D′′′j have like
Di and D′j (from which they are derived) a positive main diagonal with a 1 at last
position. The argument may be repeated on these submatrices until D1AD2 = D′1AD

′
2

is established. Given that B(α, β) = B′(α, β), we already know that B[α ∪ {n+ 1}, β ∪
{m+1}] = B′[α∪{n+1}, β∪{m+1}] and that A and hence B and B′ are zeros elsewhere
(Figure 2). Hence B is equal to B′. Note however, that since α∪{n+1} 6= {1, . . . , n+1}
(and the same for β) D1 and D2 are no longer unique.
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β m
+

1

α 0

0
B(α, β)

n+ 1

Figure 2: Decomposition of matrix B.

4 A constructive algorithm
For any i ∈ {1, . . . , n} and any j ∈ {1, . . . ,m} let us consider the series (xi,p)p∈N and
(yj,p)p∈N defined as follows:{

∀i ∈ {1, . . . , n} xi,0 =
(∑m+1

j=1 aij

)−1
xi,p+1 = χ−1

i,pxi,p

∀j ∈ {1, . . . ,m} yj,0 = 1 yj,p+1 = γ−1
j,p yj,p

Moreover we also define:
∀i ∈ {1, . . . , n} χi,p =

∑m+1
j=1 xi,pai,jyj,p =

∑m+1
j=1 γ−1

j,p−1xi,pai,jyj,p−1

∀j ∈ {1, . . . ,m} γj,p =
∑n+1
i=1 χ

−1
i,pxi,pai,jyj,p

with for all p:
xn+1,p = ym+1,p = 1
χn+1,p = γm+1,p = 1

Let us denote by Lp the (n+1)×(m+1) matrix whose entries in n×(m+1) are equal to
(xi,pai,jyj,p−1) and whose last row is filled with zeros but a 1 at position (n+ 1,m+ 1).

In the same way let us denote by Cp the (n + 1)× (m + 1) matrix whose entries in
(n+ 1)×m are equal to xi,pai,jyj,p and whose last column is filled with zeros except a
1 at position (n+ 1)× (m+ 1).

If χp ∈ Rn+1 and γp ∈ Rm+1 denote the vectors encoding respectively (χi,p)i∈{1,...,n+1}
and (γj,p)j∈{1,...,m+1} we have for p ≥ 1:{

χp = Lpγ
−1
p−1

γp = CTp χ
−1
p

(5)

Lp is row stochastic. Indeed, for any i ∈ {1, . . . , n} and p ≥ 1:∑m+1
j=1 (Lp)i,j =

∑m+1
j=1 xi,pai,jyj,p−1

=
∑m+1
j=1 χ−1

i,p−1xi,p−1ai,jyj,p−1

= χ−1
i,p−1

∑m+1
j=1 xi,p−1ai,jyj,p−1

= 1

and the last line of Lp contains a single entry equal to 1.
Moreover, Cp is column stochastic for p ≥ 1. Indeed for each j ∈ {1, . . . ,m}:∑n+1

i=1 (Cp)i,j =
∑n+1
i=1 xi,pai,jyj,p

=
∑n+1
i=1 χ

−1
i,p−1γ

−1
j,p−1xi,p−1ai,jyj,p−1

= γ−1
j,p−1

∑n+1
i=1 χ

−1
i,p−1xi,p−1ai,jyj,p−1

= 1
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Lp =


x1,pa1,1y1,p−1 x1,pa1,2y2,p−1 . . . x1,pa1,mym,p−1 x1,pa1,m+1
x2,pa2,1y1,p−1 x2,pa2,2y2,p−1 . . . x2,pa2,mym,p−1 x2,pa2,m+1

...
xn,pan,1y1,p−1 xn,pan,2y2,p−1 . . . xn,pan,mym,p−1 xn,pan,m+1

0 0 . . . 0 1



Cp =


x1,pa1,1y1,p x1,pa1,2y2,p . . . x1,pa1,mym,p 0
x2,pa2,1y1,p x2,pa2,2y2,p . . . x2,pa2,mym,p 0

...
xn,pan,1y1,p xn,pan,2y2,p . . . xn,pan,mym,p 0
an+1,1y1,p an+1,2y2,p . . . an+1,mym,p 1



CTp =


x1,pa1,1y1,p x2,pa2,1y1,p . . . xn,pan,1y1,p an+1,1y1,p
x1,pa1,2y2,p x2,pa2,2y2,p . . . xn,pan,2y2,p an+1,2y2,p

...
x1,pa1,mym,p x2,pa2,mym,p . . . xn,pan,mym,p an+1,mym,p

0 0 . . . 0 1


Figure 3: Lp and Cp matrices.

