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Abstract
Analyzing the properties of a network equilibrium (uniqueness and stability) can
help to have a better view about network state, robustness, and the effect of any
variation in the network. In this study, we investigated the impacts of network design
history on day-to-day multimodal user equilibrium. In particular, we investigate the
long-term evolution of the network, including opening new multimodal options and
its impacts on the final network equilibrium. First, the analysis focuses on static
network loading with different successive configurations. This structure makes ana-
lytical derivations possible, highlighting the problem. Then, a more realistic setting
is studied by simulation. A large-scale multimodal network with the flexible open-
ing over time of three possible transport facilities shows that the final equilibrium
is not unique; more importantly, significant differences can be observed in public
transportation occupancy, while user equilibrium is enforced in all situations. Some
solutions prove to be better from the collective viewpoint (shorter total travel time),
thus giving new insight into public transport planning.

KEYWORDS
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1. Introduction

User Equilibrium (UE) is achieved when all users experience the minimum possible path
cost given the network constraints and other users’ path choices (Wardrop 1952). Unic-
ity conditions for UE situation has been extensively studied in the literature for traf-
fic assignment problems (Beckmann, McGuire, and Winsten (1956); Daganzo (1985);
Mounce and Smith (2007)). Iryo (2015) defines the unicity of the UE solution as one
of three situations: only a unique link flow value vector meets UE requirements, or
the link travel time profiles of the UE solution are uniquely determined, and the so-
lution set for the network equilibrium model is convex. Note that the convexity of
the solution set guarantees the existence of an equilibrium (Iryo and Smith 2018). A
key argument (sufficient condition) for unicity is a strictly monotone travel time func-
tion with respect to the number of travelers that use a path (Smith (1979); Aashtiani
and Magnanti (1981); Florian and Hearn (1995)). This condition is quite restrictive as
monotonicity can be guaranteed at the link level for mono-modal flow but hardly at
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the path level because of the intersection functioning (Yang and Huang 2004). Traffic
assignment models address the network equilibrium problem, including the travel time
calculation, mathematically.

In brief, a traffic assignment model calculates the path flow distribution over possible
paths for all OD pairs, considering the total demand and the network traffic condi-
tions (Smith 1983). Traffic assignment models can be divided into two categories: flow-
based and trip-based (Patriksson 2015). A flow-based traffic assignment is a continuous
model, but in a trip-based approach, the path flow should correspond to integer values
as all users are considered individually in the network and cannot be split. The flow-
based approach is good for simplifying the problem, as it takes advantage of continuous
models for analytical investigations. Here, we first investigate the problem analytically
following a flow-based approach and then we address a real case numerically using a
trip-based simulator.

The Static Traffic Assignment (STA) problem is defined when the system prop-
erties, e.g., Origin-Destination (OD) matrix and the link flows, are assumed to be
time-independent. On the other hand, if time dependence is considered, the problem
becomes a Dynamic Traffic Assignment (DTA). DTA is much more complicated than
STA, both computationally and conceptually (Peeta and Ziliaskopoulos 2001).

Much research on the unicity of STA solutions has been performed with several
assumptions and limitations on the traffic network model (Netter (1972); Dafermos
(1982); Nagurney (1984); Wynter (2001); Wie, Tobin, and Carey (2002); Florian and
Morosan (2014); Sun, Cheng, and Xu (2014)). For DTA models, the conditions of unic-
ity have been appropriately reviewed by Iryo (2013). His review shows that almost all
the studies address unicity in small and medium traffic networks by applying analytical
approaches because in the large-scale DTA problem, evaluating the solution set is very
complex and not feasible. This study takes a different angle, as we are interested in
situations where unicity conditions do not hold. The reasons for multiple equilibria to
occur in a dynamic traffic network are as follows:

• The link cost function, i.e., the bottleneck model vs. whole link model (Friesz et al.
(2001); Lindsey (2004); Silva et al. (2016); Osawa, Fu, and Akamatsu (2018))
• The transportation mode cost function.
• The transportation mode interaction model (Jiang et al. 2016).
• The symmetry of the network, i.e., loopy network (Iryo 2011).
• Multi-class users (Marcotte and Wynter (2004); Konishi (2004); Nilsson, Grover,

and Kalabić (2018)).

One very classical setting in which multiple equilibria can occur is the multimodal
traffic assignment problem. In a multimodal urban transportation network, users have
access to different modes, e.g., car, bus, and metro, which changes their characteristics
when they swap from one mode to another (Corman, Viti, and Negenborn 2017).
Therefore, according to the transportation mode cost function and the mode interaction
model, the monotonicity condition simply does not hold (Mounce and Smith 2007) even
at the link level. Besides, Iryo and Watling (2019) showed that the existence of multiple
equilibria is common. He investigated the stability of the final equilibrium on a STA
problem with two alternatives and two user groups and proved that the system could be
converged to multiple equilibria. In such cases, the final equilibrium not only depends
on the initial state but also on the convergence process. This study focuses on the
second aspect.

To investigate the multiple equilibria problem with multimodal settings, we consider
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a day-to-day convergence process. A fraction of users may update their path choice for
the next day in the light of the traffic conditions that they experience during the
current day (Ma, Xu, and Chen 2021). Users swap to a path with minimum travel
time as they try to optimize their own gain (Mounce 2007). When unicity holds, this
process converges to the single equilibrium loading (Zhao, Wan, and Bi 2018). Here, we
focus on what happens when multiple solutions can be reached as we aim to highlight
what may drive the system to one equilibrium rather than another. More specifically,
when considering a long-term day-to-day process, the final network may not be built
at once but results from the successive opening of additional facilities. In this paper,
we consider that the road network is stable over the entire time horizon and that the
public transport network is subject to the regular new openings (bus or metro lines).
We define this opening process as the network history and investigate how it would
affect the final equilibrium state of the network.

First, we perform an analytical investigation and demonstrate the existence of mul-
tiple equilibria with respect to the network history of day-to-day STA. Second, we ad-
dress the same question through simulation for a more complex test case (large-scale
network, dynamic traffic assignment, multiple configurations for the network history).
The analytical study highlights the causes for the existence of multiple solutions and
the influence of network history. The numerical study aims to provide results consid-
ering a realistic urban setting. The influence of network history is investigated with a
different angle as we are more interested in the convergence of multiple equilibria, i.e.,
the description of the differences between final possible states. A specific finding is that
several network history configurations lead to shorter total travel times for the system
than others, and to different mode ratios in the system. This may be of interest when
considering public transport planning.

2. Model and experiment design for multimodal STA

In this section, we perform an analytical exploration of the non-uniqueness of the
network UE solution in a day-to-day multimodal framework. Netter (1972) was the first
to study multiple equilibria for a bi-modal (car and bus) network loading for a two-arc
network with linear cost functions. Wynter (2001) extended the study by designing a
numerical example with polynomial cost functions on the same graph. Here, we focus
on the impact of network design history on the final network state. The general idea
is that the day-to-day process represents the way in which the users learn about the
network state. Each day, a fraction of users adjust their paths to account for the travel
times experienced the day before. Such a process converges to a stable solution, but
it may differ depending on the initial state and the learning process. Introducing the
possible options successively and in different orders results in the same final network
layout but through different steps.

