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On webs, polylogarithms and cluster algebras

In this text, we investigate webs which can be associated to cluster algebras from the point of view of the abelian functional equations these webs carry, focusing on the polylogarithmic ones. We introduce a general notion of webs whose rank is 'As Maximal as Possible' (AMP) and show that many webs associated either to polylogarithmic functional equations or to cluster algebras are of this type. In particular, we prove a few results and state some conjectures about cluster webs associated to (pairs of) Dynkin diagrams. Along the way, we show that many of the classical functional equations satisfied by low-order polylogarithms (such as Spence-Kummer's equation of the trilogarithm or the tetralogarithmic one of Kummer) are of cluster type. 9 These differential 1-forms are called 'differentials of the first kind' in the classical literature. In a more modern and rigorous way, such a form can be defined as a global section of the sheaf ω 1 C of regular (or Rosenlicht) differentials on C. When the latter is smooth, one has ω 1 C = Ω 1 C and such a ω is nothing else but a global holomorphic 1-form on the curve C.

General introduction

Webs are geometric objects formed (locally) by a finite number of foliations, whose geometrical study was started at Hamburg in the 1930s, by a group of mathematicians led by Blaschke. Polylogarithms are special functions of one variable, the study of which can be traced back to Euler. Cluster algebras are commutative rings constructed inductively according to a combinatorial recipe, known as mutation. These have been introduced at the beginning of the 2000's by Fomin and Zelevinsky, and are nowadays studied from many points of view in mathematics.

Polylogarithms, webs and cluster algebras therefore are mathematical objects of three distinct natures but despite this, they are related. What links them is a particular class of functional equations that we call Abelian functional equations and which play a crucial role in this text. ⋆

In the sequel of the present Introduction, we begin by introducing these three notions with more details before considering the kind of functional equations making a bridge between them. Then in subsection §0.2, we describe some of the main features of this text: main new notions introduced, our most appealing results and some interesting conjectures all this suggests. In §0.3, we describe the content of the text and comment briefly on the general framework of our study.

The main objects: webs, polylogarithms and cluster algebras

We describe the main objects considered in this text and explain how they are related according to the study undertaken here. Everything below is presented and explained quite succinctly, the reason being that all this material will be introduced further on with much more details and explanations.

0.1.1 Webs and web geometry. Let n and d be fixed positive integers, with d sufficiently big with respect to n (e.g. d ≥ n + 1). A 'd-web' W on a connected n-dimensional complex manifold N is a geometric object formed (locally) by a finite collection of foliations whose leaves intersect transversally (at least pairwise and at the generic point of N). We will mainly consider webs formed by global foliations on N, each of them admitting a global meromorphic first integral u i : N P 1 . In such a case, we will write W = W(u 1 , . . . , u d ) .

Another web W ′ on another connected complex manifold M ′ is said to be 'equivalent' to W if there exists a biholomorphism ϕ : U → U ′ between two open subsets U, U ′ of N and N ′ respectively such that ϕ * (W ′ ) = W (possibly only as non-ordered webs). 'Web geometry' is the subdomain of analytic geometry consisting in classifying or just studying (even global) webs up to this notion of (local) equivalence.

An important notion to study webs in relation with classical algebraic geometry (see three paragraphs below) is the notion of 'abelian relation' (abbreviated to AR). For a web W determined by d first integrals u 1 , . . . , u d , an abelian relation is a d-tuple of holomorphic functions (F 1 , . . . , F d ) (each defined on a dense open subset of Im(u i ) ⊂ P 1 , each considered up to the addition of a constant) such that the following functional relation holds true identically

d i=1 F i (u i ) = 0 .
When the u i 's are given, this is what we call an Abelian functional equation (in the F i 's).

The space A(W) of the ARs of a web W has a natural structure of complex vector space and its dimension dim C A(W) is by definition the 'rank' rk(W) of W. It is an invariant of this web, which can be proved to be always finite.

The relevance of the notion of AR becomes obvious if it is considered in the case of a so-called 'algebraic web' associated to a sufficiently generic degree d projective curve C in P n . This web, denoted by W C is the d-web on the dual projective space Pn whose leaves are the hyperplanes tangent to the dual curve C * . A nice consequence of Abel's addition theorem and of its converse in web geometry is that the ARs of W C correspond to the abelian differentials of C in a very natural way. More precisely, there is a linear isomorphism H 0 (C, ω1 C ) → A(W C ) hence it follows that the arithmetic genus of C coincides with the rank of W C : one has p a (C) = h 1 (O C ) = rk(W C ).

It follows from classical results by Bol and Chern that there exist universal bounds on the rank rk(W) ≤ π(d, n) satisfied for any d-web in dimension n (with d ≥ n + 1) whose leaves satisfy a strong general position assumption denoted by (sGP) (discussed in §1.1.1 below), where π(d, n) stands for Castelnuovo's constant. 1 The web W is said to have 'maximal rank' if rk(W) = π(d, n) > 0. Determining whether a maximal rank web is always 'algebraizable', that is equivalent to an algebraic web such as described in the preceding paragraph, is an important problem in web geometry, as asserted by the following Chern and Griffiths' quote taken from the very end of [CG]:

Before concluding, we cannot refrain from mentioning what we consider to be the fundamental problem on the subject, which is to determine the maximum rank nonlinearizable2 webs. The strong conditions must imply that there are not many. It may not be unreasonable to compare the situation with the exceptional simple Lie groups.

What makes this problem so interesting is the existence of the so-called 'exceptional webs', that is non-algebraizable webs with maximal rank.Webs of this kind are very interesting since one can mimic for them several classical constructions of algebraic geometry, which raises the following question: to which extent an 'algebraic geometry of exceptional webs' might be developed. If exceptional webs do exist in dimension 2 (and there are many explicit examples of exceptional planar webs, see e.g. [START_REF] Marín | On planar webs with infinitesimal automorphisms[END_REF][START_REF] Pereira | The classification of exceptional CDQL webs on compact complex surfaces[END_REF][START_REF] Pirio | Tissus plans exceptionnels et fonctions thêta[END_REF] and also §0.1.2 just below), this is not the case for maximal rank webs satisfying (sGP) in dimension n ≥ 3, as it follows from the remarkable algebraization theorem about them obtained by Bol in dimension 3 and proved recently by Trépreau in full generality (see [START_REF] Pereira | An invitation to web geometry[END_REF]Chap. 5] and the references therein). ⋆

The purpose of the work undertaken here is to show that regarding the webs under scrutiny, if (1) one relaxes the general position hypothesis about how their leaves are assumed to intersect (notion of 'weak general position', cf. §1.1.1) and (2) one considers a weaker but more flexible and still relevant condition regarding the maximality of their rank (condition to have 'AMP rank, see §1.3.5), then one can define a less restrictive notion of exceptional webs which first of all coincides with the classical one in the case of planar webs but for which there are interesting examples in higher dimension as well. These examples are either webs naturally associated to functional equations in k > 3 variables satisfied by higher polylogarithms or are webs which can be obtained from cluster algebras and which also carry polylogarithmic ARs of weight 1 and 2 in most cases, but also of higher weight (namely 3 or 4) for some 'cluster webs'. For n = 1, one has Li 1 (z) = -Log(1z) for z ∈ D hence the first polylogarithm essentially coincides with the classical logarithm. The latter extends as a multivalued holomorphic function on P 1 with ramification at 0, 1 and ∞ and additive (hence unipotent) monodromy. And more interestingly for us, it satisfies the following classical identity Log(x) + Log(y) -Log(xy) = 0 which gives an AR for the planar 3-web W(x, y, xy) defined by the rational functions appearing as arguments of the logarithm in this functional relation. Moreover, this web has maximal rank.

What makes polylogarithms interesting, in particular regarding web geometry, is that the polylogarithms of higher weight also satisfy nice functional identities which give rise to webs with interesting properties. The most emblematic case is that of the dilogarithm Li 2 which satisfies

Li 2 (x) -Li 2 (y) -Li 2 x y -Li 2 1 -y 1 -x + Li 2 x(1 -y) y(1 -x) = Log(y) Log 1 -y 1 -x - π 2 6
for any x, y ∈ R such that 0 < x < y < 1, an identity which in the above form has been obtained by Abel, but whose equivalent forms were discovered by other authors in the XIXth and XXth centuries. This identity has a logarithmic second member but it admits an equivalent version without second member which gives rise to a dilogarithmic AR for the web defined by the five rational functions appearing as arguments of Li 2 . This 5-web W(x, y, x/y, (1x)/(1y), x(1y)/(y(1x))) was proved by Bol to be exceptional (of maximal rank 6 but not algebraizable) hence is now known as 'Bol's web' and is accordingly denoted by B.

Things are similar for the trilogarithm Li 3 : it satisfies the following 'Spence-Kummer identity'

2 Li 3 ( x ) + 2 Li 3 ( y ) -Li 3 x y + 2 Li 3 1 -x 1 -y + 2 Li 3 x(1 -y) y(1 -x) -Li 3 ( xy ) + 2 Li 3 - x(1 -y) (1 -x) + 2 Li 3 - (1 -y) y(1 -x) -Li 3 x(1 -y) 2 y(1 -x) 2 = 2 ζ(3) + π 2 3 Log(y) -Log(y) 2 Log 1 -y 1 -x + 1 3 Log(y) 3 ,
for all real numbers x and y such that 0 < x < y < 1. This identity gives rise to a trilogarithmic AR for the so-called 'Spence-Kummer web W(x, y, x/y, (1x)/(1y), . . . , -(1y)/(y(1x)), x(1y) 2 /(y(1x) 2 )) admitting as first integrals the nine rational functions appearing as arguments of Li 3 in the above identity. In this case again, this web is exceptional.

Considering the examples in weight 1,2 and 3 above suggests to ask as Griffiths in [START_REF] Griffiths | Variations on a theorem of Abel[END_REF] (1)

whether or not for each n there is an integer d n such that there is a "new" d n -web of maximum rank one of whose abelian relations is a (the?) functional equation with d n terms for the n-th polylogarithm Li n ?

The answer to this question is still not known, the reason explaining this being certainly that the theory of multivariable functional equations satisfied by higher polylogarithms is still a mystery. For instance, identities for Li n similar to Abel's and Spence-Kummer's ones in weight 2 and 3 respectively, are known only for small values of n (n ≤ 7, see §2.2 for more on this subject). Moreover, the planar webs associated to the seemingly most basic and simple functional identities satisfied by Li 4 and Li 5 , discovered by Kummer, do not have maximal rank hence are not exceptional. Even worse, no exceptional web carrying a weight n polylogarithmic AR is known for n ≥ 4, which makes us think that the answer to the question just above might well be negative. ⋆

In this memoir, we consider many functional identities in k ≥ 3 variables satisfied by polylogarithms of weight n = 2, 3, 4 and we show that for some of them, the associated webs have AMP rank. We expect that most if not all of these webs are not algebraizable hence are generalized exceptional webs. We will prove the later property for an interesting series of cluster webs, one in n variables for each n ≥ 2.

0.1.3 Cluster algebras and webs associated to them. A 'Cluster algebra' of rank m ≥ 1 is a subalgebra of k(u) = k(u 1 , . . . , u m ) (where k stands for a fixed field, e.g. Q or C) generated by the union of certain subsets of cardinality m, called clusters, which all can be obtained inductively from a given initial cluster, via birational transformations called 'mutations' given by a combinatorial recipe. Before being a bit more precise, let us say that there are actually two kind of clusters and mutations, say of type A and X respectively. We will not discuss the former here, first to simplify the exposition but mainly because it is the latter which is relevant regarding the construction of webs with polylogarithmic abelian relations.

A (X-)seed is a pair S = (x, B) where x = (x i ) m i=1 is a m-tuple of elements of k(u) (usually assumed to be algebraically independent) and B = (b i j ) m i, j=1 is a m skew-symmetrizable square matrix of size m with integer coefficients. The tuple x is the 'cluster' associated to S , its components x i 's are the corresponding 'cluster variables' whereas B is the 'exchange matrix' of the seed.

The notion of (X-)mutation is one of the most fundamental in the theory considered here, and allows to construct other seeds from S . More precisely, for any k = 1, . . . , m, the 'k-th mutation of S in the k-th direction' is the web seed µ k (S ) = S ′ = (x ′ , B ′ ) where the new cluster x ′ = (x ′ i ) m i=1 and new exchange matrix B ′ = (b ′ i j ) m i, j=1 are obtained from x and B by means of the following formulas for i = 1, . . . , m, where [•] + : R → R + stands for the function x → max(0, x):

x ′ i =        x k -1 if i = k x i 1 + x k [-b ki ] + -b ki if i k and b ′ i j =              -b i j if k ∈ {i, j} , b i j if k {i, j} and b ik b k j ≤ 0 , b i j + |b ik | b k j if k {i, j} and b ik b k j > 0 .
Mutations (in the same direction) are involutions since it can be verified that for any k, one has µ ′ k (µ k (S )) = S where µ ′ k stands for the mutation of S ′ = µ k (S ) in the direction k, but now with respect to the muted exchange matrix B ′ .

Given an initial seed S 0 = (x, B 0 ), by considering all the seeds obtained by successive mutations from it, one can construct the associated 'cluster exchange pattern', which is the countable family of seeds S t = (x t , B t ) indexed by the vertices t of the m-regular tree T m , with the initial seed S 0 associated to the root t 0 of this tree, the edges of T m being labeled by elements of {1, . . . , m} in the natural consistent way. The components of the clusters x t are the (X-)cluster variables of the cluster algebra defined by S 0 . Each cluster variable x t i is a Laurent polynomial in the initial cluster variables x i 's, which moreover enjoys several other remarkable properties (separation formula, sign-coherence, positivity).

Given a finite set Σ of cluster variables, one can consider the web W Σ formed by the foliations admitting the elements of Σ as first integrals. It is what we call a 'cluster web' and webs of this kind are among the main objects studied in this memoir. A nice feature of the theory of cluster algebras is that it comes with several ways to get finite sets Σ of cluster variables giving rise to webs carrying polylogarithmic ARs. The first way is given by the so called cluster algebras of 'finite type', which are by definition those admitting only a finite number of clusters. An early fundamental result of Fomin and Zelevinsky shows that the classification of such algebras is parallel to that of Dynkin diagrams. Thus given a Dynkin diagram ∆ of rank m ≥ 2, the set Σ ∆ of all the X-cluster variables of the corresponding cluster algebra is finite, which allows us to define the 'cluster web of Dynkin type ∆' as the cluster web

XW ∆ = W Σ ∆ .
The first case to be considered is when ∆ = A 2 : the X-cluster web of type A 2 is

XW A 2 = W x 1 , x 2 , 1 + x 2 x 1 , 1 + x 1 x 2 , 1 + x 1 + x 2 x 1 x 2 .
It is a planar 5-web carrying a dilogarithmic AR which is known to be equivalent to Bol's web associated to Abel's 5 terms identity. Thus the X-cluster web of type A 2 is exceptional, which gives a strong motivation to study the ARs and the rank of the X-cluster web XW ∆ for ∆ arbitrary.

To each seed S t is naturally attached a 'cluster torus ' T t . These tori can be glued birationally via the mutation transformations µ k and give rise to the so-called 'cluster variety', that we will denote by X ∆ in case of a finite type cluster algebra of Dynkin type ∆. The web XW ∆ naturally lives on X ∆ and restricting this web along a certain subvariety U ∆ ⊂ X ∆ known as the 'secondary cluster variety', one gets the so-called 'secondary cluster web' of Dynkin type ∆, denoted as follows

UW ∆ = XW ∆ U ∆
and which will be proven to be interesting, at least for certain Dynkin diagrams ∆. ⋆

Another way to construct interesting cluster webs, which is relevant even within cluster algebras of infinite type, relies on the notion of 'cluster period' formalized by Nakanishi. This is a finite sequence i = (i 1 , . . . , i k ) ∈ {1, . . . , m} k for some k ≥ 2, giving rise to a sequence of seeds defined inductively by S ℓ+1 = µ i ℓ (S ℓ ) for ℓ = 0, . . . , k -1, with the crucial property that S k is isomorphic to the initial seed S 0 . A remarkable result proved in full generality by Nakanishi asserts that if x i (ℓ) stands for the i ℓ -th cluster variable of the ℓ-th seed S ℓ , then an identity

R i k ℓ=1 d ℓ R x i (ℓ) = N i π 2 /6
holds true, for some positive integers d 1 , . . . , d ℓ and N i , where R stands for a cluster version of the dilogarithm. By definition, the 'cluster web associated to i', denoted by W i , is the web admitting the x i (ℓ)'s as first integrals: one has W i = W(x i (1), . . . , x i (k)). Clearly, the identity R i gives rise to a dilogarithmic AR for this web, which therefore appears as worth studying from this point of view. Indeed, we show in this text that many cluster webs associated to cluster periods give rise to cluster webs with many polylogarithmic ARs, of weight 1 or 2.

An important class of examples of webs associated to cluster periods are those given by the so-called Y-systems of mathematical physics. For a pair of Dynkin diagrams (∆, ∆ ′ ) of rank m and m ′ respectively, several authors have proved the periodicity of the Y-system of bi-Dynkin type (∆, ∆ ′ ), a result due to Keller in full generality. This is equivalent to the fact that a certain sequence i ∆,∆ ′ of mutations is a cluster period for the cluster algebra of bi-Dynkin type (∆, ∆ ′ ).

The associated cluster dilogarithmic identity is denoted by (R ∆,∆ ′ ) and the i ∆,∆ ′ -cluster web, which we call the 'Y-cluster web of bi-Dynkin type (∆, ∆ ′ )' is denoted by YW ∆,∆ ′ . It is a web in mm ′ variables which carries the complete dilogarithmic AR corresponding to the identity (R ∆,∆ ′ ).

When ∆ ′ = A 1 , we drop it in the notation and just write YW ∆ and (R ∆ ) respectively. In this case, YW ∆ is a subweb of XW ∆ , with which it coincides when ∆ has rank 2. In particular, one has YW A 2 = XW A 2 which is of maximal rank. One of the main results obtained in this memoir is that this extends to the whole family of Y-cluster webs of type A: for any n ≥ 2, although it is non-linearizable, the cluster web YW A n is AMP with only logarithmic ARs modulo the dilogarithmic one associated to (R A n ).

Main results contained in and main features of this text

We now discuss with a bit more detail the main new results presented in this memoir.

0.2.1

In what concerns the general theory of webs, our main contribution is to define a new invariant attached to quite many webs, the 'virtual rank', which enjoys several nice properties, in particular that of giving a bound on the actual rank. More precisely, let W be a d-web defined by first integrals u 1 , . . . , u d , defined on a domain Ω of C n say, with n ≥ 2. We only require that the associated foliations are pairwise transverse, that is analytically: one has du i ∧ du j 0 on Ω if i j. For any ω ∈ Ω, the first jet of W at this point is the web which can be identified with the linear web on the whole C n defined by the differential forms ℓ i = ℓ i,ω = du i (ω) for i = 1, . . . , d.

For any σ ≥ 1, taking ω generic in Ω, one defines the σ-th virtual (resp. the total) rank ρ σ (W) (resp. ρ(W)) of W by

ρ σ W = dim C (c i ) d i=1 ∈ C d d i=1 c i ℓ i σ = 0 and ρ(W) = σ≥1 ρ σ W .
These virtual ranks are well-defined, finite, and invariantly attached to W. They are easy to compute (when the u i 's are given) and they satisfy many other nice properties, the main one being the following upper bound on the rank

(2) rk W ≤ ρ(W) , a majoration which applies even to webs not satisfying the 'strong general position assumption' classically required in web geometry. When (2) actually is an equality, the rank of W is said to be 'As Maximal as Possible' and we will say that this web 'is AMP'. Albeit defined by elementary means, this notion of 'web with AMP rank' is new and encompasses all the notions of 'maximal rank webs' previously considered in web geometry.

We then state some general results about the 'generalized webs' we are dealing with in this text, some in relation with the new notion of 'being AMP' previously introduced, while some others are natural and easy generalizations of some well-known results holding true for classical (say planar) webs.

First, for algebraic webs, it is not difficult to relate the web-theoretic property of being AMP to a classical notion of the theory of algebraic curves, namely that a curve is 'Arithemically Cohen-Macaulay' (ACM):

Proposition 0.1. Given a reduced algebraic curve C ⊂ P n , the following equivalence holds true:

the algebraic web W C is AMP ⇐⇒ the projective curve C is ACM.

If we will not elaborate on this result in this text, we mention it here because it shows that the theory of AMP webs admits, as a special subcase, the theory of ACM projective curves, which has been and still is an important active field of research in algebraic geometry. Since there exist many examples of AMP webs which are not algebraizable, it follows that the theory of such webs is a strict generalization of that of ACM projective curves.

Next we show that the main properties of the ARs as well as the now classical methods to determine them and to compute the rank in the case of planar webs extend quite naturally to generalized webs in arbitrary dimension. To simplify the exposition below, we will deal with a web denoted by W, defined by d rational first integrals u 1 , . . . , u d ∈ C(x 1 , . . . , x n ) in n ≥ 2 variables. We denote by Σ c (W) the union of the irreducible divisors in P n which are invariant by at least two foliations of W and we define finite subsets of P 1 by setting B i = u i Σ c (W) for i = 1, . . . , d.

Proposition 0.2. For any ω ∈ P n \Σ c (W) and any (germ of) abelian functional relation i F i (u i ) = 0 at ω, each germ F i extends as a global multivalued holomorphic function on

P 1 \ B i .
This a slight generalization of a well-known result holding true for planar webs (with essentially the same proof) which allows to restrict the study of the ARs and of the rank of the web under scrutiny in the vicinity of any point ω outside Σ c (W).

After having discussed some ways to construct or even to determine the ARs of a given web (symbolic determination of ARs with iterated integrals as components and the so-called Abel's method for solving AFEs), we show that Pantazi-Hénaut criterion for characterizing planar webs of maximal rank actually extends rather straightforwardly to webs in arbitrary dimension since the following proposition holds true:

Proposition 0.3. Let σ(W) be the biggest integer σ ≥ 1 such that ρ σ (W) > 0. Then W is AMP if and only if it has rank ρ(W) at the order σ(W) + 2 at a generic point of Ω.

Actually, this result admits a rather straightforward generalization which gives an effective tool to compute the rank of the web W when the u i 's are explicitly given.

0.2.2 Let us now discuss what we have obtained regarding polylogarithms.

In Part I, we discussed the symbolic method to determine the ARs of webs whose components are iterated integrals. In the second part, we specialize to the polylogarithmic case, that is the one with ramification points 0, 1 or ∞. This material is essentially already known, but we give a more detailed treatment of it, in the suitable setting for our purpose, namely the holomorphic one. Let ζ ∈ P 1 be a fixed base-point distinct from 0, 1 and ∞ and set ω 0 = du/u and ω 1 = du/(1u).

Then for any 'symbol w', that is a word in the two letters 0 and 1, we set inductively

L ζ ∅ = 1 and L ζ w (•) = • ζ L ζ w ′ (u) ω ε if w = ε w ′ with ε ∈ {0, 1}.
For n ≥ 2 fixed, we define L ζ n as the modified polylogarithm at ζ whose symbol is 0 n-2 (01 -10) and for k ≤ n -2, one sets

L ζ n,k = L ζ 0 k • L ζ n-k .
As above, let u 1 , . . . , u d be rational functions in m ≥ 2 variables defining a (singular) d-web W = W(u 1 , . . . , u d ) on C m . For any word w as above and any i, u * i w stands for the symbol corresponding to w but where ω s has been replaced by the pull-back u * i (ω s ) for s = 0, 1. For ζ ∈ C n generic, we set ζ i = u i (ζ) and we use P <n to denote any rational expression evaluated on tuples of polylogarithms Li n ′ of weight n ′ < n, themselves evaluated on rational functions. When these assertions hold true for some c ∈ C d \ {0}, the n -1 identities mentioned in 4. furnish as many linearly independent polylogarithmic abelian relations for the web defined by the u i 's.

From this result, one deduces that webs associated to polylogarithmic identities d i=1 c i Li n (u i ) = P <n carry polylogarithmic ARs of weight n ′ = 1, . . . , n hence a priori have high rank hence are good candidates for being AMP. From the fact that L ζ n has valuation n at ζ, one can also easily deduce the following general but interesting result: Corollary 0.5. Let d i=1 c i Li n (u i ) = P <n be a non-trivial polylogarithmic FE in several variables. If the u i 's appearing in the LHS define d distinct foliations then necessarily d ≥ n + 3. Actually, using not only L ζ n but the n -1 functions L ζ n,k for k = 0, . . . , n, one should be able to improve the bound in this theorem (and obtain that necessarily d ≥ 2n + 1 in the conclusion).

After these generalities about the polylogarithms and the AFEs they satisfy, we turn to considering the webs attached to several (one could say many) explicit polylogarithmic functional identities, in weight 2, 3 and 4. Using the notions and tools discussed in the first part on webs, we can study quite effectively these webs to get the Theorem 0.6. Many of the webs associated to classical or more recent known AFEs satisfied by polylogarithms, such as for instance the ones given in We also consider series of dilogarithmic identies, such as Zagier's identities (Z(m, n)) of the recently discovered Bytsko-Volkov's identities (BV(n)) (see §2.2.2.7.3 and §2.2.2.7.4 respectively). We have verified that the associated webs are AMP for m and n small and we conjecture that this holds true for the whole series.

0.2.3

In a third direction, we study webs which can be constructed from cluster algebras.

Our first results consist in linking some webs associated to classical polylogarithmic functional equations with cluster algebras. As far as we know, this was previously known only for Abel's five-terms dilogarithmic identity, which has been related quite early to the finite type cluster algebra of type A 2 . We prove that a similar phenomenon occurs for some other classical polylogarithmic identities as well. We shall say that a polylogarithmic identity is of 'cluster type' if it is equivalent to a polylogarithmic identity carried by a cluster web.

Theorem 0.7. For n = 2, 3 or 4, the following classical identities satisfied by Li n are of cluster type and can be constructed from finite type cluster webs associated to certain Dynkin diagrams: Abel's 5-terms and Newman's dilogarithmic identities, Spence-Kummer trilogarithmic If the preceding result concerns specific cluster webs, we have tried to study quite systematically some series of webs which can be constructed from the cluster algebras of finite type, namely the cluster webs XW ∆ , YW ∆ or YW ∆ ∆ ′ for any Dynkin diagrams ∆ and ∆ ′ . An extensive computational investigation, by means of the effective tools for studying webs mentioned above, led us to get quite precise, but in full generality still conjectural, statements about the members of these families of cluster webs, and more specifically regarding their ARs and their rank(s).

The main result of [Per] can be interpreted (modulo the standard identification between the cluster variety X A n with M 0,n+2 ) as the fact that for any n ≥ 2, the cluster web XW A n is AMP with only polylogarithmic abelian relations of weight 1 or 2. We use this to prove that the same holds true for its Y-subweb YW A n . More precisely, we will prove the following result:

Theorem 0.8. For any n ≥ 2, YW A n is a n(n + 3)/2-web in n variables such that

ρ • YW A n = n(n + 1) 2 , n , 1 and polrk • YW A n = n(n + 3) 2 , 1 .
Consequently, this web is AMP with all its ARs logarithmic, except the one associated to the dilogarithmic identity (R A n ). Finally, YW A n is not linearizable hence not algebraizable.

It is natural to expect that this result generalizes to the other Dynkin types but it turns out, a bit surprisingly, that this is not the case: for instance, although the Dynkin diagrams of type D are simply-laced, we have verified that YW D r is not AMP for small values of r, a fact that we conjecture to hold true for all r ≥ 4. However investigating many examples of Y-cluster webs of bi-Dynkin type leads us to make the following Conjecture 0.9. Let ∆, ∆ ′ be two Dynkin diagrams of classical type, of ranks n and n ′ and of Coxeter numbers h and h ′ respectively.

1. The web YW ∆,∆ ′ is a d ∆,∆ ′ -web in nn ′ variables with d ∆,∆ ′ = nn ′ h + h ′ /2.

2. If both n and n ′ are greater than 1 (i.e. both ∆ and ∆ ′ are distinct from A 1 ), then one has

ρ • YW ∆,∆ ′ = d ∆,∆ ′ -nn ′ , nn ′ , 1 and polrk • YW ∆,∆ ′ = d ∆,∆ ′ , 1 .
Consequently, this web is AMP with all its ARs logarithmic, except the one associated to the dilogarithmic identity (R ∆,∆ ′ ).

3. Moreover, YW ∆,∆ ′ is not linearizable hence not algebraizable.

Even computing the degree of YW ∆,∆ ′ does not seem to be straightforward in full generality. We prove that it is equal to nn ′ (h + h ′ )/2 in two cases, namely when one of the Dynkin diagram is A 1 or when both are of type A (thanks to some works by Sherman-Bennett and Volkov respectively).

⋆

Our main goal when starting to study cluster webs was to better understand their abelian relations and their rank. If the theorem and the conjecture just above show or suggest that many of these webs are interesting regarding the property of being AMP, we are far from having a complete understanding of them. Actually, our web-theoretic investigations led us to ask basic but seemingly new questions about the algebraic and/or differential-geometric properties satisfied by X-cluster variables. The consideration of an important number of cases led us to make the following Conjecture 0.10. Let x, x ′ be two X-cluster variables of a cluster algebra, considered as rational functions of some fixed initial cluster variables.

• Both x and x ′ define the same foliation if and only if they coincide (possibly up to inversion).

• For any λ ∈ P 1 , if the fiber of x over λ is reducible then λ ∈ {0, -1, ∞}. Moreover, its irreducible components are cut out by some F-polynomials of the considered cluster algebra.

• For any λ, λ ′ ∈ P 1 , if the fibers x -1 (λ) and x ′-1 (λ ′ ) have an irreducible component H in common, then both λ and λ ′ belong to {0, -1, ∞} and H is cut out by a F-polynomial.

(Note that it is necessary to consider the initial cluster variables as particular F-polynomials for this statement to have a chance to be satisfied).

These properties that we conjecture for the X-cluster variables are reminiscent of some properties satisfied by the cross-ratios on the moduli spaces M 0,n+3 . This is not so surprising for the cluster variables of the finite cluster algebra of type A since it is known in this case that these can be expressed in terms of cross-ratios. If the above conjecture is indeed satisfied, it should say roughly that in many ways, X-clusters variables behave like cross-ratios in full generality, which is more striking and, we believe, was not expected.

0.2.4

To conclude this section, we would like to say a few synthetic words about the main contributions of this text. What we do in it can be roughly be resumed as follows:

• First, regarding webs, we introduce the notion of 'virtual rank' which is new despite its elementary character. It is also easy to compute in practice and the associated notion of 'web with AMP rank' encompasses all the notions of 'maximal rank webs' previously considered in web geometry. It allows to generalize the classical problem of determining/studying webs of maximal rank to more webs than those classically considered in several variables. We also discuss some effective tools to study the abelian relations and the (classical) rank of webs.

• In the second stage, we discuss the polylogarithms and the abelian functional equations they satisfy from the point of view of web geometry. We consider many explicit cases that we analyse using the new web-theoretic perspective elaborated in the first part. Our study shows that a great number of the webs naturally associated to a polylogarithmic AFE carries the maximal possible number of ARs, or more precisely, has 'AMP rank'. In our opinion, this sheds an interesting new light on Griffiths' question (1), which probably needs to be rephrased using the new concepts that have been introduced regarding webs.

• In a third and main part, we consider webs which can be obtained from cluster algebras and study their abelian relations, especially those with polylogarithmic components. We show that some classical polylogarithmic identities are of cluster type. But we also get many new examples of cluster webs with AMP rank whose ARs all are polylogarithmic. A big number of explicit examples are studied, as well as several families of cluster webs (or some of the first elements of these families at least). We formulate also several conjectures about cluster variables and cluster webs, coming from natural considerations of web geometry.

We prove some of these conjectures in some cases.

• An interesting feature of this work consists as well in the important number of questions which are asked regarding several distinct directions of research.

What we have obtained in this text shows that although they are distinct mathematical objects, webs, polylogarithms and cluster algebras are even more connected than it was thought before. If we are happy with our results which contribute to make the connexions between these three fields more apparent, it seems to us that they do not offer any conceptual explanation of why these three fields are so deeply connected, which is not really satisfying in our opinion. We believe that what has been obtained in this text appeals further investigations, and this from different perspectives.

Organization of this text and a few general comments

First a word about the general setting: in the whole text, we work in the complex analytic category.

Accordingly, except if it is explicitly mentioned, all the objects we will consider (manifolds, maps, foliations, etc.) will be complex analytic and actually holomorphic, that is without any singularity.

0.3.1

Here we describe linearly the content of the paper, starting from the next section.

In Section 1, we start by introducing basic material on webs in §1.1.1. In particular, we define the 'weak general position (wGP)' assumption that the leaves of the webs we will deal with in the sequel are assumed to satisfy. Examples of webs are given in §1.2 whereas in §1.3 we discuss several attributes for webs upon which our subsequent considerations rely. In particular, the new notions of 'virtual rank(s)' and 'AMP web' are introduced and discussed in §1.3.4 and §1.3.5 respectively. In §1.3.6, we discuss the relations between the property of being AMP for webs and being ACM for a projective curve. In subsection §1.4, we review the symbolic algebraic approach for constructing abelian relations with iterated integrals as components for a given web. We use it on some explicit cases and give examples of AMP webs (see §1.4.3.3 and §1.4.4). In §1.5 we explain that the standard tools of planar web geometry that are Abel's method for determining the ARs and Pantazi-Henaut's criterion for characterizing maximal rank planar webs, actually generalize rather straightforwardly to the multivariable webs only satisfying (wGP) that we are considering in this text. Finally in §1.6, we recall some fundamental results of web geometry that we will use in some proofs later on.

The second Section concerns classical polylogarithms and more specifically the properties of the webs naturally attached to the functional identities these functions satisfy. In §2.1 we review some basic material about polylogarithms and discuss several points such as the different modified versions of polylogarithms previously considered in the literature. Since it will be useful for our purpose (namely to construct polylogarithmic ARs of webs associated to polylogarithmic identities), in §2.1.4 we work out with some supplementary details, the material of §1.4 in the polylogarithmic case (namely, for iterated integrals on P 1 ramified at 0, 1 and ∞). It is there that we establish Theorem 0.4 from which we deduce Corollary 0.5. With the exception of this corollary, essentially all the content of §2.1 is well-known to experts. This material has been incorporated here essentially for the sake of completeness, but also since the holomorphic setting, which is the one relevant for our purpose, is not explicitly considered in the existing literature about functional equations of polylogarithms. To make this part more appealing, we have also added some material regarding the history of polylogarithms and their functional equations. Following a common practice in historical papers, this has been incorporated into the text (in §2.1) by means of several footnotes.

In §2.2, we study the webs associated to many AFEs satisfied by polylogarithms (of weight up to 4, 4 included) that can be found in the classical or more recent literature. Classical dilogarithmic identities are considered in §2.2.2, trilogarithmic ones in §2.2.3 and Kummer's weight 4 and weight 5 identities in §2.2.4. Recent (and more complex) polylogarithmic AFEs and the webs associated to them are discussed in §2.2.5. What emerges from these subsections is that, even if it is not systematically verified, the web associated to a polylogarithmic AFE is AMP in many cases, moreover quite often with only polylogarithmic ARs (cf. Theorem 5.5 above).