Note that C0 is not column stochastic. One noticeable effect of this negative property
is that γ0 6= 1 while χ0 = 1.

Moreover the last column contains a single positive entry equal to 1. Hence CTp is
row stochastic and equation 5 involves two row stochastic matrices.

Combining both equations of 5 we have:

χp = Lp
(
CTp−1χ

−1
p−1
)−1

where the inverse notation applied to a vector denotes the element-wise inverse operation.
Since Lp is row stochastic, we have:

χp − 1 = Lp

[(
CTp−1χ

−1
p−1
)−1 − 1

]
Using 1

x − 1 = 1−x
x we obtain:

χp − 1 = Lp

[(
1− CTp−1χ

−1
p−1
)
�
(
CTp−1χ

−1
p−1
)−1]

where � is the element-wise product also known as Hadamard product. Since, for p ≥ 2,
CTp−1 is row stochastic we have CTp−11 = 1 and thus:

χp − 1 = Lp

[(
CTp−1

(
1− χ−1

p−1
))
�
(
CTp−1χ

−1
p−1
)−1
]

= Lpdiag
(
CTp−1χ

−1
p−1
)−1

CTp−1
(
1− χ−1

p−1
)

Using 1− 1
x = x−1

x we obtain:

χp − 1 = Lpdiag
(
CTp−1χ

−1
p−1
)−1

CTp−1 (χp−1 − 1)� χ−1
p−1

= Lpdiag
(
CTp−1χ

−1
p−1
)−1

CTp−1diag(χp−1)−1 (χp−1 − 1)
= Lpdiag (γp−1)−1

CTp−1diag(χp−1)−1 (χp−1 − 1)

8



Moreover the left and right multiplications of CTp−1 by diagonal matrices is equivalent to
a multiplications of its lines by γ−1

p−1 and its columns by χ−1
p−1. More precisely we have:

diag (γp−1)−1
CTp−1diag(χp−1)−1 =

χ−1
1,p−1γ

−1
1,p−1x1,p−1a1,1y1,p−1 . . . χ−1

n,p−1γ
−1
1,p−1xn,p−1an,1y1,p−1 γ−1

1,p−1an+1,1y1,p
χ−1

1,p−1γ
−1
2,p−1x1,p−1a1,2y2,p−1 . . . χ−1

n,p−1γ
−1
2,p−1xn,p−1an,2y2,p−1 γ−1

2,p−1an+1,2y2,p
...

χ−1
1,p−1γ

−1
m,p−1x1,p−1a1,mym,p−1 . . . χ−1

n,p−1γ
−1
m,p−1xn,p−1an,mym,p−1 γ−1

m,p−1an+1,mym,p
0 . . . 0 1



=


x1,pa1,1y1,p x2,pa2,1y1,p . . . xn,pan,1y1,p an+1,1y1,p
x1,pa1,2y2,p x2,pa2,2y2,p . . . xn,pan,2y2,p an+1,2y2,p

...
x1,pa1,mym,p x2,pa2,mym,p . . . xn,pan,mym,p an+1,mym,p

0 0 . . . 0 1

 = CTp

Hence we have:
∀p ≥ 2 χp − 1 = LpC

T
p (χp−1 − 1) (6)

As Lp and CTp are row stochastic matrices, so is LpCTp . Moreover, LpCTp is a square
(n+ 1)× (n+ 1) matrix. Let us note that due do this row stochastic property the last
equality is equivalent to:

∀p ≥ 2 χp = LpC
T
p χp−1

Examining more precisely the matrix LpCTp we have:
(LpCTp )i,j = xi,pxj,p

∑m
k=1 ai,kaj,kyk,pyk,p−1 ∀(i, j) ∈ {1, . . . , n}2

(LpCTp )n+1,j = 0 ∀j ∈ {1, . . . , n}
(LpCTp )i,n+1 = xi,p

∑m
k=1 ai,kan+1,kyk,pyk,p−1 + xi,pai,m+1 ∀i ∈ {1, . . . , n}

(LpCTp )n+1,n+1 = 1

Let us note that i and j may be interchanged in the first equation above. Hence:

∀(i, j) ∈ {1, . . . , n}2 (LpCTp )i,j = (LpCTp )j,i

Moreover we have for all (i, j) ∈ {1, . . . , n} × {1, . . . ,m}: χi,0 = xi,0
∑m+1
j=1 ai,jyj,0 =

∑m+1
j=1 ai,j∑m+1
j=1 ai,j

= 1

γj,0 =
∑n+1
i=1 χ

−1
i,0xi,0ai,jyj,0 =

∑n+1
i=1

ai,j∑m+1
j=1 ai,j

Since the sum of a line (or a column) of A cannot be equal to zeros, it exists two positive
numbers γ, γ such that:

0 < γ1 ≤ γ0 ≤ γ1

We have thus:
0 < γ1 ≤ γ0 ≤ γ1
γ−11 ≤ γ−1

0 ≤ γ−11
γ−11 ≤ L1γ

−1
0 ≤ γ−11

0 < γ−11 ≤ χ1 ≤ γ−11

where the last inequality is deduced from the fact that χ1 = L1γ
−1
0 , and the fact that

all the entries of L1 are non negative.
Hence using (6) and a basic recursion we have :

∀p ≥ 1, 0 < γ−11 ≤ χp ≤ γ−11

9



Using γp = CTp χ
−1
p which is row stochastic we obtain:

∀p ≥ 1, 0 < γ1 ≤ γp ≤ γ1

From now on, let us suppose that all entries of the last column and the last line of
A are positive.

Let us suppose that for some i ∈ {1, . . . , n} we have limp→+∞ xi,p = +∞. Since we
have:

χi,p = xi,p

 m∑
j=1

ai,jyj,p + ai,m+1


we also have limp→+∞ χi,p = +∞ which is impossible since χ is bounded. It exists thus
an upper bound Mx such that:

∀i ∈ {1, . . . , n+ 1}∀p ≥ 2 xi,p ≤Mx

In this case we have:

1 = yj,p+1

n+1∑
i=1

ai,jxi,p+1 ≤ yj,p+1Mx

n+1∑
i=1

ai,j ≤ yj,p+1Mx‖A‖1

Hence we have:
yj,p+1 ≥

1
Mx‖A‖1

In the same way, let us suppose that for some j ∈ {1, . . . ,m} we have limp→+∞ yj,p =
+∞. Since we have:

γj,p = yj,p

[
n∑
i=1

χ−1
i,pai,jxi,p + an+1,j

]
we also have limp→+∞ βj,p = +∞ which is forbidden since γ is also upper bounded.

So, it exists an upper bound My such that:

∀j ∈ {1, . . . ,m+ 1},∀p ≥ 2 yj,p ≤My

In this case we have:

1 = xi,p+1

m+1∑
j=1

ai,jyj,p ≤ xi,p+1My

m+1∑
j=1

ai,j ≤ xi,p+1My‖A‖∞

Hence:
xi,p+1 ≥

1
My‖A‖∞

1. The series (xi,p)p and (yj,p)p being both lower bounded, all non zeros entries
of LpCTp are lower bounded by a positive value. Moreover since LpC

T
p is row

stochastic, all its entries are bounded by 1. We say that the entries of LpCTp are
uniformly positive.

2. Moreover:

∀i ∈ {1, . . . , n} (LpCp)i,i = x2
i,p

m∑
k=1

(ai,k)2yk,pyk,p−1

Since both series (xi,p)p and (yj,p)p are lower bounded and that a line of A can-
not be equal to zeros, we have (LpCTp )i,i > 0. Let us additionally note that
(LpCTp )n+1,n+1 = 1 > 0.