2.1. Static test case

Let us consider a network with two nodes (N = {O,D}) and three directed paths
from O to D (A = {1, 2, 3}). There are three modes of transportation (set of modes:
M = {C,B, T}) which are referred to as car, bus and train (metro) (figure 1). There
are two bus lines between origin and destination. Paths 1 and 2 are shared between
car and bus and path 3 is the train line. Therefore, there are five feasible path choices
to reach the destination: car by path 1, car by path 2, bus line on path 1, bus line on
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path 2, and train on path 3, figure 1.

Figure 1. A network with a single OD pair, three paths and three transportation modes.

The notations are:

a: Index of path, a ∈ A.
m: Index of mode, m ∈M .
MMV : The set of motor vehicles (car and bus), MMV = {C,B}
Dm: Demand of mode m.
cm: Minimum cost for mode m.
cma : Cost of path a for mode m.
fma : Flow of mode m on path a.

Note that the total demand for public transportation DPT and cars DC are given. The
demand for public transportation is disaggregated per mode:

DPT =
∑

m∈{B,T}

Dm (1)

According to the definition, the total flow of each mode is:

Dm =
∑
a

fma ; ∀fma ≥ 0,m ∈MMV (2)

DT = fT3 (3)

The cost for path a and mode m not only depends on the path flow for this mode but
also the path flow of other modes as all vehicles interact. For example, on paths 1 and
2, bus and car flows result from a global congestion level that influences both bus and
cars travel costs.

cma = gma +
∑

µ∈MMV

hm,µa fµa , ∀m ∈MMV , a ∈ A (4)

Here, we assume that cma is defined as a linear function where gma is the free flow cost
of mode m on path a and hm,µa is the impact factor of fµa on the cost of mode m.
Using linear functions may look as a strong assumption compared to more realistic
polynomial or exponential shape, e.g., BPR function (Bureau of Public Roads 1964)
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or considering path capacity constraints (Beckmann, McGuire, and Winsten 1956). It
is not here as our main purpose is to understand the causes for multiple equilibria
to appear. What triggers this phenomenon is the cross-dependency of the cost among
modes, which is properly accounted here.

The cost function for path 3 is even much simpler. First only a train option is
available, as the cost should only depends on the demand for train. Second, train service
is only adjusted to the demand on the long run (every year or twice a year when a
new timetable is proposed). So during the day-to-day STA process, the perceived cost
by users is mainly fixed as a combinations of the travel time and the cost. In the end:
cT3 = λ, where λ is considered as a constant value.

According to the Wardrop equilibrium definition, the network is at the UE flow
distribution if and only if:

{
fma (cma − cm) = 0, ∀m ∈M,a ∈ A
fma f

µ
a (cma − c

µ
a) = 0, ∀m,µ ∈ {B, T}, a ∈ A

(5)

Therefore, when the equilibrium is reached, the cost of all used paths of mode m is
equal to cm. The costs are assumed to be asymmetric: the effect of cars on buses is not
the same as the effect of buses on cars. In other words, in the network (figure 1) for
one or more modes m1 6= m2:

∂cm1
a

∂fm2
a
6= ∂cm2

a

∂fm1
a
⇐⇒ hm1,m2

a 6= hm2,m1
a ∀a = 1, 2, ∀m1,m2 = B,C (6)

2.2. Network history design

Here, we are interested in investigating the equilibrium when intermediate changes in
the network design occur. In other words, the final network layout is always the same,
but it may result from different intermediate steps, see table 1. Scenario 1 has no
train line at first place. Thus, an intermediate equilibrium state (UE) is first achieved
through the day-to-day learning process before the train line is added. Then, the metro
line is added, and the second convergence process proceeds. Scenario 2 assumes that
there are only cars and trains, and no buses during the first convergence period. Then
buses are added and a second convergence process is initiated starting from the equi-
librium obtained by the first process. Scenario 3 is when all modes are active from
the beginning. We will calculate the final network equilibrium for all the scenarios in
table 1 and examine why different equilibrium may be raised.

3. Bi-modal equilibrium analysis: the car-bus case

3.1. Cost-flow diagram for equilibrium calculation

In order to calculate the intermediate equilibrium for Scenario 1, we first explore the
non-uniqueness of the network without train (DT = 0), i.e., we analyze the equilibrium
solution(s) for the initial equilibrium state of scenario 1 in table 1. As mentioned before,
the DC and DPT are fixed values and the inputs of the model. Let us express costs on
paths 1 and 2 as functions of the flows fm1 , for m ∈ MMV . In view of equation 2, we
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Table 1. The scenarios of network design for the mono-OD test case.

can consider (fm1 )m∈MMV
as an independent and (fm2 )m∈MMV

as a dependent variable.
Therefore, the demand and cost functions are as follows:

DB = DPT (7)

fm2 = Dm − fm1 , ∀m ∈MMV (8)

cm1 = gm1 +
∑

µ∈MMV

hm,µ1 fµ1 , ∀m ∈MMV (9)

cm2 = gm2 +
∑

µ∈MMV

hm,µ2 Dµ −
∑

µ∈MMV

hm,µ2 fµ1 , ∀m ∈MMV (10)

To avoid the repetition, we define ḡm2 :

ḡm2 = gm2 +
∑

µ∈MMV

hm,µ2 Dµ, ∀m ∈MMV (11)

According to equation 6, on each path, the impacts of two modes on each other are
not the same, which represents the real interaction between modes. In other words,
the Jacobian matrix (∇c(f)) of the car and the bus cost functions is not symmetric
positive definite (c(f) is not the gradient of a convex function), which means the cost
functions for path 1 and 2 are not monotonic (Iryo 2013; Yang and Huang 2005).
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The network equilibrium state with two modes has two options for each path: the
path is used in the equilibrium path flow distribution or not. In order to visualize the
equilibrium point, we discuss the possibilities for path 1. Figure 2 presents the cost-
flow diagram of the network based on path 1 and on the independent flows fm1 (using
equations 8 and 10).

Figure 2. Cost-flow diagram based on path 1

If cm1 < cm2 , we need to increase fm1 to reach equilibrium (cm1 = cm2 ), thus we
can show in the plane (fC1 ,fB1 ) the natural direction of variation for flows is ∆cm =
(cm2 − cm1 )m=1,2. According to figure 2 and equation 8 (when there is no train), we have
to draw ∆cm = cm2 −cm1 = 0 based on the flow value of fm1 to show the equilibrium point.
The flows fm2 can be considered dependent variables. Consequently, by equation 10 we
can draw the curves ∆cm = 0 of the two vehicular modes on the flow diagram of path
1 in the (fC1 ,fB1 ) plane. The configuration of the diagram depends on the value of the
hm,µa . In order to draw the two linear flow diagrams, we need at least three points
if they have an intersection. The conditions are extracted from the possible common
point:

∆cm = cm2 − cm1 = ḡm2 − gm1 −
∑
µ=1,2

(hm,µ1 + hm,µ2 )fµ1 = 0 (12)

According to the equation 12, we can extract the slope of ∆cm diagram. The intersect
of ∆cm = 0 with fB1 = 0 is:

FC1 (m) = (ḡm2 − gm1 )/(hm,C1 + hm,C2 ) (13)

and the intersect with fC1 = 0 is:

FB1 (m) = (ḡm2 − gm1 )/(hm,B1 + hm,B2 ) (14)
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Therefore, the slope of ∆cm = 0 line for mode m on path 1 is as follows:

1

(hm,B1 + hm,B2 )
/

1

(hm,C1 + hm,C2 )
= ρm =

(hm,C1 + hm,C2 )

(hm,B1 + hm,B2 )
(15)

The diagram configuration depends on the values of ρm. We need to know the relation
of the flow diagram’s slope for mode B (ρB) in relation to the slope of the line ∆cC

(ρC). Thus, with ρm we can conditionally draw the flow diagram of ∆cm = 0 for two
modes on path 1. Before calculating the equilibrium and draw the figure for path 1, a
day-to-day process in static case should be defined.