From Section 3 to Section 7, we study webs which can be obtained from cluster algebras.

Section 3 consists in generalities about cluster algebras and the webs which can be obtained from them. After having recalled some basic notions of the theory of cluster algebras in §3.1, we introduce in §3.2 the notion of 'cluster web' which is one of the most important of the present memoir. We also discuss here some basic objects associated to cluster algebras (F-polynomial, cluster varieties, etc.) which will prove to be useful for studying cluster webs. In the next subsection §3.3, we discuss from the perspective of cluster algebras the webs which can be associated to the so-called Y-systems. We then explain that these webs actually are particular cases of a more general class of webs, namely those associated to a 'cluster period'. Webs of this type are interesting in what concerns their ARs hence their rank since each carries a dilogarithmic AR, according to a remarkable result by Nakanishi that we recall in §3.3.2.2. Finally in §3.4, we discuss several conjectures about some differential and geometric properties of cluster variables suggested by our web-theoretic investigations about cluster webs.

Section 4 is devoted to the general properties of cluster webs in finite type. Buildling on some previous works about the cluster variables of finite cluster algebras, we prove some of the conjectures of §3.4 in this case (cf. §4.2). From this, we deduce closed formulas for the degrees of the Xand Y-cluster webs associated to any cluster algebra of finite type in §4.2.4. Finally in §4.2.6, we establish that the Y-cluster web associated to any Dynkin diagram is non-linearizable.

Specific interesting examples of cluster webs are investigated in Section 5. First, in §5.1, we offer a careful study of the three cluster webs associated to the rank 2 cluster algebras, focusing on their abelian relations which are explicitly described. Then, in §5.2, we establish that several classical polylogarithmic identities actually are of cluster type, namely we prove Theorem 5.5 stated above.

Section 6 which follows is devoted to the cluster webs associated to type A Dynkin diagrams.

After considering in §6.1 the XW A n 's (for n ≥ 2) which all are AMP (which follows from an immediate reinterpretation of the nice results of [Per]), we focus on the associated Y-cluster webs in §6.2. Our main result there is Theorem 6.1 which is a refined version of Theorem 0.8 stated above. Our proof goes as follow: using the natural identification between X A n and M 0,n+3 allows us to work on the latter moduli space and to use the same technics as in [Per]. Arguing inductively on n ≥ 2, one first proves the bound ρ(YW A n ) ≤ (n+ 1)(n+ 2)/2 in §6.2.1, before obtaining in §6.2.2 that the RHS (n + 1)(n + 2)/2 is actually equal to the polylogarithmic rank of the web under scrutiny, thus establishing that YW A n is AMP. The question of constructing explicit bases of the space of logarithmic ARs of YW A n is discussed in §6.2.3, where two distinct approaches are considered, the first by considering the ARs corresponding to the algebraic identities defining the Y-system of type A n (in §6.2.3), the second by derivating the dilogarithm identity (R A n ) (see §6.2.3.2). We end the sixth section with subsection §6.3 which is about the birational identification x T : M 0,n+3 X A n associated to the zig-zag triangulation T of the (n + 3)-gon. We give explicit formulas for x T and its converse from which we deduce that this map induces an isomorphism between M 0,n+3 and the complement of the hypersurfaces cut out by the F-polynomials in the initial X-cluster torus (cf. Proposition 6.21).

The cluster webs associated to cluster algebras of Dynkin type different from A are studied in Section 7. We leave aside the exceptional Dynkin diagrams and mainly consider the cluster webs of type B, C and D, which are studied in §7.1, §7.2 and §7.3 respectively. Contrarily to what occurs in type A, the cluster webs in the other classical cases do not seem to be AMP. However, using the effective methods to study the ARs and the rank of webs discussed in the first section, we studied the first webs of each of these three series in order to formulate in each case fairly precise conjectures about their ARs and their virtual and genuine ranks. For instance, see the precise statements pages 215, 223 and 225 regarding the Y-cluster webs of type B n , C n and D n respectively. In §7.4, we discuss the case of Y-cluster webs of bi-Dynkin type, which seem a bit surprisingly more interesting than in the case of a single Dynkin type not of type A. Indeed, when both Dynkin diagrams ∆ and ∆ ′ are of classical type and of rank at least 2, the cluster web YW ∆,∆ ′ seems to be AMP with only logarithmic ARs, plus the one associated to the dilogarithmic identity (R ∆,∆ ′ ). For a precise (but conjectural) statement, see §7.4.2 and the following subsections.

The last section, Section 8, is of a different nature from the previous ones since it offers no new result. On the contrary, At the opposite, we discuss here a large number of questions and problems suggested by the material presented in the preceding sections. The structure of this speculative section roughly mirrors the general structure of the rest of the text: we first discuss webs (starting from §8.1), then polylogarithms in §8.2 where among other things we wonder about the cluster nature of some polylogarithmic identities (in §8.2.2) and also briefly discuss by means of interesting examples the webs (of codimension at least 2) which can be associated to functional identities satisfied by multivariable polylogarithms. Cluster algebras, more precisely cluster variables and cluster webs enter the dance in §8.3 where basic questions about them are asked. The particularly interesting one of finding polylogarithmic identities of high weight (that is of weight 3 or higher) within the cluster webs is discussed in §8.4. In many cases, cluster algebras can be quantized and it is natural to wonder about the possible consequences with regard to the cluster webs. This is discussed in §8.6 where the consideration of some examples of quantum dilogarithmic identities leads us to dream about a possible quantized version of classical web geometry (notions of quantum webs, quantum abelian relations, etc). This subsection is highly speculative but it does suggest several interesting things, in particular regarding identities (with infinitely many terms) satisfied by classical polylogarithms and the infinite webs which may be associated to them. After wondering about a possible modular interpretation in terms of projective geometry for the X-cluster variety X ∆ for any Dynkin diagram in §8.7, we end the memoir by discussing in §8.8 the curvilinear cluster webs associated to any cluster algebra of finite type. The consideration of the two webs XW (1) ∆ when ∆ is A 3 or B 3 shows that some of the new basic notions about 1-codimensional webs introduced in this text (virtual ranks, property of being AMP) have natural analogues for curvilinear webs, are relevant and certainly deserve further study. 0.3.2 Relations with other works (to be written). In this subsection (that we intend to develop in a subsequent version), we plan to discuss briefly, or at least to mention, some recent works in which some interesting links between polylogarithms, cluster algebras, and other objects (mainly coming from mathematical physics) have appeared.

Here is a list (in chronological order) of papers/preprints that we think interesting to mention considering the approach taken in this memoir:

• Several papers of mathematical physics about scattering amplitudes where polylogarithms and cluster algebras come into the picture: the papers [GGSVV], [GSVV] cited in the bibliography, but also the preprint J. Golden & al, Cluster Polylogarithms for Scattering Amplitudes, arXiv:1401.6446;

• A.B. Goncharov, D. Rudenko, Motivic correlators, cluster varieties and Zagier's conjecture on zeta (F,4), arXiv:1803.08585;

• C.K. Zickert, Holomorphic polylogarithms and Bloch complexes, arXiv:1902.03971;

• R. de Jeu, Describing all multivariable functional equations of dilogarithms, arXiv:2007.11014;

• S. Charlton, H. Gangl, D. Radchenko. Functional equations of polygonal type for multiple polylogarithms in weights 5, 6 and 7, arXiv:2012.09840;

• S. Charlton, C. Duhr, H. Gangl. Clean single-valued polylogarithms, arXiv:2104.04344.

The author is indebted to F. Chapoton for sharing with him his Maple routines to work with cluster algebras a couple of years ago. These routines were a great tool to explore the world of cluster algebras from the point of view of web geometry. As for polylogarithms and their functional equations, the author has benefited from several very informative (e-mail) exchanges with H. Gangl, circa the same period. We are very grateful to him for answering many of our questions and more generally for sharing with us his deep knowledge on these matters.

We are thankful to S. Morier-Genoud and V. Ovsienko for the early interest they both have shown in our work and for their invitations to give talks about it at Reims seminar and Paris algebra seminar. When starting this project, we were almost entirely ignorant about cluster algebras. We are very grateful to B. Keller for numerous exchanges about this subject but also about many other topics related to it, such as the theory of Y-systems, the notion of scattering diagram, or the socalled quantum dilogarithm identities. We thank M. Sherman-Bennett as well, for having kindly answered to some of our questions about the cluster variables of finite type cluster algebras.

I was very lucky to have the opportunity to talk with L. Gruson in the last few years, in particular about the notion of ACM projective curves that he was quite familiar with, and which plays an important role regarding the general problem addressed in this text. More generally, I am very grateful to him for having always been available to enlighten me on questions of algebraic geometry. His mathematical knowledge was equalled only by his delicacy and kindness, I will miss all this.

Finally and as so often, we thank Brubru for her patient proofreading and the numerous English corrections she has suggested.

1 On webs and their geometry

We introduce below some basic notions of web geometry. Roughly, a web on a manifold M is the geometric configuration formed locally by (the leaves of) a finite number of foliations on M. Actually, we will be only interested in a particularly simple kind of webs (namely the ones defined by rational functions on C n ) hence we will essentially introduce the main notions of web geometry in this particularly simple case. We let the reader get precise notions and definitions in full generality.

For more material, details and perspectives, we refer to [START_REF] Pereira | An invitation to web geometry[END_REF]Pi4] and the references therein.

First definitions

In this text, we will only consider the 1-codimensional case hence all the foliations we will work with will be holomorphic foliations of codimension 1, possibly with singularities.

1.1.1 Germs of webs. A (germ of) d-web at the origin of C n is a d-tuple W = (F i ) d i=1 of regular foliations by hypersurfaces on (C n , 0) which moreover satisfy a general position assumption.

There are several possibilities for such an hypothesis and a convenient way for us to formulate them is by considering some first integrals u 1 , . . . , u d ∈ O (C n ,0) for the foliations which compose W : one has F i = F (u i ) for i = 1, . . . , d. The most classical general position assumption made in web geometry (strong general position assumption, denoted by (sGP) in what follows) requires that given n d = max(d, n) foliations among the F i 's, these intersect as transversally as possible. Analytically, this means that for every subset {i 1 , . . . , i n d } ⊂ {1, . . . , d} of cardinality n d , the wedge product du i 1 ∧ • • • ∧ du i n d does not vanish at the origin.

The previous general position assumption is quite strong hence to deal with the webs we are interested in here, it is necessary to relax it and to allow webs satisfying the following 'weak general position assumption', denoted by (wGP):

(wGP) two foliations of W intersect transversally, that is in codimension 2, as soon as they are distinct; in terms of the local first integrals u 1 , . . . , u d , this means that for any i, j = 1, . . . , d such that i < j, one has du i ∧ du j 0 at the origin.

This relaxed notion of general position already appears in some papers on webs, such as [Per]. Note that it does not properly coincide with the notion bearing the same name in [CL] where the authors make the (natural) supplementary assumption that n foliations among the ones of the considered web are in strong general position. In what follows, if the contrary is not explicitly mentioned, we will also assume that this latter hypothesis holds true.

The number of pairwise transverse foliations composing a web is called the degree of this web. For instance, let u 1 , . . . , u d be d non-constant meromorphic functions defined on a domain U ⊂ C n . Then for any i, the level subsets u i = λ organize themselves in a (possibly singular) foliation on U, denoted by F u i . Assuming that du i ∧ du j 0 at the generic point of U as soon as i j, one gets that the F u i 's satisfy (wGP) hence the d-tuple of foliations (F u 1 , . . . , F u d ) is a web on U, which will be denoted by W(u 1 , . . . , u d ). Note that it can happen that some of the F u i 's admit singularities on U and/or that the general position assumption (wGP) is not satisfied everywhere on U hence there is a slight blurring about what precisely is the definition domain of the web W(u 1 , . . . , u d ). However, we will consider properties of webs which are generically satisfied (or not) in the whole memoir, thus this lack of precision regarding the definition domains of the webs we will deal with will not cause any genuine problem hence we will not elaborate further on that in the sequel.

A natural choice for first integrals u i of a given web is to take some which are primitive, that is such that for each i, the level-subset u i = λ is connected for any generic λ ∈ Im(u i ).

In this text, we will mainly consider webs W(u 1 , . . . , u d ) defined by rational first integrals u i ∈ C(x 1 , . . . , x n ). In this context, the fact that u i be a primitive first integral for the foliation F u i it defines, coincides with the fact that u i is noncomposite as a rational function3 , i.e. there does not exist a pair of rational functions (v i , r) with v i ∈ C(x 1 , . . . , x n ) and r ∈ C(u) of degree at least 2, such that u i = r • v i . By an obvious recurrence on the degree of u i , it comes that an algebraically integrable foliation such as F u i always admits a noncomposite (equivalently, a primitive) rational first integral, which moreover is unique up to post-composition by a Möbius transformation.

In practice, when dealing with a web W(u 1 , . . . , u d ) defined by rational first integrals u i , it is more convenient to assume that they are noncomposite.

1.1.3 Equivalence of webs and web geometry. Two germs of d-webs W and W ′ on (C n , 0) are equivalent if there exists ϕ ∈ Aut(C n , 0) such that W ′ = ϕ * (W) , possibly up to re-indexing the foliations. Analytically, this translates as follows once one introduces some first integrals u i and u ′ i for W and W ′ respectively: these webs are equivalent if and only if there exist ϕ as above and σ ∈ S d as well as invertible holomorphic functions h 1 , . . . , h d such that u ′ σ(i) = h i • (u i • ϕ) for i = 1, . . . , d. Two global webs W and W ′ are said to be equivalent if there are two points x and x ′ on their respective regular sets, such that the two associated regular germs W x and W ′

x ′ are equivalent in the previous sense. This is a notion of a local nature, but for global webs, it tends to become global, in the sense that the germ of biholomorphism ϕ realising the local equivalence extends globally, possibly with ramification and/or as a multivalued map, (at least) in any case we could consider until now.

The geometry of webs consists in the study of webs up to this notion of equivalence. See Figure 1 for some very basic questions of planar web geometry. The standard way to study webs from this point of view is to attach some invariants to them. In the next paragraph, we describe a class of such invariants which is very specific to the study of webs. ? ?

Figure 1: Two classical problems of web-geometry: if a planar 2-web is always locally trivial (left), even the local geometry of a planar 3-web is quite richer. For instance, the questions of knowing whether such a web is parallelizable or linearizable (right) admit non-trivial answers.

Examples of webs

We review below some classical examples of webs.

1.2.1 Pencils of linear subspaces. Given d ≥ 1 pairwise distinct points in the projective plane, the associated pencils of lines form the foliations of a global (but singular) d-web on P 2 . The generalization in arbitrary dimension n ≥ 2 is straightforward: d pairwise distinct pencils of hyperplans in P n define a d-web on the complement of the union of hyperplanes which are common to two pencils among the d.

1.2.2 Coordinate and parallelizable webs. Let n be an integer bigger than or equal to 2. By definition, a coordinate web on C n is a web which is 'equivalent' (cf. §1.1.3 below where this notion is properly defined) to the standard coordinate web W(x 1 , . . . , x n ) where the x i 's are the standard coordinates. For instance, a planar 3-web formed by three pencils of lines is a coordinate web.

A parallelizable d-web web on C n (or on a domain in it) is a linear web formed by d-families of parallel hyperplanes. Such a web can also be described as a web formed by d-pencils of hyperplanes, the vertices of which are all included in the hyperplane at infinity P n-1 ∞ . When d = n and under the assumption that the vertices of the considered n pencils are hyperplanes in general position in P n-1 ∞ , one recovers the notion of coordinate web.

1.2.3 Web associated to an AFE. To a functional equation of the form d i=1 F i (u i ) = 0 where the u i 's stand for nontrivial functions of n ≥ 2 variables, one can associate the web formed by the foliations F u i (for i = 1, . . . , d) on the intersection of the definition domains of the u i 's. The simplest concrete example of such a construction is certainly the one obtained by the functional equation of the logarithm: Log(x) -Log(y) -Log(x/y) = 0. The associated web is W(x, y, x/y) and is formed by 3 pencils of lines whose vertices are not aligned (cf. Figure 2). 1.2.4 Bol's web. To a functional equation of the form d i=1 F i (u i ) = 0 where the u i 's stand for nontrivial functions of n ≥ 2 variables, one can associate the web formed by the foliations F u i (for i = 1, . . . , d) on the common intersection of the definition domains of the u i 's.

For instance, the web associated in this way to Abel's functional equation (Ab) is the 5-web

B = W x, y, x y , 1 -y 1 -x , x(1 -y) y(1 -x)
which is known as Bol's web in web geometry (since it was first recognized by him as an example of an 'exceptional web' [START_REF] Bol | Über ein bemerkenswertes Fünfgewebe in der Ebene[END_REF]; this explains the notation B for this web).

Bol's web can also be described geometrically given four points in general position in P 2 : it is the global 5-web formed by the four associated pencils of lines and the pencil formed by the conics passing through all the four points, see the picture juste below.

Figure 3: The leaves of Bol's web passing through a generic point (white dot) of P 2 .

1.2.5 Algebraic webs. To an irreducible and reduced algebraic curve C ⊂ P n of degree d is classically associated a dual web W C on Pn . This web can be defined as follows: dually, the assumption that C has degree d translates into the fact that the dual hypersurface C * ⊂ Pn of the considered curve4 is of 'class' d: through a general point H of P pass d hyperplanes tangent to C * . These are the leaves of W C through H. Note that when C is degenerate in P n (that is, when its span C is a proper linear subspace of the ambiant projective space), the web W C as defined above is the pull-back, under a linear projection π : P n \ P → C from a subspace P supplementary to C , of the web associated to C but now considered as a (non-degenerate) curve in C . From this, it follows that if C is a line in P n , then W C is nothing else but the 1-web (that is, the foliation) formed by the pencil of hyperplanes containing C * which is a linear subspace of codimension 2 in P n . Finally, one generalizes straightforwardly this construction to the case when C is reduced but admits several irreducible components: if C 1 , . . . , C m denote them, then

W C = W C 1 ⊠ • • • ⊠ W C m .
The notation ⊠ means that we consider the web obtained by considering the union of the foliations of the webs involved. Figure 4 below is a picture of a real algebraic 3 web formed by the tangent lines to a hypocycloid curve with 3 cusps (which is the dual of a singular cubic in P 2 ).

Figure 4: a planar algebraic 3-web.

The web W C can also be described locally by means of algebraic first integrals: let H 0 ∈ Pn be a hyperplane which intersects C in d pairwise distinct points. According to Bezout's Theorem, these points are smooth points p 1 (H 0 ), . . . , p d (H 0 ) of C which intersects H 0 transversally (see Figure 5). From this, it follows that there exist d germs of holomorphic maps p i : ( Pn , H 0 ) → C such that H • C = d i=1 p i (H) as a 0-cycle on C, for any hyperplane H sufficiently close to H 0 . It is easily seen that the p i 's are holomorphic submersions (this comes from the transversality assumption) and define a web which coincides with the germ of W C at H 0 : one has

W C | ( Pn ,H 0 ) = W p 1 , . . . , p d .
By definition, a web is said to be algebraic if it is of the form W C for an algebraic curve C as above. Notice that such webs are global singular linear webs on P. Except when C has several irreducible components, W C is irreducible as a global web on the dual projective space Pn . A web is said to be algebraizable if it is equivalent to an algebraic web W C associated to a projective curve C. Since algebraic webs are linearizable (that is equivalent to a linear web, that is a web on a domain in an affine complex space whose leaves are pieces of hyperplanes), linearizability is a necessary condition for the algebraizability of a given web.

1.2.6 Webs induced by restriction along a subvariety. One can obtain a new web from a given one by restricting the latter along a subvariety of the ambiant space. This is a very elementary and basic construction which, however, appears to be relevant in order to construct interesting webs (as Theorem 5.5 will show for instance). More precisely, let W be a web defined on a variety M and let Z ⊂ M be an irreducible and reduced subvariety (which may or may not have singularities). The foliations of W can be of two types regarding Z, depending on whether they leave it invariant or not. Considering only those inducing a foliation of codimension 1 on Z by restriction, one obtains a web on Z that we will denote (again a bit abusively) W| Z . Note that it may happen that two distinct foliations of W generically transverse to Z induce the same foliation when restricted along Z. So in full generality, it is not clear what might be the characteristics of W| Z , even some very basic ones such as its degree, even if those of W are known and well understood.

1.2.7 Webs on moduli spaces of projective configurations. Let n and N be two positive integers. One defines the moduli space of projective configurations of N points in P n , denoted by Conf N (P n ), as the quotient of the space of N-tuples of pairwise distinct points on P n by the diagonal action of the group of projective automorphisms, i.e.

Conf N P n = P n N \ ∆ n,N PGL n+1 (C)
where ∆ n,N stands for the set of N-tuples (x 1 , . . . , x N ) of elements of the n-dimensional projective space P n such that there exist two distinct indices i, j ∈ {1, . . . , N} such that x i = x j . The moduli space Conf N P n naturally carries the structure of a quasi-projective variety. It is finite for N ≤ n + 2 and irreducible and of dimension n(Nn -2) otherwise.

1.2.7.1 Webs on moduli spaces M 0,n+3 . For any n ≥ 2, the moduli space M 0,n+3 = Conf n+3 (P 1 ) of projective configurations of n + 3 points on the projective line carries a natural n+3 4 -web, denoted by W M 0,n+3 which is the one whose first integrals are all the maps M 0,n+3 → M 0,4 ≃ P 1 \ {0, 1, ∞} obtained by forgetting n -1 points among the n + 3 ones.

One easily verifies that W M 0,5 and Bol's web B are equivalent planar 5-webs. It can be proved that these webs are not linearizable (cf. [START_REF] Pereira | An invitation to web geometry[END_REF]§6.1.4]) hence they are not algebraizable, i.e. they are not equivalent to any algebraic web associated to a plane quintic curve.

The webs W M 0,n+3 for any n ≥ 2, have been studied in [Per].

1.2.7.2

The previous series of webs generalizes in a straightforward way as follows.

For m, n ≥ 1, let Conf m+n+2 (P n ) be the space of projective configurations of m + n + 2 pairwise distinct points on P n : it is a rational variety of dimension mn. For any subset I ⊂ {1, . . . , m + n + 2} of cardinality n -1, let π I : Conf m+n+2 (P n ) Conf m+3 (P 1 ) = M 0,m+3 be the rational map obtained by projecting the points x s 's for s ∈ {1, . . . , m + n + 2} \ I from the subspace x i | i ∈ I ⊂ P n . Then for any J ⊂ {1, . . . , m + n + 2} \ I of cardinality 4, one denotes by p J : M 0,m+3 → M 0,4 ≃ P 1 \ {0, 1, ∞} the forgetful map consisting in forgetting all the points except the x j 's for j ∈ J. By composing the projections π I with the forgetful map p J , one constructs non-constant rational maps

(3) π I,J = p J • π I : Conf m+n+2 (P n ) / / ❴ ❴ ❴ M 0,4 ≃ P 1 \ {0, 1, ∞}
for any pair (I, J) of disjoint subsets I, J ⊂ {1, . . . , m + n + 2} with |I|= n -1 and |J|= 4. 5 We denote the set of such pairs by P(m, n). Its cardinality is

d m,n = |P(m, n)|= m+n+2 n-1 n+3 4 .
The proof of the following lemma is easy and left to the reader: Lemma 1.1. Given two pairs (I, J) and (I ′ , J ′ ) elements of P(m, n), the maps π I,J and π I ′ ,J ′ define the same foliation on Conf m+n+2 (P n ) if and only if I = I ′ and J = J ′ (as non-ordered sets).

By considering the π I,J 's for all the (I, J)'s in this set, one obtains a d m,n -web in mn variables:

(4) W Conf m+n+2 (P n ) = W π I,J | (I, J) ∈ P(m, n) .
These webs seem very interesting, especially with regard to their abelian relations, but have not been really studied until now, except in the (already interesting) case n = 1.

1.2.7.3 Webs on strata of projective configurations. The construction mentioned in §1.2.6 allows to construct many webs from those in (4) by considering the restrictions of the latter along strata of degenerate configurations.

Recall that a configuration (x i ) M i=1 of M > n + 2 points in P n is degenerate if there exists a non-empty subset K ⊂ {1, . . . , M} such that the dimension of the (projective) subspace spanned by {x k | k ∈ K} is strictly less than |K|-1. The whole set of degeneracies between the elements of a degenerate configuration can be encoded by means of a combinatorial object associated to it, called a matroid (on M elements and of rank n + 1 if the considered configuration belongs to Conf M (P n )). Given such a matroid M, the set of all configurations in Conf M (P n ) whose associated matroid coincides with M form an algebraic subvariety of Conf M (P n ) denoted by Conf M (P n ), or sometimes just by M (abusively). 6To simplify our discussion, we assume that Conf M (P n ) is irreducible. A rational map π I,J as in (3) above is said to be M-admissible if its restriction to Conf M (P n ) is well-defined7 and non-constant. By considering only the maps of this type among all the π I,J 's with (I, J) ∈ P(Mn -2, n), one obtains after restriction a set of rational first integrals on Conf M (P n ) which define a web called the restriction of W Conf M (P n ) to the M-strata and denoted by W Conf M (P n ) : one has ( 5)

W Conf M (P n ) = W Conf M (P n ) M = W π I,J | M π I,J is M-admissible .
Given the matroid M, it is not clear how to compute the dimension(s) of the associated stratum/strata of degenerate configurations, how to determine the pairs (I, J) for which the map π I,J is M-admissible, and even more complicated, given two distinct such admissible maps, to know when they define the same foliation when restricted to Conf M (P n ). Consequently, determining the type of the web W Conf M (P n ) from M in full generality does not seem to be an easy task.

For concrete examples of interesting webs obtained by means of this construction, see §2.2.3.3 (Figure 9 and the paragraph just after it therein) and also the web UXW A 3 of Theorem 5.5 which can be proved to be of the form (5) thanks to Proposition 8.23.

Web attributes

Here, we define and discuss briefly some objects and invariants associated to webs which are central in view of the approach undertaken in the sequel of this memoir.

If everything below is elementary, there are some novelties, such as the notions of 'virtual ranks' and of 'web with AMP rank' which, as numerous results in this text show, appear as being relevant to extend the study of webs of maximal rank of classical web-geometry to a more general class of webs.

1.3.1 Singular set and the union of common leaves. Let W be a web on an open domain U of C n , formed by d distinct foliations F 1 , . . . , F d (possibly with singularities). By definition, the singular set of W, denoted by Σ(W) is the set of points where at least two of the foliations of W do not intersect transversally. For u ∈ Σ(W), two possibilities can occur : either (i) u belongs to the singular set of one of the F i 's, or (ii) it is not the case and there exist two distinct indices i, j such that T u F i = T u F j . We define the union of common leaves of W (on U), denoted by Σ c (W) as the closure of the union of the irreducible subvarieties of U \ ∪ i Sing(F i ) which are invariant by (at least) two distinct foliations of W. It is an analytic (in general proper) subset of Σ(W). Finally, for each i, one denotes by Σ c i (W) the union of the components of Σ c (W) which are invariant by F i . Clearly, one has Σ c (W) = ∪ i Σ c i (W). In the case of Bol's web, Σ(B) coincides with Σ c (B) and is the arrangement in P 2 formed by the six lines joigning two of the four base-points 8 of the pencil of conics x(1y) = λ • y(1x), λ ∈ P 1 . For a precise description of the singular set Σ(W C ) of the algebraic web W C associated to an algebraic curve C ⊂ P n , see [START_REF] Nakai | Topology of complex webs of codimension one and geometry of projective spa--ce curves[END_REF]§2].

1.3.2 Intrinsic dimension. Let W be a (possibly singular) d-web defined on a connected variety M of dimension n ≥ 2. For m ∈ M \ Σ(W), there exist d germs of holomorphic submersions u i : (M, m) → C such that W(u 1 , . . . , u d ) coincides with the germ of W at m. One defines the intrinsic dimension of W at m, denoted by IntDim m (W), as the rank of the map (u i ) d i=1 : (M, m) → C d at this point. One verifies that this quantity does not depend on the choice of the u i 's but only on (the first order jet at m of) W hence it is well-defined. Moreover, one has 2 ≤ IntDim m (W) ≤ n, the lower bound being an immediate consequence of (wGP). One defines the intrinsic dimension IntDim(W) of W, as IntDim m (W) for m generic in M. Clearly, one has

IntDim(W) = max m∈M\Σ(W) { IntDim m (W) }.
An obvious remark is that IntDim(W) = dim(M) = n is equivalent to the fact that W admits a n-subweb satisfying the 'strong general position' hypothesis (sGP) (cf. §1.1.1). The webs studied until now in classical web geometry were all assumed to satisfy (sGP) hence were all of maximal intrinsic dimension. Therefore the notion of 'intrinsic dimension' is relevant only regarding webs satisfying only (wGP) but not (sGP) which explains why it did not appear in web geometry before the present work.

When n ′ = IntDim(W) < n, the intrinsic dimension interprets itself more geometrically as follows: locally, the d-web W is the pull-back of a d-web W ′ in n ′ variables and of maximal intrinsic dimension. More precisely, for any simply connected domain U ⊂ M \ Σ(W) such that the intrinsic dimension of W at u is n ′ for any u ∈ U, there exists a submersion ϕ U :

U → C n ′ and a d-web W ′ U on U ′ = Im(ϕ U ) of intrinsic dimension n ′ (at any point of U ′ ) such that W| U = ϕ * U (W ′ U ): W ′ U is called the intrinsic reduction of W over U.
The fact that (ϕ U , W ′ U ) is essentially unique (as can easily be verified) implies first that defining W ′ U as the intrinsic reduction of W over U makes sense. Second, it allows to glue (in a certain sense which it is not difficult to make precise) the reductions W ′ U obtained in this manner. Since all the web-theoretic notions and properties of webs we are interested in in this text (linearizability/algebraizability, ARs, classical and virtual rank(s), being AMP (see below)) are of local nature, the study of W from this perspective can be reduced to that of any of its intrinsic reductions W ′ U .

1. 

d i=1 F i (u i ) ≡ cst .
It is natural to consider such a relation as trivial when all the components F i 's are constant. The natural approach in web geometry consisting in dealing with abelian relations up to the trivial ones, we will identify the abelian relation (6) (which will be said in 'functional form') with the following differential identity (7)

d i=1 F ′ i (u i ) du i ≡ 0
which will also be called an 'abelian relation' (but in 'classical (differential) form'). In the whole memoir, the expression 'abelian relation' will be abbreviated to AR.

The space A(W) of abelian relations of W has a natural structure of complex vector space. Thus one can define the rank rk(W) of W as the dimension of this space:

(8) rk W = dim C A W ∈ N ∪ {∞} .
Here is some terminology about abelian relations

F = (F i ) d i=1 ∈ A(W): • for i = 1, . . . , d, the i-th component of F is of course F i ,
but considered up the addition of a complex constant; equivalently, it is the derivative F ′ i ; • the support of F, denoted by Supp(F), is the subweb of W formed by the foliations F u i associated to the non-trivial component F i of F; equivalently, it is the smallest subweb of W (for the inclusion) admitting F as an abelian relation;

• the length ℓ(F) of F is the degree (that is the number of foliations) of its support;

• F is complete if none of its components F i is trivial or, equivalently, if it has length d;

• finally, F will be said to be irreducible if it cannot be written as a linear combination of elements of A(W) of length strictly less than that of F.

If we have defined all the notions above by means of some first integrals, one has to be aware (and this can be verified quite easily) that these notions only depend on W, and actually only on the analytic equivalence class of the latter. More generally, if W is the pull-back of another web W ′ under a holomorphic submersion ϕ, then the latter induces naturally a linear map ϕ * : A(W ′ ) → A(W) which can easily be seen to be an isomorphism. In particular, it follows that both W = ϕ * (W ′ ) and W ′ have the same rank.

Examples 1. 1. 

0 C, ω 1 C → A(W C,H 0 ) : ω → p i ω d i=1 is well- defined.
It can be proved that it induces an isomorphism which allows to interpret the rank of the germ of W C at a generic hyperplane as the arithmetic genus of C: one has

H 0 C, ω 1 C ≃ A W C,H 0 and p a (C) = h 0 (ω 1 C ) = rk W C,H 0 .

2.

Another fundamental example is the identity (Ab) which can be seen as an AR for Bol's web B. We will discuss in depth the ARs of (another web equivalent to) this web further in §5.1.1.

Let us now consider the case of a global web W defined by d global foliations F i on a domain U ⊂ C n . Then it can be proved (see [START_REF] Pirio | Équations fonctionnelles abéliennes et théorie des tissus[END_REF]§1.2.2] for instance) that a germ of AR at any point u in U \ Σ(W) extends holomorphically along any path in this set (possibly as a multivalued AR).

Consequently the complex vector spaces of (germs of) abelian relations A(W u ) of the germs of W at points u ∈ U \Σ(W) glue together to form a local system on U \Σ(W), denoted by A(W).

The rank of W is the rank of this local system: it coincides with the rank of the germ W u at any point u outside Σ(W).

Finally, one will notice that since the ith-component of a given abelian relation of W is constant along the leaves of F i , one gets the stronger fact that the ith-component of a germ of an abelian relation of W at a regular point extends holomorphically along any path in Σ c i (W), this for any i.

1.3.4 Virtual ranks. Set V = C n and let W = (F i ) d i=1
be a germ of d-web at the origin of V. For any i, there exists a non-trivial linear form ℓ i ∈ V * (uniquely determined up to multiplication by an element of C * ), such that ker

(ℓ i ) = T 0 F i ⊂ T 0 V ≃ V.
For any i, let u i be a local submersion such that

F i = F (u i ) with u i (0) = 0 ∈ C. Then for any σ ∈ N >0 , let A σ≤ (W) be the space of abelian relations of W of valuation at least σ (at o ∈ V): it is the subspace of A(W) formed by the elements (F i ) d i=1 ∈ O(C, 0) d such that i F i (u i ) ≡ 0 and with F k (z) = O 0 (z σ ) for every k = 1, . . . , d. One gets a decreasing filtration A • (W) : A(W) = A 1≤ (W) ⊃ A 2≤ (W) ⊃ • • •
and for each σ > 0, the σth-piece A σ (W) = A σ≤ (W)/A σ+1≤ (W) of the associated graded vector space embeds linearly into the complex vector space (9)

A σ (W) =        c 1 , . . . , c d ∈ C d d i=1 c i ℓ i σ = 0 in Sym σ (V * )       
(this embedding is not canonical since the choice of the ℓ i 's is not, but it is essentially unique).