10



3. Let us consider the Graph G(LpCTp ) = (V,E) where V = {1, . . . , n + 1} and an
edge (i, j) connects node i to node j iff (LpCTp )j,i > 0. In this case since for any
i ∈ {1, . . . , n}, (LpCTp )i,n+1 ≥ xi,pai,m+1 > 0. The node n + 1 is adjacent to all
nodes in {1, . . . , n}. Conversely, since (LCTp )n+1,j = 0 for all j ∈ {1, . . . , n}, no
node j is incident to n+ 1. The node n+ 1 defines a source component. Moreover,
for any pair (i, j) ∈ {1, . . . , n}2, since (LpCTp )i,j = (LpCTp )j,i, node i is adjacent
to node j and vice versa. Hence n + 1 is the only source component of G(LpCTp )
which is thus quasi-strongly connected.

Using [5], Lemma 3 with T=1 we can conclude that χ converges towards a consensus
of the form c1. Since the last entry of χ is a constant equal to 1 we have c = 1 and:

lim
p→+∞

χp = 1

Since CTp is row stochastic we have:

lim
p→+∞

γp = lim
p→+∞

CTp χ
−1
p = 1

Since χi,p = xi,p

xi,p+1
converges towards 1, (xi,p)p is a Cauchy serie in a complete space(R+).

Hence (xi,p)p converges. The same argument holds for (yj,p)p.
Let us consider the two diagonal matrices D1,p = diag(x1,p, . . . , xn+1,p) and D2,p =

diag(y1,p, . . . , ym+1,p) together with the matrix Sp = D1,pAD2,p. By construction we
have for any i ∈ {1, . . . , n}:

(Sp1)i =
m+1∑
j=1

xi,pai,jyj,p = χi,p

Thus: limp→∞(Sp1)i = limp→∞ χi,p = 1. The matrix Sp converges thus towards an ε
row stochastic matrix.

Moreover, for any j ∈ {1, . . . ,m}:

(STp 1)j =
n+1∑
i=1

xi,pai,jyj,p =
n+1∑
i=1

xi,p+1ai,jyj,p + (xi,p − xi,p+1)ai,jyj,p

Since xi,p converges for any i ∈ {1, . . . , n+ 1}, yj,p is bounded, and the above sums are
finite, it exists for any η > 0 a value p0 such that for any p ≥ p0, we have :∣∣∣∣∣

n+1∑
i=1

xi,pai,jyj,p −
n+1∑
i=1

xi,p+1ai,jyj,p

∣∣∣∣∣ < η

Both sums converge (or diverge) thus toward a same value. Moreover:

n+1∑
i=1

xi,p+1ai,jyj,p = γj,p

We have thus: limp→∞(STp 1)j = limp→∞ γj,p = 1. The matrix Sp converges thus toward
an ε column stochastic matrix and hence an ε bi-stochastic matrix.

5 Two iterative algorithms
The code (in python) corresponding to the construction of matrices D1,p and D2,p is

provided in Figure 4. You may note the fact that we set xn+1 and ym+1 to 1 respectively
on line 9 and 15. This point together with the use of rectangular matrices is the main

11



1 de f sinkhorn D1D2 (S , nb i t e r , eps ) :
2 ones n = torch . ones (S . shape [ 0 ] , dev i c e=S . dev i ce )
3 ones m = torch . ones (S . shape [ 1 ] , dev i c e=S . dev i c e )
4 c=ones m
5 converged=False
6 i=0
7 whi le i <=n b i t e r and not converged :
8 xp=1.0/(S@c)
9 xp [ −1]=1.0

10 i f i>=1:
11 # computation o f | | x {p+1}/x p −1 | | $
12 norm x=t l . norm( x/xp−torch . o n e s l i k e ( x/xp ) , ord=f l o a t ( ’ i n f ’ ) )
13 x=xp
14 yp=1.0/(S .T@r)
15 yp [ −1]=1.0
16 # computation o f | | y {p+1}/y p −1 | | $
17 norm y=t l . norm( y/yp−torch . o n e s l i k e ( y/yp ) , ord=f l o a t ( ’ i n f ’ ) )
18 y=yp
19 i f i>=1:
20 converged= ( norm x <= eps ) and ( norm y<=eps )
21 i+=1
22

23 re turn torch . d iag ( x ) @S@torch . d iag ( y )