3.2. The projected dynamical system of traffic assignment

We define the network equilibrium problem as a projected dynamical system. It has
been proved by several studies (see e.g.,Nagurney and Zhang (2012); Smith (1993);
Huang and Lam (2002); Jin (2007); Lebacque, Ma, and Khoshyaran (2009)) that pro-
jected dynamical systems find the equilibrium point(s) by producing the solution tra-
jectory (mapping function) based on a fixed point theory. Let K be the rectangle
[0, DC ]× [0, DB] of admissible flows based on the constraints 2. Let ∆c : R2 7→ R2 be
the vector field given by

(
∆cC ,∆cB

)
and let f =

(
fC1 , f

B
1

)
be the vector of indepen-

dent path flows. Let ΠK(f, .) denote the projector on the tangent cone of K at f . The
projected dynamical system PDS(f,∆c(f)) is defined by:

ḟ = ΠK(f,∆c(f)) = Πm
K(fm1 ,∆c

m(f)) = lim
t↓0

PK [fm1 + t(∆cm(f))], ∀m ∈MMV

(16)
Let ΓK(f)

def
= ΠK(f,∆c(f)) be the projection of the field ∆c(f)) on K. The point f∗

is an equilibrium point (i.e) satisfies equations (2), (4), and (5), if and only if ΓK(f∗) is
equal to zero, which means that f∗ is a fixed point of the projected dynamical system
PDS(f,∆c(f)). Thus the field lines (trajectories) of ΓK in the solution space can be
used to describe the day-to-day STA learning process of travellers.

Figure 3 presents the flow diagram of path 1 depending on the respective values of
ρB and ρC . The field lines indicate how the solution moves toward the equilibrium.
They are determined by equation 16.

By definition, the network is at UE state where the result of the ΓK(f) is zero at the
current point, which corresponds to a fixed point of the PDS(f,∆c(f)). This refers to
the following conditions for the equilibrium solution based on ∆cm and the projected
dynamical system (Nagurney and Zhang 2012):

Πm
K(fm,∆cm(f)) =


P+(∆cm(f)) if fm = 0

∆cm(f) if 0 < fm < Dm

P−(∆cm(f)) if fm = Dm

, ∀m ∈MMV

(17)
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where P+(g) and P−(g) are defined as follows:

P+(g)

{
= 0 ; g ≥ 0

≤ 0 ; g ≤ 0
(18)

P−(g)

{
= 0 ; g ≤ 0

≥ 0 ; g ≥ 0
(19)

We consider the stationary point as the stable equilibrium based on the definition in
Iryo and Watling (2019). Therefore, the definition of the equilibrium point is different
from the stationary point in this context. The stability of the solution can be analyzed
based on the PDS(f,∆c(f)). The unstable equilibrium may exist in the solution space,
where the ∆cm = 0, but the PDS(f,∆c(f)) of neighbor points lead the system to
another equilibrium. In other words, the UE solution E is stable only if, the day-to-
day process brings the solution back to E when a small perturbation ε moves it from E
in any direction of the feasible region (converging arrows to E). By this definition, in
figure 3(a), the intersection of the two diagrams is an unstable equilibrium (Unstable
E), and the two other equilibria are stable (Stable E).

(a) ρB > ρC (b) ρB < ρC

Figure 3. The equilibrium solution(s) on the flow diagram of path 1

At each point in figure 3 that does not locate at an equilibrium state, we can analyze
the field line based on ∆cm. For instance, if ∆cC > 0, which means that the cost of the
car on path 1 is lower than that on path 2, so a part of the flow of path 2 will be shifted
to path 1, thus on the flow diagram of path 1, fC1 increases and the network state moves
to the right. In a similar manner, when ∆cC < 0, fC1 decreases and the solution moves
to the left. For ∆cB, if the flow of bus lines shifts from one path to another, according
to equations 7 and 11, lines fB1 = DB and ∆cB = 0 are moved. Therefore, if ∆cB > 0,
as with the car, a part of fB2 is swapped to path 1, which means fB1 increases and the
network state moves up. Finally, when ∆cB < 0, fB1 decreases and the solution moves
down. The field line is the results of both variables (∆cC and ∆cB). Consequently,
the day-to-day STA (PDS(f,∆c(f))) changes the state of the network until the UE is
reached. For example, figure 4 presents the trajectory of the different starting points
in the solution space. Almost all of the initial path flow distribution converges to the
two stable equilibria on the corners while there is a rare situation wherein the starting
point is located on a line whereon the field lines direction is thorough to the unstable
equilibrium (the intersection of ∆cC and ∆cB).
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Figure 4. The trajectory of different initial solutions (red squares) on flow diagram of path 1

3.3. Sufficient conditions for multiple equilibria

ρB > ρC means that the cross impacts of different modes are grater than self impacts
of the mode. In other words according to equation 15:

(hB,C1 + hB,C2 )(hC,B1 + hC,B2 ) > (hB,B1 + hB,B2 )(hC,C1 + hC,C2 ) (20)

This setting is more realistic because the production of the total impact coefficients
of bus on car (hC,Ba ) and car on bus (hB,Ca ) is higher than the production of the total
impact of car on car (hC,Ca ) and bus on bus (hB,Ba ).

If ρB > ρC , the flow diagram for this configuration is presented in figure 3(a). Based
on the initial point, we have three possible equilibria. Figure 3(b) presents the flow
diagram where ρB < ρC . This configuration leads to a unique stable solution at the
intersection of two flow diagrams. Consequently, in the first configuration, we will have
a conditional equilibrium based on the values of ρC , ρB.

Solution set =

{
ρB > ρC 3 equilibria, 1 unstable and 2 stable,
ρC > ρB 1 equilibrium, stable.

(21)

If we consider other configurations for ρB > ρC where the two lines ∆cC = 0 and
∆cB = 0 do not intersect inside K, we will have a unique equilibrium. For instance,
if the flow line for car (m = C) lies below the bus line (m = B), then there is an
equilibrium which is stable with fB1 = DB and fB1 = 0. This configuration is shown
in Figure 5(a). If the relation between the flow of two modes on Path 1 is inverse
(fB1 = 0), we will have a stable equilibrium according to figure 5(b). If we look at
the configuration where two lines (∆cm = 0) intersect (as in figures 3(a)), we do not
necessarily obtain multiple solutions. If the intersection is outside the feasible solution
set, we also obtain a unique solution. Figure 5(c) presents an example when we obtain
a unique solution, and two diagrams intersect outside the feasible region (K).
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(a) FB
1 = 0 (b) FC

1 = 0 (c) FC
1 = DC and FC

2 = 0

Figure 5. The flow diagram of special cases for ρB > ρC (The intersection is outside K)

Thus, in order to obtain multiple solutions, it is required that the lines ∆cm = 0
intersect inside K and that their slopes are such that the intersection point is unstable
for the PDS(f,∆c(f)). Consequently, the sufficient conditions for multiple equilibria
are: {

ρB > ρC

(∆cC = 0) ∩ (∆cB = 0) ∈ K
(22)

where (∆cC = 0) ∩ (∆cB = 0) is obtained by solving ∆cB = ∆cC = 0 and depends on
the value of DC and DB. Note that at some limited cases wherein ∆cm = 0 intersection
is located on the border of K (feasible area), we get two equilibria: one stable and one
unstable.