A non-trivial element of A σ (W) is called a virtual abelian relation of valuation σ -1 of W (at the origin of V) and by definition, the associated σ-virtual rank of W is

ρ σ (W) = dim C A σ (W) = max 0 , d -ℓ σ (W)
where ℓ σ (W) stands for the rank of the subfamily

{ ℓ i σ | i = 1, . . . , d } of Sym σ (V * ).
The virtual rank sequence of W is the sequence ρ • (W) of the ρ σ (W)'s and their possibly infinite sum is the virtual rank ρ(W) of W:

ρ • (W) = ρ σ (W) σ>0 and ρ(W) = σ>0 ρ σ (W) ∈ N ∪ {∞} .
We list below some properties of these objects10 :

1. for any σ > 0, ℓ σ (W) hence ρ σ (W) does not depend on the ℓ i 's but actually only on the equivalence class of the germ of W. It follows that ρ • (W) and ρ(W) are analytic invariants attached to W;

2. if ρ σ 0 (W) = 0 for some σ 0 > 0, then ρ σ (W) = 0 for any σ ≥ σ 0 ;

3. one has ρ σ (W) = 0 for σ >> 0 (actually for σ ≥ d -1);

4. the bound dim A σ (W) ≤ ρ σ (W) holds true for any σ ∈ N >0 and thus rk(W) ≤ ρ(W);

5. the previous definitions extend to any general (germ of) web W without requiring that (wGP) is satisfied. But as soon as two of the ℓ i 's are proportional, one has ρ σ (W) ≥ 1 for any σ hence ρ(W) = +∞.

6. Let W be a d-web defined on a domain U ⊂ C n and satisfying (wGP) at any point of it. Then denoting by W u the germ of

W at u ∈ U, one can set ℓ σ u (W) = ℓ σ (W u ), ρ σ u (W) = ρ σ (W u ) (for any σ > 0), ρ • u (W) = ρ • (W u ) and ρ u (W) = ρ(W u ).
7. For any σ > 0, the function u → ℓ σ u (W) is integer-valued and lower semi-continuous on U. Thus, given u 0 ∈ U, one has ρ σ u (W) ≤ ρ σ u 0 (W) as well as ρ u (W) ≤ ρ u 0 (W) for any element u of U sufficiently close to u 0 . Consequently, setting ρ ⋆ (W) = min u∈U ρ ⋆ u (W) where ⋆ stands either for nothing or for one of the two symbols σ or •, one gets welldefined invariants attached to W. Clearly, one has ρ

⋆ (W) = ρ ⋆ u (W) for u ∈ U generic.
Clearly, the bound of 4. above extends for the global web W: rk(W) ≤ ρ(W) holds true. (2). In arbitrary dimension, if W satisfies the strong general position assumption, then one has ρ σ (W) ≤ max 0, (d -1 -σ(n -1) for any positive integer σ. From this, it follows that ρ(W) (hence a fortiori r(W)) is bounded from above by Castelnuovo constant π(d, n) (see [START_REF] Pereira | An invitation to web geometry[END_REF]§2.3] for details and references).

(3). In [CL], the authors consider the notion of 'ordinary webs'. With the notions introduced above, such a web W is nothing but a web satisfying (wGP), with

ρ σ (W) = max 0 , d -n-1+σ n-1
for every σ > 0.

(4). For any integer n ≥ 2, the following equalities hold true (cf. [START_REF] Pereira | Resonance webs of hyperplane arrangements. In 'Arrangements of hyper-planesSapporo 2009[END_REF]Proposition 4.1]11 ):

ρ σ W M 0,n+3 =        n+3 n-1 -n-1+σ n-1 for σ = 1, 2, 3 0 for σ ≥ 4 ,
and consequently, we have

(10) rk W M 0,n+3 ≤ ρ W M 0,n+3 = 3 n + 3 n -1 - n + 2 n -1 - n + 1 n -1 - n n -1 .
To finish this paragraph, let us stress that the notion of virtual rank ρ(W) seems to be quite convenient. It is a non-trivial invariant attached to any web W which can be computed quite easily and which allows to state in the simple and uniform manner rk(W) ≤ ρ(W) all the already known bounds on the rank of 1-codimensional webs (cf. the statement of [START_REF] Pereira | Resonance webs of hyperplane arrangements. In 'Arrangements of hyper-planesSapporo 2009[END_REF]Corollary 2.1] for instance).

1.3.5 Webs of AMP rank. Let W be a web defined on U ⊂ C n (or a germ of such a web).

Then from the preceding paragraph, we know that

(11) rk(W) ≤ ρ(W) < +∞ .
The rank of W is said to be As Maximal as Possible (abbreviated AMP12 ) if one has rk(W) = ρ(W) > 0. In this case, W is said to be of AMP rank or more concisely (but a bit abusively), that W is an 'AMP web', or even shorter, that this web 'is AMP'.

The interest of the notion of AMP rank is clear considering the two following points :

• being of AMP rank is clearly a property invariant up to local equivalence. Even better, this property is stable under pullback: if π is a submersion whose image is contained in the definition domain of an AMP web W, then π * (W) is AMP as well.

• given a web defined by first integrals u 1 , . . . , u d : U → C, it is quite easy to compute the values of the differential 1-forms du i at a given point u ∈ U. From this, the values ρ σ u (W) for σ > 0 can be effectively determined by straightforward linear algebra (possibly with the help of a computer algebra system). It follows that ρ(W) hence the property of having AMP rank can be determined quite easily on concrete examples;

• as the list of examples below shows, the notion of web with AMP rank encompasses in a quite general, systematic and convenient way most of the already introduced notions of 'web with maximal rank' previously introduced in web geometry.

Example 2. 1. Webs of maximal rank in the classical sense are of course webs with AMP rank.

2.

The main objects of study in [CL] are ordinary webs, in particular those of maximal rank. With the notions introduced above, such a d-web W can be defined as a web of AMP rank with

ρ σ (W) = max 0 , d -n-1+σ n-1
for every posistive integer σ.

3.

The main result of [Per] (namely Theorem 4.1 therein) can be stated as the fact that for any n ≥ 2, the web W M 0,n+3 has AMP rank. Indeed, in [START_REF] Pereira | Resonance webs of hyperplane arrangements. In 'Arrangements of hyper-planesSapporo 2009[END_REF]§4.1] (see also §1.4.4.1 below), it is proved that this web carries at least ρ W M 0,n+3 linearly independent ARs which implies that (10) is actually an equality.

One of the main problems in web geometry is to classify and study the so-called exceptional webs namely, the d-webs on a n-dimensional manifold, the foliations of which satisfy the strong general position assumption, which are not algebraizable and whose rank is maximal (that is equal to Castelnuovo constant π(d, n), the latter being assumed to be positive13 ). But, according to some famous algebraization results in web geometry (due to Bol [Bol1] in dimension n = 3 and to Trépreau [T] in arbitrary dimension n ≥ 3), such a web is necessarily planar and formed of d ≥ 5 foliations. This makes the class of such webs, although being rich of many interesting elements (eg. see [START_REF] Pereira | An invitation to web geometry[END_REF]Chapter 6]), very particular and specific to the 2-dimensional case.

For a web W on a n-dimensional manifold with ρ(W) 'big' (in a sense to be made precise), the fact that rk(W) = ρ(W) means something very strong on the differential system the solutions of which are the AR's of W, hence on W itself. From this point of view, the truly relevant generalization of the notion of 'planar exceptional web' in dimension n ≥ 3 could be, instead of the most straightforward one, which is empty according to Bol-Trépreau's algebraization theorem for webs of maximal rank (see [START_REF] Bol | Flächengewebe im dreidimensionalen Raum[END_REF] and [ It is interesting to say a few words about the first basic results of Castelnuovo's theory of projective curves (see [Harr, Cil] for more details). Let C ⊂ P n be a reduced projective curve of degree d and denote by Γ a general hyperplane section of it. For k sufficiently big, the values of the Hilbert polynomial P C (k) and of the Hilbert function h C (k) coincide and for such a k, one has

dk -p a (C) + 1 = P C (k) = h C (k) = 1 + k ℓ=1 h C (ℓ) -h C (ℓ -1) and since h C (ℓ) -h C (ℓ -1) ≥ h Γ (ℓ)
for any integer ℓ (see [START_REF] Ciliberto | Hilbert functions of finite sets of points and the genus of a curve in a projec--tive space[END_REF](1.1)], one deduces the majoration

p a (C) ≤ ∞ k=1 d -h Γ (k)
(where the right-hand-side is actually a finite sum).

Recall that a ring is Cohen-Macaulay if its depht equals its Krull dimension. A curve C as above is Arithmetically Cohen-Macaulay (ACM for short) if the coordinates ring R/I C of its affine cone is CM14 . It is well-known (cf. [START_REF] Harris | Curves in projective space[END_REF]p. 84]

) that C is ACM if and only if h C (ℓ)-h C (ℓ -1) ≥ h Γ (ℓ)
for all ℓ ≥ 1 hence if and only if the equality p a (C) = ∞ k=1 dh Γ (k) holds true. Classically, h Γ (ℓ) is defined as the number of linearly independent conditions imposed by Γ on the hypersurfaces of degree ℓ in P n . Then h Γ (ℓ) can be seen as equal to 1 plus the dimension of the linear space spanned by the image of Γ by the ℓ-th order Veronese embedding v ℓ : P n ֒→ P ( n+ℓ n )-1 : one has h Γ (ℓ) = 1 + dim v ℓ (Γ) . On the other hand, the ambiant P n can be identified with the projectivization P(V * ) of the dual of a complex vector space V of dimension n + 1. Let γ 1 , . . . , γ d be d non-trivial linear forms on

V such that Γ = [γ 1 ] + • • • + [γ d ]
as 0-cycles on P n . Then from the preceding remark, it follows that h Γ (ℓ) coincides with the dimension of the vector subspace of Sym ℓ V * spanned by the ℓ-th power of the linear forms γ i : one has

h Γ (ℓ) = dim (γ 1 ) ℓ , . . . , (γ d ) ℓ .
Denoting by H ∈ Pn the linear span of Γ, one gets that the γ i 's can be seen as linear forms defining the constant part of the algebraic web

W C associated to C at H, i.e. [W C ] 0 H = W(γ 1 , . . . , γ d ) which gives us that d -h Γ (ℓ) = ρ ℓ
H W C , and this for any ℓ ≥ 1. One can gather all the facts considered above together in the following statement: Proposition 1.2. Let C and Γ = C ∩ H be as above: C is a reduced projective curve of degree d in P n and H stands for a general hyperplane.

For any

σ ≥ 1, one has ρ σ H W C = d -h Γ (σ).
2. Thus the majoration r W C ≤ σ≥1 ρ σ H W C coincides exactly, but stated dually for W C , with the majoration p a (C) ≤ σ≥1 dh γ (σ) of the classical theory of projective curves.

As an immediate corollary, one gets that the following equivalence holds true:

the curve C is ACM ⇐⇒ the web W C is AMP.

Let us discuss an explicit example taken from [GHL]:

Example 3. The image of P 1 ∋ [ζ : z] → [ζ 8 : ζ 3 z 5 : ζz 7 : z 8 ] ∈ P 3 is
an ACM singular rational curve of degree d = 8 and genus g = 7, noted by D. Its ideal is generated by x 0 x 3 3x 2 1 x 2 2 , x 2 3 x 1x 3 2 and x 3 1x 0 x 2 x 3 from which one gets (using Macaulay2) that its Hilbert series h D is given by

h D (t) = (1 -2t 3 -t 4 + 2t 5 )/(1 -t 4 ) = 1 + 4t + 10t 2 + 18t 3 + 26t 4 + 34t 5 + O(t 6 ) .
From this, we deduce that ρ • (W D ) = (5, 2, 0, . . .) thus ρ(W D ) = 5 + 2 = g as expected.

A very classical question regarding the theory of projective curves is about the determination of the pairs (d, g) such that there exists a smooth curve C ⊂ P n with d = deg(C) and g = g(C) (see [GP] and the reference therein). An (almost) complete answer to this problem for ACM curves is given for curves in P 3 in [GP,§2] 15 but as far as we know, the higher dimensional cases are still open, even if there have been some recent advances for curves in P 4 .

As already mentioned before, Chern-Griffiths' problem of determining the d-webs of maximal rank in the classical sense is now solved in dimension n ≥ 3. Indeed, such a web is necessarily algebraic (for d big enough) according to Bol-Trépreau's theorem; and the algebraic webs of this kind are those attached to the projective curves of maximal genus which have been classified by Castelnuovo. In particular, this shows that except in dimension 2, the web-theoretic approach of webs with maximal rank is not really interesting and relevant since essentially everything can be reduced to some considerations (moreover very specific) about projective curves.

We believe that the question of determining the (1-codimensional) AMP webs is the appropriate generalization in arbitrary dimension n ≥ 2 of the classical main problem in web geometry of determining the exceptional planar webs. Indeed:

• this new problem admits, as a particular subcase, the quite rich and difficult one of determining the ACM curves in P n ;

• as shown by many of the results of the present paper, there are many AMP webs which are not algebraizable, which are 'polylogarithmic' (in a sense introduced below). Perhaps even more interestingly, via the theory of cluster algebras and from Dynkin diagrams, one can construct several infinite families of 'cluster webs' in arbitrary dimensions which are conjectured to be of AMP rank and also to be polylogarithmic. 16 Questions 1.3. Let the ambiant dimension n ≥ 3 be fixed.

(1). Are there pairs (d, g) such that there is no ACM curve in P n of degree d and genus g while AMP d-webs in dimension n of rank g do exist ?

(2). If yes, determine such 'AMP pairs' (d, g), for instance when n = 3.

Let C be a reduced ACM curve in P 3 . We recall some attributes to C and explain how these are interpreted in terms of the dual web W C . We follow [GP] to which we refer for more details.

Let s = s(C)> 0 be the postulation of C and denote by n = (n i ) s-1 i=0 its 'numerical character' as defined in [GP,Def. 2.4]: it is a decreasing sequence of integers satisfying several other properties 17 from which the arithmetic invariants of C can all be explicitly recovered. Indeed, one has:

• the degree d = deg(C) and the arithmetic genus g = p a (C) of C satisfy (12) d = d n = s-1 i=0 n i -i and g = g n = 1 + 1 2 s-1 i=0 n i -i n i + i -3 . • setting h 1 n (k) = s-1 i=0 n i -k -1 + -k -i + for k ≥ 0 (with m + = max(0, m) for any m ∈ Z), the Hilbert function of C coincides with the function h n : N → N defined by (13) h n (0) = 1 and h n (k) = k • d n + 1 -g n + ℓ≥k+1 h 1 n (ℓ) for k ≥ 1 .
16 For now, this has been proved only for two families: the one of type A X-cluster webs X W An with n ≥ 2 (in [Per]) and the associated family of Y-cluster subwebs YW An (see §6.2 further). 17 For instance, one has: (i)

n 0 = 3 + e with e = e(C) = max{k ≥ 0 | h 1 (O C (k)) > 0 }; (ii) n s-1 ≥ s; and (iii) n is without gaps (i.e. one has n i ≤ n i+1 + 1 for i = 0, . . . , s -2) if C is assumed to be irreducible.
A direct consequence of the preceding formula is the following formula for the virtual ranks of the web W C associated to C: assuming that C spans the whole ambiant space P 3 , one has ( 14)

ρ 1 W C = d -3 and ρ σ W C = h 1 n (σ) for σ ≥ 2 .
Let us consider the explicit example considered above from this point of view:

Example 4 (Continuation of Example 3). The postulation of D ⊂ P 3 is 3 and e = e(D) = 1.

Therefore the numerical character of this rational curve is a 3-tuple n = (n 0 , n 1 , n 2 ) with n 0 = 3 + e = 4 thus one has 4 = n 0 ≥ n 1 ≥ n 2 ≥ 3. From (12), it follows that n = (4, 4, 3) and by direct computations, one gets that h

1 n (2) = 2 and h 1 n (ℓ) = 0 for ℓ ≥ 3. From this, one retrieves that ρ • (W D ) = (d -3, h 1 n (2)) = (5, 2
). From the discussion above, one deduces the Proposition 1.4. A necessary condition for an AMP d-web W of intrinsic dimension 3 to be algebraizable is that there exist s > 1 such that s(s -1) ≤ d and a s-

tuple n = (n i ) s-1 i=0 ∈ N s such that n 0 ≥ n 1 ≥ • • • n s-1 ≥ s and verifying d = d n , rk(W) = g n and ρ σ (W) = h 1 n (σ) for all σ ≥ 2.
The interest of this proposition lies in the fact that it can be used to prove that a given AMP web of intrinsic dimension 3 is not algebraizable solely by means of arithmetic considerations. For instance:

• the web W M 0,6 is a 15-web in 3 variables which is AMP and of rank 26 (cf. Example 2.3).

On the other hand, one verifies that for any s = 2, 3, 4, there does not exist any s-tuple

n = (n i ) s-1 i=0 with n 0 ≥ n 1 ≥ • • • n s-1
≥ s and such that d n = 15 and g n = 26. It follows that W M 0,6 is not algebraizable;

• Goncharov's trilogarithmic web W G 22 that we will consider further on in §2.2.3.3 is an AMP 22-web of intrinsic dimension 3 whose rank is 56. For s = 2, 3, . . . , 5, there is no stuple n = (n i ) s-1 i=0 as above such that d n = 22 and g n = 56 hence W G 22 is not algebraizable. Actually, since a linearizable web with a complete abelian relation is necessarily algebraizable (a well-known consequence of Abel-inverse theorem for webs), it follows that both W M 0,6 and W G 22 are not linearizable. Thanks to Proposition 1.4 and to the fact that these two webs are AMP, we have obtained this result just by dealing with a finite number of arithmetic conditions whereas the unique previous method we were aware of to do so (cf. [Pi4]) relied on the computations of some differential invariants.

However, the strategy sketched above to establish the non algebraizability of a web does not apply systematically, for instance in the case of the Y-cluster web of type A 3 , which is the second member of a family of AMP webs associated to the Dynkin diagrams of type A (see §6.2). This web, denoted by YW A 3 , is an AMP 9-web in 3 variables, with rank 10 and such that ρ • (YW A 3 ) = (6, 3, 1). It can be verified that n = (5, 4, 3) is the (unique) decreasing tuple n = (n i ) s-1 i=0 with s ∈ {2, 3} such that d n = 9, g n = 10 and h 1 n (σ) = ρ σ (YW A 3 ) for σ ≥ 2. However YW A 3 is not linearizable hence not algebraizable (see Proposition 4.13 further on) but this cannot be deduced from Proposition 1.4.

⋆

The examples above show that the answer to the first of the Questions 1.3 is affirmative which makes the second question the one that really matters.

1.3.7 Branch loci. We consider here the particular case of a global web W determined by a d-tuple (u i ) d i=1 of rational functions in n ≥ 2 variables satisfying (wGP) generically. Considering W = W(u 1 , . . . , u d ) as a global singular web on P n , there is a 'space of common leaves' Σ c i (W) associated to each first integral u i of W (see above). Then a fiber u i = λ with λ ∈ P 1 is said to be common if it is entirely contained in Σ c i (W). From the assumption that (wGP) holds true, it follows immediately that the set of λ's giving rise to such a fiber is a finite subset of P 1 denoted by B i = B i (W). By definition, it is the i-th branch locus of the web W. 18The interest of considering these finite subsets B i ⊂ P 1 comes from the following proposition: Proposition 1.5. For any x ∈ P n \Σ(W) and any (germ of) abelian functional relation i F i (u i ) = 0 at x, each germ F i extends as a global multivalued holomorphic function on the whole projective line P 1 with (possible) ramification precisely at the points of B i .

Proof. First we prove that, for any (say smooth) path γ :

[0, 1] → P n \ Σ(W) starting at γ(0) = x, each holomorphic germ Ψ i = F i • u i ∈ O
x extends analytically along γ, for any i = 1, . . . , d. This is quite standard (cf. [Pi1, Théorème 1.2.2]): let ζ > 0 be the supremum of all s ∈ [0, 1] such that each Ψ i extends analytically along the restriction of γ to the interval [0, s]. This means that one of the Ψ i 's, say Ψ 1 , admits a holomorphically continuation along γ| [0,ζ[ which does not extend at y = γ(ζ). Since Ψ 1 is constant along the leaves of F u 1 , this implies that γ is tangent to this foliation at y, i.e. γ ′ (ζ) ∈ T y F u 1 . 19 . Let π : P n P be a generic linear projection onto a generic 2-plane P passing through y. Then considering the restriction to P of the u i 's on the one hand, and the composition π • γ on the other hand, it comes that one can assume that n = 2. Then for any i = 2, . . . , d, one has T y F u i ∩T y F u 1 = 0 hence γ is transverse to the foliation F u i on a neighbourhood of y. This implies that y belongs to the F u i -saturation of any open neighbourhood of γ ([0, ζ[). According to the definition of ζ, the germ Ψ i ∈ O x admits precisely a holomorphic extension, denoted by Ψ i , on such an open neighborhood. Since Ψ i is constant along the leaves of F u i , it comes that it extends analytically on an open neighbourhood of γ ([0, ζ]). We have proved that Ψ 2 , . . . , Ψ d extend analytically along the restriction of γ to [0, ζ]. Using the functional relation d i=1 Ψ i = 0 which is identically satisfied along [0, ζ[, one obtains that the same holds true for Ψ 1 . This contradicts the initial assumption ζ < 1 hence gives us that all the Ψ i 's extend analytically along γ.

Set B ′ i = u i (Σ(W)) for i = 1, . . . , d:
it is a finite subset of P 1 containing (possibly properly) the branch locus B i . We have proved so far that for any d-tuple (F i ) d i=1 as in the statement of the proposition, each F i extends holomorphically on P 1 \B ′ i (as a multivalued function denoted by F i ). We now prove that F 1 actually extends holomorphically at any point b ′ 1 ∈ B ′ 1 \ B 1 , which would imply the proposition. According to the definitions of B 1 and B ′ 1 , there exists an irreducible hypersurface

H 1 ⊂ P n such that u 1 (H 1 ) = b ′ 1 and H 1 Σ c i (W). This latter condition implies that H 1 is not invariant by F u k for any k > 1, hence that u k | H 1 : H 1 P 1 is dominant.
This implies in particular that for y ∈ H 1 generic, the rational map u k is defined at y and the point y k = u k (y) does not belong to B ′ k . Given such a point y, let β : [0, 1] → P n be a smooth injective path joining x to y such that β([0, 1[) does not meet Σ(W). Using the very same arguments as above, one gets that all the d germs F i ∈ O x extend analytically along u i (β([0, 1[)) ⊂ P 1 and because none of the y k 's belong to B ′ k for k > 1, these prolongations can be extended to u k (β([0, 1])) for any such k. Then, using again the relation d i=1 F i (u i ) = 0, one deduces easily that the same holds true for F 1 as well, which hence extends holomorphically at u 1 (y) = b ′ 1 , which terminates the proof. Remark 1.6. The preceding proposition is a slight improvement of Théorème 1.2.2 of [START_REF] Pirio | Équations fonctionnelles abéliennes et théorie des tissus[END_REF] since the branch locus B i can be a proper subset of the complement B ′ i in P 1 of the image of P n \ Σ(W) by u i , for some (or even for all) indices i. For a concrete example, one can consider the :

W SK = W x , y , x y , 1 -x 1 -y , x(1 -y) y(1 -x) , xy , - x(1 -y) (1 -x) , - (1 -y) y(1 -x) , x(1 -y) 2 y(1 -x) 2 .
For the rational first integrals above, all the branch loci B i are equal to {0, 1, ∞} while one has

B ′ j = B j = {0, 1, ∞} for j ∈ J = {3, 6, 9} but B ′ i = {0, ±1, ∞} B i for i ∈ {1, . . . , 9} \ J.

The preceding result gives us immediately the

Corollary 1.7. 1. Given a path γ in P n \ Σ(W), analytic continuation along γ induces a linear isomorphism between the spaces of germs of ARs of W at the two extremities of γ. 2. Consequently, the spaces of (germs of) ARs of W at its regular points organize themselves into a local system on P n \ Σ(W).

The branch loci are interesting objects attached to a web W = W(u 1 , . . . , u d ): they are rather easy to determine algebraically when the u i 's are given and it follows from Proposition 1.5 that they can be quite useful regarding the question of how to find all the solutions of the associated AFE d i=1 F i (u i ) = 0, a fact that will be illustrated in the next paragraph. For any non-constant rational function r ∈ C(u), the W-branch loci B v i of the first integral v i = r(u i ) of F u i is clearly seen to be r(B u i ) ⊂ P 1 . So taking suitable rational first integrals for W, one could deal with a case when all the branch loci B i have only one point, say the point at infinity ∞ ∈ P 1 . Actually, this is not particularly relevant if interested by the ARs of W: indeed, any component G i of an AR d i=1 G i (v i ) would be written (locally) G i = F i • r -1 for a branch of the algebraic function r -1 hence would be 'more complicated' (we agree that the meaning of this should be made more precise) than the corresponding component F i . At the opposite, it is more convenient to deal with the case when the branch loci B i all are the biggest possible, when all the u i 's have been assumed to be non-composite. First of all, it provides as much information as possible on the ramification points that the components F i of an AR d i=1 F i (u i ) can have. And second, for such a first integral u i , the associated W-branch locus B u i is canonically attached to the corresponding foliation, up to projective automorphisms: indeed, if ũi is another primitive rational first integral, then ũi = g(u i ) with g ∈ PGL 2 (C) hence B ũi = g(B u i ). In this case, the corresponding branch loci will be said to be primitive.

For any i, we define the i-th ramification locus B r i of W: it is the set of points of P 1 at which there exists an AR of W whose i-th component ramifies non-trivially at λ (thats is, does not extend holomorphically at λ). Clearly, B r i = ∅ means that all the i-th components of the AR of W are trivial. Proposition 1.5 can be stated as the fact that the inclusion B r i ⊂ B i holds true for any i. Note that this inclusion can be proper, cf. the example just below. An interesting property of the B r i 's is that they are invariantly attached to the web considered, contrarily to the B i 's: let W be the web equivalent to W, defined by the first integrals ũi = u i • ϕ where ϕ is a given birational transformation of P n . We set Bi = B ṽi and Br i = B r ṽi for any i = 1, . . . , d. Then one has Br i = B r i for any i, whereas it can happen that B j and B j do not coincide for some (possibly for all) j.

Example 5. By direct computations, one gets that for the planar 3-web W 3 defined by the first integrals v 1 = -(xy)/(xy), v 2 = x(y -1)/y and v 3 = y(x -1)/x, one has B 1 = {±1, ∞} and B i = {0, ±1, ∞} for i = 2, 3. However, this web admits a unique AR, the one associated to the following logarithmic identity F(v 1 ) -

F(v 2 ) + F(v 3 ) = 0 where F stands for the logarithmic function F(u) = Log(1 -u) -Log(1 + u). It follows that B r i = {±1
, ∞} for i = 1, 2, 3 hence the latter coincides with the corresponding branch locus B i only for i = 1. Regarding the invariance of the B i 's and the B r i 's up to birational transformations, we consider the relations X = x(y -1)/y and Y = y(x -1)/x: they define a birational change of variables and the web W 3 equivalent to W 3 in the new system of coordinates (X, Y) admits ṽ1 = (X -Y)/XY, ṽ2 = X and ṽ3 = Y as first integrals. Contrarily to what happens for W 3 , one has Br

i = Bi = {±1, ∞} for i = 1, 2, 3 in what concerns W 3 .
If they are not necessarily invariant up to pre-composition by a birational map, it is not difficult (and left to the reader) to verify that B i and Bi are related as follows for any i = 1, . . . , d: let Exc ϕ,i be the set of irreducible divisors Z ⊂ P n which are contracted by ϕ20 and invariant by u i (that is such that u i (Z) be a point of P 1 ). Then B i is included (possibly properly of course) in the union of Bi with the image of Exc ϕ,i by u i : one has

B i ⊂ Bi ∪ u i (Exc ϕ,i ) ⊂ P 1 .

⋆

An important case we will deal with in this text is the one when all the branch loci of W are of cardinality less than, or equal to 3. Since these are related to polylogarithms which are special multivalued functions on P 1 with branch points 0, 1 and ∞, we set the Definition 1.8. The web W = W(u 1 , . . . , u d ) has (primitive) polylogarithmic ramification if for any i, the i-th (primitive) branch locus of W has cardinality equal to or less than 3.

Assuming that W = W(u 1 , . . . , u d ) has polylogarithmic ramification, there are two natural choices for a normal form for the W-branch loci of the u i 's:

(15)

• B 1 = {0, 1, ∞}, which is more suitable to deal with classical polylogarithms; or

• B -1 = {0, -1, ∞}
, which is more adapted to deal with the components of the abelian relations of webs constructed from cluster algebras.

Of course, one can pass from one of the normalizations to the other if needed. For instance, one has ϕ(B -1

) = B 1 for ϕ(u) = 1/(1 + u) or ϕ(u) = u/(1 + u).
To finish this paragraph, we mention that the use of B -1 = {0, -1, ∞} to deal with polylogarithmic functions, if far less popular than that of B 1 used quasi-systematically nowadays, can actually be considered as very classical, since according to [START_REF] Lewin | Polylogarithms and associated functions[END_REF]§1.5.3], the function -Li 2 (-x) =

x 0 log(1 + u)du/u was already considered by Spence in the first text [Sp] (dating of 1809) entirely devoted to the study of polylogarithmic functions. In Remark 1.9 further, we will briefly discuss the ramification sets of some more general classes of hyper-logarithmic functions.

Iterated integrals and abelian relations.

Considering the fact that low-order polylogarithms provide some particularly interesting abelian relations for webs defined by rational functions and because these functions are a specific kind of iterated integrals, it is natural to look more closely to the ARs of a web W = W(u 1 , . . . , u d ) defined by rational functions whose all the components are iterated integrals. This subsection is devoted to this. We follow rather closely the presentation given in [START_REF] Pereira | Resonance webs of hyperplane arrangements. In 'Arrangements of hyper-planesSapporo 2009[END_REF]§3] 1.4.1 Abelian relations with logarithmic components. We have defined an AR as the class of an abelian functional relation modulo the constants. A more concrete and intrinsic way to consider a germ of AR for W at a point x Σ(W) is as a d-tuple

(η i ) d i=1 of (germs of) holomorphic 1-forms η i ∈ Ω 1 (P 1 , u i (x)) such that i u * i (η i ) = 0.
Then, thanks to the considerations above, we know that each component η i of such an AR extends as a global (but possibly multivalued) 1-form on P 1 , with ramification (if any) at the points of

B i = B u i .
Within this formalism, the reader would probably agree that some particularly elementary ARs of W are certainly the logarithmic ones, that is the d-tuple (η i ) d i=1 where η i is a global logarithmic 1-form on P 1 with simple poles at the points of B i , i.e.

η i ∈ H i = H 0 Ω 1 P 1 (B i ) for i = 1, . . . , d.
Then one defines a sub-local system of A(W) by considering the kernel of the map

Ψ 1 W : d i=1 H i -→ H 0 P n , Ω 1 P n LogΣ(W) , (η i ) d i=1 -→ d i=1 u * i (η i )
where Ω 1 P n LogΣ(W) stands for the sheaf of logarithmic 1-forms on P n with poles along Σ(W).

Then IIA 1 W = ker Ψ 1 W is a trivial local system on U = P n \ Σ W which clearly embeds into A W .
It is (and it will be) convenient to consider the space H W of logarithmic 1-forms on P n spanned by the pull-backs u i (η i ) for η i ∈ H i for each i:

(16) H W = d i=1 u * i H i ⊂ H 0 P n , Ω 1 P n LogΣ W .
Then by elementary linear algebra, IIA 1 W has rank equal to d i=1 dim(H i )dim(H W ): by definition, this is the logarithmic rank of W.

1.4.2 Reminders about iterated integrals. We now recall some classical facts about iterated integrals in order to introduce an algebraic tensorial formalism to deal with ARs whose components are iterated integrals of higher weight (in the subsection §1.4.3 just following). More precisely, we will only consider here iterated integrals associated to logarithmic rational 1-forms on P 1 , functions also known as 'hyperlogarithms'. As classical references, we mention [Poin] and [La]. For more modern ones, the interested reader can consult [Wec], [START_REF] Brown | Multiple zeta values and periods of moduli spaces M 0[END_REF]§3.6] or [START_REF] Banks | Multiple zeta values in deformation quantization[END_REF]§2.1].

We fix a finite subset B ⊂ P 1 (hereafter, it will be one of the branch loci B i ) and set

H = H B = H 0 Ω 1 P 1 (B) . Given a path γ : [0, 1] → P 1 \ B and a collection of w ≥ 1 non-zero elements η 1 , . . . , η w in H, the iterated integral of η 1 ⊗ • • • ⊗ η w along γ is defined as the complex number (17) γ η 1 ⊗ • • • ⊗ η w = γ * (∆ w ) p * 1 (η 1 ) ∧ • • • ∧ p * w (η w )
where p s denotes the projection

P 1 \ B w → P 1 \ B onto the s-th factor and γ * (∆ w ) stands for the image by γ × • • • × γ : [0, 1] w → P 1 \ B of the standard w-dimensional simplex ∆ w ⊂ [0, 1] w .
In the case under scrutiny, it can be proved21 that an iterated integral (17) depends only on the homotopy class of γ hence, as soon as we assume that x = γ(0) is a fixed base point, can be viewed as a multivalued holomorphic function of z = γ(1) ∈ P 1 \ B. Now we choose an affine coordinate ζ centered at x on P 1 (thus ζ(x) = 0) and for z sufficiently close to x, we denote by γ z the path [0, 1] ∋ t → ζ -1 (tζ(z)) ∈ P 1 . Then one obtains a well-defined C-linear map

II w x = II w B,x : H ⊗w -→ O x ⊗ w i=1 η i -→ z → γ z η 1 ⊗ • • • ⊗ η w
which can be easily seen to be independent of the chosen affine coordinates ζ. By definition, an element of H w x = Im II w x ⊂ O x is (the germ at x of) an iterated integral of weight w (on the projective line, with respect to B). Given a basis ν = (ν 1 , . . . , ν s ) of H (thus s = |B|-1) and for a word a = a 1 • • • a w with a k ∈ {1, . . . , s} for all k, we will denote II w

x (ν a 1 ⊗ • • • ⊗ ν a w ) by L a,x . When x is assumed to be fixed, no confusion can arise hence we drop it from all the notation in what follows (we will write II w , H w and L a instead of II w

x , H w x and L a,x , etc.) The iterated integrals satisfy several nice properties. To state these, it is useful to introduce the following objects constructed by taking direct sums:

H ⊗• = ⊕ w∈N H ⊗w , H • = ⊕ w∈N H w and II • = ⊕ w II w : H ⊗• → H • ⊂ O x ,
and since the 'shuffle product' plays an important role regarding the multiplicative structure of the algebra of iterated integrals, we need also to recall what it is. Given a non-empty finite set S , let C S = ⊕ n∈N ⊕ ω∈S n C • ω be the free non-commutative complex algebra with unity (denoted by 1) generated by it. Given two words

σ = s 1 • • • s m and σ ′ = s ′ 1 • • • s ′ n on S (that is s i , s ′ j ∈ S
for every i and j), one denotes their concatenation by

σσ ′ = s 1 • • • s m s ′ 1 • • • s ′ n and one sets σ ν = s ν(1) • • • s ν(m)
for any permutation ν ∈ S m . By definition, the shuffle product ¡ on C S , is the C-linear commutative and associative product on this algebra characterized by the fact that for any two words σ and σ ′ as above (of length m and n respectively), one has (18)

σ ¡ σ ′ = ν∈m¡n σσ ′ ν
where m ¡n stands for the set of '(m, n)-shuffles', namely the set of permutations ν ∈ S m+n such

that ν(1) < • • • < ν(m) and ν(m + 1) < • • • < ν(m + n).
Here are the most interesting properties satisfied by iterated integrals:

1. relatively to the algebra structure on H ⊗• induced by the shuffle product on words in {1, . . . , s}, the map II • : H ⊗• → O x is a morphism of complex algebras, i.e. for any two words a and a ′ , as germs of holomorphic functions at x, one has

L a L a ′ = L a¡a ′ ;
2. the iterated integrals L a for all words a, are C[z]-linearly independent. It follows that the map II • :

H ⊗• → H •
x is an isomorphism of complex algebras;

3. in particular, the word a (hence its length w = w(a)) is well-defined by L a ∈ O x . By definition, a is the symbol of the latter and w its weight (with respect to the basis ν).