Figure 4: The code corresponding to the construction scheme described in Section 4

1 de f s inkhorn Sp (S , nb i t e r , eps ) :
2 ones n = torch . ones (S . shape [ 0 ] , dev i c e=S . dev i ce )
3 ones m = torch . ones (S . shape [ 1 ] , dev i c e=S . dev i c e )
4

5 i=1
6 Sp=S
7 whi le i<=n b i t e r and not converged :
8 D=torch . d iag ( 1 . 0 / ( Sp@ones m ) )
9 D[D. shape [0 ] −1 ,D. shape [1 ] −1 ] =1.0

10 Sp1 = D@Sp
11 norm col=t l . norm ( ( ones n@Sk1−ones m ) [ 0 : −1 ] , ord=f l o a t ( ’ i n f ’ ) )
12 D=torch . d iag ( 1 . 0 / ( ones n@Sp1 ) )
13 D[D. shape [0 ] −1 ,D. shape [1 ] −1]=1.0
14 Sp = Sp1@D
15 norm l ine=t l . norm ( ( Sp@ones m−ones n ) [ 0 : −1 ] , ord=f l o a t ( ’ i n f ’ ) )
16 converged=(norm col <= eps ) and ( norm line<=eps )
17 i+=1
18 D=torch . d iag ( 1 . 0 / ( Sp@ones m ) )
19 D[D. shape [0 ] −1 ,D. shape [1 ] −1 ] =1.0
20 Sp1 [ 0 : n , : ] = (D@Sp ) [ 0 : n , : ]
21 Sp1 [ −1 ,0 :m]=ones m [ 0 :m]− torch . sum ( (D@Sp ) [ 0 : n , 0 :m] , dim=0)
22

23

24 re turn Sp1

Figure 5: A version of our computation of an ε assignment matrix which updates directly
the matrix Sp
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difference between this algorithm and the ”classical” Sinkhorn algorithm. The conver-
gence criterion which allows to avoid to loop up to the maximum number of iterations
is based on the fact that both χp and γp converge toward a vector of 1.

An equivalent code computing directly the matrix Sp is provided in Figure 5. In this
case the setting of xn+1 and ym+1 to 1 is performed on line 9 and 19. The stopping
criterion is based on the computation of the distance of the current matrix to the set
of ε assignment matrices. To do so, we compute the distance between the vector of
1 and STp 1 after each row normalization(line 11). In the same way, we compute the
distance between a vector of 1 and Sp1 after each column normalization (line 15). After
convergence, we apply a last row normalization before setting the last line of our ε
assignment matrix to the complement to 1 of each column.

6 From similarity to cost matrices and vice versa
The Sinkhorn algorithm is well known for providing an approximation of the Linear Sum
Assignment Problem (Section 7) which can be formulated as:

max
X

n∑
i=1

n∑
j=1

si,jxi,j

where S = (si,j) is our similarity matrix and X = (xi,j) is taken over all bi stochastic
matrices. The optimal solution being a permutation matrix, hence a binary matrix.

This maximization problem may be translated into a minimization problem by con-
sidering the matrix c1n×n−S, where 1n×n is a n×n matrix filled of 1 and c is a positive
constant greater than all values of S. We have indeed:∑n

i=1
∑n
j=1(c− si,j)xi,j =

∑n
i=1
∑n
j=1 cxi,j −

∑n
i=1
∑n
j=1 si,jxi,j

= c
∑n
i=1
∑n
j=1 xi,j −

∑n
i=1
∑n
j=1 si,jxi,j

= c
∑n
i=1 1−

∑n
i=1
∑n
j=1 si,jxi,j

= cn−
∑n
i=1
∑n
j=1 si,jxi,j

Hence c and n being constant, minimize
∑n
i=1
∑n
j=1(c−si,j)xi,j is equivalent to maximize∑n

i=1
∑n
j=1 si,jxi,j . The matrix c1n×n−S is usually interpreted as a cost matrix. This

last point is important if one wants to compare the Sinkhorn algorithm to an optimal
Hungarian algorithm which performs a minimization of costs instead of a maximization
of similarities.