As mentioned before, we can further refine the general setting by introducing ca-
pacity constraints for each mode/path. This refer to only limits the feasible solution
space. For instance, the path flow capacity for path a (Ωa) can be defined as follows:

Ωa :
∑

µ∈MMV

ωµaf
µ
a ≤ ωmaxa (23)

where ωµa denotes the weight factor for fµa and ωmaxa denotes the maximum capacity of
path a. Constraint 23 further reduces the feasible solution space. In order to draw the
constraint on flow diagram, we need to extract the linear constraints from Constraint 23
by using equation 8:

Ωa =

{
fB1 ≤ 1

ωB
1

(ωmax1 − ωC1 fC1 )

fB1 ≥ DPT − 1
ωB

2
(ωmax1 − ωC2 (DC − fC1 ))

(24)

These constraints may impact on the final equilibrium solution. Figure 6 presents the
solution space with constraints. In figure 6(a), constraints do not change the equilibria,
while in figure 6(b) the equilibrium points are updated with respect to the constraints.
The constraints can also eliminate equilibrium point(s) in feasible solution space (fig-
ure 6(c)). This analysis shows that capacity constraints do not fundamentally change
the problem but may only restrict the number of possible equilibria. In the sequel,
we come back to the original settings with infinite capacity in order to explore the
convergence problem with multiple steps related to the network history.

Here, we proved that even with two modes car and bus, we have multiple equilibria.
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(a) (b) (c)

Figure 6. The flow diagram of the system with capacity constraints.

The final equilibrium is defined by the initial network state before the learning process
starts. In our test case, we can divide the solution space into two regions wherein all
the points are converged to a stable equilibrium. Figure 7 presents these two regions
on the cost-flow diagram. If the initial network state is located in the blue area, the
system will converge to the stable equilibrium on the top corner (blue point in figure 7).
Otherwise, it can be located on the border of two regions or in the red area. For the
red area, all the points will converge to the stable equilibrium at the bottom corner
(red equilibrium in figure 7), and if the initial network state locates exactly on the
border (black line in figure 7), the system will converge to the unstable equilibrium.
This situation is nearly impossible in practice.

Figure 7. Cost-flow diagram based on path 1: The domain of convergence for each equilibrium

4. Non unicity of equilibrium states in multimodal STA

4.1. Equilibrium analysis for Scenario 1: (car-bus)-train case

In Scenario 1, We have DT = 0 at the initial equilibrium state when only car and bus
lines are active. Thus DPT = DB. Here, we want to investigate the situation where
we have multiple equilibria, so let us assume that we have multiple solutions at the
equilibrium state by holding conditions 22 and the cost of train is not always less than
bus, i.e., cT3 ≮ cBa ; ∀fma . Figure 8 presents the nine possibilities for multiple equilibria
according to the slope of two figures. These possibilities will be the starting point for
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scenario 1, when the train line is added, and the convergence process starts. In figure 8,
the unstable equilibrium is the intersection of two lines and presented by a point I

and the two stable equilibria are points P and Q .

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 8. The equilibrium for the intermediate state of Scenario 1: The flow diagram of path 1 when ρB > ρC .

Before adding the train line, we need to analyze the variables and parameters for
all cases in figure 8. Here, we consider figure 8(a) as an example for analysis and then
presents the results for other test cases in figure 8.

4.1.1. car-bus equilibria in case of figure 8(a)

Before adding the train to the system, we need to analyze the two stable equilibria.
For point P , we have the following conditions:

DT = 0

fC1 = 0

fC2 = DC

fB1 = DPT

fB2 = 0

(25)
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Therefore, the OD cost and equilibrium constraints at point P are as follows:{
SC(P ) = cC2 = gC2 + hC,C2 DC ≤ gC1 + hC,B1 DPT

SB(P ) = cB1 = gB1 + hB,B1 DPT ≤ gB2 + hB,C2 DC
(26)

where, Sm(x) is the OD cost for mode m at point x. Consequently, the feasibility
conditions for the parameters are:{

gC1 − gC2 ≥ h
C,C
2 DC − hC,B1 DPT

gB1 − gB2 ≤ h
B,C
2 DC − hB,B1 DPT

(27)

In the same manner, we will have the following equations for point Q :

DT = 0

fC1 = DC

fC2 = 0

fB1 = 0

fB2 = DPT

(28)

{
SC(Q) = cC1 = gC1 + hC,C1 DC ≤ gC2 + hC,B2 DPT

SB(Q) = cB2 = gB2 + hB,B2 DPT ≤ gB1 + hB,C1 DC
(29)

{
gC1 − gC2 ≤ h

C,B
2 DPT − hC,C1 DC

gB1 − gB2 ≥ h
B,B
2 DPT − hB,C1 DC

(30)

Note that equations 27 and 30 are equivalent to the fact that (i) the intersects of
∆cC = 0 with fB1 = 0 are not less than Dc; (ii) the intersects of ∆cB = 0 with fC1 = 0
are not less than DB. In addition, at the stable equilibrium state in this case, both
paths are not used by one mode. Consequently, by considering Hm,µ = hm,µ1 + hm,µ2 ,
we can summarize the compatibility conditions for set of parameters from the right
side of equations 27 and 30:

{
HC,CDC < HC,BDPT

HB,BDPT < HB,CDC
(31)

From equations 27 and 30, we deduce a conditions for the data parameters (DC and
DPT = DB) to yield the situation of figure 8(a). For instance, if gm1 = gm2 , then DC

and DPT should satisfy the following condition:

max

{
hB,B1

hB,C2

,
hB,B2

hB,C1

}
≤ DC

DPT
≤ min

{
hC,B2

hC,C1

,
hC,B1

hC,C2

}
(32)
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The equations 26, 29 and 31 provide the conditions for the parameters to generate a
figure 8(a) type of situation. In the same way, we can calculate the parameter domains
and equilibria set for other cases in figure 8. Table 2 presents the parameter domains for
all cases in figure 8. The constraints in the table are necessary conditions for each case.
The first two columns are the relations between the fixed cost of each mode on each
link (gma ), the demand and the mode impact factors (hm,µa ), i.e., similar to equations 26
and 29 for figure 8(a). The third column presents the summarized condition (similar
to equation 31) for all cases. Recall that equation 22 guarantee the non-uniqueness
while the conditions in table 2 distinguish different settings wherein we have multiple
equilibria. The multiple equilibria is guaranteed for the intermediate state. Now, we
can add train and discuss how the equilibrium change based on the cost of the train.