More generally, for any iterated integral L = a λ a L a ∈ H ⊗• (with λ a ∈ C non-zero for all but a finite number of words a's), one defines its weight w(L) as max{ w(a) | λ a 0 } and its symbol (at x) by

S(L) = S x (L) = w(a)=w(L) λ a • a; 4. a consequence of 1. is that H ⊗• is a subalgebra of O x
which is graded by the weight: for any w, w ′ ∈ N, one has

H w • H w ′ ⊂ H w+w ′ ;
5. analytic continuation along a path γ joining two points x to y in P 1 \ B induces an injective morphism of algebras C γ between H • x and H • y which is compatible with the filtrations associated to the gradings by the weight. In other terms, for any weight w ≥ 0, one has

C γ H w x ⊂ H ≤w y = w ′ ≤w H w ′ y .
Moreover, the map induced by C γ between Gr w H • x = H w x and Gr w H • y = H w y is reduced to the identity, i.e. for any L a,x ∈ H w x , one has

C γ L a,x -L a,y ∈ H <w y = ⊕ w<w H w y ;
6. from the preceding points, it follows that (a) for any x B, iterated integrals elements of H x extend as global (but multivalued) holomorphic function on P 1 , with B as branch locus;

(b) the symbol and the weight of an iterated integral do not depend on the base point;

(c) iterated integrals have unipotent monodromy: for any L ∈ H w x and any loop γ in

P 1 \ B centered at x, one has (19) C γ L -L ∈ H <w x .
The choice of the additional base-point x outside B is arbitrary in most cases hence may appear as unnatural. Another approach, encountered in many papers, is to take x as one of the points of B (e.g. one takes x = 0 in the polylogarithmic case B = { 0, 1∞ }) but this requires in addition to specify a non-trivial (real) tangent direction ζ at x: one then talks about of a 'tangential base point'. By iterated integrations of 1-forms in H B along smooth paths γ : [0, 1] → P 1 with γ(]0, 1]) ⊂ P 1 \ B, γ(0) = x ∈ B and γ ′ (0) = ζ, one defines a class of multivalued holomorphic functions L a,ζ on P 1 \ B which enjoys similar versions of all the properties 1. to 6. listed above. However this approach produces genuine multivalued functions on the Riemann sphere and a determination of any such function must be specified when working locally. And above all, there is the technical problem that a symbol a ∈ H ⊗• B may be 'divergent' 22 and that in this case, it is necessary to define L a,ζ (γ) = γ ν a by means of a certain 'regularization process'. All this is quite well-known and mentioned here for the sake of completeness. For more details, we refer to [START_REF] Wojtkowiak | Monodromy of iterated integrals and non-abelian unipotent periods[END_REF] or to §2.1 of [BPP] where everything is clearly explained.

In this text, when dealing with iterated integrals we will consider them when a base point outside the ramification locus B has been fixed, essentially because it fits better with the geometric picture given by web geometry and also because their theory is somehow 'cleaner'. However we will sometimes consider iterated integrals (actually polylogarithms) defined with respect to a tangential base point but mostly to connect with some results already existing in the literature.

Remark 1.9. 1. Thanks to some of the preceding points, when the base-point is fixed and for any weight w ≥ 1, one can identify the iterated integral L a , the word a = S(L a ) and the tensor product of logarithmic 1-forms ν a = ν a 1 ⊗ • • • ⊗ ν a w . We will often do so in the sequel. [GSVV] or [DGR]. Note that the notation for the symbol we use (namely

About the notion of symbol of iterated integrals, one can consult

S(L a 1 •a 2 •••a n ) = a 1 a 2 • • • a n )
is the opposite of the one used in the latter reference.

3. Actually, a notion of iterated integrals can be considered when working on a complex manifold M of any dimension, relatively to any k-tuple (ω s ) k s=1 of meromorphic 1-forms ω s on M. Denote by Z the union of the polar sets of the ω i 's and by H their linear span in H 0 (M, Ω 1 M ( * Z)). Then for any path γ in M * = M \ Z and any η = η 1 ⊗ • • • ⊗ η w ∈ H ⊗w , one defines a complex value γ η by means of formula (17). However, unless when η satisfies some integrality conditions due to K.T. Chen23 , the iterated integral γ η does depend on the path γ and is not constant on its homotopy class (with fixed extremities). A simple but interesting case when Chen's integrability conditions are automatically satisfied is when all the ω i 's are closed (which happens for instance when dim(M) = 1). In this case, everything that has been said about dimension 1 iterated integrals generalizes straightforwardly. In particular, for any x ∈ M * , there is a linear map II w

x : H w → O x , thus one can speak of iterated integrals on M * , of the symbols and weights of such functions, etc. [Poin]) and more systematically by Lappo-Danilevski who named these functions hyperlogarithms (see p. 104 of [La]). But the specific case when the ramification locus B has 3 elements was considered even before, for instance by Kummer in 1840 (see his three papers cited in the bibliography). Another classical reference about the polylogarithmic iterated integrals is Nielsen's monograph [Nie]. What we call 'polylogarithmic iterated integrals' were previously called 'Nielsen polylogarithms' in several papers (see [CGR] and some references therein).

Iterated integrals on the projective line have been considered a long time ago, in full generality by Poincaré (see p. 215 in

5.

Several authors have studied Lappo-Danilevski's hyperlogarithms from a more modern perspective, such as Wechsung [Wec] (see also the book [START_REF] Lewin | Structural properties of polylogarithms[END_REF]). More recently, in a series of papers (see [START_REF] Wojtkowiak | A construction of analogs of the Bloch-Wigner function[END_REF][START_REF] Wojtkowiak | Functional equations of iterated integrals with regular singularities[END_REF][START_REF] Wojtkowiak | Monodromy of iterated integrals and non-abelian unipotent periods[END_REF]), Wojtkowiak considered and studied general iterated integrals on P 1 (in particular, polylogarithms) and more generally on quasi-projective varieties, from the point of view of modern algebraic and arithmetic geometry.

6. Most of the papers dealing with iterated integrals on P 1 concern the classical polylogarithmic case (that is when |B|= 3) but some other specific cases beyond that one have been considered recently. Stemming from questions arising in quantum electrodynamics, the case of iterated integrals with ramification locus {0, ±1, ∞} has been considered starting from the early 70's. Such iterated integrals are now known as 'harmonic polylogarithms', a name coined in [RV] 24 . More recently, some authors have also considered the case of hyperlogarithms on P 1 ramified in 4 points not necessarily in harmonic division (see [START_REF] Hirose | Algebraic differential formulas for the shuffle, stuffle and duality relations of iterated integrals[END_REF][START_REF] Hirose | Iterated integrals on P 1 \ {0, 1, z, ∞} and a class of relations among multiple zeta values[END_REF]).

7.

Regarding concrete functional equations (more precisely, AFEs) satisfied by hyperlogarithms, most of the results until recently were about classical polylogarithms. A slightly more general class of polylogarithms were considered from this perspective recently in [CGR] where the authors study (and first and foremost establish) an AFE satisfied by Nielsen polylogarithms whose existence was predicted in a conjecture by Goncharov in the realm of motives. To our knowledge, at the time of writing there is no published paper in which an interesting AFE satisfied by hyperlogarithms ramified in p > 3 points appears. However, we have discovered an interesting equation in the case p = 4 that we plan to discuss in a future work.

1.4.3 Abelian relations with hyper-logarithmic components. Let us consider the web W = W(u 1 , . . . , u d ) again and let w ≥ 1 be an arbitrary weight. Recall the notion introduced in the weight 1 case:

H i = H 0 P 1 , Ω 1 LogB i and H W = u * i H i | i = 1, . . . , d .

1.4.3.1

Since taking weight w tensor products of elements of H i and pull-backs under the u i 's commute (that is u

* i (η 1 ⊗ • • • ⊗ η w ) = u * i (η 1 ) ⊗ • • • ⊗ u * i (η w ) for any η 1 , . . . , η w ∈ H i ), it comes that H i is naturally embedded into (H W ) ⊗w for each i. Thus one has a well-defined linear map (20) Ψ w W : d i=1 H i ⊗w ------→ H W ⊗w , a i d i=1 -----→ d i=1 u * i (ν a i )
Now we fix x ∈ P n \ Σ(W) and set x i = u i (x) ∈ P 1 \ B i for every i. Since any element of H i is closed, the same holds true for any element of u * i (H i ) hence for any element of H W . Hence (cf. Remark 1.9.2) there is an 'iterated integration map' II w

x :

H ⊗w W → O x which commutes with any II w x i : for any η ∈ (H i ) ⊗w , one has L η,x i • u i = L u * i (η),x as homolorphic germs at x on P n . Consider now K w W = ker Ψ w W . Then from the previous paragraph, it follows that (u * i (η i )) d i=1 ∈ ⊕ i H ⊗w i belongs to K w W if and only if II w x ( i u * i (η i )) = 0 in H ⊗w W , that is if and only if i L η i • u i
vanishes (as a germ at x). Thus one gets a linear map from K w W into the space A x (W) of ARs of W at x. This map being obviously injective, its image

IIA w x (W) = Im K w W ֒----→ A x (W) ⊂ A x (W)
is a linear subspace of A x (W) isomorphic to K w W , which is the stalk at x of a (non-trivial) sublocal system of A W , that will be denoted by IIA w W .

1.4.3.2

In the sequel of the text, we will use the following terminology:

• the adjective hyperlogarithmic will be used to characterize anything constructed from iterated integrals on the projective line, with respect to a given/fixed branch locus B;

• the term polylogarithmic will specially refer to the case when B has cardinality 3, with the convention that when this set is not specified, then it has to be B 1 = {0, 1, ∞} or B -1 = {0, -1, ∞}, with each of these two cases being clear depending on the context (cf. ( 15)); 25

• K w W is the space of weight w symbolic hyperlogarithmic ARs of W;

• K W = ⊕ w≥1 K w W is the space of symbolic hyperlogarithmic ARs of W; • IIA w (W) (resp. IIA w x (W)
) is the local system (resp. the space of germs at x) of weight w hyperlogarithmic ARs of W;

• IIA(W) = ⊕ w≥1 IIA w (W) (resp. IIA x (W) = ⊕ w≥1 IIA x (W)) is the local system (resp. the space of germs at x) of hyperlogarithmic ARs of W;

• IIrk w (W) = rk(IIA w W ) = dim(K w W ) is the weight w hyperlogarithmic rank of W; • IIrk(W) = w≥1 IIrk w (W) = dim(K W ) is the (total) hyperlogarithmic rank of W;
• in the polylogarithmic case, we will write polrk(W) and polrk w (W) instead of IIrk (W) and IIrk w (W) respectively, and talk about the (weight w) polylogarithmic rank of W;

• when IIA(W) = A(W), the considered web W is said to have only hyperlogarithmic (or polylogarithmic) ARs. Most of the time, the word 'only' will be omitted.

1.4.3.3

To illustrate the symbolic method to find hyperlogarithmic ARs described above, let us consider the following planar 9-web

W = W x 1 , x 2 , 1 + x 2 x 1 , 1 + x 1 x 2 , ( 1 
+ x 1 ) 2 x 2 , 1 + x 1 + x 2 x 1 x 2 , ( 21 
) (1 + x 1 ) 2 + x 2 x 1 x 2 , 1 + x 1 + x 2 x 1 (1 + x 1 ) , (1 + x 1 + x 2 ) 2 x 2 1 x 2 .
25 One verifies easily that any '(B -1 )-polylogarithm' (that is, any iterated integral constructed from the basis ω 0 = du/u and ω -1 = du/(1 + u) of H 0 (P 1 , Ω 1 (Log B -1 ))) admits a simple expression in terms of the classical (i.e. (B 1 )-)polylogarithms. For instance, the standard 'n-th (B -1 )-polylogarithm' defined by Li B -1 n (x) =

x 0 (ω 0 ) ⊗(n-1) ⊗ ω -1 coincides with -Li n (-x). We note that (B -1 )-polylogarithms have been considered at the very beginning of the study of higher polylogarithms. For instance, in his 1809 essay [Sp], Spence was already considering Li B -1 n (x) (denoted n L(1 + x) by him, see [START_REF] Spence | An essay on the theory of the various orders of logarithmic transcendents[END_REF]p. 4]).

This web is a particular example of a cluster web (namely, it is the 'secondary cluster web of Dynkin type A 3 ', see §3.2.1.4 further on and in particular (97)) but this is not relevant for our current purpose here hence we leave this aspect aside below in this paragraph.

The web W carries hyperlogarithmic ARs of weight 1, 2 and 3. We are going to focus on the case of weight 3 ARs, namely we are going to describe K 3 W by giving an explicit basis of it (the case of K w W for w = 1 or w = 2 could be treated in the same way). Denote by u 1 , . . . , u 9 the rational first integrals in (21), labeled in their order of appearance (thus

u 1 = x 1 , u 2 = x 2 , u 3 = 1 + x 2 /x 1 , . . . and u 9 = (1 + x 1 + x 2 ) 2 /(x 2 1 x 2 )
). Then one verifies that

• the divisor of common leaves is cut out (in C 2 ) by the following irreducible polynomials:

F 1 = x 1 , F 2 = x 2 , F 3 = 1 + x 1 , F 4 = 1 + x 2 , F 5 = 1 + x 1 + x 2 and F 6 = (1 + x 1 ) 2 + x 2 .
• the corresponding ramifications loci of the u i 's all coincide with B -1 = { 0 , -1 , ∞ }.

It follows that for i = 1, . . . , 9 and ζ ∈ {0, 1}, the logarithmic 1-form

Ω i ζ = u * i (du/(u -ζ)
) can be written as a linear combination (with integer coefficients) in the 1-forms η s = dLogF s = dF s /F s for s = 1, . . . , 6, which form a basis of H W . For any i ∈ {1, . . . , 9}, the two 1-forms Ω i 0 and Ω i 1 form a basis of the subspace H i of H W they span, hence the 8 tensors

Ω i ζ 1 ζ 2 ζ 3 = Ω i ζ 1 ⊗ Ω i ζ 2 ⊗ Ω i ζ 3 with ζ 1 , ζ 2 , ζ 3 ∈ {0, 1} form a basis of (H i ) ⊗3 . Elements of K 3 W corresponds to 9-tuples (Ω i ) 9 i=1 ∈ 9 i=1 (H i ) ⊗3 summing up to zero, that is such that 9 i=1 Ω i = 0 in (H W ) ⊗3
. Elementary (but lenghty) linear algebra computations in this vector space (which is of dimension 6 3 = 216) lead us to the conclusion that K 3 W is 2-dimensional and admits the following two 9-tuples as a basis 2 Ω 011-110 , Ω 001-100 , 2 Ω 011-110 , -2 Ω 001-100 , Ω 001-100 , -2 Ω 001-100 , -2 Ω 001-100 , 2 Ω 011-110 , Ω 001-100 and 2 Ω 011-101 , Ω 010-100 , 2 Ω 011-101 , -2 Ω 010-100 , Ω 010-100 , -2 Ω 010-100 , -2 Ω 010-100 , 2 Ω 011-101 , Ω 010-100 , where we have used the following notation: for any length 3 words w, w ′ in the two letters 0 and 1, Ω w-w ′ is written for Ω i w -Ω i w ′ when it appears at the i-th place of the 9-tuple.

1.4.3.4

From the material above, one can first deduce an interesting general property of ARs with iterated integrals as components. Given x ∈ P n \ Σ(W), it follows from Proposition 1.5 that analytic continuation of ARs along loops centered at x induces a representation

µ W : π 1 P n \ Σ(W), x → A x (W) .
From what has been recalled above about the monodromy of iterated integrals, one deduces easily that µ W -Id sends IIA w x (W) into IIA <w x (W) = ⊕ ω<w = IIA ω x (W) for any w > 1. This shows in particular that the restriction of µ W to IIA x (W) is unipotent. An interesting consequence of this is that it is possible to construct new hyperlogarithmic ARs starting from any given element of IIA w x (W), which is particularly useful when investigating webs from the point of view of their rank.

1.4.3.5

The interest of looking specifically at iterated integrals ARs of webs defined by rational first integrals is clear: first many of the known ARs of such webs are of this kind; second, the determination of ARs of this type is equivalent to that of the vector space K W , hence can be achieved using standard technics of linear algebra. In order to illustrate the method, an explicit example is discussed in detail in §1.4.4.2 just below.

As far as we know, the first occurrence of this symbolic method to solve an AFE is in [START_REF] Hain | Higher logarithms[END_REF]Prop. (4.5)]. The first systematic uses of this approach for hunting ARs in web geometry can be found in the unpublished preprint [START_REF] Robert | Relations fonctionnelles polylogarithmiques et tissus plans[END_REF] then in the paper [Per] (see also §1.4.4 below) where the author determines the spaces of ARs of the webs W M 0,n+3 , for n ≥ 2.

How powerful the symbolic method is can be illustrated by considering the following elementary fact, which allows to get a priori many distinct hyperlogarithmic ARs for W from any non-trivial element of IIA x (W), and which we will use to prove Theorem 2.5 later on.

We continue to use the notation introduced above relatively to W. As is well-known, for any positive weight w, there is a natural linear action • of the permutation group S w on (H W ) ⊗w , characterized by the fact that, for any v = v 1 ⊗ • • • ⊗ v w ∈ (H W ) ⊗w and any σ ∈ S w , one has:

v σ = σ • v = v σ -1 (1) ⊗ • • • ⊗ v σ -1 (w) .
The point which is relevant for our purpose is that this action commutes with pull-backs. More precisely, let σ be a fixed permutation and assume that

η i = η i,1 ⊗ • • • ⊗ η i,w ∈ (H i ) ⊗w for some i ∈ {1, . . . , d}. Then u * i (η i ) = u * i (η i,1 ) ⊗ • • • ⊗ u * i (η i,w
) belongs to (H W ) ⊗w and one verifies that

u * i η σ i = u * i (η i ) σ .
From this, one immediately gets the following Lemma 1.10. The linear map (20) is S w -equivariant and consequently, the space K w W of weight w symbolic hyperlogarithmic ARs of the web W is stable under the action of S w .

More concretely, for any σ ∈ S w and any d-tuple

(η i ) d i=1 ∈ ⊕ d i=1 (H i ) ⊗n , one has (in (H W ) ⊗w ): d i=1 u * i (η i ) = 0 ⇐⇒ d i=1 u * i η σ i = 0 .
This result, which is basically an elementary remark, allows to construct new hyperlogarithmic ARs starting from one, which is again particularly useful when investigating webs from the point of view of their rank. Below in this text, we will use it to get an easy proof of a (holomorphic version of a) classical result about functional equations of classical polylogarithms (see Theorem 2.5). However, note that in contrast with the generation of new hyperlogarithmic ARs by means of analytic continuation mentioned above in §1.4.3.4, the ARs produced from a given one in IIA w (W) by using the preceding lemma are of the same weight: for any w ≥ 2, the symmetric group S w acts on IIA w (W).

It should be noted that Lemma 1.10 may well be quite far-reaching because it might well open the door to an approach to the hyperlogarithmic ARs of webs via methods derived from the representation theory of symmetric groups (see §8.2.1 further on for more in this direction).

⋆ 1.4.3.6

Finally, we mention that in order to deal with the ARs with iterated integrals components of the rational webs considered later on in this text, we have implemented the symbolic method in the computer algebra system Maple. 26 We now have at disposal a series of Maple routines which, given a rational web W(u 1 , . . . , u d ):

first compute the W-branch loci B i of the u i 's; then construct a basis β of the space H W defined in (16); next, given an element u * i (η) ∈ H W with η ∈ H 0 (P 1 , Ω 1 (LogB i )), give its decomposition in the basis β; next, construct the matrix corresponding to the map Ψ w W defined in (20); eventually, compute the dimension of K w W (and possibly provides a basis for it if required). These routines constitute an efficient package to study ARs of rational webs. A great amount of the results concerning the polylogarithmic rank of the webs considered further on in the text have been established using these routines. However we believe it is fair to say that this computational approach actually has a rather limited scope since it does not seem to allow to find iterated integrals ARs of weight bigger than 4 within a reasonable time. The reason is that such ARs have to be looked for as carried by (for instance cluster) d-webs with d relatively big and so with spaces H W of dimension of the order of several dozens or even more. Then starting from w = 4 (and even for w = 3 when d is already big enough), the tensor space (H W ) ⊗w is of quite high dimension which makes performing linear algebra in it time consuming hence out of reach of computational investigations.

1.4.4 Some examples of AMP webs with only polylogarithmic ARs. In this subsection, we give examples of AMP webs with only polylogarithmic abelian relations. The first are the webs W M 0,n+3 for n ≥ 2. We recall the approach and the results of [Per] about them. Then we deal first with the so-called 'Y-cluster web of type A 3 ' before considering examples of webs defined on configuration spaces of points in the projective plane.

1.4.4.1 The webs W M 0,n+3 all are AMP. We recall some results of Pereira about the polylogarithmic ARs of the web W M 0,n+3 for any fixed n ≥ 2. In [START_REF] Pereira | Resonance webs of hyperplane arrangements. In 'Arrangements of hyper-planesSapporo 2009[END_REF]§4], he deduces from general arguments the two following lower bounds on the first two polylogarithmic ranks of W M 0,n+3 (with all ramification loci equal to B 1 = {0, 1, ∞}):

polrk 1 W M 0,n+3 ≥ 2 n + 3 4 -h 1 (M 0,n+3 ) and polrk 2 W M 0,n+3 ≥ 2 2 n + 3 4 -h 1 M 0,n+3 2 + h 2 M 0,n+3 .
On the other hand, thanks to a celebrated result of Arnold , one has

h 1 M 0,n+3 = n 2 + 2n and h 2 M 0,n+3 = n(n -1) 24 3n 2 + 17n + 26
from which one gets that the two following minorations hold true:

polrk 1 W M 0,n+3 ≥ 2 n + 3 4 - n 2 -2n and polrk 2 W M 0,n+3 ≥ n + 3 4 - n + 2 3 = n + 2 4 .
Combined with (10), we deduce from the previous bounds that

3 n + 3 4 - n + 2 3 - n 2 -2n ≤ polrk W M 0,n+3 ≤ ρ W M 0,n+3 = 3 n + 3 n -1 - n + 2 n -1 - n + 1 n -1 - n n -1
and since the arithmetic quantities at both extremities are equal, one obtains

polrk W M 0,n+3 = rk W M 0,n+3 = ρ W M 0,n+3 = 3 n + 3 4 - n + 2 3 - n + 1 2 -n .
In particular, one gets that W M 0,n+3 is AMP with only polylogarithmic ARs, of weigth 1 or 2.

1.4.4.2 The Y-cluster web of type A 3 is AMP. Further on we will give a general definition of the notion of cluster web and in particular that of the Y-cluster web associated to a Dynkin diagram ∆. For ∆ = A 2 one recovers (a model of) Bol's web whose all properties are well-known. We find it more interesting to consider the case when ∆ = A 3 : the corresponding web has not been considered before and it is not too complicated to explain how to get all its ARs by using the algebraic approach described above in §1.4.3.

We will explain later on how its first integrals are generated, but for the moment let us simply define the 'Y -cluster web of type A 3 ', as the following 9-web in three variables x 1 , x 2 , x 3 :

YW A 3 = W x 1 , x 2 , x 3 , 1 + x 2 x 1 , (1 + x 1 )(1 + x 3 ) x 2 , 1 + x 2 x 3 , 1 + x 1 + x 2 + x 3 + x 1 x 3 x 1 x 2 , 1 + x 1 + x 2 + x 3 + x 1 x 3 x 2 x 3 , (1 + x 1 + x 2 )(1 + x 2 + x 3 ) x 1 x 2 x 3 .
We denote by u 1 , u 2 , . . . , u 9 the rational first integrals appearing in this definition of YW A 3 , labeled in the corresponding order: one has

u 1 = x 1 , u 2 = x 2 , u 3 = x 3 , u 4 = 1 + x 2 x 1 , . . . and u 9 = (1 + x 1 + x 2 )(1 + x 2 + x 3 ) x 1 x 2 x 3 .
This web has intrinsic dimension 3 and by direct computations, one verifies that:

1. seen as a divisor in C 3 , its divisor of common leaves has nine irreducible components; more precisely, one has

Σ c (YW A 3 ) = ∪ 9 s=1 V s with V s = (F s = 0) ⊂ C 3 ,
where F 1 , . . . , F 9 stand for the following polynomials:

F 1 = x 1 F 4 = 1 + x 1 F 7 = 1 + x 1 + x 2 F 2 = x 2 F 5 = 1 + x 2 F 8 = 1 + x 2 + x 3 F 3 = x 3 F 6 = 1 + x 3 F 9 = 1 + x 1 + x 2 + x 3 + x 1 x 3 .
2. for any i = 1, . . . , 9, the i-th ramification locus of YW A 3 is included in B -1 , i.e. one has

B i = P 1 \ u i Σ c (YW A 3 ) = B -1 = { -1 , 0 , ∞ } .
From these two points, one deduces that for any i ∈ {1, . . . , 9} and any ζ ∈ B -1 = { -1, 0, ∞ }, the fiber u -1 i (ζ), seen as a divisor in C 3 is an effective linear combination of the V s for s = 1, . . . , 9. All the corresponding decompositions

(22) u -1 i (ζ) = 9 s=1 λ ζ i,s V s with λ ζ i,s
∈ N for every i, s and ζ can be entirely characterized by using logarithmic differential 1-forms as follows: one sets η s = dLog(F s ) = dF s /F s as well as

Ω 0 i = dLog (u i ) = du i /u i and Ω -1 i = dLog (1 + u i ) = du i /(1 + u i ) for i, s = 1, . . . , 9. Since H 0 P 1 , Ω 1 (Log B -1 ) = ω 0 , ω 1 with ω ζ = dLog(ζ + u) = du/(ζ + u) for ζ ∈ {-1, 0}
, it follows that for every i = 1, . . . , 9, the pair Ω 0 i , Ω 1 i form a basis of the subspace

H i = u * i H 0 P 1 , Ω 1 (Log B -1 ) of H YW A 3 = H 0 C 3 , Ω 1 (Log Σ c YW A 3 ) ,
the latter vector space admitting the 9-tuple η = (η 1 , . . . , η 9 ) as a basis. In terms of the η s and the Ω ζ i 's, any decomposition ( 22) is equivalent to

Ω ζ i = 9 s=1 λ ζ
i,s η s and by direct (easy but a bit lengthy) computations, one obtains that the expressions of the Ω ζ i 's in the basis η are as follows:

Ω 0 1 = η 1 Ω -1 1 = η 4 ; Ω 0 2 = η 2 Ω -1 2 = η 5 ; Ω 0 3 = η 3 Ω -1 3 = η 6 ; Ω 0 4 = η 5 -η 1 Ω -1 4 = η 7 -η 1 ; Ω 0 5 = η 4 + η 6 -η 2 Ω -1 5 = η 9 -η 2 ; (23) Ω 0 6 = η 5 -η 3 Ω -1 6 = η 8 -η 3 ; Ω 0 7 = η 9 -η 2 -η 1 Ω -1 7 = η 8 + η 4 -η 1 -η 2 ; Ω 0 8 = η 9 -η 2 -η 3 Ω -1 8 = η 6 + η 7 -η 2 -η 3 ; and Ω 0 9 = η 7 + η 8 -η 1 -η 3 Ω -1 9 = η 5 + η 9 -η 1 -η 3 .
It is then easy to determine the space of weight w symbolic polylogarithmic ARs of YW A 3 for any w ≥ 1. The determination of the logarithmic ARs amounts to finding a basis of the space of pairs of 9-tuples (c i 0 ) 9 i=1 , (c i 1 ) 9 i=1 ∈ C 9 2 such that 9 i=1 c i 0 Ω 0 i + c i 1 Ω -1 i ) = 0 (equality as a logarithmic 1-form on C 3 ). Using the formulas (23), it is easy to decompose the RHS with respect to the basis η: it gives us a linear system in the c ζ i 's which is not difficult to solve. One obtains that IIA 1 YW A 3 is 9-dimensional, in other terms : polrk 1 YW A 3 = 9. The determination of weight 2 polylogarithmic ARs is not much more complicated: it amounts to finding a basis of the space of scalars c i ζζ ′ (with i = 1, . . . , 9 and ζ, ζ ′ ∈ {0, -1}) such that (24) ⊗2 , determining the ARs with iterated integral components comes down to solving an explicit linear system in the c i ζζ ′ 's. Solving it gives us that any tensorial identity ( 24) is a multiple of the following one (25)

9 i=1 ζ,ζ ′ ∈{-1,0} c i ζ,ζ ′ Ω ζ i ⊗ Ω ζ ′ i = 0 ,
9 i=1 Ω 0 i ⊗ Ω -1 i -Ω -1 i ⊗ Ω 0 i = 0 ,
from which it follows that IIA 2 YW A 3 has dimensional one, i.e. polrk 2 YW A 3 = 1.

From the previous considerations, it comes that

polrk YW A 3 ≥ polrk 1 YW A 3 + polrk 2 YW A 3 = 9 + 1 = 10 .
On the other hand, direct computations give that

ρ • YW A 3 = 6, 3, 1 .
We thus have 10 1.5 Determining the abelian relations and the rank.

= polrk YW A 3 ≤ rk YW A 3 ≤ ρ YW A 3 = 6 + 3 + 1 = 10,
We want to discuss here some methods to determine the abelian relations and the rank of a given web. Everything presented below in this paragraph is already known but since we have effectively used some of these methods further in this paper, we think it worth telling a few words about this here.

We first briefly describe how Abel's method for solving functional equations specializes in the case of AFE's. We then discuss a characterization of AMP webs inspired by classical results related to this question for planar webs. We obtain a criterion characterizing AMP webs which can be used quite efficiently for webs defined by rational first integrals. Finally, we state a general conjecture about the nature of the components of any AR of such a web.

In the sequel of the present paragraph, we use the following notation: Ω is an open domain in C n with n > 2 and W is a web on it, defined by d holomorphic submersions v 1 , . . . , v d ∈ O(Ω). Moreover, to simplify, we will assume that W has no singularity on Ω, i.e. for any i, j distinct, the 2-form dv i ∧ dv j does not vanish at any point of Ω.

1.5.1 Abel's method for solving AFEs. In his first published paper [START_REF] Abel | Méthode générale pour trouver des fonctions d'une seule quantité variable lorsqu'une propriété de ces fonctions est exprimée par une équation entre deux variables[END_REF], Abel describes a general method to determine unknown fonctions F 1 , . . . , F d of one variable when these are assumed to satisfy a multivariable functional equation (FE). 'Abel's method'28 is quite general and consists in performing differential elimination starting from the initial equation (FE) in order to construct some ODE's satisfied by each of the F i appearing in it. Then solving the latter allows to determine the solutions of the original functional equation in several variables. 29The point is that Abel's method, which is a bit vague in full generality, specializes in a precise and effective way when applied to AFE's.

First, note that by considering the restriction of the web along a sufficiently generic surface in Ω, one can assume that n = 2 without loss of generality. Then Abel's method for AFEs in two variables can be formalized by an algorithm which has been described in detail in [START_REF] Pirio | Abelian functional equations, planar web geometry and polylogarithms[END_REF] hence we will not do so here. We only mention that it can be decomposed into two steps: the first only requires standard algebraic operations on meromorphic functions (addition/substraction, multiplication/quotient) as well as, of course, differentiation with respect to both free variables, denoted here by x and y. For each i, we obtain a linear differential equation in two variables

K i (F i ) = N i k=1 C i k (x, y)F (k) i (v i (x, y)) = 0 (for some N i > 0 depending on i) constructed from the initial equation d i=1 F i (v i (x, y)) = 0.
Only the second step (possibly) requires a transcendental operation: let w i = w i (x, y) be any function such that (x, y) → (v i (x, y), w i (x, y)) be invertible (at a given base point).

Then K i (F i ) = 0 is written N i k=1 C i k (v i , w i )F (k) i (v i ) = 0 in the coordinates (v i , w i ) hence
, by successive differential eliminations, one reduces this equation in order to get a last one whose coefficients only depend on v i , that is of the form

L i (F i ) = M i k=1 D i k (v i )F (k) i (v i ) = 0 (for some positive M i ≤ N i ).
Note that a priori the differential operator L i = M i k=1 D i k • ∂ k obtained above is not unique: first the two-variables differential equation K i (F i ) = 0 depends on the ordering of the v k 's regarding the first differential elimination process. Second, different choices for the function w i (x, y) in order to get an ordinary differential equation in the second step could give distinct differential operators L i . In order to get a canonical ODE for F i , a natural possibility would be to consider the greatest common divisors of the linear differential operators obtained by the two steps described above. But in practice, knowing only one linear ODE L i (F i ) = 0 obtained by Abel's method is sufficient to solve the initial AFE.

A case of interest for us is when the v i 's are rational and such that for each i, there exists another rational function w i ∈ C(x, y) making of (x, y) (v i (x, y), w i (x, y)) a Cremona transformation (the webs associated to cluster algebras that we will consider later in the text will all be of this kind). In this case, one can perform Abel's method in order to get ODEs

L i (F i ) = M i k=1 D i k (v i )F (k) i (v i ) = 0 with rational coefficients, i.e. D i k (z) ∈ C(z)
for all i = 1, . . . , d and all k = 1, . . . , M i . As an example, we consider a 4-web which is a subweb of a cluster web that we will consider later (namely, it is the subweb W long G 2 of the 'cluster web of type G 2 ', see §5.1.3): Example 6. Applied to the 4-web

W 1 x , (1 + y) 3 x , ( 1 
+ x + y) 3 xy 3 , (x + (1 + y) 2 ) 3 x 2 y 3 ,
Abel's method gives us that any component F 1 of a solution of the associated AFE must verify L 1 F 1 (z) = 0 where L 1 stands for the following composition of four differential operators of the first order:

L 1 = ∂ ∂z + 11z + 8 3z(1 + z) • ∂ ∂z + 7z + 4 3z(1 + z) • ∂ ∂z + 2z + 1 z(1 + z) • ∂ ∂z
whose a basis of the space of solutions is given by

1 , Log(1 + z) , Log 1 + z 1/3
and Log 1z 1/3 + z 2/3 .