As stated in Section 1, our algorithms being an extension of the Sinkhorn algorithm
we expect them to converge to :

max
x

n+1∑
i=1

m+1∑
j=1

si,jxi,j

where X = (xi,j) is taken over all ε-bi stochastic matrices. However, the transformation
of this maximization of similarities into a minimization of costs, is slightly more complex
in the case of ε assignment matrices. To do so, let us consider a (n+ 1)× (m+ 1) matrix
C = (ci,j) with:

ci,j =


2c if i ≤ n ∧ j ≤ n
clr if i = n+ 1 ∧ j ≤ m
clc if i ≤ n ∧ j = m+ 1
0 if i = n+ 1 ∧ j = m+ 1

where c, clr, clc are three positive constants. Considering the cost matrix C−S we have:
n+1∑
i=1

m+1∑
j=1

(ci,j − si,j)xi,j =
n+1∑
i=1

m+1∑
j=1

ci,jxi,j −
n+1∑
i=1

m+1∑
j=1

si,jxi,j
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If clc = 2c and clr = 0: We have:∑n+1
i=1

∑m+1
j=1 ci,jxi,j =

∑n
i=1
∑m+1
j=1 2cxi,j

= 2c
∑n
i=1 1

= 2cn

If clr = 2c and clc = 0: We have:∑n+1
i=1

∑m+1
j=1 ci,jxi,j =

∑m
j=1

∑n+1
i=1 2cxi,j

= 2c
∑m
j=1 1

= 2cm

If clr = c and clc = c: We have:

∑n+1
i=1

∑m+1
j=1 ci,jxi,j = 2c

∑n
i=1
∑m
j=1 xi,j + c

∑n
i=1 xi,m+1 + c

∑m
j=1 xn+1,j

= c
∑n
i=1
∑m+1
j=1 xi,j + c

∑m
j=1

∑n+1
i=1 xi,j

= cn+ cm

In all cases we have thus:
n+1∑
i=1

m+1∑
j=1

(ci,j − si,j)xi,j = Q−
n+1∑
i=1

m+1∑
j=1

si,jxi,j (7)

where Q = cn if clc = 2c and clr = 0, Q = cm if clr = 2c and clc = 0 and finally Q =
cn+ cm if clr = clc = c. The minimization of the left part of equation 7 (minimization
of costs) is thus equivalent to a maximization of the similarities.

Let us note that the trivial solution consisting to take C = c1(n+1)×(m+1) does not
provide an equivalence between both problems since additional terms related either to
the last column or the last row forbid to state that one problem is equal to a constant
minus the other problem. Moreover, the last solution ( clr = c and clc = c) is the only
one allowing to ensure that all coefficients of the similarity matrix are positive when
transforming a cost matrix into a similarity matrix.

7 Experiments
We proposed in Section 4 two algorithms converging toward an unique solution if the
conditions defined in Section 3 are satisfied. The aim of this section is to measure
experimentally the convergence of our algorithms toward a solution maximizing :

n+1∑
i=1

m+1∑
j=1

si,jxi,j

over all ε bi stochastic matrices X. Where S is the input matrix. Such a problem is
called a Linear Sum Assignment Problem with Edition (LSAPE).

7.1 Deviation of the Sinkhorn algorithm from the optimal solu-
tion

Sinkhorn algorithm provides an approximate solution to the well known Linear Sum
Assignment Problem (LSAP):

max
X

n∑
i=1

m∑
j=1

si,jxi,j

14



Figure 6: Relative Error between the results provided by the Sinkhorn Algorithm and
the optimal solution provided by an Hungarian method.

where X is taken over the set of bi stochastic matrices. From a certain point of view,
LSAP may be considered as a restriction of the LSAPE with squared matrices and no
deletions/insertions. Let us first evaluate the error induced by the use of the Sinkhorn
algorithm. To do this, we define matrices filled by random number in the interval
[1, 2]. For each matrix size we compute 100 matrices and compute for each matrix
both the solution produced by the Sinkhorn algorithm and the optimal one produced
by an Hungarian algorithm. The results of this experiment are displayed in Figure 6 for
n ∈ {10, . . . , 200}.

Considering Figure 6, the error is approximately constant for all sizes of matrices lies
between 20% and 23%.