4.1.2. Adding train to the system

As shown in figure 4, we consider the three equilibria ( P , Q , and I ) as the possible
intermediate states, i.e., the starting point for the final convergence process of scenario
1. Now, we add the train to the system. If cT3 > gBa ;∀a ∈ A, then the train is not used
and does not change the system, also, if cT3 ≤ gBa ; ∀a ∈ A, then the users stop using the
bus and we will have two independent modes (car and train). The system converges
to a unique equilibrium. The challenge is when the cost of the train is comparable to
the cost of the bus, and the system moves to new equilibria. In the final state of the
network, all modes are active. Therefore, according to equation 2:

DPT = DB +DT (33)

where DB depends on DT , which is determined by solving cT3 = cB.
For ∆cB, if the flow of bus shifts to the train line or the reverse, according to

equations 11 and 33, lines fB1 = DB and ∆cB = 0 are moved. Therefore, if ∆cB > 0
there is a possibility that a part of fB2 is swapped with the train line and the network
state point on the flow diagram does not move. Otherwise, as with the car, fB1 increases
and the network state moves up. Finally, when ∆cB < 0, fB1 decreases and the solution
moves down.

Indeed, when the train enters the system, two lines move in all cases in figure 8:

• Line fB1 = DPT : It changes to fB1 = DB = DPT −DT and starts decreasing. If
one user swaps from this pattern to the train, then the border is shifted down by
1 unit.
• Line ∆CB1 = 0: It moves to left and downwards because the flow of the bus shifts

to the train. The rate of translation of this line if one user swaps to the train is
hm,B

Hm,B according to the conditions 22.

Note that line ∆CC1 = 0 can move in some cases but the line translation directly
depends on the translation of ∆CB1 = 0. The translation size of line ∆CB1 = 0 is
smaller than line fB1 = DPT ( h

m,B

Hm,B ≤ 1). Therefore, the line fB1 = DPT can pass
∆CB1 = 0 or ∆CC1 = 0 and point I in all cases except figures 8(b), 8(c) and 8(h).
The analysis of the final equilibrium based on the intermediate state is as follows:

(1) The intermediate state is point I : According to the movement of the line,
m = B to the left and downwards, the system will converge to point Q in all
cases in conditions 22.
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(2) The intermediate state is point Q : Any movement of the equilibrium will place
the starting point (intermediate state) in the region where the PDS(f,∆c(f))

pushes the system to the updated point Q . Thus, the system converges to the
unique equilibrium.

(3) The intermediate state is point P : As with the previous case, any movement of
the equilibrium places the intermediate state in the region that converges to the
updated point P .

We can calculate the new equilibrium P̄ or Q̄ by considering the initial equilibrium.
For instance, at P̄ if the initial state is P , then we have:

SB(P̄ ) = gB1 + hB,B1 (DPT −DT ) = CT3 = SB(P )− ε = SB(P )− hB,B1 DT (34)

where ε is the difference between CT3 and the cost of bus at P . Therefore, DT = ε
hB,B
1

and based on equation 33, we have:

DB(ε) = DPT −
ε

hB,B1

(35)

To complete this example, if equation 32 is satisfied, we obtain a stable equilibrium at
point P̄ :


fC1 = 0

fC2 = DC

fB1 = DB(ε)

fB2 = 0

(36)

In the same way, we can calculate the updated equilibria Q and I.
In order to represent the trajectory of the intermediate solutions toward the final

equilibrium, we need to extend the projected dynamical system. It should be remem-
bered that we consider the train as an independent travel mode, which has an impact
on the demand for the bus. In this case, the flow vector of independent flows (ḟ), the
feasible domain K for the independent flow variables, and the field variables (∆c) are
as follows:

f = (fC1 , f
B
1 , D

T ) (37)

{
0 ≤ fC1 ≤ DC

0 ≤ fB1 +DT ≤ DPT
(38)

∆c =


∆cC = cC2 − cC1
∆cB = cB2 − cB1
∆cT = min{cB1 , cB2 } − cT3

(39)
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Therefore, K = [0, DC ]× [0, DPT ]× [0, DPT ] is shown in figure 9.

Figure 9. The feasible solution space (K) when all modes are active

The PDS(f,∆c(f)) is defined by equation 16 with f is given by equation 37 and
∆c(f) is given by equation 39. Same as the previous section, the network equilibria are
the fixed points of PDS(f,∆c(f)) in K. At each point in K we have a 3D field vector
(figure 9) that moves the solution toward the final equilibrium. Figure 10 presents an
example for Scenario 1, wherein the cost of the train is comparable with bus lines. The
three possible starting points corresponding to the intermediate network state (final
equilibria for car-bus network) are presented with red squares, and green field lines
represent the trajectory of solution from the intermediate solution (car-bus equilibrium)
toward the final equilibrium when all modes are active.

Figure 10. The trajectory of the intermediate solution in Scenario 1 toward the final equilibrium.

Consequently, for the first scenario, we could have two different stable equilibria by
adding a new mode even if the infrastructure is independent. It should be noted that the
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final equilibrium state of Scenario 1 depends on the initial state which is determined by
bi-modal equilibrium (section 3), i.e., the network design history defines which states
can be the final ones.

4.2. Equilibrium analysis for Scenario 2: (car-train)-bus case

4.2.1. Car-train equilibrium analysis

For the second scenario, the intermediate state is the equilibrium state of the system
when just car and train are active (fBm = 0 ; ∀m). Therefore, We have two independent
modes with fixed demand. In this case, the equilibrium is unique because DT = DPT ,
i.e., the totality of public transportation demand is assigned to train, and there are
two independent linear strictly monotone functions for cars.{

cC1 = gC1 + hC,C1 fC1
cC2 = gC2 + hC,C2 fC2

(40)

The demand DC is split between paths 1 and 2. Finally, we have one of the following
possibilities as a function of gCa , h

C,C
a ;∀a:

• Only path 1 is used: fC1 = DC ; fC2 = 0 ; CC1 ≤ CC2
• Only path 2 is used: fC1 = 0 ; fC2 = DC ; CC1 ≥ CC2
• Both path are used: fC1 , f

C
2 ≥ 0 | CC1 = CC2 ; fC1 + fC2 = DC

The domain for a unique starting point for scenario 2: (x∗, y∗, z∗) is {x∗ ∈ [0, DC ], y∗ =
0, z∗ = DPT } where is located in the flow diagram of path 1 and path 3 (figure 9) at the
intersect of ∆cC = 0 with fB1 = 0. The unique equilibrium for car and train network
on the path flow diagram of path 1 is as follows:


DT = DPT

fC1 = gC2 −gC1 +hC,C
2 DC

HC,C

fB1 = 0

(41)

4.2.2. Adding bus to the system

When the bus lines are added to the system, the initial situation is the car-train
equilibrium and the cost for bus lines are:{

cB1 = gB1 + hB,C1 fC1
cB2 = gB2 + hB,C2 (DC − fC1 )

(42)

where fC1 is given by equation 41. The minimum OD cost for bus at the car-train
equilibrium point is:

SB(C + T) = min
{
cB1 , c

B
2

}
(43)

If the cT3 ≤ SB(C + T), public transportation travellers have no incentive to switch
mode to bus. From a mathematical point of view, ∆cm remains at zero and the
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PDS(f,∆c(f)) cannot move the point. Otherwise (cT3 > SB(C + T)), if only path
1 or both paths are used, the convergence process starts in the region where the in-
termediate solution is located pushes the system to point Q̄ . If only path 2 is used
(fC1 = 0), the final equilibrium depends on the mode cost functions. In this case, one
of two stable equilibria (points P̄ and Q̄ ) can be reached.

Figure 11 presents two configurations of Scenario 2 wherein the intermediate equilib-
rium converges to two different equilibria. For each configuration the trajectory towards
the equilibrium (PSD field-line) is depicted.