Remark 1.11. Surprisingly, the fact that Abel's method applies in a systematic way to find the solutions of any AFE does not seem to be well known, even by some people working in the field of functional equations. For instance, the paper [E] concerns the solutions of F(x)+F(y)-F(x+y) = G(h(x, y)) where h stands for a given function of two (real or complex) variables. The author mentions that the problem of finding a general method for solving functional equations of this type was posed (by R. Ger and L. Reich) at the 37th International Symposium on Functional Equations in 2000. And this is not an isolated example: for some other recent papers, among many, each dealing with a specific AFE which can be easily solved by means of Abel's method, see e.g. [KSa] (which concerns F(x + y + αxy) + G(xy) = H(x) + K(y)), [Wes] 

(about G 1 ( 1-x 1-xy ) + G 2 ( 1-y 1-xy ) = α 1 (x) + α 2 (y)) or [GL] (for the AFE F(xy) + G(x + y) = H(xy + x) + K(y)).
1.5.2 Characterization of webs with maximal rank. A general method to determine the rank of planar webs, and in particular to characterize such webs of maximal rank, has been described in 1941 by Pantazi in a short note [Pa] 30 reproduced in [START_REF] Pirio | Équations fonctionnelles abéliennes et théorie des tissus[END_REF]) which has remained ignored until quite recently. Unaware of Pantazi's work and using a more modern approach, Hénaut has obtained similar results in [START_REF] Hénaut | On planar web geometry through abelian relations and connections[END_REF]. A synthesis of both approaches has been given in [START_REF] Pereira | An invitation to web geometry[END_REF], which can be referred to if more information is needed.

The point is that Pantazi's approach generalizes quite straightforwardly to webs in arbitrary dimension, at least to characterize those whose rank is maximal. We give below a concise exposition of such a generalization, following quite closely [START_REF] Pereira | An invitation to web geometry[END_REF]§6.3], in particular using notations similar to those used in it. Regarding the web W = W(v 1 , . . . , v d ) on O(Ω) considered here, we will make the following hypotheses (just to simplify):

for any i = 1, . . . , d, the partial derivative ∂ x 1 (v i ) does not vanish identically on Ω;

-the map ω → ρ • ω (W) is constant on Ω.
Here are some notations used below: for σ ≥ 1, one writes ρ σ for ρ σ (W), ρ for the total virtual rank ρ = σ≥0 ρ σ and one sets s = max{ σ ≥ 1 | ρ σ > 0 }. For each i = 1, . . . , d, we consider the vector fields

X i,s = ∂ s (v i )∂ 1 -∂ 1 (v i )∂ s for s = 2, .
. . , n. These are such that for any holomorphic germ Φ i (at a point of Ω), one has Φ i = F i (v i ) for a holomorphic germ F i in one variable if and only if X i,s (Φ i ) = 0 for s = 2, . . . , n.

Clearly, the space of (functional) ARs of W identifies with the space of solutions of the following first order linear differential system

S W :          d i=1 Φ i = 0 , X i,s (Φ i ) = 0 for i = 1, . . . , d, s = 2, . . . , n .
The latter can and will be identified to a sub-bundle of the bundle J 1 (E) of the first jets of sections of E, again denoted by the same notation. For any k ≥ 0, denote by S (k) W ⊂ J k+1 (E) the (k -1)-th differential prolongation of S W (defined inductively by S (0) = S W and S (k+1) W = (S (k) W ) (1) for any k ≥ 0). The differential system S (k) W can be understood more concretely by realizing that its fiber at any ω ∈ Ω naturally identifies with the space of d-tuples of jets ( f i ) d i=1 of order k which satisfies i f i (v i ) = 0 at the order k. We thus have an isomorphism of vector spaces:

(26) S (k) W,ω ≃        f i d i=1 ∈ C[t] ≤k d d i=1 f i (v i ) ∈ C + M ω k+1       
(here M ω stands for the maximal ideal of O ω ).

The symbol S ω (S (k) W ) (at any point ω of Ω) identifies with the space A ω (W) hence has dimension ρ k . Consequently, setting

S W = S (s) W ⊂ J s (E) , it comes that the symbol of S (1)
W is trivial. Hence, it follows from a result of the theory of formal integrability of differential systems (see Theorem 6.3.1 in [START_REF] Pereira | An invitation to web geometry[END_REF]) that, assuming that S (1) W is a sub-bundle of J s+1 (E)31 , then it is formally integrable, hence completely integrable since it is holomorphic32 if (and only if) the restriction of the projection map J s+2 (E) → J s (E) induces an isomorphism S (2) W → S W . From this, we deduce the Theorem 1.12. The two following assertions are equivalent:

1. the web W has AMP rank;

2. one has dim C S (s+2) W,ω = ρ W + (d -1) for any generic point ω ∈ Ω.

The latter criterion for complete integrability can be made more concrete by using the identification (26) for k = s + 2. The situation is even better when the v i 's all are rational (and then are denoted by u i ). Indeed, in this case the process of localizing at the generic point of C n can be achieved quite simply in an algebraic effective way.

Indeed, when 

u i ∈ C(x) with x = (x 1 , . . . , x n ) for i = 1, . . . ,
S (s+2) W (k) =        f i d i=1 ∈ k[t] ≤s+2 d d i=1 f i (ũ i ) ∈ k + M k s+3       
is isomorphic to the RHS of (26) for ω being 'the generic point of C n '. We deduce the Corollary 1.13. When all the u i 's are rational, the following equivalence holds true:

W is AMP ⇐⇒ dim k S (s+2) W (k) = ρ(W) + (d -1) .
The practical interest of this corollary is clear for verifying if a web defined by rational functions is AMP or not: it reduces this question to computing the dimension of a finite dimensional vector space (over k), which can be handled by standard techniques of linear algebra.

⋆

Building on Pantazi's characterization of planar webs with maximal rank, Mihȃleanu's has sketched an effective method to determine the rank of a given planar web in [Mih]. It turns out that Mihȃleanu's approach generalizes as well, and rather straightforwardly, to any 1-codimensional web W as above (i.e. only assumed to satisfy assumption (wGP) of §1.1.1). We get the following result:

Proposition 1.14. Let ζ be the smallest integer bigger than or equal to s such that the map

S (ζ+2) W,ω → S (ζ) W,ω is surjective for ω generic. Then rk W = dim C S (ζ) W,ω -(d -1).
Given a point ω, determining the smallest integer ζ bigger than or equal to s such that the map

S (ζ+2) W,ω → S (ζ)
W,ω is surjective only depends on the (ζ + 2)-th order jet of W at ω. Consequently, the same approach as the one described just after Theorem 1.12 can be followed which allows us to get an effective general method for determining the rank of webs from the preceding proposition.

We have implemented this effective method for determining the rank in the computer algebra system Maple and used it to compute the rank of many webs considered in the sequel.

1.5.3 On the nature of components of rational AFEs. We now discuss briefly the nature of the components F i of an AFE d i=1 F i (u i ) = 0 when the u i 's all are rational. As before, W stands for the web defined by the u i 's and B i denotes the corresponding i-th branch locus. We call a generalized iterated integral any (multivalued) holomorphic function on a given projective manifold M, which can be written as a finite sum k R k • I k where the R k 's are rational functions and the I k 's iterated integrals (in the usual sense, cf. §1.4 and especially Remark 1.9.2).

The author started thinking about such functional equation at the beginning of the 2000's, when working on his PhD about webs. Since then, he has considered and solved quite a lot of such rational AFEs. Considering all the solutions of these leads to state the following Conjecture 1.15. Let F = (F i ) d i=1 be a germ of functional AR of W at x ∈ P n \ Σ(W), i.e. each F i is a holomorphic germ at u i (x) and d i=1 F i (u i ) = 0 holds identically in the vicinity of x. Then F i = J i • A i for each i, where J i is a generalized iterated integral (with poles and branching points in B i ) and A i an algebraic function. Moreover, the A i 's can be chosen independently of F (hence they only depend on the u i 's).

In addition to the fact that we are not aware of any counter-example to the previous statement, our belief that it indeed holds true is supported by the following result by Aomoto, which has also inspired us the statement of our conjecture: "a global multivalued function on P n is a generalized iterated integral if and only if it has unipotent monodromy and has moderate growth along its branching locus" (see [Ao], Corollaire 1 p. 154).

Aomoto's result suggests an approach to prove Conjecture 1.15: prove that (1) possibly up to precomposition by an algebraic function, the monodromy of F i is unipotent; and (2) each F i has moderate growth at any point of the branch locus B i . A way to get (2) could be to prove that the linear ODE's L i obtained through Abel's method have regular singularities (on the ramified coverings of P 1 on which they live). As for (1), we believe that it is equivalent to the fact that a suitable power of the monodromy operator µ W : π 1 (P n \ Σ(W), x) → A x (W) is unipotent, i.e. there exist two integers N, M ∈ N >0 such that (µ N W -Id) M = 0. In order to prove that such a formula holds true, a first step would be to have an idea of what the integers N and M might be.

Some results of planar web geometry

We gather here some notions and results specific to planar webs that we will use later on in the text, essentially in §5.2. For more details and proofs concerning the material presented below, the general reference we refer to is [START_REF] Pereira | An invitation to web geometry[END_REF]. Another very valuable reference is Blaschke-Bol's classic book in german [BB].

1.6.1 Hexagonality, curvature and flatness. A classical and important notion in planar web geometry is that of 'hexagonality': a planar 3-web W is hexagonal if a walk along its leaves around any given base-point forms a closed hexagon (see [START_REF] Pereira | An invitation to web geometry[END_REF]§1.2

.1]).

A basic result of the theory of webs is that the following conditions are equivalent 33-W is hexagonal;

-W is parallelizable (cf. §1.2.2); -W has maximal rank (namely rk(W) = 1); -W is flat, i.e. its curvature K(W) vanishes identically.

We recall that the curvature K(W) of W is a 2-form canonically attached to it, which is the most basic invariant attached to W (cf. [PP2, §1.2.2]). When x, y are local coordinates such that W = W(x, y, U(x, y)) for a function of two variables U (such that neither

∂ x U nor ∂ y U vanishes), one has K(W) = ∂ 2 xy Log(∂ x U/∂ y U
) dx ∧ dy and there exists a more general but explicit formula for computing K(W) in terms of any 3-tuple of first integrals (see [START_REF] Pirio | Sur les tissus plans de rang maximal et le problème de Chern[END_REF]Theorem 0.3]).

⋆

Interesting features of the notions of hexagonality and of curvature for 3-webs is that they furnish relevant characteristics of planar d-webs for any d ≥ 3: a planar d-web W d is said to be hexagonal if all its 3-subwebs are hexagonal and one defines the curvature of W d , denoted by K(W d ), as the sum of the curvatures of all its 3-subwebs, that is K(W d ) = W 3 <W d K(W 3 ). Since the curvature of a web can be computed effectively, the flatness of W d can easily be checked in practice as soon as a d-tuple of first integrals for this web has been given.

The notions of hexagonality, of curvature and of flatness for d-webs with d ≥ 3 are useful and relevant in many ways. First, as soon as a d-tuple of first integrals of a web W d has been given, its curvature can be computed quite easily (by means of a computer algebra system) hence the fact that W d is hexagonal or flat can be effectively checked. Moreover, these are invariant notions attached to W d and above all, they are meaningful regarding the characterization of planar webs of maximal rank thanks to the following theorems: Theorem 1.16 [START_REF] Bol | Über ein bemerkenswertes Fünfgewebe in der Ebene[END_REF]). Let W be a planar hexagonal d-web. Then one of the two following possibilities occurs, depending on whether W is linearizable or not:

• either W is equivalent to a web formed by d pencils of lines; or

• the web W is not linearizable, in which case d = 5 and W is equivalent to Bol's web B.

Theorem 1.17. 1. Planar webs of maximal rank are necessarily flat.

For linearizable planar webs, flatness is sufficient for ensuring the maximality of the rank.

In the preceding theorem, the first statement is a consequence of Pantazi's characterization of planar webs with maximal rank in [Pa] (discussed and generalized above in §1.5.2). For a linear web, the curvature admits a simple and nice expression, the vanishing of which allows to apply an Abel-inverse type theorem which in its turn implies that the considered web actually is algebraic hence of maximal rank (see §6.3.4 in [PP2] for more details).

1.6.2 Arithmetic invariants. Let us say that a property P of planar webs is 'invariant' when the fact that it is satisfied or not only depends on the equivalence classes of webs which are considered. By their very definition, the linearizability or the algebraizability of a web are examples of such properties. Other examples are hexagonality, or flatness, denoted by Hex and Flat respectively.

There is a very basic recipe to produce arithmetic invariants for webs from a given invariant property P as above. Given a planar d-web W d (with d ≥ 3) and for any k ∈ {3, . . . , d}, one defines P k (W) as the number of k-subwebs of W d satisfying P and one denotes by P • (W d ) the tuple of the P k (W d )'s for k ranging from 3 to d: one has P

• (W d ) = P k (W d ) d k=3 with P k W d = Card W k ⊂ W d W k satisfies P for k = 3, . . . , d .
Given a web W, we denote a bit abusively in the same way the property of being equivalent to it.

Then for any other web W, one denotes by W(W) the cardinal (which can of course be zero) of the set of subwebs of W which are equivalent to W. For instance, in the case when W = B (Bol's web), B(W) stands for the number of 5-subwebs of W which are equivalent to B.

The interest of the invariants obtained as described just above is that they are arithmetic invariants which, for most of them, are easy to compute hence can be useful when dealing with the problem of determining whether two given webs are equivalent or not.

Example 7. For instance, let us consider the case of the Spence-Kummer web W SK which is important in web geometry since it is exceptional and carries trilogarithmic ARs (it will be discussed more in depth further on in §2.2.3.1). By elementary computations, one gets that (48,48,12,11,3,0,[START_REF] Arkani-Hamed | Grassmannian geometry of scattering amplitudes[END_REF] and B W SK = 3 .

Hex ≤6 W SK = (48, 30, 9, 1) , Flat • W SK =
Any planar 9-web with the same invariants can be suspected of being equivalent to W SK .

1.6.3 Linearizability. We recall some results about the characterization of linearizable planar webs. This is classical and well understood for webs of degree bigger than or equal to 4 (cf. [PP2, §6.1] and the references given therein).

Let W be a d-web with d ≥ 3. Then the following equivalence is more or less obvious :

the web W is linearizable ⇐⇒ (1) W is compatible with a projective connection; and

(2) this projective connection is flat.

Condition (1) above is then necessary in order that W be linearizable and whether this condition holds true or not can be verified quite easily. Indeed, assume that the leaves of W are the integral curves of d vector fields X 1 , . . . , X d on a domain U ⊂ C 2 . Without loss of generality (since being linearizable is a local condition), one can assume that each X i is written X i = ∂ x -b i ∂ y for a certain holomorphic function b i (where x, y stand for the standard coordinates on C 2 ). The fact that W is compatible with a projective connection is equivalent to the existence of a 4-tuple (a s ) 3 s=0 ∈ O(U) 4 such that for every i = 1, . . . , d, one has 4 s=0 a s (b i ) s = X i (b i ). Then verifying if condition (1) above is satisfied is only a matter of linear algebra (with coefficients in the field of meromorphic functions on U) and one gets the following well-known and very useful consequence: Proposition 1.18. If d ≥ 4, the web W admits at most one linearization (up to post-composition by a projective transformation).

1.6.4 Poincaré-Blaschke maps. The Poincaré map of a planar web W is a map constructed from its ARs (hence which exists when rk(W) ≥ 3) and which is very useful in order to study W from a geometric and more canonical point of view. Here we will only consider the classical case of 4-webs, which goes back to Poincaré. For more details and references, see [START_REF] Pereira | An invitation to web geometry[END_REF]§4.3.4].

Let u 1 , . . . , u 4 be four holomorphic submersions defining a 4-web W = W(u 1 , . . . , u 4 ) on a domain U ⊂ C 2 . We assume that W has maximal rank 3: there exist three 4-tuples of holomorphic functions f λ = ( f λ i ) 4 i=1 for λ = 1, 2, 3 such that 4 i=1 f λ i (u i ) du i ≡ 0 for any λ and inducing a basis of A(W). For any i = 1, . . . , 4, the map

κ i = f 1 i (u i ) : f 2 i (u i ) : f 3 i (u i ) : U → P 2
is well-defined and is a canonical first integral of the i-th foliation of W. Its image

C i = Im(κ i ) ⊂ P 2
is a smooth analytic curve in P 2 , called the i-th canonical curve of W. Moreover, for any x ∈ U, the four points κ 1 (x), . . . , κ 4 (x) are on a same line ℓ(x) ⊂ P 2 , which can equivalently be seen as a point, denoted by [ℓ(x)], in the dual projective space P2 . By letting x vary within U, one gets the Poincaré-Blaschke map of W, namely

PB[W] : U -→ P2 , x -→ ℓ(x) .
The interest of the objects introduced above is asserted by the following fundamental result, first obtained by Poincaré (but stated by him in another form34 ):

Theorem 1.19.

PB[W] is a local biholomorphism which is invariantly attached to W;

2. Therefore the push-forward

W can = PB[W] * W is a canonical model of W;
3. Actually, W can is linear hence algebraic: it is the web associated to the quartic curve C ⊂ P 2 such that C i Zar = C for any i = 1, . . . , 4.

2 On polylogarithms and their functional equations

In this section, we first introduce the classical polylogarithms in a single variable and discuss their main properties. Then we focus on the functional equations in several variables they satisfy. Even if it is not complete, we give a substantial review of the known such equations and for each of them, we discuss the associated web.

In order to make a (very) slight improvement to the existing literature on the subject and also because we find this interesting, we have mentioned many precise historical references. Following a common practice in the literature on history of sciences, these points as well as some associated historical references are included in many footnotes (contrarily to the mathematical references which all appear in a list at the very end of this text).

As general references about polylogarithms, we refer readers to the books written or edited by Lewin [Lew1] and [START_REF] Lewin | Structural properties of polylogarithms[END_REF], to Zagier's papers [START_REF] Zagier | Polylogarithms, Dedekind zeta functions and the algebraic K-theory of fields[END_REF][START_REF] Zagier | Special values and functional equations of polylogarithms[END_REF][START_REF] Zagier | The dilogarithm function[END_REF]. Another text of general interest on the subject is Zagier's joint paper with Gangl [GZ]. For historical details, an interesting source is [START_REF] Maximon | The dilogarithm function for complex argument[END_REF]§10]. For some modern references dealing more specifically with the functional equations satisfied by polylogarithms, the reader can look at some of the papers by Gangl (for instance [START_REF] Gangl | Families of functional equations for polylogarithms[END_REF] or [START_REF] Gangl | Functional equations for higher logarithms[END_REF]), at the two dissertations [Char] and [Rad] or at the recent preprint [Ru].

As for hyperlogarithms, aka iterated integrals associated to logarithmic rational 1-forms on P 1 , we refer to [Poin] and [La] as classical references. For more modern ones, see [Wec] and the recently published [BPP].

Definition and basic properties

We follows a classical presentation: after having recalled the definition and the main properties, we indicate how all this generalizes to higher polylogarithms.

2.1.1 The logarithm. The story of polylogarithms of course begins with that of the logarithm. 35 This classical function has many nice very well-known features: indeed, the logarithm Log

• satisfies the functional equation: 36

(28) Log(xy) = Log(x) + Log(y) ; 35 The birth of the notion of logarithm is attributed independently to J. Napier and to J. Bürgi, who published tables of logarithms Mirifici logarithmorum canonis descriptio (1614) and Aritmetische und Geometrische Progress Tabulen (1620) respectively. Napier and Bürgi both used (equivalents forms of) (28) to perform some computations and the corresponding property of logarithmic values was immediately incorporated to the 'common knowledge' about logarithms of that time, see e.g. Caput II in H. Briggs' Arithmetica Logarithmica (1624) (cf. here for a modern transcription of Briggs' essay). However, (28) was not seen as a functional equation per se until about 25 years later since the logarithm itself was not truly considered as a function at first. 36 According to D. Gronau, the fact that the logarithm satisfies (28) can already be found in J. Kepler's 'Chilias logarithmorum' (1624), but the we are not convinced. In Propositio CIX of his Opus geometricum (1647) (see also here or §2.4 there for modern expositions), the belgian Jesuit G. de Saint-Vincent establishes that, considered as a function of the abscissa x, the surface area A(x) under the hyperbola y = 1/x satisfies the functional equation A(xy) = A(x) + A(y) which is formally similar to the one satisfied by the logarithm. This leaded G. de Saint-Vincent's student A.A. de Sarasa to establish a little later the integral representation (29) for the logarithm in Solutio problematis a R.P. Marino Mersenno (1649) (see here for a modern exposition of de Sarasa's work). As far as we know, the first formal occurrence of the functional equation ( 28) seems to be on the first page of W. Gardiner's Tables of logarithms (1742).

• admits the following integral representation:

(29) Log(x) = x 1 du u ;
• is such that the following development in series holds true at the origin37 :

(30) -Log(1 -x) = +∞ k=1
x k k ;

• extends as a multivalued holomorphic function on C * , with monodromy around the origin38 

(31)

M 0 Log(x) = Log(x) + 2iπ .
Among all these properties, the functional equation ( 28) seems to be the most fundamental39 : it can be stated only by means of the two most basic operations of arithmetic (addition and multiplication) 40 and suffices to characterize the logarithm Log hence to recover all the properties this function satisfies.

2.1.2 The dilogarithm. The dilogarithm (or bilogarithm) Li 2 is a classical function41 which is nowadays usually defined as the sum following series

(32) Li 2 (z) = +∞ k=1 z k k 2
which is abslolutely convergent on the unit disk D ⊂ C. It appears as a generalization of the logarithm since, in addition of (32) which has to be compared with the development in series (30), it satisfies similar properties to those of the logarithm listed above.

Indeed, the dilogarithm:

• admits the following integral representation

(33) Li 2 (z) = - z 0 Log(1 -u) u du ;
• extends as a multivalued holomorphic function on C \ {0, 1}, with monodromy around the origin and 1 along a small circle oriented in the direct order given by (34)

M 0 Li 2 (z) = Li 2 (z) and M 1 Li 2 (z) = Li 2 (z) -2iπ Log z
• satisfies the following functional equation in two variables with five dilogarithmic terms:

(35) Li 2 (x)-Li 2 (y)-Li 2 x y -Li 2 1 -y 1 -x +Li 2 x(1 -y) y(1 -x) = Log(y) Log 1 -y 1 -x - π 2 6 .
The dilogarithm appears in many domains of mathematics and physics (see [START_REF] Zagier | The dilogarithm function[END_REF] for more perspectives) and is nowadays recognized as one of the most interesting special functions. As for the logarithm, the five-term functional equation above it satisfies seems to be the most important of all of its properties.

Due to its importance and because it has been discovered independently by many mathematicians throughout the XIX-th century (under different but equivalent forms), we think it worthwhile to devote not just a simple footnote, but a whole paragraph to the history of this functional equation.

For more mathematical and historical details on this, the reader can consult the first chapter of Lewin's book [START_REF] Lewin | Polylogarithms and associated functions[END_REF].

A functional equation for the dilogarithm equivalent to (35) seems to have been obtained first by Spence in 1809 (see p. 9 of its essay [Sp] (cf. also [START_REF] Lewin | Polylogarithms and associated functions[END_REF]§1.5.3]). 42 [Hard]).
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The presence of a logarithmic right hand-side in (35) is not (at least) very aesthetic and satisfying and, as first remarked by Rogers in [Rog], actually can be removed by considering some modified versions of the classical Euler's dilogarithm Li 2 . The first example is Rogers' dilogarithm R defined for x ∈]0, 1[ by

(36) R(x) = Li 2 (x) + 1 2 Log(x) Log(1 -x) - π 2 6 .
(Actually, this function is a translation (by substraction of π 2 /6) of the original dilogarithmic function considered in 1907 by Rogers in [START_REF] Rogers | On Function Sum Theorems Connected with the Series Formula Σ ∞ n=1 x n n 2[END_REF][START_REF] Arkani-Hamed | Grassmannian geometry of scattering amplitudes[END_REF], this in order that the RHS of (37) be zero, see §2.2.2.1). It is a dilogarithmic function which satisfies for any x, y ∈ R such that 0 < x < y < 1:

(37) R(x) -R(y) -R x y -R 1 -y 1 -x + R x(1 -y) y(1 -x) = 0 .
There also exist global versions of Rogers' dilogarithm and of equation ( 37): following Dupont [START_REF] Dupont | The dilogarithm as a characteristic class for flat bundles[END_REF], one can extend R as a continuous global map R on R by setting

R(0) = -π 2 /6 , R(1) = 0 and R(x) =              R 1 1-x -π 2 6 if x < 0; R(x) if 0 < x < 1; -R 1 x if x > 1 . 43
It gives rise to a continuous map R : RP 1 = R ∪{∞} → R/((π 2 /2)Z) which is real-analytic except at 0, 1 and ∞ and which satisfies a global real version (modulo π 2 /2) of (37).

Even more popular than R, there exists another global version of the dilogarithm, also real-valued but depending on a complex argument, which is due to S. Bloch and D. Wigner. For z ∈ C \ {0, 1}, it can be proved that the real quantity ( 38)

D(z) = Im Li 2 (z) + Log |z| Log(1 -z)
is well-defined, i.e. is defined unambiguously regarding the choices of the determinations of the complex quanities Li 2 (z) and Log(1z) appearing in (38). Hence setting D(0) = D(1) = D(∞) = 0, one gets the so-called Bloch-Wigner's dilogarithm44 D : P 1 → R which is a single-valued global continuous function on the Riemann sphere, real-analytic on C \ {0, 1}, and satisfies the same relation as (37), but globally that is, for any x and y in P 1 such that the five rational arguments in (37) are well-defined. Actually, thanks to the one variable functional equation D(1/z) = -D(z) which is identically satisfied, the five-terms AFE satisfied by D can be written in the following nice geometric form: for any 5-tuple (p i ) 5 i=1 ∈ (P 1 ) 5 of pairwise distinct points, one has (39) 5 i=1 (-1) i D [p 0 , . . . , p i , . . . , p 4 ] = 0 (where [•, •; •, •] stands for the classical cross-ratio of four points on the projective line).

Remark 2.1. Rogers' dilogarithm (or more rigorously, its extension R considered just above) as well as Bloch-Wigner's function D are two modified real-valued versions of the classical dilogarithm which both enjoy the nice properties of being globally defined and of satisfying the suitable global homogeneous version (that is, without any logarithmic second member) of the 5-terms FE (35).

Actually, these two classical modified dilogarithms both can be obtained from a seemingly more fundamental 'extended (or enhanced) dilogarithm'

(40) R : C → C/Z(2)
first considered by Neumann in [Neu] and slightly improved in [START_REF] Goette | The extended Bloch group and the Cheeger-Chern-Simons class[END_REF]§2] (see also [START_REF] Zagier | The dilogarithm function[END_REF]II.1.B]).

Here C stands for the universal abelian covering of the 2-punctured complex plane C \ {0, 1} 45 and we use the notation

Z(2) = (2iπ) 2 Z hence R has values in C/(4π 2 Z) = R/(4π 2 Z) ⊕ iR.
The map R is holomorphic, satisfies a global version of (35) (cf. [START_REF] Goette | The extended Bloch group and the Cheeger-Chern-Simons class[END_REF]Lemma 2.2]). Moreover it is the complete holomorphic extension of the complexification of the real-analytic function R : ]0, 1[→ R; and its imaginary part coincides with D up to the addition of an elementary function (see formula ( 13) in [GZ]).

In addition to all these nice properties which in our view already justify of considering R as being more fundamental than R or D, it turns out, and this is the very reason why it has been considered by several authors, that R can be used to represent some abstract conceptual objects, namely the universal second Cheeger-Chern-Simmons characteristic class or, equivalently, of the second Beilinson's regulator of K-theory, see e.g. [START_REF] Dupont | Scissors congruences, group homology and characteristic classes[END_REF]Chap. 10] or the Introduction (and in particular diagram (1.13)) of [Zi].

All the facts mentioned above support our opinion that the theory of functional equations of polylogarithms must concern complex analytic versions of such equations, which is in perfect accordance with our approach of these equations, through the geometry of webs.

2.1.3 The classical higher polylogarithms. Considering the classical development in series ( 30) and (32), it is natural to define, for any positive integer n, a function Li n , named the n-th (or the weight n) polylogarithm, by setting

(41) Li n (z) = +∞ k=1 z k k n
for any z ∈ C such that |z|< 1. Then Li 1 (z) = -Log(1-z), and for n = 2 one gets the dilogarithm. 46 The higher polylogarithms are generalizations of the logarithm, which satisfy similar properties to those listed above. Indeed, for n > 1, the n-th polylogarithm Li n :

• admits the following integral representation

(42) Li n (z) = z 0 Li n-1 (u) u du ;
45 The space C can equally be defined as the Riemann surface of the multivalued map z → (Log(z), Log(1z)). Very explicitely, it can be seen as the set of pairs (u, v) ∈ C 2 such that e u + e v = 1 and up this identification, the covering C → C \ {0, 1} is simply given by (u, v) → e u . 46 As far we know, the first appearance of the n-th polylogarithm for n arbitrary is in Landen's 1759 paper (cited in footnote 41) where the development in series (41) as well as the integral representation (42) are explicitly written down (in the second section, page 554). As for the first text essentially devoted to polylogarithms of any order, it seems to be W. Spence's essay [Sp], published in 1809 but long ignored by 19th century mathematicians. For a thorough discussion of Spence work on polylogarithms and especially on its 1809 essay, the reader can consult Polylogarithms, functional equations and more: the elusive essays of William Spence (2013) by D. Craik.

• extends as a multivalued holomorphic function on C \ {0, 1}, with monodromy around the origin and 1 along a small circle oriented in the direct order given by ( 43)

M 0 Li n (z) = Li n (z) and M 1 Li n (z) = Li n (z) -2iπ Log z n-1
(n -1)!

• satisfies many functional equations and in particular the following ones in one variable:

Li n z r = r n-1 w r =1 Li n (wz) for z ∈ C such that |z|< 1 (44) Li n (z) + (-1) n Li n z -1 = - (2iπ) n n! B n Log(z) 2iπ if z ∈ C \ [0, +∞[
(where B n (x) stands for the n-th Bernoulli polynomial).

The two previous FEs are satisfied uniformly in n by the polylogarithms. This contrasts with the case of FE in at least two variables: if many such equations are known (and will be given in Section 2.2 hereafter), it is only for small values of n, typically for n ≤ 5.

A major problem about polylogarithms is to know whether or not they all satisfy FEs in several variables. The actual record for a several variables FE satisfied by (a modified version of) the n-th polylogarithm is n = 7 and has been discovered quite recently by Gangl [Ga3] with the help of a computer. It is an AFE in 2 variables with no less than 274 heptalogarithmic terms.

⋆

Any known functional equation involving Li n can be reduced to a FE of the following form (45)

N j=1 c j Li n u j (x) = P <n (x)
where:

-N is a certain positive integer; x denotes a point of a certain non-void domain in C s , for some s ∈ N >0 ;

-the c j 's are non-zero (rational) constants, for any j = 1, . . . , N;

-the u j 's are non-constant rational functions in s variables (with rational coefficients) for any j;

-P <n (x) stands for a function of the form P Li m 1 (v 1 (x)), . . . , Li m M (v M (x)) where P is a complex -polynomial in M variables, the v k 's are of the same type as the u j 's, and all the m k 's are positive -integers strictly less than n. As it will be clear from the classical (or not) examples that we will consider in Section 2.2.2 below, the known FEs of the form (45) satisfied by polylogarithms become more and more complicated as n becomes bigger and because of the multivaluedness of these functions, are not easy to handle: it is necessary to specify on which domain in C s and for which determination of the polylogarithms appearing in it, the considered FE ( 45) is truly satisfied. This is a source of many complications and in order to bypass the technical difficulties this creates, several authors have introduced (several distinct) modified versions of the polylogarithm Li n (for n arbitrary), which enjoy the properties:

• of being defined as a real-valued univalued functions, on the whole real line R (or on the whole Riemann sphere P 1 ), continuous everywhere and even real-analyticoutside {0, 1, ∞};

• of satisfying clean versions of the FE of the form (45) satisfied by the classical polylogarithms (where 'clean' means: with a trivial, that is constant, second member, instead of the usually non-trivial polylogarithmic expression P <n (x) appearing in the RHS of ( 45)).

In the paragraph below, we review the modified polylogarithms encountered in the existing literature. In the two following paragraphs after it, we introduce some holomorphic modified polyogarithms which are more suitable to deal with holomorphic AFEs.

2.1.4 Modified higher polylogarithms (short review). There are several versions of such modified polylogarithms. Our goal in this paragraph is to review them and to state some of their properties, essentially in regards with the AFE they satisfy.

It will be useful to use the following notation and terminology, for any n ∈ N >0 :

• we set R n (z) = Re (-1) ⌊n/2+1⌋ i n+1 z for any z ∈ C; more concretely, R n stands for the real part Re if n is odd and for the imaginary part Im if n is even;

• by definition, a function F of a real or complex argument a satisfies the 'inversion formula at the order n' if the relation F(a -1 ) = (-1) n-1 F(a) holds true for a generic (in R or C depending on the definition domain of the considered function).

There are two distinct modified dilogarithmic functions: Rogers dilogarithm R, and Bloch-Wigner function D. The latter is a univalued global function on the Riemann sphere P 1 while the former should rather be seen as a function of a real variable. Modified higher polylogarithms have been constructed for each of these two kinds. We first discuss the higher order generalizations of Bloch-Wigner function and then we turn to the modified higher polylogarithms of Rogers' type.

2.1.4.1

The problem of constructing higher-order generalizations of Bloch-Wigner's function is first considered in [Ra] where Ramakrishnan establishes that single valued higher-order versions of D exist. These single-valued polylogarithms have been explicited a few year later by Zagier in [START_REF] Zagier | The Bloch-Wigner-Ramakrishnan polylogarithm function[END_REF] who relates them in [START_REF] Zagier | Polylogarithms, Dedekind zeta functions and the algebraic K-theory of fields[END_REF] to some others (only differing from Ramakrinshan ones by the addition of a power of the logarithm) obtained independently by Wojtkowiak:

• For n ≥ 2, the Bloch-Wigner-Ramakrishnan-Zagier's polylogarithm is the function D n defined by 

D n (z) = R n n-1 s=0 (-1) s s! Log |z| s Li n-s (z) - ( - 
Ł n (z) = R n n-1 s=0 (-1) s s! (Log |z|) s Li n-s (z) - (-1) n n! Log |z| n-1 Log |1 -z | (46) 
for any z ∈ C \ {0, 1}. 49 Wojtkowiak's polylogarithm Ł n is real-analytic and, as Bloch-Wigner dilogarithm, extends as a continuous function on P 1 by setting Ł n (0

) = Ł n (∞) = 0 and Ł n (1) = Li n (1) = ζ(n)
if n is odd, and Ł n (1) = 0 otherwise.