7.2 Deviation of our algorithms from the optimal solution
In order to test our algorithm we use the same kind of random matrices but with a
specific procedure for the last row and column which encode respectively the affinity of
each element toward insertions and deletions:

Si,j :=
{

rand()+1 if i<n∧ j<m
0 if i=n∧ j=m
h rand() else

(8)

For h ≤ 0.5 we can insure that for any (i, j) ∈ {1, . . . , n} × {1, . . . ,m}, si,j ≥
sn+1,j+sj,m+1. In other terms we always get a greater sum by substituting i onto j than
by deleting i and then inserting j. Conversely, if si,j < sn+1,j + sj,m+1 the substitution
of i onto j will never be part of an optimal ε-assignment since this operation can be
replaced, with a greater value of the sum, by the removal of i and the insertion of j.

Let us first focus on values of h lower than .5. Figure 7 shows on the first two
columns the relative error of both sinkhorn Sp and sinkhorn D1D2 according to an opti-
mal LSAPE algorithm [2] for increasing sizes of the matrix. Let us note that [2] minimizes
a sum of costs. We compare both algorithms using the results of Section 6. For each
matrix size 100 random matrices are generated and the results are averaged for all three
algorithm (sinkhorn Sp, sinkhorn D1D2 and the optimal one). Our algorithms provide
an approximation of the LSAPE which is slightly above 20%, hence comparable with
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%error
sinkhorn Sp

%error
sinkhorn D1D2 errorSp − errorD1D2

errorSp

n× n

n× 2n

Figure 7: Relative errors of sinkhorn Sp and sinkhorn D1D2 according to the optimal
solution.

the one provided by the Sinkhorn algorithm for the LSAP problem. Interestingly, our
algorithm provides better approximations for small matrix sizes while Figure 6 suggest
an opposite behavior for the Sinkhorn algorithm.

The last column of Figure 7 allows to compare more precisely sinkhorn Sp and
sinkhorn D1D2. Both algorithms seems to be equivalent since the relative error be-
tween both methods do not exceed 1%.

For h greater than .5 we observe in Figure 8 that we keep an error of about 20%
for h = 1.0 and h = 2.0. In these cases the values of the last line and the last column
remain comparable with the inner values of the random matrix. However, for larger
values of h, namely h ∈ {4.0, 6.0, 8.0} we observe a large increase of the relative error
especially in the case of squared matrices. We can conclude from these experiments
that our algorithms do not converge to the expected value when the values of the last
column/line are very large compared to the inner values. More precisely, when we have:

si,j � sn+1,i + si,m+1 for (i, j) ∈ {1, . . . , n} × {1, . . . ,m}

A simple solution to fix this problem, consists in simplifying the similarity matrix by
removing (setting to a low value) any entry (i, j), i ∈ {1, . . . , n} and j ∈ {1, . . . ,m} such
that (i, j) cannot belong to any optimal solution. Given the similarity matrix S, such
entries are characterized by si,j < sn+1,j + si,m+1. In such cases, the substitution of i
onto j may be advantageously replaced by the removal of i and the insertion of j. This
last point forbids the assignment of i onto j in any optimal ε-assignment.

Figure 9 represents the relative errors according to the optimal solution performed
by Sinkhorh Sp and sinkhorn D1D2 using this simplification of the similarity matrix. In
this experiment the ”low value” replacing any entry of the matrix S which can not be
included in any optimal solution has been fixed to 10−4. One can first observe that we
get the same behavior for the squared (n × n) case and the rectangular one (n × 2n).
We can further observe that all errors remain below 20% for all sizes. Moreover, the
relative error appear to be decreasing as a function of h for both algorithms. This may
be explained by the fact that as h get higher, the simplified matrix becomes more and
more trivial. Indeed for largest values of h, simplified similarity matrices correspond to
trivial matrices with a constant value (equal to 10−4 in this experiment) for all entries
(i, j) in {1, . . . , n}×{1, . . . ,m} and a last row and column which remains unchanged and
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%error
sinkhorn Sp

%error
sinkhorn D1D2

n× n

n× 2n

Figure 8: Relative errors of sinkhorn Sp and sinkhorn D1D2 according to the optimal
solution.