(a)

(b)

Figure 11. The intermediate solution trajectory in Scenario 2 toward the final equilibrium when cT3 >

SB(C + T).

In figure 11(a), the configuration of the (car-bus) problem is same as figure 8(c) and
cT3 > SB(C + T). The three final equilibria are located on the plain of (fC1 , f

B
1 ) and

the intermediate solution (car-train equilibrium by equation 41) leads us to Q̄ . By in-
creasing hC,C2 with respect to the corresponding constraints in table 2, the configuration
of figure 11(b) is obtained, where the final equilibrium is P̄ based on the intermedi-
ate solution (equation 41). We can conclude that if multiple equilibria are possible for
the final state, the initial car-train equilibrium determines which equilibrium will be
reached at the end of the second scenario.
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4.3. Equilibrium analysis for Scenario 3: car-bus-train case

In the third scenario, we have only one phase wherein all modes are active. The initial
state of the network can be any path flow distribution in K (figure 9). The initial
condition to have multiple equilibria is cT3 ≮ gBa ;∀a ∈ A, which means that the cost of
the train is not always less than the cost of the bus lines. Otherwise, only cars and trains
will be used, where both modes are independent, and consequently the equilibrium is
unique. Moreover, if we have cBa ≮ cT3 ; ∀fma , which means that CT3 is comparable with
the cost of the bus, so at the equilibrium state a part of DPT takes the train (like
equilibrium P̄ in figure 10). Otherwise, the train will not be used (DT = 0), and
we could have multiple equilibria based on the analysis in section 3. Consequently, for
scenario 3, we will have conditional equilibrium based on the values ρC , ρB, and cT3 .

Solution set =


cT3 < cBa ; ∀a, fma → 1 equilibrium with DT = DPT ,

o.w.→

ρB > ρC →

{
(∆cC = 0) ∩ (∆cB = 0) ∈ K → 3 equilibria,
o.w.→ 1 equilibrium,

ρB < ρC → 1 equilibrium.
(44)

In the case of multiple equilibria, based on the initial path flow distribution, we can
converge to three possible equilibria based on the day-to-day process. Consequently,
similar to bi-modal equilibria, the initial state of the network, determines the final
equilibrium in Scenario 1.

To conclude this section, figure 12 presents the relation between the intermediate
state of the network and the final equilibrium with a different order of mode activation.
In order to clarify the findings of this section, figure 13 presents an example wherein
with different network design history, the system converges to different equilibrium.
The configuration of this example is based on figure 8(e) and corresponding condi-
tion in table 2. Figures 13(a) and 13(b) present Scenario 1. We choose the uniform
flow propagation for the initial solution. The intermediate equilibrium in the car-bus
network is obtained based on the projected dynamical system (figure 13(a)). Then
we add the train line to the system and calculate the final equilibrium (figure 13(b)).
Figure 13(c) presents Scenario 2, wherein the intermediate equilibrium is the unique
one from the car-train network. The results show that with a different order of mode
activation, the system reaches to different equilibrium.

This study shows that even in the linear STA, if we have a different order for opening
the new network facility (table 1) and even with a rational learning process, we converge
to different equilibrium. In other words, we showed that even in a small and simple
network, when the multiple equilibria are guaranteed (equation 22 and table 2), the
network design history has a significant impact on the final equilibrium that is reached
by the system. Note that the equilibration of the first step to find the intermediate
equilibrium is not necessarily finished in practice before the second step starts. It
depends on the frequency of new options integration versus the time requires for a
stable equilibrium to be achieved.
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Figure 12. The convergence of scenarios for the mono-OD test case. [Dash lines presents rare situations
wherein the initial point is located at unstable equilibrium]

(a) Car-Bus equilibrium convergence with initial
solution: fm1 = (D

C

2
, DPT

2
).

(b) (Car-Bus)-Train equilibrium convergence. The interme-
diate equilibrium comes from Figure 13(a)

(c) (Car-Train)-Bus equilibrium convergence.The interme-
diate equilibrium comes from equation 41.

Figure 13. The impact of network design history on the final equilibrium of figure 8(e).
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5. Multi-modal simulation-based day-to-day DTA

In this section, we address the question of network history and multiple multimodal
user equilibria in a more realistic framework. Now, we resort to a dynamic traffic
simulator for the network loading and focus on a real network. Although the setting is
more complex, mechanisms similar to those described in the previous section apply and
induce non unicity of equilibria, and dependence of equilibria to the order of activation
of facilities.

5.1. Day-to-day network equilibrium model

Consider a network G(N, A) with a finite set of nodes N and a finite set of directed
links A. The period of interest (planning horizon) of duration D is Dmax days indexed
by d (d ∈ D = {0, 1, 2, ..., Dmax}). In a day d, travel time and traffic conditions
are calculated by simulation and the users choose the path for the next day based
on the travel time experienced during the current day. The important notations for
introducing the dynamic equilibrium model are as follows:

W : set of OD pairs.
P dw: set of paths for w in day d.
w: index of OD pair, w ∈W .
p: index of path, p ∈ Pw, d.
πdw, p: number of users from an OD pair w that are assigned to path p in day d.
Cdp : Cost of path p in day d.
Cdw
∗: minimum Cost of OD pair w in day d.

Note that P dw is not necessarily equal to P d+1
w because the network design can be

changed, i.e., the new transportation facility is added to the network from the next
day (d+ 1).

In the trip-based DTA problem, we consider each user as a particle in the network.
Thus, the solution space is discrete and the goal according to UE discipline is to
minimize the gap between path travel time and the shortest path travel time of the
related OD pair for all OD pairs (Djavadian and Chow 2017), which is equivalent to
equation 5. In other words, finding the UE situation is equivalent to minimizing the
delay of each user compared to the optimal option of the associated OD pair (shortest
path) in the network. Using this definition, for each OD pair w ∈W and for all paths
p ∈ Pw, d, the dynamic traffic network equilibrium with a given travel demand and user
departure time for the trip-based DTA model is reached on day d ∈ D if the following
conditions are satisfied (Wardrop 1952):


Cdp − Cdw

∗ ≥ 0

πdw, p(C
d
p − Cdw

∗
) = 0

πdw, p ≥ 0

(45)

Based on equation 45, we can define a quality indicator for the solutions which is
calculated as the average delay of the network (Janson 1991) for day d:
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AGd =

∑
w∈W

∑
p∈P d

w

(Cdp − Cdw
∗
)∑

w∈W

∑
p∈P (w,d)

πdw, p
(46)

Note that AGd = 0 when the perfect UE path flow distribution is achieved. The aim of
the day-to-day process is to minimize the Average Gap of the network by considering
the learning curve of the users.

At the end of each day, the users are ranked based on the TC they experience and
50% of users with the highest TC are allowed to swap to the time-dependent shortest
path(s). The swap decision is taken by each user based on the Bernoulli trial:

P (Sd = 1) =
EC − EC∗w

EC
(47)

where Sd denotes the binary swap decision variable for day d, EC denotes the TC
experienced by the user on the current day and EC∗w denotes the minimum TC expe-
rienced of the OD pair w on the current day which is related to the user. Following the
result of the trial, the user decides to swap or not. The day-to-day DTA framework is
presented in figure 14, and detailed in the following:

(1) Read network and demand: The network and demand of the scenario designed
are configured.

(2) Initialization: The initial paths are assigned to the users based on the scenario
of the experiment.

(3) Traffic simulation: The simulation is executed for the inputs, and the simulator
calculates all variables.