• Also in [START_REF] Zagier | Polylogarithms, Dedekind zeta functions and the algebraic K-theory of fields[END_REF], Zagier introduces another real single-valued version of Li n by setting

L n (z) = R n n-1 s=0 2 s B s s! Log |z| s Li n-s (z)
for z ∈ C \ {0, 1}, where the B s 's stand for the Bernoulli numbers (B 0 = 1,

B 1 = -1/2, B 2 = 1/6, B 3 = 0, B 4 = -1/30, etc.
). This function can be seen too as as a weight n generalization of the classical Bloch-Wigner function D (which coincides with L 2 ). 50The previous functions D n , Ł n and L n are functions of a parameter z ∈ P 1 \ {0, 1, ∞} hence as such, have to be seen as generalizations of Bloch-Wigner's function D to any arbitrary order n.

In [START_REF] Lewin | The order-independence of the polylogarithmic ladder structure -implications for a new category of functional equations[END_REF](16)], Lewin gave a recursive definition of some modified polylogarithms L n which depend on a real argument and which can be seen as higher-order generalizations of Rogers' dilogarithm R. These functions have been made explicit by Zagier in [START_REF] Zagier | Polylogarithms, Dedekind zeta functions and the algebraic K-theory of fields[END_REF] who proved that for n ≥ 2, the value of

L n at x ∈] -1, 1[ is given by (47) L n (x) = n-1 s=0 (-1) s s! Log |x| s Li n-s (x) - (-1) n n! Log |1 -x|• Log |x| n-1 .
By requiring that the relation L n (1/x) = (-1) n-1 L n (x) holds true for any x ∈ R and setting L n (∞) = L n (0) = 0, one gets a function defined on the whole projective line L n :

P 1 R → R. For n = 2, one has L 2 (x) = Li 2 (x) + 1
2 Log(x)Log(1x) when x belongs to ]0, 1[ hence on this interval and up to addition of π 2 /6, Lewin's bilogarithm L 2 coincides with Rogers' one R.

For n odd, one gets a continuous function

L n : P 1 R → [-ζ(n) , ζ(n)
] which is real-analytic, except at -1, 0, 1 and ∞. In this case, L n agrees with the restriction to the real axis of Wojtkowiak's modified polylogarithm Ł n . For n even, L n is real-analytic on R \ {±1} but has a gap at ±1 equal to 2Li n (±1). It follows that, similarly to Rogers' dilogarithm, L n induces a continuous map [START_REF] Lewin | The order-independence of the polylogarithmic ladder structure -implications for a new category of functional equations[END_REF](19)] or [START_REF] Zagier | Polylogarithms, Dedekind zeta functions and the algebraic K-theory of fields[END_REF]p. 412]) is that its derivative admits a quite simple explicit expression involving only rational terms and powers of the logarithm. Indeed, one has

L n : P 1 R → R/ 2ζ(n) 2 n-1 -1 Z . Given n ≥ 2, one interesting property of L n (cf.
L ′ n (x) = (-1) n-1 n(n-2)! Log x n-2 Log(x)/(1 -x) + Log(1 -x)/x for any x ∈]0, 1[.
Since we are most interested in holomorphic objects, we have to mention here that Lewin's polylogarithms naturally give rise to some modified holomorphic polylogarithms, the so-called 'enhanced polylogarithms', denoted by L n here, first considered by Gangl and Zagier in [GZ,§4] and studied again recently by Zickert in [START_REF] Zickert | Polylogarithms, Bloch complexes, and quiver mutations[END_REF]§5.1].

Let Ω be the domain obtained by removing from the complex plane C the two cuts ] -∞, 0] and [1, +∞[. Then the value at z ∈ Ω of the n-th order enhanced polylogarithm is given by

L n (z) = n-1 s=0 (-1) s s! Log z s Li n-s (z) + (-1) n n! Log z n-1 Li 1 (z) .
Of course, one has L n (x) = L n (x) for every x ∈]0, 1[ hence L n can also be defined as the holomorphic extension to Ω of the complexification of the (real-analytic) restriction of L n to ]0, 1[. By analytic continuation, L n gives rise to a global holomorphic map L n defined on the Riemann surface C considered above regarding the case n = 2 (see footnote 45 ). Considered as a multivalued function on C with ramification at 0 and 1, L n has monodromy in ( 2iπ) n (n-1)! Z (see [START_REF] Zickert | Polylogarithms, Bloch complexes, and quiver mutations[END_REF]Thm. 2.2]) hence induces a well defined holomorphic map denoted in the same way

L n : C \ {0, 1} → C/(Z(n)/(n -1)!) generalizing Neumann's dilogarithm (40) to any n ≥ 2.
Remark 2.3. Zagier's polylogarithms appear as the most interesting univalued versions of the classical polylogarithms, not only thanks to the nice properties they satisfy (Theorem 2.4 being by far the most important) but also because they have a motivic origin (cf. [START_REF] Zagier | Polylogarithms, Dedekind zeta functions and the algebraic K-theory of fields[END_REF]p. 415] or [START_REF] Beilinson | Interprétation motivique de la conjecture de Zagier reliant po--lylogarithmes et régulateurs[END_REF]§1.5] for more details). Actually, Zagier's polylog L n can be explicited in terms of the real or imaginary part (depending whether n is odd or not) of the holomorphic enhanced polylogarithm L n and it has been speculated that the latter could give an explicit description of a complex motivic regulator (see §1.2.1 and §1.3.1 in [Zi]) which would be the most fundamental object in all this story. More generally, many of the recent works on polylogarithms are within the framework of motives. One may think that a motivic approach possibly could lead to a better conceptual understanding of the polylogarithmic webs and their ARs.
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The modified polylogarithms mentioned above enjoy some nice properties similar to those satisfied by Bloch-Wigner's or Rogers' dilogarithms: they are globally defined (either on the Riemann sphere, or on the real projective line P 1 R or on the Riemann surface C), they are real and then single-valued, or holomorphic with values well-defined up to a rational multiple of a power of 2iπ, they satisfy simple and explicit first order differential equations (which are expressed in terms of the logarithm and of the modified polylogarithms of the same kind but of a lower order).

But what is in our view the most interesting property these functions verify is that they satisfy the clean version of any FE of the type (45) satisfied by the classical n-th order polylogarithm Li n . More precisely, for any n ≥ 2, assuming that N j=1 c j Li n u j (x) = P <n (x) holds identically for x in a domain U of C s and if L n stands for one of the modified polylogarithms considered above, it is expected that N j=1 c j L n u j = cst. on a Zariski open set of C s intersecting U. These are kind of folkloric results in what concerns polylogarithms and can be found, sometimes in some particular case (e.g. one-variable case) in several references, see the following table:

Modified polylogarithm(s) Reference(s) Remark(s) Ł n , L n [Zag3, Proposition 1] One-variable case D n [Zag3, Proposition 2] One-variable case L n [Zag3, Proposition 3] [O, Théorème 2]
One-variable case Several-variables case L n [START_REF] Zickert | Polylogarithms, Bloch complexes, and quiver mutations[END_REF]Proposition 6.1] Several-variables case

2.1.4.2

We think it is interesting to state a precise result regarding the clean AFE satisfied by modified polylogarithms. We deal with the most popular such polylog, namely Zagier's version L n . 51 First we recall the formalism of §1.4 relatively to the logarithmic pair (P 1 , B 1 ): a word w = w 1 • • • w n in the letters 0 and 1 corresponds to the logarithmic n-differential

form d log(z -w 1 ) ⊗ • • • ⊗ d log(z -w n ) viewed as an element of the n-tensorial product of H B 1 = H 0 (P 1 , Ω 1 P 1 (logB 1 )
). Now given an irreducible algebraic variety V with function field K = C(V), we define Ω 1 K (log) as the space of rational 1-forms on V spanned by the logarithmic differentials d log f = d f / f for f ∈ K. Given u ∈ K and a word w as above, we denote by u * (w) the element

⊗ n i=1 u * (d log(z - w i )) = d log(u -w 1 ) ⊗ • • • ⊗ d log(u -w n ) of Ω 1 K (log) ⊗n .
51 In view of the main purpose of this text, namely the construction of holomorphic AFEs, it would have been more natural and relevant to consider the holomorphic case dealt with in [Zi] (compare the proposition and the corollary of the sixth section of Zickert's paper with Theorem 2.4 and Theorem 2.5 below). But we became aware of Zickert's text quite late when the writing of the present memoir was already well advanced so we have decided to advertise only the case of L n which, moreover, is by far the most popular.

Now assume that n ≥ 2 and let {(c i , u i )} i∈I be a finite collection of pairs of complex numbers c i and of non-constant rational functions u i ∈ K. Denote by H I the vector subspace (of finite dimension)

of

Ω 1 K (log) spanned by the logarithmic 1-forms d log(u i ) = du i /u i and -d log(1-u i ) = du i /(1-u i ) for i in I.
Then for any word w of length n as above, one has u * i (w) ∈ (H I ) ⊗n ⊂ Ω 1 K (log) ⊗n . Theorem 2.4. 1. The following two assertions are equivalent:

(a). a functional equation of the form i∈I c i Li n (u i ) = P <n holds true;

(b). in the tensorial vector space (H I ) ⊗n , one has i∈I c i • u * i 0 n-2 (01 -10) = 0. 2. If (a) and (b) are satisfied, then i∈I c i (Log|u i |) k L n-k (u i ) is constant for any k = 0, . . . , n -2.
In the case when V = P 1 (and therefore K = C(t)), the second part of this result (moreover only for s = 0) has been obtained first by Zagier [Zag3,Prop. 3] who proved it by induction via derivation with respect to the variable t and its conjugate. In full generality, the statement above appears in Oesterlé's survey [O, §4.2] where only the main lines of a proof are sketched, the arguments used to establish 2. being variants of the one used in [START_REF] Zagier | Polylogarithms, Dedekind zeta functions and the algebraic K-theory of fields[END_REF] in the case of P 1 .

This theorem is very helpful to construct ARs for polylogarithmic webs since it indicates that any FE i c i Li n (u i ) = P <n of the form (45) satisfied by the nth-order classical polylogarithm Li n gives rise to n -1 linearly independent 'global and real abelian relations' for the polylogarithmic web W(u i ) defined by the u i 's. When the latter have real coefficients (as it is the case for all the known polylogarithmic functional equations), since all the functions

L n,k : z → (Log|z|) k L n-k (z) (for k = 0, . . . , n -2) are real-analytic, one can (i) first restrict the ('real-valued') AFE i c i L n,k (u i ) = cst.
to the reals; and then (ii) consider the complexification of the latter real-analytic AFE, in order to get a genuine (that is a 'holomorphic') AR for the aforementioned web W(u i ). However, this procedure is obviously not injective since L n,k vanishes identically on R as soon as nk is even, hence one gets a trivial AFE already after step (i) mentioned above.

The preceding considerations show that, if Theorem 2.4 is interesting to construct ARs for polylogarithmic webs, its real nature makes that it is not suitable for this purpose as such. Moreover, no proof of it is available in the existing literature. For these reasons, we give (and prove) below a holomorphic (but local) version of this theorem which is better suited for dealing with polylogarithmic webs.

A holomorphic version of Theorem 2.4.

We use the same notation as above:

K = C(V)
is the function field of V which is irreducible and {(c i , u i )} i∈I stands for a finite collection as in Theorem 2.4. We set u I = (u i ) i∈I and

H I = du i /u i , du i /(1 -u i ) | i ∈ I ⊂ Ω 1 K (log)
. We fix x ∈ V, a regular point for the web W(u I ) defined by the u i 's52 and for every i ∈ I, we set

x i = u i (x) ∈ P 1 .
For any word w = a 1 • • • a n in the two letters 0 and 1, one has

(48) II n x u * i (w) = u * i II n x i (w) = u * i (L i w ) = L i w (u i )
where L i w = L w,x i stands for the (germ at x i of the) iterated integral

L i w (•) = • x i ν a n ⊗ • • • ⊗ ν a 1 ∈ II n x i
with ν 0 = du/u and ν 1 = du/(1u). To state the result we have in mind, we need to consider special polylogarithmic iterated integrals: for any i ∈ I, any n ≥ 2 and k ∈ {0, . . . , n -2}, one sets

L i n = 1 n L i 0 n-2 (01-10) and L i n,k = k! n -k L i 0 k ¡0 n-k-2 (01-10) = (k!) L i 0 k • L i n-k (more explicitly, one has L i n,k (z) = Log(z/x i ) k L i n-k (z) for z sufficiently close to x i in P 1 ). Theorem 2.5. 1. Given a non-zero d-tuple (c i ) d i=1 ∈ C d ,
the following assertions are equivalent: (a). a functional equation of the form i∈I c i Li n (u i ) = P <n holds true;

(b). one has i∈I c i • u * i 0 n-2 (01 -10) = 0 in (H I ) ⊗n ; (c). the sum i∈I c i L i n (u i ) vanishes identically on a neighbourhood of x in V. 2. If the conditions of 1. are satisfied, then i∈I c i L i n,k (u i ) ≡ 0 for any k = 0, . . .

, n -2 and consequently these n -1 AFE's provide as many linearly independant abelian relations for W(u I ).

This result, which is a holomorphic counterpart of Theorem 2.4, is not difficult to prove and is certainly well-known by the specialists of the subject53 . But since we aren't aware of any written proof of it in the literature, we describe below the main lines of an algebraic proof.

Proof (sketch). Before entering into the proof, let us discuss a bit the point (a): it means that a FE of the form ( 45) is satisfied locally at some point of V. By analytic continuation, this implies that this point can be assumed to be our chosen base-point x.

To prove 1., we are going to use standard material about the shuffle product that we recall here (see p. 39 above and also [START_REF] Duhr | From polygons and symbols to polylogarithmic functions[END_REF]§5.4] for some details and references). Given a complex vector space H and n ≥ 2, denote by Im(¡) n the subspace of H ⊗n spanned by all the non-trivial shuffle products (that is by shuffles v 1 ¡v 2 where v i ∈ H ⊗n i with n i > 0 for i = 1, 2 such that n 1 + n 2 = n).

One defines inductively an endomorphism

Π n ∈ End(H ⊗n ) for n ≥ 1, by setting Π 1 = Id H and Π n a 1 ⊗ • • • ⊗ a n = n -1 n a 1 ⊗ Π n-1 a 2 ⊗ • • • ⊗ a n -a n ⊗ Π n-1 a 1 ⊗ • • • ⊗ a n-1 for n ≥ 2 and any a 1 ⊗ • • • ⊗ a n ∈ H ⊗n . 54 For any n ≥ 1, the endomorphism Π n enjoys two properties: first it is a projector, that is Π n • Π n = Π n ;
second, its kernel precisely coincides with the subspace of non-trivial shuffle products, i.e. one has Ker(Π n ) = Im(¡) n as subspaces of H ⊗n .

A key fact to prove the first part of the preceding theorem is that the following identity is satisfied for every u, v ∈ H (the verification of which is left to the reader)

(49) Π n u n-1 v = 1 n u n-2 uv -vu
(where u n-1 v stands for the symbol u ⊗(n-1) ⊗ v, etc.)

We are going to use the preceding algebraic considerations in the case when H = H I . Since this space is formed by closed 1-forms, many of the properties of one-variable hyperlogarithms discussed page 40 admit direct analogues for the (germs of) iterated integrals constructed from H I , see Remark 1.9.3. In particular, for any sufficiently generic x ∈ V, there exists a linear map II x :

H ⊗• I → O x which induces an isomorphism of C-algebras from H ⊗• I onto its image H x = Im II x .
With the preceding considerations at hand, it is then easy to prove 1: first, since S(Li n ) = 0 n-1 1 and because II x is an isomorphism of algebras, we get that an identity of the form i∈I c i Li n (u i ) = P <n holds true identically at x if and only if i∈I c i u * i (0 n-1 1) belongs to Im(¡) n . When this indeed holds true, it follows from the properties of Π n recalled just above (namely Im(¡) n = Ker(Π n ) and ( 49) that one has

i∈I c i u * i Π n (0 n-1 1) = i∈I c i u * i 0 n-2 (01 -10)) = 0 in H ⊗n I , which gives us that (a) implies (b). Conversely, for any u, v ∈ H, one has u n-1 v -u n-2 (uv -vu) = u n-1 v -Π n (u n-1 v) ∈ Im(¡) n since Π n is a projector onto Im(¡) n ,
which allows to deduce easily (a) from (b) (details left to the reader). That (b) and (c) are equivalent follows immediately from the fact that II x : H ⊗n I → H n x is an isomorphism. This proves that the three points of the first part of Theorem 2.5 are equivalent.

We now assume that the three equivalent conditions of 1. hold true. Then from (48), it follows that

i∈I c i L i n (u i ) ≡ 0 at x. Set w n = 0 n-2 (01-10) (whose pull-back under u i coincides with S L i n (u i ) for any i ∈ I). Then, according to Lemma 1.10, for any permutation σ ∈ S n , since u * i (w n ) σ = u * i (w σ n ), one has i c i u * i (w σ n ) = 0 in H ⊗n I hence the sum i∈I c i L i w σ n (u i
) vanishes identically as well on a neighborhood of x. Now for k ∈ {0, . . . , n -2}, since 0 k ¡ 0 n-2-k (01 -10) is the sum of the permuted symbols (0 n-2 (01-10)) σ for σ ∈ k ¡(n-k) (cf. ( 18) and the whole paragraph it is in), it

follows that L i n,k = σ∈k¡(n-k) L i w σ n
for each i ∈ I, from which it comes that i∈I c i L i n,k (u i ) ≡ 0 for any k ≤ n -2. From the fact that the n -1 functions L i n,k 's are linearly independent for any i ∈ I (according to Proposition 2.7 below), it follows that the ARs corresponding to these functional identities are linearly independent as well, which concludes the proof of the theorem.

Remark 2.6. Assuming that the equivalent assertions of the first point of the previous theorem hold true, we deduce from Theorem 6.2.1.1 that Zagier's single valued polylogarithm L n satisfies the functional relation i∈I c i L n (u i ) = cst. globally on (a certain Zariski open subset of) V. It is natural to wonder whether this last condition does not imply the symbolic relation

i∈I c i u * i [0 n-1 (01 -10)] = 0 in return.
In the unpublished text [Ru], Rudenko proves that it is indeed the case when V = P 1 . We expect that this holds true in full generality.

2.1.6

The modified holomorphic polylogarithms L n . We now discuss the modified holomorphic polylogarithms appearing in the statement of Theorem 2.5.

Let ζ be a generalized base point on P 1 \ {0, 1, ∞}: either ζ belongs to this set or ζ is the tangent vector ∂/∂x at the origin, denoted by 0 (see the last paragraph page 40). ≥ 2, since 0 n-2 01 -10 = n • 0 n-1 1 -0 n-2 1 ¡ 0, one has for any n ≥ 2 andany z ∈ 

By definition, L

Ω: L 0 n (z) = γ z 0 1 n • 0 n-2 01 -10 = Li n (z) - 1 n Li n-1 (z) • Log(z)
(note that the second equality follows after the regularization process used to deal with iterated integrals with base point a tangent vector, cf. page 40).

More interesting, especially in view of Theorem 2.5, is the case when ζ belongs to P 1 \ {0, 1, ∞}.

To simplify, we assume that ζ belongs to Ω too. Then for z sufficiently close to the latter, one set

γ z ζ = γ z 0 • γ 0 ζ where γ 0 ζ stands for (γ ζ 0
) -1 . Thanks to the concatenation formula (see ( 21) in [BPP]), it comes:

n • L ζ n (z) = γ z ζ 0 n-2 01 -10 = n • L 0 n (z) + L 0 0 n-2 0 (z) γ 0 ζ 1 -L 0 0 n-2 1 (z) γ 0 ζ 0 + n k=2 L 0 0 n-k (z) γ 0 ζ 0 k-2 (01 -10) = n • L 0 n (z) + Li n-1 (z) Log(ζ) + Log(z) n-1 (n -1)! Log(1 -ζ) + n-2 s=0 Log(z) s s! γ 0 ζ 0 n-s-2 (01 -10) .
On the other hand, from [START_REF] Banks | Multiple zeta values in deformation quantization[END_REF](13)], it follows that for any k ≥ 2:

γ 0 ζ 0 k-2 (01 -10) = (γ ζ 0 ) -1 0 k-2 (01 -10) = (-1) k γ ζ 0 0 k-2 (01 -10) (where we note w = w n • • • w 1 for any word w = w 1 • • • w n ), hence γ 0 ζ 0 k-2 (01 -10) = (-1) k • ℓ k (ζ) - ζ 0 ℓ k-1 (u) u du with ℓ k (z) = L 0 10 k-1 (z) = z 0 Log(u) k-1
(1-u)(k-1)! du for every k ≥ 1 and every z ∈ Ω. By direct computations, for any such k and z, one gets:

ℓ k (z) = k-1 s=0 (-1) k-1-s 1 s! Log(ζ) s • Li k-s (ζ) and ζ 0 ℓ k-1 (u) du u = k-2 s=0 (-1) k-s (k -1 -s) s! Log(ζ) s • Li k-s (ζ) , thus γ 0 ζ 0 k-2 (01 -10) = k s=0 (-1) s+1 (k -s) s! Log(ζ) s • Li k-s (ζ) .
Collecting everything, we get:

L ζ n (z) = Li n (z) - 1 n Li n-1 (z) Log z ζ + 1 n n-1 k=0 Log(z) k k! κ k n (ζ) with κ k n (ζ) =        n-k s=0 (-1) s+1 (n-k-s) s! Log(ζ) s Li n-k-s (ζ) if k < n -1 Log(1 -ζ) if k = n -1.
It is then straightforward to obtain that, for n ≥ 2 and any z ∈ Ω, one has:

(50) L ζ n (z) = Li n (z) - 1 n Li n-1 (z) • Log z ζ - 1 n n-1 k=0 n -k k! Log z ζ k • Li n-k (ζ) .
For instance, for n = 2 and n = 3 and z ∈ Ω, one has :

L ζ 2 (z) = Li 2 (z) -Li 2 (ζ) + 1 2 Log z ζ • Log (1 -ζ)(1 -z) (51) L ζ 3 (z) = Li 3 (z) -Li 3 (ζ) - 1 3 Log z ζ • Li 2 (z) + 2Li 2 (ζ) + 1 6 Log z ζ 2 • Log(1 -ζ) .
From formula (50), it follows that L ζ n can be characterized as the unique weight n iterated integral at ζ written

L ζ n (z) = Li n (z) - 1 n Li n-1 (z) • Log z ζ + n-1 k=0 A ζ k Log z ζ k for some complex constant A ζ k uniquely determined by the fact that L ζ n (z) = O((z -ζ) n+1 ) at ζ.
Finally, it is not difficult to establish that L ζ n admits a development in series at ζ of the form

(52) L ζ n (z) = k≥n+1 P n,k (ζ) N n,k (z -ζ) k ζ k-1 (ζ -1) k-n+1 ,
for some universal constants N n,k ∈ Z * and some universal polynomials

P n,k (ζ) ∈ Z[ζ],
both of which can be made explicit easily (this is left to the reader).

⋆

Theorem 2.5 shows that, with regard to the AFEs it satisfies, the function L n does not come alone but with the other weight n iterated integrals

L ζ n,k (for k = 0, . . . , n -2) defined by L ζ n,k (z) = Log z/ζ k L ζ n-k (z) for z sufficiently close to ζ. Proposition 2.7. The functions L ζ n,k 's (for k = 0, . . . , n -2) are linearly independant (over C).
Proof. For k = 0, . . . , n -2 and z sufficiently close to ζ in P 1 , one sets

L 0 n,k (z) = Log(z) k • L 0 n-k (z) = Li n-k (z) - 1 n -k Li n-k-1 (z) • Log(z) • Log(z) k
for some fixed determinations of the classical polylogarithms at ζ. Since the L ζ n,k 's are weight n iterated integrals, the proposition is equivalent to the fact that their symbols S(L

ζ n,k ) = (k!) • 0 k ¡ 0 n-2-k (01 -10) are linearly independent. But as L 0 n,k and L ζ n,k
have the same symbol for any k, it thus suffices to prove the corresponding statement for the former functions, which we are going to establish by induction below.

Let n be bigger than 2 and assume that, as a holomorphic germ at ζ, one has n-2 k=0 c k L 0 n,k ≡ 0 for some constant c 0 , . . . , c n-2 ∈ C. Since all the functions involved extend as multivalued holomorphic functions on the complex plane with ramifications at 0 and 1, the same equation holds true in the space of such functions. Expanding n-2 k=0 c k L 0 n,k in powers of Log(z) with holomorphic functions at the origin as coefficients, it comes immediately that c 0 = 0. Hence one has

0 ≡ n-2 k=1 c k L 0 n,k = Log(z) n-3 k=0 c k+1 L 0 n-1,k which implies 0 ≡ n-3 k=0 c k+1 L 0 n-1,k .
Using the induction hypothesis, one deduces that all the c k 's are trivial which ends the proof.

Regarding FEs, Theorem 2.5 applies in particular when the u i are rational functions in a single variable. For instance, for any n ≥ 2, we get that the classical functional equations in one variable (44) satisfied by Li n take the following form for the modified polylogarithms L n : for any ζ ∈ P 1 \ {0, 1, ∞}, any z sufficiently close to ζ and for any positive integer r, one has

(53) L ζ n (z) + (-1) n L 1/ζ n z -1 = 0 and L ζ r n z r = r n-1 w r =1 L wζ n (wz)
and these relations are satisfied as well when replacing L n by L n,k , for any k = 0, . . . , n -2.

⋆

The fact that L Proof. Let x be a regular point for the d-web W I defined by the u i 's: this means that all the u i 's are defined at x and that du i ∧ du j (x) 0 whenever the indices i and j are distinct (in other terms, W I satisfies (wGP) at x). From a property satisfied by the virtual rank (see 3. in the list of properties listed in §1.3.4 ), it follows that ρ σ

x (W I ) = 0 for any integer σ ≥ d -1. Now assuming that the functional equation d i=1 c i Li n (u i ) = P <n holds true, it follows from Theorem 2.5 that d i=1 c i L i n (u i ) = 0 (as a holomorphic germ at x). This functional relation can be seen as an AR for W I which is of valuation n + 1 at x since each L i n has valuation n + 1 at u i (x) for any i = 1, . . . , d and because not all the c i 's are equal to 0 (otherwise the considered functional equation (E) would be trivial). It follows that ρ n+1

x (W I ) > 0. Combining this with the result stated at the end of the preceding paragraph, we get that n + 1 < d -1, which proves the proposition.

We think that, under the assumptions of the preceding proposition, one can actually get the better bound d ≥ 2n + 1, as suggested by the following argument, which we believe is very likely.

Consider the following statement for n ≥ 2 fixed and any ζ ∈ P 1 \ {0, 1, ∞}:

(54)
there exists a non-trivial linear combination L L

ζ n = n-2 k=0 δ n,k L n-k,k , for some coefficients δ n,k ∈ C, which is of valuation 2n -1 at ζ.
Assume that this statement holds true for ζ generic. Then given a generic point x: (1) this point is a regular point for the web W I ; and (2) the points

ζ i = u i (x) (for i = 1, . . . , d) are generic points of P 1 . It follows that the functions L L i n = L L ζ i n have valuation 2n -1 at ζ i for each i, hence the functional equation d i=1 c i L L i n (u i ) = 0 provides an AR of valuation 2n -1 at x for W I .
Arguing as in the proof of Proposition 2.8, one deduces from this that one necessarily has d ≥ 2n + 1.

We have verified that ( 54) is satisfied (for any ζ in P 1 \ {0, 1, ∞}) for n from 2 to 15, hence for those values, one has d ≥ 2n + 1 in the conclusion of Proposition 2.8. Actually, for each explicit value of n we have dealt with, normalizing the δ n,k 's by requiring that δ n,n-2 = (-1) n , we have found that the other coefficients δ n,k 's are uniquely determined integers which moreover do not depend on ζ. This is a strong evidence for believing that (54) indeed holds true for any n ≥ 2 and any ζ. By way of examples, we give below the sequences δ n = (δ n,k ) n-2 k=0 for n from 3 to 9: Remark 2.9. Using the OEIS, we have verified that the following formulas hold true for n ≤ 15:

δ 3 = (6, -1) δ 4 = (
• δ n,0 = (2n -3)!/(n -2)! (cf. sequence A000407 of the OEIS) ; • δ n,n-3 = (-1) n-1 3(n -2)(n + 1)/2 (cf. sequence A140091 of the OEIS).
We conjecture that they hold true for n ≥ 3 arbitrary. More generally, it would be interesting to understand better the other integer values δ n,k 's and ideally, to have closed formulas for them. That this holds true seems very likely but the direct approach we tried to follow using the power series representations (52) led us to a combinatorial problem which requires some work to be solved. We plan to come back to this in a future paper.

Since all the L n-k,k 's have valuation n + 1 at ζ, ( 

Some polylogarithmic functional equations and the webs associated to them

We now consider some explicit polylogarithmic functional equations and study the webs associated to them from the point of view of their ARs and of their rank. Some of the polylogarithmic FE we consider are quite classical and well-known, some others are either quite less popular or more recent. The number of such equations appearing in the literature is huge and it is not the point here to make a complete survey on the topic. We have considered either the classical polylogarithmic FEs or some others, either classical too but not very well known, or quite recent, but which in any case give rise to interesting webs in terms of their rank.

Our presentation below mainly follows the chronological order of appearance of these polygarithmic identities in the literature. Our main references here are the books by Lewin on polylogarithms, Zagier's and Gangl's papers already cited above, and the two recent dissertations [Char, Rad].

Polylogarithmic AFEs in several variables are known only when the weight w is not too big. There are plenty of examples for the dilogarithm (w = 2), some of them very classical, others quite more recent. Then the number of known polylogarithmic identities decreases drastically as the weight increases. As we write these lines, the current record is in weight w = 8 and is due to Radchenko. Classical examples of polylogarithmic identities are known up to weight 5: the classical record is due to Kummer in 1840 who gave an identity involving 33 pentalogarithmic terms. Starting from weight 6, the few known polylogarithmic AFEs involve far more terms (several hundreds typically) and have been discovered much more recently (by Gangl and Radchenko), via a formal algebraic approach implemented on a computer. ⋆

Due to the complexity of the recently discovered polylogarithmic AFEs (in particular all those in weight w ≥ 6), we will not consider most of them below. Rather, we will mainly focus on polylogarithmic AFEs involving only some dozens of terms, typically in weight 2 and 3: the webs associated to those AFEs are relatively easy to study, we have a sufficient number of them and these are already interesting from the point of view of web geometry.

Almost all the results stated about the polylogarithmic webs we consider below have been obtained by brute force computations, using the formal algebraic methods discussed above (see the last paragraph of §1.4 page 46 and §1.5 as a whole).

Notation for functional equations

Abelian functional equations satisfied by polylogarithms can be quite complicated, especially when the weight of the polylogarithm involved is high (already for n ≥ 3, say). Everytime it is possible and reasonable, we have chosen to write down the considered AFE as explicitly as possible. When this will not be possible anymore, we will use some standard notation to write down functional identities in a concise way, that we review here.

In what follows, n stands for a fixed integer bigger than or equal to 2. We denote by S n the permutation group on {1, . . . , n} and by ε : S n → {±1} the associated signature morphism.

To simplify, we assume here that F is the field of rational functions in n variables. Then Z[F] stands for the free Z-module freely spanned by the set of symbols [ f ] with f ∈ F. Set theoretically, it is the set of linear combinations i∈I n i [u i ] with n i ∈ Z and u i ∈ F for any i in I, the latter set being finite by assumption. Then given a function F (defined on a certain domain of P 1 ), we will say that i∈I n i [u i ] is an AFE satisfied by F if the sum i∈I n i F(u i ), considered as a function on a non-empty domain of P n on which it is well-defined, is constant. If a bit unprecise, since it does not require to specify either the domain on which this identity holds true or the corresponding constant, this notation is very useful and will be sufficient for us. With this notation in mind, setting

[Ab] = [x] -[y] - x y - 1 -y 1 -x + x(1 -y) y(1 -x) ∈ Z C(x, y) ,
the 5-term dilogarithmic identity (37) will be denoted by R([Ab]) = 0 or even just by [Ab] = 0 itself if we keep in mind that this identity concerns Roger's dilogarithm R.

⋆

We recall the definition of the operators of (anti)symmetrization of a function of several variables (considered e.g. in [Rad]) which prove to be useful for writing down in concise form certain functional identities satisfied by polylogarithms involving an important number of terms.

Let Φ be a function of n variables. Then for any σ ∈ S n , we denote by Φ σ the function x → Φ(x σ ) where we have set x σ = (x σ(i) ) n i=1 for any n-tuple of (real or complex) numbers x = (x i ) n i=1 . Then, one denotes by Sym n (Φ) (resp. Alt n (Φ)) the symmetrization (resp. the anti-symmetrization) of Φ:

Sym n (Φ) = σ∈S n Φ σ and Alt n (Φ) = σ∈S n ε(σ)Φ σ .
With this notation, the symmetric form (39) on Conf 5 (P 1 ) ≃ M 0,5 (which is birational to the projective plane P 2 ) of the 5-terms relation for the dilogarithm has the very condensed form

0 = Alt 5 [r 1 ] ,
where r 1 stands for the rational function on M 0,5 given by [(p 1 , . . . , p 5 )] → [p 1 , p 2 ; p 3 , p 4 ] where [•; •] : M 0,4 → P 1 \ {0, 1, ∞} is the usual cross-ratio of four points on the projective line.

2.2.2 Functional equations of the dilogarithm. If some FEs for weight n polylogarithms are known for n up to 8, it is for the case n = 2, that is for the dilogarithm, that the theory as well as a important number of examples are the most developed. Here we give a short review of many interesting dilogarithmic identities. References are in numbers for such AFEs: in addition to the general references given above, one can mention [START_REF] Kirillov | Quantum field theory, integrable models and beyond[END_REF].

It is by now well known that the theory of cluster algebras is a source of many interesting dilogarithmic identities. We will not touch upon this here since it will be discussed in more detail, from a web-theoretic perspective, in Section 3. In it, the reader will find many series of examples and references about dilogarithmic identities within the theory of cluster algebras.

2.2.2.1 Notation for dilogarithmic functions. Several distinct (but related) versions of Roger's dilogarithm are used in this text and in particular in the present section. We first give below their definition and then recall some properties of these functions and also how they are related.

Here are the notations for the different variables we use in this paragraph:

x stands for a real number in ]0, 1[; u denotes an element of R >0 =]0, +∞[; -ζ is a fixed arbitrary element of P 1 , distinct from 0, 1 or ∞; and z refers to a complex number sufficiently close to ζ.

By definition, the original Roger's dilogarithm R is the function of x defined by

R(x) = Li 2 (x) + 1 2 Log(x) Log(1 -x) ;
It is sometimes useful to use the following translated version R of this function, defined by

R(x) = Li 2 (x) + 1 2 Log(x) Log(1 -x) - π 2 6 ;
The (B -1 )or cluster Rogers' dilogarithm R is the function of u defined by:

R(u) = 1 2 u 0 Log(1 + v) v - Log(v) 1 + v dv ; Finally, the 'ζ-localized Roger's dilogarithm R ζ is the function of z defined by R ζ (z) = - 1 2 z ζ          Log 1-σ 1-ζ σ + Log σ ζ 1 -σ          dσ .
The three functions R, R and R ζ (we leave R out since it is just a translation of R) are weight 2 iterated integrals with formally the same symbol. Indeed, setting ω ξ 0 = dξ/(ξ -ξ 0 ) for any ξ 0 ∈ C, and writing for short ξ 0 ξ 1 for ω ξ 0 ω ξ 1 for any ξ 0 , ξ 1 ∈ C, one verifies that:

-R is the iterated integral with symbol (01 -10)/2 and tangential base point 0 (cf. page 40);

-R is the iterated integral with symbol (0(-1) -(-1)0)/2 and tangential base point 0; and -R ζ is the iterated integral with symbol (01 -10)/2 and base point ζ.