%error
sinkhorn Sp

%error
sinkhorn D1D2

n× n

n× 2n

Figure 9: Relative errors of sinkhorn Sp and sinkhorn D1D2 according to the optimal
solution after a simplification of the similarity matrix.
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Figure 10: Execution times of sinkhorn Sp and sinkhorn D1D2 on squared n×n matrices
using both graphic card and cpu computation.

greater than 10−4 by several orders of magnitude. In such cases our algorithms converge
immediately to the optimal solution which correspond to the removal of all elements in
{1, . . . , n} and the insertion of all elements in {1, . . . ,m}.

7.3 Execution times of our algorithms
The execution times of both sinkhorn Sp and sinkhorn D1D2 computed either on a
graphic card (Nvidia Quadro P2000) or on a CPU (Intel Core i5 650@3.2GHz) are
displayed in Figures 10 for n×n squared matrices and in Figure 11 for n×2n rectangular
matrices. In both figures and for each size, both algorithms have been run 100 times
and the execution times have been averaged.

Considering the squared case (Figure 10) we can see that on graphics cards both
sinkhorn Sp and sinkhorn D1D2 take roughly the same amount of time. This is clearly
not the case on CPU where the updates of the matrix Sp instead of the two diagonal
matrices D1 and D2 induce a large difference, by a factor greater than 10, between
the execution times of sinkhorn Sp and sinkhorn D1D2. We can further observe that
if we do not observe major differences between the cuda and cpu execution times for
sinkhorn D1D2 this is clearly not the case for sinkhorn Sp which is more than 10 times
accelerated by the use of the graphic card. Finally, we can note that the execution times
are decreasing as a function of h. As previously, this last point is due to the fact that
as h get higher the simplified similarity matrices become more and more trivial and our
iterative algorithms need less and less iterations to converge.

Concerning the rectangular case (Figure 11), we observe the same trends than in
the squared case. However the ratio between the execution times of sinkhorn Sp and
sinkhorn D1D2 on CPU is, in this case, about 6. Moreover, we observe for such matrices
a factor approximately equal to 2 between the execution times of sinkhorn D1D2 on GPU
and CPU. As in the squared case the CUDA implementation provides a large speedup
for sinkhorn Sp. Finally, the execution times of both algorithms decrease as h increase.
This phenomenon already encountered in the squared case is due to the same reasons.
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Figure 11: Execution times of sinkhorn Sp and sinkhorn D1D2 on n × 2n rectangular
matrices using both graphic card and cpu computation.

8 Conclusion
We have presented in this report (Section 5) two algorithms. The proof of their conver-
gence is provided in Section 4 while conditions of the existence and uniqueness of the
limits are provided in Section 3. Section 6 provides simple methods to transform the
sum maximization problem addressed by our algorithms into sum minimization (mini-
mization of a sum of costs).

As shown in Section 7, these algorithms provide an approximate solution to the
Linear Sum Assignment Problem with Edition (LSAPE). The relative error of these
algorithms compared to the optimal solutions is similar, and even much lower in some
cases, to the relative error between the classical Sinkhorn and the optimal solutions
to the Linear Sum Assignment Problem (LSAP). The main difference between these
algorithms and the Hungarian based algorithms providing the optimal solution is that
our algorithms are iterative and differentiable and may thus be easily inserted within a
backpropagation based learning framework such as artificial neural networks.

Compared to the LSAP, the LSAPE problem allows to manage assignments be-
tween sets of different sizes by allowing the possibility to reject some elements from the
matching through the use of insertion/deletion operations. Let us note that these in-
sertion/deletion operations are integrated to the matching algorithm. The LSAPE thus
avoids any artificial preprocessing step consisting in the selection of the more promis-
ing objects of both sets for matching. Our algorithms output an ε bi-stochastic matrix
which mainly differs from the results provided by [4, 3] through the explicit notions of
insertion and deletion.

Let us finally note that we have required in Section 5 that all the coefficients of the
last line and column of the similarity matrix should be positive. This requirement is
certainly too strong and weaker conditions may certainly be established by future works.
An alternative future research direction, consists in addressing the LSAPE problem using
the recent advances in Graph Neural Networks (GNN).
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