(4) All cost functions are calculated by the updated variables from the simulation.
(5) Identify the shortest path based on network facilities and access permission of

users.
(6) Calculate the indicators and check the End condition based on Average Gap

(equation 46):
• IF Average Gap does not change, End the process
• ELSE Update the path flow distribution for the next day by day-to-day

process (equation 47).

5.2. Dynamic simulator

In this work, we use Symuvia, an open-source traffic simulator
(https://github.com/Ifsttar/Open-SymuVia), as a trip-based simulator for cal-
culating the travel costs in the network. Here, travel costs reduce to experienced travel
times. Symuvia gives access to the position, speed, and acceleration of each vehicle
(user) on the network. It is a microscopic simulator based on the Lagrangian resolution
of the LWR (Lighthill Whitham Richards) model (Leclercq, Laval, and Chevallier
2007) which is the conservation law with respect to traffic density. Vehicle movements
at the microscopic scale are governed by car-following principles with parameters
related to vehicle categories (Leclercq 2007a,b), lane-changes by using a macroscopic
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Figure 14. The day-to-day framework

theory of vehicle lane-changing inside microscopic models (Laval and Leclercq 2008),
and shortest path calculation and assignment process by using column generation
approach (Ameli, Lebacque, and Leclercq 2020). It has a simulation time-step equal to
1 second; travel time information is aggregated at the link level every 1 minute. The
travel demand is given (dynamic OD pair demand), and users’ routes are determined
by a day-to-day DTA model, which guides each vehicle in the network on the route.

5.3. Dynamic test case

Using a dynamic simulator permits us to consider the large-scale network of Lyon 6e +
Villeurbanne (figure 15(a)) with 1,883 Nodes, 3,383 Links, 94 Origins, 227 Destinations
and 54,190 trips. Walking, buses and private cars are initially available transportation
modes in the network. Figure 15(b) presents 31 bus lines in the Lyon 6e + Villeurbanne
network includes 176 bus station (figure 15(c)). There are three metro lines (A, B and
C) and 25 metro stations in the network (figure 15(d)). Each metro station has parking
facilities. Carparks are the connectors between the metro grid and the traffic network.
Therefore, the traveler can start their trip with a private car then use the carpark to
take the metros. All mode changes during a trip introduce walking time for connection
and possibly a waiting time for the next bus or metro to arrive at the station.

The network is loaded with travelers of all ODs with a given departure time in
order to represent 1.5 hours of the network with the demand level based on the study
of (Krug, Burianne, and Leclercq 2019). The goal is to analyze the final equilibrium
solution obtained by a day-to-day DTA model with different settings corresponding to
different successive introductions of the metro lines.

5.4. Experiment scenarios

For each scenario of opening metro lines, we run the day-to-day DTA for 300 days. A
quarter of users only have access to the public transportation system (bus and metro)
and the other three quarters have access to all transportation facilities (private car,
bus, and metro) in the network. Note that bus lines are active for all scenarios. We can
open three metro lines at the same time and calculate the equilibrium or successively
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(a) Lyon 6e + Villeurbanne: Mapping data ©Google
2020.

(b) 31 bus lines.

(c) 176 bus station (d) 3 metro lines

Figure 15. Multimodal traffic network of Lyon 6e + Villeurbanne

open one metro line every 100 days and look for the final network state after 300 days.
From the viewpoint of optimization, it means we change the intermediate assignment
pattern to find the equilibrium. There are seven possible orders to activate the metro
lines (figure 16). All the scenarios are started by the final equilibrium solution of the
network without metro lines. The initial assignment pattern of each step is the final
equilibrium flow distribution of the previous step (for more details see apendix A). For
Scenario 1, all three metro lines are activated at the same time and once the day-to-day
process is executed in order to equilibrate the system.

6. Numerical results

The full day-to-day process is conducted for all the scenarios, and we verify that all
the simulations converge to a satisfactory UE solution, i.e., the Average Gap of all
scenarios is less than 12 seconds, which shows good quality for the equilibrium in the
large-scale network and given the demand level. Figure 17 (excluding 9h) presents the
convergence pattern of the last step of all the scenarios. For instance, figure 17(b)
presents the convergence pattern of the last step of the ABC scenario, which means
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Figure 16. Chart of experiments

the simulation starts in the network with all the metro lines, with the equilibrium flow
distribution of the AB simulation. The final solution of the AB simulation is obtained
by the day-to-day process in the network wherein only metro lines, A and B, are
active, and metro line C is deactivated (see figure 16). Mathematically speaking, all
the convergence patterns correspond to the same final network design, including three
metro lines with different intermediate steps.

Scenario 1 (A&B&C) starts with the equilibrium solution of the network without
metro lines, and three metro lines become active at the same time for the last conver-
gence process. This explains why the initial Average Gap of this scenario is much larger
than others and the variation of the Average Gap is larger than in the other figures
because the three new public transportation modes become active at the same time. It
should be remembered that the day-to-day process stops when the Average Gap does
not change for two consecutive days, which occurs for all the scenarios before day 46.
Next, we evaluate the final solution in order to investigate the unicity of the solution.

We calculate the Violation indicator for the final path flow distribution of each
scenario with the following steps:

(1) We assign a binary variable to each user in order to evaluate user violation (UV )
by the following equation:

UV =

{
1; if ECw−EC∗

w

EC∗
w

≥ ε
0; o.w.

(48)

(2) Compute the OD violation: the OD pair w is in violation when there are more
than ε′; 0 ≤ ε′ ≤ 1 of the users on w are in violation. The function ODVw defines
the OD violation.

(3) The network Violation indicator of network G is the share of ODs which are in
violation.

Note that, similar to Average Gap, the perfect UE means network Violation equal to
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(a) Scenario 1: A&B&C (b) Scenario 2: ABC

(c) Scenario 3: ACB (d) Scenario 4: BAC

(e) Scenario 5: BCA (f) Scenario 6: CAB

(g) Scenario 7: CBA (h) Violation of final solution for all scenarios.

Figure 17. The average gap and violation in the day-to-day process for the final phase of all the scenarios.

zero with ε = ε′ = 0 but in practice with trip-based simulation, it is more appropriate
to set up a margin so that the values of ε and ε′ are fixed at 10% in this study.
Figure 17(h) presents the network Violation of the final solution of each scenario. The
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results show that the quality of each solution is slightly different.
To evaluate the travel time distribution of OD pairs, we calculate the mean travel

time and the percentage of failed trips for five most crowded OD pairs (highest demand
level). A user fails the trip if they cannot arrive at their destination before the end
of the simulation period. It is not a real failure as it usually simply means that users
would arrive later after the end of the studied simulation period. The results are shown
in table 3. The variation of Mean travel time and % trip failed shows that the path
flow distribution of the scenario equilibria are different. For instance, the values of both
indicators for scenario BAC are completely different from the other scenarios, and no
two scenarios obtain similar equilibria.

Scenario CBA has minimum mean OD travel time for ODs 1 and 2 but the %
trip failed is not minimum for OD 1. This explains that the impact of the other ODs
path flow distributions prevent several users from finishing their trip even when the
corresponding OD mean travel time is minimum. The system can choose a specific
order for opening metro lines to minimize the mean OD travel time or % trip failed of
targeted OD(s). For ODs 3 and 4, scenario CAB provides a minimum mean OD travel
time and % trip failed, and finally scenario BCA has minimum indicators for OD 5.