We now indicate in which way the previous functions are related. First, we note that generalizing the definition of R ζ by allowing tangential base-points, one can write R = R 0 . The functions R, R and R are related by simple functional identities: for any x and u as above, one has

R(x) = R(x) -π 2 /6 and R(u) = R u 1 + u .
For any x ∈]0, 1[, the following formula (already known by Abel, see [START_REF] Abel | Note sur la fonction ψ(x) = x + x 2 2 2 + x 3 • • • + x[END_REF]) also holds true:

R(x) = -Li 2 (-x) - 1 2 Log(x) Log(1 + x).
Finally, we recall the following expression of R ζ in terms of classical polylogarithms (see ( 51)):

R ζ (z) = Li 2 (z) -Li 2 (ζ) + 1 2 Log z/ζ • Log (1 -ζ)(1 -z) .

2.2.2.2

The five-term functional equation of the dilogarithm and Bol's web. This paragraph is about the by far most famous and well-known polylogarithmic functional equation, the socalled 'five-terms' or 'Abel's' functional equation. It has already been written down above (when introducing the dilogarithm, see §2.1.2) but due to its importance, we discuss it again below.

Even if the AFE below satisfied by R has been obtained by Rogers, we will call it 'Abel's relation' for the dilogarithm since this name is one of the two which are the most commonly used nowadays (the other being the 'five terms relation'):

(Ab) R(x) -R(y) -R x y -R 1 -y 1 -x + R x(1 -y) y(1 -x) = 0 .
This identity holds true for any real numbers x, y such that 0 < x < y < 1.

To (Ab) one associates the web defined by the rational functions appearing as arguments of R in it. One gets a planar 5-web on P 2 , which could be denoted by W Ab and named Abel's 5-web W Ab , but which is better known in web geometry as Bol's web and noted accordingly by B:

W Ab = B = W x , y , x y , 1 -y 1 -x , x(1 -y) y(1 -x) .
This web has been named after Bol since he was the first to recognize it (in 1936) as an example of an exceptional (that is, of maximal rank but non algebraizable) web. For the anecdote, W Ab was actually first considered by Blaschke in [Bla, §4], but as an example of a planar 5-web of almost maximal rank 5. This was wrong, as observed three years later by Bol in [START_REF] Bol | Über ein bemerkenswertes Fünfgewebe in der Ebene[END_REF]: Blaschke had precisely forgotten to consider the AR of W Ab associated to (Ab)!

Bol's web is hexagonal and all his ARs are logarithmic, except the one associated to Abel's relation (Ab). In other terms, one has

Hex 3 B = 10 and polrk • B = (5, 1) .

Bol's web is of great importance in web geometry. Historically, first of all, it has been the single known example of an exceptional web for almost 70 years. Second, mathematically, in addition to being exceptional, it is characterized by a nice and simple criterion55 and it can be obtained in several natural geometric ways: it is the 5-web on the moduli space M 0,5 admitting as first integrals the five forgetful maps f i : M 0,5 → M 0,4 ≃ P 1 \ {0, 1, ∞}; moreover it is Segre's 5-web of the anticanonical model in P 5 of the compactification M 0,5 which is a Del Pezzo surface of degree 5. Finally, Bol's web has a kind of 'universality property' for planar 5-webs. 56All these properties make Bol's web B a fundamental object in web geometry, which is very likely related to the fact that its most important abelian relation (the dilogarithmic one) seems to be one of the most fundamental polylogarithmic functional equations. What is still a mystery is what a conceptual explanation about why and how these two facts are related could be.

2.2.2.2.1

Due to its importance in what concerns dilogarithmic functional equations, it is natural to look for a conceptual understanding of Abel's identity. This has been obtained by many authors, from several points of views. Among others, we list some of these below:

-In [GM], Gelfand and MacPherson have constructed geometrically Bol's web and the real version of Abel's relation by means of integration along the fibers (corresponding to quotienting by the diagonal action of Cartan subgroups) of invariant differential forms on real grassmannians representing some characteristic classes (namely the Pontryagin classes);

-In their 'quest for higher logarithms', Hain and MacPherson have recovered in [HP] (an holomorphic and multivalued version of) (Ab). They used multivalued holomorphic forms on (zariski open-subsets of) complex grassmannians and were motivated by the possibility of constructing this way kinds of 'universal Chern classes';

-In [START_REF] Goncharov | Chow polylogarithms and regulators[END_REF], motivated by the construction of 'regulators' in K-theory (for function fields of algebraic varieties) and by means of integral transforms, Goncharov constructs currents on spaces of effective cycles in any projective space P n in general position with respect to a simplex L ⊂ P n . In particular, he gets a real-analytic function P 2 defined on the space of generic effective 1-cycles in P 3 , that he calls the 'Chow dilogarithm'. The latter satisfies a certain geometric functional equation with 5 terms on the space of generic effective 2-cycles in P 4 which gives (a global real-analytic version of) Abel's five-terms relation when restricted to the subvariety formed by linear 2-cycles (that is, 2-planes) in P 4 . In the 7-th section of [START_REF] Goncharov | Chow polylogarithms and regulators[END_REF] is sketched the construction of a corresponding (complex) analytic Chow dilogarithm which satisfies the corresponding (holomorphic version) of Abel's relation (Ab);

-In some of their papers, Kerr and Lewis return on Goncharov's work, correcting and clarifying some points. Recently with Lopatto in [KLL], they have translated into the simplical setting some complex analytic constructions (namely, Abel-Jacobi maps for higher Chow groups) previously given in a 'cubical setting' by the first two authors (also with Müller-Stach). The main results obtained in [KLL] are two 'Reciprocity laws' for algebraic cycles on smooth (quasi-)projective varieties that are both used in the fifth section to derive two holomorphic versions of the five-terms relation for the dilogarithm (see formulas (5.2) and (5.5) in loc. cit.).

It would be very interesting to better understand the links between the approaches listed above and the webs associated to polylogarithmic AFEs. It is not impossible that any such functional equation (or at least, many of these) could be explained by means of a family of cycles lying in the kernel of a certain Abel-Jacobi map. As we are writing this, this has been only obtained for Abel's dilogarithmic identity (Ab) and also, but in a less satisfactory way, for Spence-Kummer equation of the trilogarithm (see the end of §2.2.3.1 further). If true in general, this would place (at least some) polylogarithmic webs and the classical algebraic webs associated to algebraic curves on a very similar footing. This is a research direction that we find particularly worthwhile.

Newman's six-terms functional equation (N 6 ).

In [New] (see also [START_REF] Lewin | Polylogarithms and associated functions[END_REF]§1.6]), Newman establishes that the bilogarithm Li 2 satisfies the following clean functional equation57 

(N 6 ) 2 Li 2 (x)+2 Li 2 (y)+2 Li 2 (z)-Li 2 x+y-xy -Li 2 x+z-xz -Li 2 y+z-yz = 0
which holds true as soon as the real variables x, y, z have absolute value in ]0, 1[ and satisfy the relation

(55) 1 x + 1 y + 1 z = 1 ⇐⇒ xy + xz + yz -xyz = 0 .
Then one defines Newman's web W N 6 as the planar 6-web defined by the six rational first integrals appearing as arguments of Li 2 in (N 6 ) (up to substraction of 1 for the last three, in order to get nice formulas for these):

W N 6 = W x , y , z , (1 -x)(1 -y) , (1 -x)(1 -z) , (1 -y)(1 -z) .
Of course here and in what follows, the variables x, y and z are assumed to verify the algebraic relation ( 55). Solving the latter with respect to x and y, and considering new variables u, v defined by the relations x = u and y

= u(1-v) v(1-u) , one has z = -u(1-v)
1-u and one gets a presentation of (a web equivalent to) Newman's 6-web defined by rational first integrals expressed as products of powers of simple affine functions of u and v:

(56) W N 6 ≃ W u , uv, u v , u(1 -v) v(1 -u) , - u(1 -v) 1 -u , u(1 -v) 2 v(1 -u) 2 .
Newman's web has maximal rank: it admits a basis of its space of abelian relations formed by six linearly independent logarithmic ARs; two non-colinear dilogaritmic ARs (one of which being the one associated to (N 6 )); the rational AR corresponding to the relation (55) which is assumed to be identically satisfied; and a last AR which is the one associated to the following functional relation

A u v -A(uv) -A u(1 -v) 2 v(1 -u) 2 = 0
which is identically satisfied by the function A : u → Arctanh( √ u) on the set of pairs (u, v) of real numbers u and v such that 0 < u < v < 1. We will see later on in §5.1.2 that W N 6 is equivalent to the cluster web of type B 2 . 58Here is a list of some invariants of Newman's web:

(57) Hex W N 6 = 8, 0, 0, 0 Flat W N 6 = 8, 6, 0, 1 polrk • W N 6 = 6, 2 .
2.2.2.3.1 Newman's web is a specific element of an interesting 1-dimensional family of webs which all carry a dilogarithmic AFE which is a deformation of Newman's equation (N 6 ). Indeed, for any complex parameter λ ∈ C, we consider the web

W N 6,λ = W X , Y , Z , XY , XZ , YZ
where the variables X, Y and Z are assumed to satisfy X + Y + Z -XYZ = 2λ (note that the latter relation is preserved by the symmetry (X, Y, Z) → (-X, -Y, -Z) from which it comes that W N 6,-λ is isomorphic to W N 6,λ for any parameter λ). For λ = 0 and λ = ± 1, one gets webs which are isomorphic to the initial Newman's web: one recovers W N 6 from W N 6,1 by means of the change of variables X = x + 1, Y = y + 1 and Z = z + 1, whereas it requires a transcendental change of variables to get W N 6 from W N 6,0 , see [START_REF] Lewin | Polylogarithms and associated functions[END_REF]p. 134]. More generally, it can be verified that W N 6,λ has maximal rank (that is, rank equal to 10) only for λ = 0, -1, 1 whereas it has (almost maximal) rank 9 for any complex parameter λ distinct from any of these three particular values.

For any λ ∈ C, one denotes by

λ ± = λ ± √ λ 2 -1 the two roots of the trinomial u 2 -2λu + 1 = 0 (which coincide if and only if λ = ±1). Then (58) L 2,λ (•) = • 0 log u 2 -2λu + 1 u du = • 0 log(u -λ + ) u du + • 0 log(u -λ -) u du
is a weight 2 iterated integral on the punctured complex plane C \ {0, λ + , λ -}. Then as proved by Newman (see again [START_REF] Lewin | Polylogarithms and associated functions[END_REF]p. 134]), there is a 1-dimensional family of dilogarithmic AFEs

(N 6,λ ) 2 L 2,λ (X)+2 L 2,λ (Y)+2 L 2,λ (Z)-Li 2 (XY)-Li 2 (XZ)-Li 2 (YZ) = 2 π 2 -arccos(λ) 2 ,
(at least for any λ in the real interval [0, 1], but this certainly holds true for any parameter λ ∈ C).

The identity (N 6,λ ) can be seen as a deformation of Newman's equation (N 6 ) since the latter is equivalent to (N 6,1 ) (and to (N 6,1 ) as well). Finally, here is a list of some invariants of deformed Newman's web W N 6 ,λ when λ ∈ C \ {±1 , 0 }:

(59) Hex W N 6 ,λ = 7, 0, 0, 0 Flat W N 6 ,λ = 7, 3, 0, 0, 0 polrk • W N 6 ,λ = 6, 2 .

⋆

The function L 2,λ has been considered for the first time by Hill (compare (58) with the function denoted by D α x in [Hi]). It is a particular case of a class of functions recently introduced by Nakanishi in [START_REF] Nakanishi | Quantum generalized cluster algebras and quantum dilogarithms of higher degrees[END_REF] (see also [START_REF] Nakanishi | Rogers dilogarithms of higher degree and generalized cluster algebras[END_REF]§3]), the so called 'generalized (Euler) dilogarithms'. This author has proved (cf. [START_REF] Nakanishi | Rogers dilogarithms of higher degree and generalized cluster algebras[END_REF]Theorem 4.5]) that to any period in a 'generalized cluster algebra' (a notion introduced by Chekov and Shapiro in [CS]) is associated a functional equation satisfied by the corresponding generalized Rogers dilogarithm. Since (N 6 ) corresponds to the case of the (classical) cluster algebra of type B 2 /C 2 , one can wonder whether or not, for any parameter λ ∈ C, the deformation (N 6,λ ) of (N 6 ) is a generalized dilogarithmic identity associated to a period in a generalized cluster algebra (see §3.3.2 below for a definition of webs associated to a period of a classical cluster algebra). This will be discussed again at the end of this memoir, in §8.3.2.5.

2.2.2.3.2

In addition to being a specific element of an interesting 1-dimensional family of AFEs, Newman's equation (N 6 ) has another interesting property: it admits an equivalent formulation in terms of a two-variables hypergeometric function which is quite intriguing and has been unnoticed before (as far as we know).

Denote by F the third Appell's hypergeometric function F 3 (x,y) = F 3 (a 1 ,a 2 ,a 3 ,a 4 ;c,x,y) when the parameters are specialized as a 1 = • • • = a 4 = 1 and c = 3. The main result of the note [Sanc] is the following formula relating the two-variables function F to a dilogarithmic expression

1 2 xy F(x, y) = Li 2 (x) + Li 2 (y) -Li 2 (x + y -xy) ,
which holds true identically assuming that the absolute value of the arguments of 1x, 1y and (1x)(1y) be less than π. Then, up to the previous relation and still assuming that (55) holds true, Newman's equation (N 6 ) is equivalent to the following functional identity in two variables

(60) xy F(x, y) + xz F(x, z) + yz F(y, z) = 0
for the hypergeometric function F. We didn't see any functional equations of this kind in the literature about multivariable hypergeometric functions we have looked at. It would be interesting to know if ( 60) is truly new and to have a conceptual understanding of it within the theory of hypergeometric functions.

Mantel's dilogarithmic functional equation.

In his 1898 paper [Mant] (see also [START_REF] Kirillov | Quantum field theory, integrable models and beyond[END_REF]§1.6] or p. 17 and p. 394 in [START_REF] Lewin | Structural properties of polylogarithms[END_REF]), Mantel establishes that the following identity

Li 2 (x) + Li 2 (y) -Li 2 (v) -Li 2 (w) + Li 2 v x + Li 2 v y (61) + Li 2 w x + Li 2 w y -Li 2 vw xy = - 1 2 Log 2 - x y
holds true as soon as the four real variables x, y, v, w are assumed to satisfy identically the relation

(1 -v)(1 -w) = (1 -x)(1 -y).
Under this condition, one gets Mantel's web

W M = W x , y , v , w , v x , v y , w x , w y , vw xy
that we see as a 9-web in the three variables x, y and v (thus with

w = 1 -(1 -x)(1 -y)/(1 -v)).
By direct computations, one verifies that

ρ • W M = (6, 3, 1) and polrk • W M = (9, 1)
from which it comes that this web is AMP and has all his ARs polylogarithmic. Some geometric properties of Mantel's web (its symmetries, its definition in terms of configurations of points on the projective line) are discussed by Zagier in [START_REF] Zagier | Special values and functional equations of polylogarithms[END_REF]§2.3.3]. From this, one deduces easily that Mantel's web coincides with the Y-cluster web of type A 3 which will be introduced and studied in the third part of this memoir.

Since the term appearing in the RHS of ( 61) is also a weight 2 iterated integral (but a trivial one in a certain sense, since it is a square of a weight 1 such integral), it is natural to wonder about the 'complete web' W c M = W M ∪ W(x/y) associated to (61), obtained from W M by adjoining to it the foliation defined by the the first integral appearing as argument of the logarithmic term. Again by direct computations, one gets

ρ • W c M = (7, 4, 1) and polrk • W c M = (10, 2)
thus this web is AMP with polylogarithmic ARs as well.

2.2.2.5 Rogers' multivariable dilogarithmic functional equations. In his paper [Rog], Rogers did not only obtain the clean version (37) of the dilogarithmic five-terms relation but actually has established a whole series of such functional equation, one in m variables with m 2 + 1 dilogarithmic terms, for any m ≥ 1. We follow the concise presentation of [START_REF] Zagier | The dilogarithm function[END_REF] below (see [START_REF] Lewin | Polylogarithms and associated functions[END_REF]§1.7] for a more explicit treatment).

Let f (t) = m i=1 1x i t -1 be a degree n polynomial without constant term (thus none of the x i 's is equal to 0). Given an indeterminate y, one denotes by ζ 1 , . . . , ζ n the n roots of f (t) = y viewed as algebraic functions of the x i 's and of y. Then there exists a constant C such that the following identity holds true:

R(m) m i=1 m j=1 Li 2 x i ζ j = Li 2 (y)+C .
To this identity is attached the web defined by the m 2 + 1 algebraic first integrals appearing in it:

W R(m) = W y , x i ζ j i, j = 1, . . . , m .
Actually, there is a subtlety in the definition of this web. Indeed, the constant C in the preceding identity is equal to -π 2 /6 + i, j Li 2 (x i /x j ) (cf. [Lew1, §1.7]) hence the quantities x i /x j appearing as arguments of the bilogarithm in it should a priori be considered as first integrals as well for the web naturally associated to (R(m)). However, since the reciprocal x j /x i of each such term also appears in the summation formula for C, these terms compensate each others thanks to the inversion formula (44). But each such compensation actually holds true up to linear combinations of terms of the form log(x i /x j ) k with k = 0, 1, 2. Hence, thanks to Theorem 2.5, the genuine dilogarithmic AFE truly associated to W R(m) is not (R(m)) itself, but the associated identity for Rogers' dilogarithm

(62) m i=1 m j=1 R x i ζ j -R(y) = cst.
(For another remark on this, see the case m = 3 discussed below).

For m = 2, R( 2) is (equivalent to) the five terms relation thus W R( 2) is (equivalent to) Bol's web.

The case m = 3 has been explicited in [GM] (see p. 434 in it, where it is proved that the associated dilogarithmic functional equation can be obtained from several copies of Abel's five terms relation). The web associated to R( 3) is

W R(3) = W a, b, c, u, v, abc, ac u , bc v , av u , bu v
where the variables a, b, c and u, v are assumed to satisfy the two following relations:

av(1 -bc) + bu(1 -ac) = uv(1 -ab) and v(1 -a) + u(1 -b) = 1 -abc .
After some computations, one gets

ρ • (W R(3) ) = (7, 4, 1) , polrk • (W R(3) ) = (10, 1) and rk(W R(3) ) = 11.
Thus, if this web has polylogarithmic ARs, it is not AMP since its rank is ρ(W R( 3) ) minus 1 (one could say that it is of 'almost AMP rank'). Note that the equality polrk 2 (W R( 3) ) = 1 shows that the AFE ( 62) is the unique weight 2 polylogarithmic AR of W R(3) and that this web does not carry any dilogarithmic AR a component of which is the classical bilogarithm Li 2 . Indeed, otherwise we would have polrk 2 (W R( 3) ) > 1 according to Lemma 1.10.

2.2.2.6

Maier's dilogarithmic 8-web. In [Mai], Maier has established a functional equation which turns out to correspond to a dilogarihtmic identity, see [MW]. Indeed, in the latter paper, the authors explain how to get the following functional identity59 in three independent variables x, y and z for Rogers dilogarithm

R(x) = Li 2 (x) + Log(x)Log(1 -x)/2 -π 2 /6
from two copies of the five-term relations:

(M 8 ) R(x)+R(y)+R y(x -1) 1 -y +R x(y -1) 1 -x -R(z)-R xy z -R xy(z -1) z -xy -R z -xy z -1 = 0 .
To this identity, one associates the following 8-web in three variables

W M 8 = W x , y , y(x -1) 1 -y , x(y -1) 1 -x , z , xy z , xy(z -1) z -xy , z -xy z -1 whose invariants are: ρ • (W M 8 ) = (5, 3, 1) (thus ρ(W M 8 ) = 9
) and polrk • W M 8 = (8, 1). It follows that W M 8 is AMP with only weight 1 or 2 polylogarithmic ARs.

2.2.2.6.1 From [MW], one can deduce a nice geometric (that is coordinate free) construction of W M 8 which will prove to be useful later on page 89 to compare this web with another one.

Let B be Bol's web viewed geometrically as the web W( f 1 , . . . , f 5 ) on the moduli space M 0,5 defined by the five forgetful maps f i : M 0,5 → M 0,4 ≃ P 1 \{0, 1, ∞}. Taking other but independent copies of these objects, denoted by B ′ , M ′ 0,5 and f ′ i for i = 1, . . . , 5, one can define the 'fiber product of B and B ′ over M 0,4 or more precisely, with respect to a pair ψ = ( f i , f ′ i ′ ) of two rational first integrals, one for each web'. This fiber product will be denoted by B × ψ B ′ .

To explain the construction, we assume that ψ = ( f 5 , f ′ 5 ) and one denotes by π (resp. by π ′ ) the projection of the product M 0,5 × M ′ 0,5 onto its first (resp. its second) factor. Then by definition, the fiber product B × ψ B ′ is the restriction to the hypersurface Σ ψ cut out by

f 5 • π = f ′ 5 • π ′ , of the product web B × B ′ = π * (B) ∪ (π ′ ) * (B ′ ).
In other terms, one has

B × ψ B ′ = W f i • π , f ′ i ′ • π ′ , f 5 • π i, i ′ = 1, . . . , 4 Σ ψ .
Since two foliations of the 10-web B × B ′ have been identified in order to define B × ψ B ′ , it comes that the latter is a 9-web defined on a space of dimension 3. It is easy to show that (wGP) is satisfied, and also that B × ψ B ′ does not depend on (i) the chosen pair ψ = ( f i , f ′ i ′ ), and on (ii) the identification between the target spaces of the components of ψ neither. Then denoting by F (ψ) the foliation defined by the restriction of f i • π on Σ ψ (which, by definition, coincides with that of f ′ i ′ • π ′ ), we let the reader verify that (up to equivalence) Maier's web is nothing else but the 8-web obtained by removing F (ψ) from B × ψ B ′ , i.e. one has:

W M 8 ≃ B × ψ B ′ \ F (ψ) = W f j • π Σ ψ , f ′ j ′ • π ′ Σ ψ j, j ′ = 1, . . . , 5 , j i, j ′ i ′ .
2.2.2.7 Some recent dilogarithmic identities. Starting from the late 1980s, it has been gradually realized that dilogarithmic identities naturally arise in several domains of mathematics, such as number theory (the K-theory of number fields more precisely), some integrable systems coming from mathematical physics, hyperbolic geometry, and also and rather systematically within the theory of cluster algebras.

We present below some dilogarithmic identities obtained recently within these different contexts, with the exception of that of the cluster algebras, which will be studied more systematically further on. We only discuss some identities which we have found interesting from the point of view of web geometry. By no means the lines below constitute a complete overview of the subject.

2.2.2.7.1

The algebraic symbolic approach to deal with functional equations of polylogarithms (cf. §1.4 and more specifically §2.1.5 above) can be traced back to Bloch (see [START_REF] Bloch | Applications of the dilogarithm function in algebraic K-theory and algebraic geometry[END_REF] and also [START_REF] Bloch | Higher regulators, algebraic K-theory, and zeta functions of elliptic curves[END_REF]Cor. 6.2.2]) for the dilogarithm and has been formalized and generalized to any weight by Zagier, in relation with a conjecture of its own about the K-theory of number fields, see e.g. [START_REF] Zagier | Polylogarithms, Dedekind zeta functions and the algebraic K-theory of fields[END_REF][START_REF] Zagier | The dilogarithm function[END_REF]. Among many other things, this led to the following generalization of Rogers' multivariables dilogarithmic functional equation (see [START_REF] Zagier | The dilogarithm function in geometry and number theory[END_REF]) 60 , which is more convenient to state using Bloch-Wigner dilogarithm D (which, it should be recalled, is defined at every point of the Riemann sphere P 1 ). Let ϕ ∈ C(x) be a sufficiently generic rational function of positive degree m > 0. Then for z generic in P 1 , setting ξ = ϕ(z), one has ( 63)

z 1 ∈ ϕ -1 (1) z 0 ∈ ϕ -1 (0) z ∞ ∈ ϕ -1 (∞) D [z, z 1 , z 0 , z ∞ ] = m D(ξ) .
This formula being identically satisfied with respect to z and the coefficients of ϕ, it can be seen as a (global and real) AR on the (m 3 + 1)-web defined on the space of pairs (z, ϕ) (which is of complex dimension 2m + 2) by the projection (z, ϕ) → z and the m 3 algebraic first integrals

(z, ϕ) → [z, z 1 , z 0 , z ∞ ] ∈ P 1 with z 1 ∈ ϕ -1 (1), z 0 ∈ ϕ -1 (0) and z ∞ ∈ ϕ -1 (∞).
In the case when ϕ is assumed to be a polynomial, ϕ -1 (∞) is reduced to ∞ (but with multiplicity m), the summation over ϕ -1 (∞) in ( 63) is trivial and one recovers Rogers' equation R(m). Since the web associated to the latter is not AMP for m = 3, we suspect that the same holds true for the web associated to (63) for any m ≥ 3.

2.2.2.7.2 Another class of dilogarithmic identities are related to certain integrable systems coming from mathematical physics (Y-systems associated to the 'Thermodynamic Bethe Ansatz' in CFT/QFT, see [FS] or [START_REF] Kirillov | Quantum field theory, integrable models and beyond[END_REF] for more background and references).

The first important result within this field from our perspective has been obtained in [FS] (and also independently and almost at the same time in [START_REF] Gliozzi | Thermodynamic Bethe ansatz and three-fold triangulations[END_REF]) where Frenkel and Szenes have proved in type A n for any positive integer n, some previously conjectured results. In particular, they have established that (an equivalent form of) the following identity with n(n + 3)/2 dilogarithmic terms ( 64)

n i, j=1 |i-j|≥2 R [x i , x i+1 , x j , x j+1 ] = (n -3) π 2 6
holds true for any x 1 , . . . ,

x n+3 ∈ R listed modulo n + 3 (i.e. x n+4 = x 1 , x n+5 = x 2 , etc.)
For n = 2, (64) corresponds to the five terms relation ( 39) whereas when n = 3, it is equivalent to the dilogarithmic identity for Rogers dilogarithm R associated to Mantel's functional equation ( 61). For n arbitrary, the identity (64) has been obtained again, with no reference to any previous work, first by Bridgeman in [START_REF] Bridgeman | Orthospectra of geodesic laminations and dilogarithm identities on mo--duli space[END_REF] (see also [START_REF] Bridgeman | Identities on hyperbolic manifolds[END_REF]§5.2]) in relation with the theory of hyperbolic surfaces and more recently in [Sou] where Soudères proves that for any n ≥ 2, the identity (64) can be obtained as a linear combination of the classical five-terms relation.

The relation (64) can be seen as an AR for a web in n variables defined by the n(n + 3)/2 crossratios appearing as arguments of R in it. This web will be interpreted in the next part as the 'Y-cluster web of type A n ', denoted by YW A n , and will be proved to be AMP with only polylogarithmic abelian relations of weight less than or equal to 2 (cf. Theorem 6.1 below).

2.2.2.7.3

The fact that volumes in hyperbolic geometry can in some cases be written in terms of values of polylogarithmic functions is quite classical (at least in the case of surfaces) and has been recognized as a source of dilogarithmic identities (see [BT] for a nice survey).

The known such identities in the case of hyperbolic surfaces, one due to Bridgeman [START_REF] Bridgeman | Orthospectra of geodesic laminations and dilogarithm identities on mo--duli space[END_REF], the other to Luo and Tan [LT], are not of 'finite type' in general, in the sense that they involve an infinite summation of dilogarithmic terms. Hence these identities can be seen as kind of ARs for some webs defined on moduli spaces of hyperbolic surfaces of certain types, but webs constitued of an infinite number of foliations. As far as we know, the unique dilogarithmic identity with a finite number of terms which can be deduced in the case of hyperbolic surfaces is (64) which appears as the specialization of Bridgeman's identity (which is of infinite type in general) to the case of an ideal hyperbolic n-gon (compare equations ( 1) and ( 6) in [START_REF] Bridgeman | Orthospectra of geodesic laminations and dilogarithm identities on mo--duli space[END_REF]).

Remark 2.10. Actually in [START_REF] Bridgeman | Orthospectra of geodesic laminations and dilogarithm identities on mo--duli space[END_REF], Bridgeman obtains (64) as a very particular case of a more general dilogarithmic identity with infinitely many terms. Namely, given any hyperbolic surface S with finite area and geodesic boundary endowed with a geodesic lamination λ, one has

(65) i L 1 cosh 2 (ℓ i /2) = π 2 12 6χ(S ) -N λ ,
where the summation is carried over the 'λ-orthospectrum', N λ stands for the number of so-called 'λ-cusps', with L denoting the function defined by L(x) = Li 2 (x) + 1 2 Log|x| Log(1x) for x ≤ 1. In general, the orthospectrum is a countable set hence the sum in (65) is infinite. This identity, called 'Bridgeman orthospectrum identity', can be seen as an abelian relation for the infinite web defined by the ℓ i 's, these quantities being considered as analytic functions on a suitable moduli space of hyperbolic surfaces endowed with a geodesic lamination.

Several other identities of this kind exist within the theory of hyperbolic surfaces, e.g. 'Mac-Shane' or 'Luo-Tan' identities (see [BT] for a general overview) and all might be interpreted as ARs for some infinite webs. It would be interesting to begin a more systematic study of these identities from the perspective of web geometry but we leave this aside for future works (possibly by others). We only mention that identities as (65) are similar by several aspects, to conjectural identities which might be obtained as semiclassical limits of certain quantum dilogarithmic identities we will say a few words about in the very last part of this memoir (see §8.6.5 more precisely).

⋆

The case of hyperbolic 3-folds is more interesting than the case of surfaces for the purpose of getting (finite) dilogarithmic identities. We refer to [START_REF] Gliozzi | Thermodynamic Bethe ansatz and three-fold triangulations[END_REF][START_REF] Neumann | Volumes of hyperbolic three-manifolds[END_REF] and to [START_REF] Zagier | The dilogarithm function[END_REF] for more details on what follows.

We can trace back to Lobatchevsky the fact that the volume of an ideal tetrahedron τ in the hyperbolic 3-space H 3 is expressed as the value of a dilogarithmic function (Bloch-Wigner function D more precisely) evaluated at the cross-ratio of the four ideal vertices v 1 (τ), . . . , v 4 (τ) of τ viewed as four elements of ∂H 3 ≃ P 1 . Now given a hyperbolic threefold M of finite volume (possibly with cusps and/or a geodesic boundary) endowed with an ideal triangulation T , its volume is expressed as

Vol(M) = n i=1 D [v 1 (τ i ), . . . , v 4 (τ i )]
where the summation is over all the tetrahedra τ 1 , . . . , τ n of T .

Then, considering this identity on the moduli space of triangulated hyperbolic 3-folds (M ′ , T ′ ) with Vol(M ′ ) = Vol(M) and T ′ combinatorially equivalent to T gives a dilogarithmic AFE (with only a finite number of terms). An interesting explicit example which has been worked out by Zagier in [Zag5, II.2.C], is the join of a m-gon with a n-gon for any two integers m, n ≥ 3. This case gives rise to the following identity

Z(m, n) j=1,...,m k=1,...,n R (y k -y k+1 )(x j -x j+1 ) (y k -x j )(y k+1 -x j+1 ) = N m,n π 2 6
satisfied for any real numbers x 1 , . . . , x m and y 1 , . . . , y n (with x m+1 = x 1 and y n+1 = y 1 ), where N n,m stands for an integer which depends on m, n and on the relative position of the x i 's and the y j 's on the real axis. To Z(m, n) is naturally associated the following web

W Z(m,n) = W (y k -y k+1 ) (y k -x j ) (x j -x j+1 ) (y k+1 -x j+1 ) j = 1, . . . , m k = 1, . . . , n
which is then a mn-web in m + n variables. 61 By means of direct computations, we have verified that the following equalities

ρ • W Z(m,n) = (m-1)(n-1)+2, m+n-3, 1 , ρ W Z(m,n) = mn+1 , polrk • W Z(m,n) = mn, 1
hold true for any m, n ≤ 12 and we conjecture that it is actually the case in full generality. If true, the W Z(m,n) 's form another family of AMP webs with only weight 1or 2 polylogarithmic ARs.

2.2.2.7.4 Finally, we mention the new family of dilogarithmic identities obtained recently by Bytsko and Volkov in [BV] and discuss some properties of the web associated to each of them.

In the lines below: n stands for an integer bigger than or equal to 4, T n denotes the set of 3-tuples (a, b, c)

∈ N 3 such that 1 ≤ a < b < c ≤ n and one sets d n = 2|T n |= 2 n 3 = n(n -1)(n -2)/3. Let N +
n be the space of totally positive upper-triangular n × n unipotent matrices. There exists an explicit rational map (see [BV, 

Lemma 1]) R n 2 -→ M n (R) , x = (x i j ) 1≤i< j≤n -→ M(x) which induces a bijection between the set of 'positive' x ∈ R n(n-1) 2
(that is x = (x i j ) with x i j > 0 for any i < j) and N + n (cf. [START_REF] Berenstein | Parametrizations of canonical bases and totally positive matrices[END_REF]Prop. 1.7]). Thus N + n is a smooth submanifold of N n , and the x i j 's, named the Jacobi coordinates', form a global system of coordinates on it. Then Bytsko and Volkov consider two families Y abc (M) and Y abc (M) indexed by the elements of T n , of ratios of products of generalized minors of M ∈ N + n , which behave nicely with respect to two involutions M → M ′ and M → M ′′ defined on N + n . One of the main results of [BV] is that the following identity holds true uniformly on N + n :

BV(n) : (a,b,c)∈T n R Y abc - (a,b,c)∈T n R Y abc = 0 ,
where R stands for the cluster dilogarithm defined above in §2.2.2.1.

This can be seen as a dilogarithmic AR for what we call the n-th Bytsko-Volkov web

W BV(n) = W Y abc , Y abc 1 ≤ a < b < c ≤ n
which can be seen as a web in the Jacobi coordinates x i j , hence a web in n 2 = n(n-1)/2 variables. The W BV(n) 's form a family of webs which seem to be interesting in what concerns their rank and their abelian relations. Indeed, some explicit computations for the small values of n lead us to conjecture that the following formulae hold true for any n ≥ 4:

ρ • W BV(n) = d n -n-1 2 , n-1 2 , 1 and polrk • W BV(n) = d n , 1 .
61 Let us mention that the relation Z(m, n) is also satisfied when m = 2 for any n ≥ 2 but in this case there is no threefold involved and the foliations defined by the rational first integrals appearing in the definition of W Z(m,n) do not satisfy the 'weak general position' assumption discussed in §1 hence there is no interesting web to deal with. Note also that thanks to the projective invariance of the cross-ratio, the web W Z(m,n) (for any m, n ≥ 3) can easily be seen as the pull-back of a mn-web in m + n -3 variables.