Table 3. Mean travel time (Mean OD TT) [min] and percentage of failed trips (% trip failed) for top five
most crowded OD pairs

Scenario \OD 1 2 3 4 5

A&B&C % trip failed 5.1% 6.3% 2.0% 2.1% 6.5%
Mean OD TT 28.4 47.3 16.8 24.2 38.6

ABC % trip failed 4.2% 6.3% 5.2% 4.1% 7.0%
Mean OD TT 27.1 47.4 16.1 17.4 37.8

ACB % trip failed 4.2% 6.3% 2.0% 2.1% 6.5%
Mean OD TT 26.6 47.3 18.1 23.7 37.7

BAC % trip failed 4.9% 6.2% 2.1% 2.3% 6.9%
Mean OD TT 26.9 54 20.9 26.3 39.6

BCA % trip failed 4.4% 6.2% 4.0% 4.3% 6.5%
Mean OD TT 26.6 47 29 34 37.1

CAB % trip failed 4.5% 6.2% 2.0% 2.1% 7.0%
Mean OD TT 26.6 47.9 15.7 15.6 37.7

CBA % trip failed 5.2% 6.2% 3.3% 3.3% 6.9%
Mean OD TT 26.6 46.7 28.2 29.8 37.7

In order to complete the investigation and show that we have multiple equilibria,
we need to prove that the solutions do not have similar link flow distributions. To do
so, we evaluate the performance of the PT system and the mode choice of users at
the equilibrium state. Table 4 presents the usage of PT at the equilibrium state for all
scenarios. The number of users who take metro line A is between 2089 and 2983. This
means if we open the metro line in the order ACB, we will have 42% more users that
take metro line A than in the CAB scenario. This width of interval for metro lines B
and C is 1250 and 640. According to the demand scenario, 13530 users have to use
the PT system, and other users have the choice between the PT system, driving only
or both (combined mode). The other criteria in table 4 show that the different orders
of opening the metro lines have an impact on attracting users to use the PT system.
In scenario CAB, opening metro line C at the beginning attracts more users to takes
this metro line, and then metro line A and after B provides the intermediate solutions
which finally converge to an equilibrium with the highest number of users using PT.
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Opening metro line A before B when metro line C is activated before the final step
always provides a larger number of users using the PT system (e.g., when comparing
scenarios CAB and CBA or ACB and BCA). Moreover, the system can manage the
use of bus lines and metro lines, e.g., the equilibrium for scenario CBA balances the
number of users that use both systems while in other scenarios the share of users who
take the bus is larger.

Table 4. Public transportation criteria; (#: number of)

Scenario Sequence # of users used Metro # of users
used only PT

# of times
PT used

# of times
metro used

# of times
bus usedA B C

1 A&B&C 2236 3057 3708 15421 24685 9001 15684
2 ABC 2826 2771 3316 14751 24093 8913 15180
3 ACB 2983 2636 3678 15336 22780 9297 13483
4 BAC 2419 3077 3138 13674 25626 8634 16992
5 BCA 2608 3117 3481 14559 22502 9206 13296
6 CAB 2089 3886 3564 17284 25983 9539 16444
7 CBA 2313 2977 3778 15298 20888 9068 11820

The criteria for the users’ choice of mode are presented in table 5 for the equilibrium
state of all the scenarios. The results show that we have a different number of users that
decide to only drive between their OD pairs, and also a different number of vehicles in
the system. Consequently, there are multiple link flow distributions for the end solution
of different scenarios, as we expected from the STA case. Choosing the order of opening
new metro lines can reduce the number of cars in the system by a maximum of 3%. The
combined mode corresponds to the users that start their trip by car and then enter the
PT system via a car-park. Scenario CAB, as explained before, motivates more users
to use the PT system and also choose a combined mode more than scenario A&B&C
in which metro lines are active and empty at the beginning of the experiment. This
shows that the intermediate state of the network has a significant impact on the final
UE.

Table 5. Mode choice criteria; (#: number of)

Scenario Sequence # of users
just drive

# of
vehicles

Users used
Combined mode

Users use
PT

Total travel
time (hours)

1 A&B&C 34142 39459 9.81% 28.46% 19454.22
2 ABC 36348 40267 7.23% 27.22% 18559.33
3 ACB 36351 40325 7.33% 28.30% 19070.50
4 BAC 37488 40516 5.59% 25.23% 18967.44
5 BCA 37014 40389 6.23% 26.87% 19199.75
6 CAB 33351 39325 11.02% 31.90% 19701.43
7 CBA 36334 40265 7.25% 28.23% 18644.19

The share of users that use the PT system and total travel time are standard criteria
for evaluating traffic network performance. According to the results in table 5, by
opening the metro lines in the order ABC, we can save 600 hours (3%) on average
compared to the other scenarios. The total travel time values of the scenarios are in
the range of [18559.33, 19701.43], which is the range of the potential equilibrium space.

Scenario CAB provides a lower number of cars and the highest percentage of PT
system use in comparison to the other scenarios. Consequently, the system can choose
the specific order for adding new transportation facilities so as to reach equilibrium
with appropriate performance with respect to the indicators targeted.

30



7. Conclusion

In this paper we investigated the impacts of network design history on day-to-day
multimodal UE. First, we reviewed studies on the unicity of User Equilibrium (UE) in
the urban transportation system. A key argument for unicity is the strictly monotone
path travel cost function with respect to the number of travelers that use the path.
Generally, in multimodal urban transportation networks, the monotonicity condition
simply does not hold. We highlighted the source of multiple equilibria in traffic network
systems. A key element is the interactions between modes and the consequences on the
travel time. We showed that when such intermediate interactions are stronger than the
inter-mode ones, multiple equilibria can be observed. Second, we studied a particular
reason for multiple equilibria: network design history. When multiple facilities are pro-
gressively introduced in the system at different times, the learning process is subject
to multiple steps. When users have time to adjust to these different steps, it changes
the global convergence process and may lead the system towards multiple different
situations while the final network setting remains the same. In this paper, based on
the static and the dynamic context we demonstrated that the order of the successive
introduction of such facilities matters when determining the final equilibrium. This is
a crucial finding as this means that the study of the current network situation may not
be sufficient to grasp the real user distribution inside the network and that it is nec-
essary to consider the history of the network. In other words, a unique UE calculation
with the current network setting may lead to an equilibrium other than that resulting
from the different steps corresponding to the network history.

Another key result we obtained from the dynamic simulations is that certain fi-
nal equilibria were more efficient from a systems viewpoint than others. The self-
organization of the system led to different network performances depending on the
history of the network. The results showed that not only do we have non-unicity, but
that total travel time can be saved and other network performance indicators opti-
mized by opening public transportation facilities in a specific order. Consequently, the
learning curve is important in a day-to-day DTA model when there is no unicity.

In future work, the authors will build an equilibria prediction model to estimate
the multiple possible equilibria of the system and control strategies to shift from one
equilibrium to others. Moreover, designing a realistic learning curve is an interesting
topic as it can help traffic engineers to predict the equilibrium state. Finally, considering
a multi-objective equilibrium or a mixed equilibrium DTA, in this case, is a challenging
problem in which the model is closer to the real world. It is also more complex and
new sources of non-unicity can be correlated with other components of the system.
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Appendix A. Scenario design for the numerical experiment

Table A. The scenarios of network design for the dynamic test case.
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