If true (and we have verified that it is indeed the case for n ≤ 9), this would imply that the W BV(n) 's form a series of AMP webs with only logarithmic and dilogarithmic ARs.

The case n = 4 is interesting and completely explicited in [START_REF] Bytsko | Totally positive matrices and dilogarithm identities[END_REF]§2]. The authors prove that BV(4) can actually be written as the following identity involving only three variables x, y and z (which can be written explicitly in terms of the Jacobi coordinates x i j ):

BV ′ (4) : R x 1 + y + R y 1 + x + R z(1 + x + y) (1 + x)(1 + y) + R xy (1 + x + y)(1 + z) -R x 1 + z -R z 1 + x -R y(1 + x + z) (1 + x)(1 + z) -R xz (1 + x + z)(1 + y) = 0 .
This shows that W BV(4) actually is the pull-back of the web in three variables, denoted by W ′ BV(4) , defined by the rational functions appearing as arguments of R in the previous identity. It is natural to wonder if something similar holds true for any n ≥ 4. The conjectural equality

ρ 1 (W BV(n) ) = d n -n-1
2 and the fact that this is indeed the case when n = 4 leads us to believe that, for any n ≥ 4, W BV(n) might be a pull-back of a d n -web W ′ BV(n) in only n-1 2 variables. For n ≤ 10, we have computed the intrinsic dimension of W BV(n) and verified that it indeed coincides with n-1 2 . ⋆

Another interesting property of the webs W BV(n) (and possibly of the W ′ BV(n) 's if they exist) is that they all are defined by first integrals which are positive (or substraction-free) real rational functions. Since this is a property that the cluster webs we will study in the next part all satisfy as well, it would be interesting to know whether or not Bytsko-Volkov's webs are webs associated to periods of some cluster algebras (one period and one clusters algebra for each n).

2.2.2.7.5

We remark that the functional equations (BV ′ (4)) just above and Maier's (M 8 ) are formally similar since both are written as the sum of four dilogarithmic terms minus the sum of four others. In addition to this, the fact that both associated webs W ′ BV(4) and W M 8 are AMP with only polylogarithmic ARs and have the same invariants ρ • and polrk • naturally makes us wonder whether these two webs are equivalent or not.

As it happens, these two webs are equivalent. To verify this, one starts by noticing that Bytsko-Volkov web when n = 4 can be decomposed into the union of two disjoint 4-subwebs, each of intrinsic dimension 2: one has

W ′ BV(4) = W ′ 4 ⊔ W ′′ 4 with W ′ 4 = W x y + 1 , z(1 + x + y) (x + 1)(y + 1) , z 1 + x , xz (1 + x + z)(y + 1) and W ′′ 4 = W xy (1 + x + y)(z + 1) , y 1 + x , x z + 1 , y(1 + x + z) (1 + x)(z + 1) . Now introducing to pairs of new coordinates, (a, b) = (-x/(y + 1), -(1 + x)/z) for W ′ 4 and (α, β) = (-x/(z + 1), -(1 + x)/y) for W ′′ 4 , one has W ′ 4 = W -a , a -1 b , a b -1 , - 1 b and W ′′ 4 = W α β -1 , - 1 β , -α , α -1 β
After some easy polynomial eliminations, one arrives to the following relation between the four variables a, b, α, β:

ab a + b -1 = αβ α + β -1 . Since W ′ 4 ⊔ F (ab/(a + b -1)) = W(-a, (a -1)/b, a/(b -1), 1/b, ab/(a + b -1)
) is equivalent to Bol's web (and similarly for W ′′ 4 ⊔ F (αβ/(α + β -1)), one can deduce from this the same geometric construction of W ′ BV( 4) by means of a fiber product of two copies of Bol's web as that of Maier's web W M 8 given at the end of §2.2.2.6. This proves our claim that W ′ BV(4) and Maier's 8-web are equivalent. In particular, this implies that the functional equation (BV ′ (4)) is just Maier's one but written in some other coordinates.

2.2.2.8 Some remarks about dilogarithmic AFEs. To conclude our discussion of dilogarithmic functional equations, we would like two discuss them from the perspective of being AMP which is the new (albeit elementary) concept of web geometry we introduce in this memoir. When elaborating this text, we have considered a fairly large number of webs carrying dilogarithmic ARs. This led us to observe a certain phenomenon that could well be verified in a rather general way and that we are going to discuss quickly now.

It is convenient here to use the formalism of webs. Recall that an AR of a web W is said to be • proper if it cannot be obtained as a linear combination of ARs of proper subwebs of W;

In particular, such an AR is necessarily complete, i.e. none of its components is trivial;

• dilogarithmic if when you choose certain first integrals W, its components are dilogarithmic functions, i.e. multiples of weight 2 iterated integrals with symbol S(R) = 1 2 (01 -10). The study of many webs carrying dilogarithmic ARs led us to state the following "ρ 3 -dilogarithmic conjecture": Let W be a web carrying a proper dilogarithmic AR. Then (1).

IntrDim(W) ≥ 3 =⇒ ρ 3 (W) > 0 and ρ σ (W) = 0 for any σ ≥ 4.

(2). polrk 2 (W) = 1 =⇒ ρ 3 (W) = 1 and ρ σ (W) = 0 for any σ ≥ 4.

We first remark that the hypothesis that W carries a non-trivial dilogarithmic AR (not necessarily assumed to be proper) implies quite directly that ρ 3 (W) > 0. Indeed, assuming that this web is defined by first integrals u i : Ω → C on a domain Ω of V = C m with m ≥ 2, our assumption is that for ω ∈ Ω generic (in particular such that ω i = u i (ω) be distinct from 0 or 1 for every i = 1, . . . , d), there exist some complex constants c 1 , . . . , c d ∈ C (not all trivial) such that the AFE (E) : d i=1 c i R i (u i ) ≡ 0 holds true in the vicinity of ω * (cf. Theorem 2.5.2). Here for each i, R i stands for the iterated integral centered at ω i with symbol S(R i ) = (01 -10)/2, that is explicitly

R i (u) = 1 2 u ω i          log(1 + τ) -log(1 + ω i ) τ - log(τ) -log(ω i ) 1 + τ          dτ .
For any i, let ℓ i be the linear form on V corresponding to the differential du i (ω) of u i at ω via the standard identification V * ≃ T * ω V. Now since for any i = 1, . . . , d, one has

R i (u) = -(u -ω i ) 3 12 ω 2 i (1 + ω i ) 2 + O (u -ω i ) 4 at ω i , it comes that R i (u i ) = -(ℓ i ) 3 /(12 ω 2 i (1 + ω i ) 2 ) + O((ℓ i ) 4
) at ω for every i which, together with the AFE (E) gives us that the c i 's are such that the identity d i=1 c i /(12 ω 2 i (1 + ω i ) 2 ) (ℓ i ) 3 = 0 holds true in Sym 3 (V * ). Since some of the c i 's are non zero, this gives us that ρ 3 (W) ≥ 1 as claimed.

It follows that what the "ρ 3 -dilogarithmic conjecture" actually is about is the fact that ρ σ (W) = 0 for σ ≥ 4 in both cases, and that ρ 3 (W) is precisely equal to 1 in case (2). Let us discuss briefly both cases of this conjecture:

• The condition IntrDim(W) ≥ 3 of (1) is assumed to disregard the case of planar webs which seems to be quite particular. For instance, Newman's 6-web W N 6 (which is equivalent to the cluster web

W B 2 of type B 2 , see §5.1.2 below) carries a proper dilogarithmic AR but is planar hence ρ • (W B 2 ) = (4, 3, 2, 1) so in particular ρ 4 (W B 2 ) = 1 > 0.
If the latter web has maximal rank (i.e. is AMP), one can consider the cluster web W G 2 of type G 2 to get one which is not: it is a planar 8-web (thus ρ • (W G 2 ) = (6, 5, 4, 3, 2, 1)) carrying a proper dilogarithimic AR. However, it has rank rk(W G 2 ) = 14, strictly less than ρ(W G 2 ) = 21 (cf. §5.1.3) hence this web is not AMP;

• As for (2), we must admit that we don't really have any idea why this could be true in full generality. We have just remarked that it is satisfied on all the examples of webs considered in this text which satisfy the aforementioned conditions. Thus, it seems to be satisfied by all the dilogarithmic webs considered above (moreover, all these webs seem to be AMP, at the likely exception of the webs W R(m) for m ≥ 3), but it is also satisfied by many of the Y-cluster webs that we will consider in the next section.

To conclude our discussion of the above conjecture, it seems to us that, if true, it accounts for some existing links between two kinds of '(multi)linear relations' associated to the first integrals defining the considered dilogarithmic web. To make the discussion simpler, we specialize as follows the notation introduced in the paragraph immediately following the statement of the conjecture: now Ω is a Zariski open subset of V = C m , the u ′ i s are assumed to be rational and ω stands for the generic point of V. Then, to the d-tuple (u i ) d i=1 of elements of C(V) = C(x 1 , . . . , x m ) defining W are associated two kinds of relations, which can be said of (multi)linear nature since they all hold (or not) in some complex vector spaces:

• the first are relations in C(V) × ∧ C(V) × of the following form, for some scalar constants c i :

(66)

d i=1 c i u i ∧ (1 -u i ) = 0 ;
• the second are identities in Sym σ (V * ), for each σ ≥ 1, of the following type (67)

d i=1 κ σ i ℓ i σ = 0
for some scalars κ σ i ∈ C (we recall that for any i = 1, . . . , d, ℓ i stands for the linear form on V corresponding to the the differential of u i at ω (via the natural identification V * ≃ T * ω V)). We have seen above in the paragraph just following the statement of the conjecture, that there are links between these two kinds of relations. It would be interesting, and the 'ρ 3 -dilogarithmic conjecture' goes into this direction, to understand better how are identities (66) and ( 67) related for any d-tuple of functions (u 1 , . . . , u d ) defining a web carrying a proper dilogarithmic AR.

Trilogarithmic functional equations.

We discuss now some of the AFEs satisfied by trilogarithmic functions that one can find in the literature. Few such identities have been discovered by classical authors: as far as we now, in this category one finds only the Spence-Kummer equation (in many different but equivalent forms) and a family due to Sandham. After discussing these functional equations and the webs associated to them, we turn to an interesting and more recent identity discovered by Goncharov and to a few others which can be obtained from it.

2.2.3.1 Spence-Kummer functional equation of the trilogarithm. Spence (cf. p. 33 in [Sp] and also §6.7 in [START_REF] Lewin | Polylogarithms and associated functions[END_REF]) and independently Kummer (see formula (93) p. 336 in [START_REF] Kummer | Über die Transcendenten, welche aus wiederholten Integrationen rationaler Formeln entstehen[END_REF]) have independently established that the trilogarithm Li 3 satisfies the following functional equation

2 Li 3 ( x ) + 2 Li 3 ( y ) -Li 3 x y + 2 Li 3 1 -x 1 -y + 2 Li 3 x(1 -y) y(1 -x) -Li 3 ( xy ) (SK) + 2 Li 3 - x(1 -y) (1 -x) + 2 Li 3 - (1 -y) y(1 -x) -Li 3 x(1 -y) 2 y(1 -x) 2 = 2 ζ(3) + 2 ζ(2) Log(y) -Log(y) 2 Log 1 -y 1 -x + 1 3 Log(y) 3 ,
for every real numbers x, y such that 0 < x < y < 1.

In accordance with Theorem 2.4, it follows that Zagier's trilogarithm L 3 identically satisfies the following identity (this time for any pair (x, y) ∈ C 2 distinct from (0, 0) or from (1, 1)):

2 L 3 ( x ) + 2 L 3 ( y ) -L 3 x y + 2 L 3 1 -x 1 -y + 2 L 3 x(1 -y) y(1 -x) -L 3 ( xy ) + 2 L 3 - x(1 -y) (1 -x) + 2 L 3 - (1 -y) y(1 -x) -L 3 x(1 -y) 2 y(1 -x) 2 = 2 ζ(3) .
2.2.3.1.1 Spence-Kummer web. By definition, Spence-Kummer web W SK is the planar 9web defined by the rational functions appearing as arguments of the trilogarithm Li 3 in (SK), that is:

W SK = W x , y , x y , 1 -x 1 -y , x(1 -y) y(1 -x) , xy , - x(1 -y) (1 -x) , - (1 -y) y(1 -x) , x(1 -y) 2 y(1 -x) 2 .
We denote by U i the rational first integrals of W SK given above:

(68) U 1 = x , U 2 = y , U 3 = x y , U 4 = 1 -x 1 -y , . . . , U 8 = - (1 -y) y(1 -x) , U 9 = x(1 -y) 2 y(1 -x) 2 .
By direct computations, one obtains that B s i = {0, ±1, ∞} except for i = 3, 6, 9, in which case one has

B s i = {0, 1, ∞}.
In what concerns the ramification loci (common leaves), one has B i = {0, 1, ∞} for any i = 1, . . . , 9.

Spence-Kummer web is of a certain importance in web geometry: indeed, it is the second discovered web (independently in [START_REF] Pirio | Abelian functional equations, planar web geometry and polylogarithms[END_REF] and [START_REF] Robert | Relations fonctionnelles polylogarithmiques et tissus plans[END_REF], 65 years after Bol's example!) which is exceptional, that is of maximal rank but non-algebraizable. A complete and explicit basis with 28 elements of A(W SK ) has been given in [Pi3, §3.2]: 5 elements of this basis are non-polylogarithmic, the 23 others being polylogarithmic (i.e. iterated integrals with ramification at 0, 1 or ∞). In particular, one gets that polrk • W SK = (12, 9, 2) .

Since W SK is defined by quite simple rational first integrals, it is not difficult to compute all its web-theoretic invariants, which can be useful to identify this web up to a (possibly unknown) change of coordinates (as it has been the case to identify it with a cluster web, see §5.2 below).

For instance, one has

Hex W SK = (48, 30, 9, 1) , Flat W SK = (48, 48, 12, 11, 3, 0, 1) and B W SK = 3 .

Regarding the (birational) symmetries of W SK , we refer to [START_REF] Pirio | Équations fonctionnelles abéliennes et théorie des tissus[END_REF] and to Example 3 in [START_REF] Zagier | Special values and functional equations of polylogarithms[END_REF]§7] where they are discussed. 

Φ : (X, Y) → (x, y) = 1 + X X , 1 + Y Y ,
one verifies that Φ * (W 6 ) is the web formed by the pencils whose vertices p i form a degenerate configuration in P 2 , unique up to PGL 3 (C), pictured just below. We call it Spence-Kummer configuration and denote it by C SK . Since a linearizable planar d-web admits at most one linearization (up to composition with a projective transform, see Proposition 1.18), C SK = [p 1 , . . . , p 6 ] ∈ Conf 6 (P 2 ) is canonically attached to W SK and

Φ * (W SK ) = W X , Y , X(1 + Y) Y(1 + X) , X Y , 1 + X 1 + Y , XY (1 + X)(1 + Y) , X 1 + Y , 1 + X Y , X(1 + X) Y(1 + Y)
is a canonical model of Spence-Kummer web (unique, up to projective transformations). This web can be described as the 9-web on the projective plane, formed by the pencils whose vertices are the points of C SK together with the three pencils of conics associated to the three subconfigurations of C SK constituted by four points in general position. From this geometric description of the 'canonical model' of Spence-Kummer web and the knowledge of many of its invariants, one deduces a quite efficient way to decide whether a given 9-web is equivalent to it or not.

The previous description of W SK by means of a projective configuration makes us wonder whether this web is equivalent to a web associated to a stratum of projective configuration, through the construction presented in §1.2.7.3 above. An affirmative answer to this can be found in [Go2, §1.5]: let S(SK) be the set formed by degenerate configurations of seven points on P 2 of the following type: It is a stratum of Conf 7 (P 2 ) of dimension 2. One verifies that, up to equivalence of webs, one has

W S(SK) = W Conf 7 (P 2 ) S(SK) = W SK .
The two types of projective configurations pictured in the two figures above are related to Spence-Kummer web but we are not aware of any direct and natural geometric link between them, which is a bit surprizing. However, there is a way to obtain W SK by means of another substratum in Conf 7 (P 2 ) constructed from the Spence-Kummer configuration C SK as follows: let ϕ i : Conf 7 (P 2 ) → Conf 6 (P 2 ) be the forgetful map of the i-th point for some i, say i = 7. Then Σ(SK) = ϕ -1 7 (C SK ) is the 2-dimensional stratum whose generic element is obtained from C SK by adjoining to it a seventh point not lying on any line between two of its points (see Figure 8 below). Then, despite the fact that Σ(SK) is a stratum of Conf 7 (P 2 ) distinct from S(SK ) (their combinatorial types are clearly not the same), we also have (up to equivalence):

W Σ(SK) = W Conf 7 (P 2 ) Σ(SK) = W SK .
We have indicated above a couple of geometric constructions of Spence-Kummer web, by means of projective configurations of points. In the third section further, we will give another way to obtain W SK , but of a more algebraic nature. Indeed, we will prove that it is equivalent to a cluster web constructed from the X-cluster web of type A 3 (see Theorem 5.5 below).

2.2.3.1.3

To finish this paragraph about the Spence-Kummer equation of the trilogarithm, we would like to mention the very interesting paper [KLL] (especially the sixth section therein) where, using the Abel-Jacobi maps for higher Chow groups they have previously constructed, the authors are able to deduce (an holomorphic version of) (SK) via a 'reprocity law' arising from subvarieties of projective space.

What is especially interesting within this approach is that the framework used by these authors to get the functional equation (SK) is conceptually the same as the much more classical one, that allows to obtain the abelian relations of algebraic webs. Since something similar also holds true for Bol's web (see §2.2.2.2.1 above), this puts on the same level, the standard algebraic webs on the one hand, and the exceptional polylogarithmic webs on the other. It is a somewhat 'revolutionary' change of perspective in web geometry since it has long been thought that these webs were of fundamentally different natures.

However, in contrast with what has been obtained for Abel's equation of the dilogarithm (see §2.2.2.2.1 above and also the fifth section of loc. cit.), the approach followed by Kerr, Lewis and Lopatto only allows them to construct (the holomorphic version of) the Spence-Kummer functional equation, but not the nine foliations forming Spence-Kummer web (cf. Remark 6.3.(b) in [KLL]). Moreover, their approach shows several features which are geometrically distinct from the ones mentioned above:

(i). first they do not work on a space of projective configurations of seven points in P 2 but rather over it, on a certain open domain U in the complex grassmannian of 2-planes in P 6 ;

(ii). second, and more importantly, the main result they use (namely what they call 'Reprocity law B') involves not only (natural lifts to the corresponding grassmannians of the) projection maps from P 2 to P 1 with center the points of the considered configurations, but also (the corresponding natural grassmannians lifts) of the forgetful maps consisting in forgetting a point of the configurations.

As explained above, Spence-Kummer web (that is, the nine rational fibrations which compose it) is obtained as the restriction along a stratum in Conf 7 (P 2 ), of the 7 1 6 4 = 105 projection maps Conf 7 (P 2 ) → P 1 hence no forgetful maps are involved. Note that 'Reprocity law A' in [KLL] only involves (lifts of) projection maps (and no forgetful map) hence one can ask whether it is possible to get the Spence-Kummer equation, and even better, the associated web W SK from this simpler reciprocity law or not.

In any case, and more generally, understanding better the content of [KLL] could be very interesting: it could provide conceptual explanations for the (or at least for some of the ) functional equations satisfied by polylogarithms which are, in some way, similar to the ones responsible for the abelian relations of the algebraic webs (Abel's type theorems, that is vanishing results for traces of abelian differentials).

2.2.3.2 Sandham's trilogarithmic functional equations. In [Sand] (see also §6.9 in [START_REF] Lewin | Polylogarithms and associated functions[END_REF]), Sandham establishes a series of trilogarithmic functional equations, one for each positive integer, which is formally very similar to Rogers' series which has been discussed §2.2.2.5 above.

Sandham's functional equations are expressed in terms of a non-standard trilogarithmic function 62 and are presented in symmetric form. This has the consequence that some terms in each functional equation are functionally dependent, which is not the most convenient approach if one is interested in the web associated to it. For our purpose, it is more interesting: first, not to use Sandham's original identity but rather the one satisfied by Zagier's trilogarithm L 3 corresponding to it; second, to clean the equation by grouping together the terms which are functionally dependent.

Let N > 0 be a fixed integer. One considers N + 1 indeterminates λ 1 , . . . , λ N and y and one sets λ = λ = (λ 1 , . . . , λ N ). The N roots x s = x s (y, λ), with s = 1, . . . , N, of the polynomial equation N i=1 (1 -λ i x) = y in the variable x are elements of the field of algebraic functions of (y, λ), denoted by F. One considers the following element of Z[F * * ]:

S N = -y + N N i,s=1 1 -λ i x s + N 1≤i< j≤N λ i λ j + 1≤i< j≤N N s=1 λ j (λ i x s -1) λ i (λ j x s -1) - λ i x s -1 λ j x s -1 .
Then the N-th Sandham functional identity is equivalent to the relation

(69) L 3 (S N ) ≡ 1 2 N 2 (N -1) ζ(3) .
By definition, the N-th Sandham web W S N is the web associated to this functional identity:

(70)

W S N = W y , λ i x s , λ i λ j , λ j (λ i x s -1) λ i (λ j x s -1) , λ i x s -1 λ j x s -1 1 ≤ i < j ≤ N s = 1, . . . , N .
It is a web defined by N(N + 1)(2N -1)/2 + 1 algebraic first integrals in (y, λ), that is in N + 1 variables. When N > 2, it admits W y , λ i /λ j | 1 ≤ i < j ≤ N as a subweb, which ensures that its intrinsic dimension is N + 1 (this constrasts with the case when N = 2, see just below). In this case, we believe that the algebraic first integrals in (70) define pairwise distinct foliations hence that W S N is a genuine (N(N + 1)(2N -1)/2 + 1)-web in N + 1 variables. 63 The N = 2 case is particularly interesting. Indeed, in this case, exactly two of the 10 foliations defined by the functions appearing in (70) coincide thus W S 2 is a 9-web; second, the intrinsic dimension of the latter is 2 hence it is the pull-back of a planar 9-web that we denote by W ′ S 2 . In this case, Sandam has established (see [START_REF] Sandham | A logarithmic transcendent[END_REF]§8] or [START_REF] Lewin | Polylogarithms and associated functions[END_REF]§6.8 3) is equivalent to the following identity for the classical trilogarithm Li 3 : 63 We have verified this only for N = 3. which is identically verified under the assumption that the variables X, Y and Z satisfy the algebraic relation X + Y + Z = XYZ. Up to a birational change of coordinates, it can be seen that the previous identity is equivalent to the Spence-Kummer equation (SK) (cf. [START_REF] Lewin | Polylogarithms and associated functions[END_REF]§6.8.2]) from which it comes that the second Sandham's web W S 2 actually is a pull-back of Spence-Kummer web W SK . The latter being AMP, one can wonder whether or not the same holds true for all Sandham's webs W S N , N ≥ 2. ⋆

]) that L 3 (S 2 ) = 2 ζ(
Li 3 -X 2 + Li 3 -Y 2 + Li 3 -Z 2 -2 Li 3 (XY) -2 Li 3 (XZ) -2 Li 3 (YZ) -2 Li 3 (-X/Y) -2Li 3 (-Y/Z) -2Li 3 (-X/Z) = 1 3 π 2 log(-Z/Y) + 1 3 log 3 (-Z/Y) + log 2 (-Z/Y) log(-X/Y) -2 ζ(3) , 62 Namely the function M : x → µ(x) -1 3 log x log 2 (1 -x) with µ(x) = x 0 log 2 (1 -u)du/u, for x ∈ R.
In the same way as Rogers' equations (R(m)) are in fact special cases of a functional identity that applies to each rational fraction ϕ ∈ C(z) (see §2.2.2.5 ans §2.2.2.7.1), Sandham's trilogarithmic functional equations are special cases of a family of such identities, one for each sufficiently generic rational function ϕ. For more details, see the chapters by Ray, Weschung and Wojtkowiak in [START_REF] Lewin | Structural properties of polylogarithms[END_REF] or the beginning of the third section in [START_REF] Gangl | Functional equations for higher logarithms[END_REF].

2.2.3.3 Goncharov's 22-terms equation of the trilogarithm. In [START_REF] Goncharov | Ideal webs, moduli spaces of local systems, and 3d Calabi-Yau categories[END_REF] (see also §3.1 in [START_REF] Gangl | Functional equations for higher logarithms[END_REF]), Goncharov shows that the trilogarithm satisfies an interesting functional equation in three variables that he interprets geometrically in terms of (degenerate) configurations of 7 points on P 2 .

More precisely, for generic complex numbers a, b, c, Goncharov introduces the following element Then one can consider the associated Goncharov's web: it is the 22 web in 3 variables (satisfying (PGw)), denoted by W G 22 , defined by the 22 rational primitive first integrals appearing as arguments of L 3 in Goncharov's equation. Explicitly, one has

g(a, b, c) = -1 + c + ca -a + 1 + ca -a + 1 ca + bc -c + 1 (ca -a + 1)b - ca -a + 1 c - bc -c + 1 (ca -a + 1)bc + (bc -c + 1)a ca -a + 1 of Z[Q(a
W G 22 = W a , b , c , -abc , ab -b + 1 , bc -c + 1 , ac -a + 1 , ab -b + 1 a , bc -c + 1 b , ac -a + 1 c , - (bc -c + 1)a ac -a + 1 , - (ac -a + 1)b ab -b + 1 , - (ab -b + 1)c bc -c + 1 , ab -b + 1 ab , ab -b + 1 a(bc -c + 1) , bc -c + 1 bc , bc -c + 1 b(ac -a + 1) , ac -a + 1 ac , ac -a + 1 (ab -b + 1)c , (71) ab -b + 1 (bc -c + 1)ab , bc -c + 1 (ac -a + 1)bc) , ac -a + 1 (ab -b + 1)ac .
By direct explicit computations, it can verified that this web has polylogarithmic ramification (i.e. one has B i = {0, 1, ∞} for every i = 1, . . . , 22), and that

(72) ρ • W G 22 = 19, 16, 12, 7, 2 hence ρ W G 22 = 56 .
On the other hand, using the method described in §1.4 and considering iterated integrals abelian relations of W G 22 with ramification at 0, 1 and ∞ for each of the first integrals appearing in (71), one obtains after some computations:

polrk • W G 22 = 34 , 20 , 2 thus polrk W G 22 = 56 .
Comparing with (72), it follows that Goncharov's web W G 22 has AMP rank. Moreover, all its ARs are polylogarithmic which makes of it a web quite similar to Bol's web, but in weight 3.

⋆

In [START_REF] Goncharov | Geometry of configurations, polylogarithms, and motivic cohomology[END_REF], Goncharov gave a geometric description of W G 22 in terms of projective configurations of seven points on the projective plane. Let Σ(G 22 ) be the 3-dimensional subvariety of the space of configurations Conf 7 (P 2 ) formed by the degenerate configurations as in the picture below: Then one verifies that Goncharov's 22-web coincides with the web obtained by taking the restriction of W Conf 7 (P 2 ) on Σ(G 22 ): one has

W G 22 = W Conf 7 (P 2 ) Σ(G 22 ) .
For other descriptions of Σ(G 22 ) as well as a discussion of its symmetries, see §3.1 in [START_REF] Gangl | Functional equations for higher logarithms[END_REF].

It has been conjectured64 that Goncharov's identity (G 22 ) could be the 'fundamental functional equation' for the trilogarithm, in the sense that any AFE N i=1 c i L 3 (u i ) = cst. with rational coefficients c i and rational functions u i as arguments (of a finite but arbitrary number of variables), can be obtained formally as a linear combination of a finite number of copies of Goncharov's equation. As far as we know, this conjecture is still wide open.

Gangl's 21-terms equation of the trilogarithm.

In [START_REF] Gangl | Functional equations for higher logarithms[END_REF]§3.4], Gangl explains that a certain sum of four copies of G 22 gives rise to a functional identity with 21 terms for L 3 which corresponds to the following element 65 of Z[Q(x 1 , x 2 , z 1 )] (with z 2 = x 1 x 2 z 1 ):

Gan 21 =[x 1 ] + 2 [x 2 ] -2 [x 1 x 2 ] -2 [x 2 z 1 ] + 2 [x 1 x 2 z 1 ] + 2 z -1 1 -2 [x 1 z 1 ] + 2 - x 1 (x 2 -1) x 1 -1 + 2 x 2 (x 1 -1) x 2 -1 -2 - x 1 (x 2 -1)z 1 x 1 -1 -2 x 2 (z 1 -1) z 2 -1 + 2 z 1 -1 z 2 -1 -2 x 1 (z 1 -1) z 2 -1 -2 - x 1 (x 2 -1)(z 1 -1) (x 1 -1)(z 2 -1) -2 - (x 1 -1)x 2 z 1 x 2 -1 + 2 x 1 x 2 (z 1 -1) z 2 -1 -2 - (x 1 -1)x 2 (z 1 -1) (x 2 -1)(z 2 -1) + - (x 1 -1)(z 1 -1) (x 2 -1)z 1 (z 2 -1) + - (x 2 -1)(z 1 -1) (x 1 -1)z 1 (z 2 -1) +       - x 2 1 (x 2 -1)(z 1 -1)z 1 (x 1 -1)(z 2 -1)       +       - (x 1 -1)x 2 2 (z 1 -1)z 1 (x 2 -1)(z 2 -1)       .
Then one denotes by W Gan 21 the 21-web in three variables defined by the rational functions appearing in the definition of Gan 21 . By direct computations, one verifies that (18,15,11,6,[START_REF] Arkani-Hamed | Grassmannian geometry of scattering amplitudes[END_REF] hence ρ W Gan 21 = 51 .

ρ • W Gan 21 =
On the other hand, looking at harmonic polylogarithmic ARs for this web (that is, whose components are harmonic polylogarithms, that is ramified at ±1, 0 and ∞), one gets polrk • W Gan 21 = (30, 18, 2) hence polrk W Gan 21 = 50 .

Since polrk W Gan 21 = 50 < 51 = ρ W Gan 21 , one might think that Gangl's 21-web is not AMP (which could be an indication that Gan 21 might be less fundamental than Goncharov's functional equation Gon 22 ), but actually it is. Indeed, setting A(u) = Arctan( √ u), then the following identity holds true and constitutes an AR for Gangl's 21-web:

A (x 1 -1)(z 1 -1) (x 2 -1)z 1 (z 2 -1) -A (x 2 -1)(z 1 -1) (x 1 -1)z 1 (z 2 -1) +A       x 2 1 (x 2 -1)(z 1 -1)z 1 (x 1 -1)(z 2 -1)       -A       (x 1 -1)x 2 2 (z 1 -1)z 1 (x 2 -1)(z 2 -1)       = 0 .
(Note that this AR is not polylogarithmic since its components are not iterated integrals 66 ). It follows that rk W Gan 21 = ρ W Gan 21 = 51 hence W Gan 21 is AMP as well.

To finish our discussion of Gan 21 , we remark that restricting Gangl's 21-web on the hyperplane of C 3 cut out by x 1x 2 = 0, one obtains the following 9-web in two variables

W x 1 , z 1 , x 1 z 1 , x 2 1 z 1 , z 1 -1 x 2 1 z 1 -1 , x 1 z 1 -1 x 2 1 z 1 -1 , x 2 1 z 1 -1 x 2 1 z 1 -1 , z 1 -1 z 1 (x 2 1 z 1 -1) , x 2 1 z 1 z 1 -1 x 2 1 z 1 -1
which, as is easily verified, turns out to be a model of Spence-Kummer's web W SK .

65 Actually, there is a misprint in [START_REF] Gangl | Functional equations for higher logarithms[END_REF]§3.4], the formula Γ(x 1 , x 2 , z 1 ) + Γ(x 2 , x 1 , z 1 ) given there is not annihilated by L 3 hence is not correct. The expression given here for Gan 21 has been communicated to us by Gangl (private exchange). 66 However, see Conjecture 1.15 above regarding this.

2.2.4 Kummer's functional equations for the tetra-and penta-logarithm. In a series of papers published in 1840, Kummer has established that the polylogarithms of weight 4 and 5 satisfy AFEs which look similar, in some respect, to the five-terms and the Spence-Kummer equations of the dilogarithm and the trilogarithm respectively.

Kummer has worked with the polylogarithmic functions defined for any x ∈ R by

Λ n (x) = x 0 log n-1 |u| 1 + u du (with n ∈ N *
). This function is related to the classical n-th polylogarithm Li n through the following formula (see (3.12) p. 27 in [START_REF] Lewin | Structural properties of polylogarithms[END_REF]):

(73) Li n (x) = (-1) n (n -1)! Λ n (-x) - n-1 k=1 (-1) k k! log k |x| Li n-k (x) .
Consequently, to any (possibly with a logarithmic second member) AFE satisfied by Kummer's polylogarithm Λ n corresponds an identity identically satisfied by Zagier's polylogarithm L n .

⋆

In what follows, x and y stand for real numbers such that 0 < x < y < 1 and one sets

ζ = 1 -x and η = 1 -y .
2.2.4.1 Kummer's functional equation for the tetralogarithm. Kummer has established (cf. formula (144) p. 366 in [START_REF] Kummer | Über die Transcendenten, welche aus wiederholten Integrationen rationaler Formeln entstehen[END_REF]) that the tetralogarithmic function Λ 4 satisfies a certain functional equation with 18 terms. The corresponding AFE satisfied by the classical tetralogarithm Li 4 has been made explicit by Lewin (see formula (7.90) p. 211 in [START_REF] Lewin | Polylogarithms and associated functions[END_REF]) and is the following:

Li 4 - x 2 y η ζ + Li 4 - y 2 x ζ η + Li 4 x 2 y ζη 2 + Li 4 y 2 x ζ 2 η -6 Li 4 xy -6 Li 4 xy ηζ -6 Li 4 - xy η -6 Li 4 - xy ζ K 4 -3 Li 4 x η -3 Li 4 y ζ -3 Li 4 x η -3 Li 4 y ζ -3 Li 4 - x η ζ -3 Li 4 - y ζ η -3 Li 4 - x η ζ -3 Li 4 - y η ζ + 6 Li 4 x + 6 Li 4 -x/ζ + 6 Li 4 y + 6 Li 4 -y/η = 3 2 log(ζ) 2 log(η) 2 .
Then the following element of Z C(x, y) is annihilated by L 4 :

- x 2 y η ζ + - y 2 x ζ η + x 2 y ζη 2 + y 2 x ζ 2 η + 6 x + -x/ζ + y + -y/η -6 xy + xy ηζ + - xy η + - xy ζ -3 x η + y ζ + x η + y ζ + - x η ζ + - y ζ η + - x η ζ + - y η ζ .
We consider the following 18 primitive rational functions, denoted by V 1 , . . . , V 18 , which appear as arguments of Li 4 in Kummer's equation (K 4 ):

x, y, -

y η ζ , - x η ζ , - y ζ η , - x η ζ , y ζ , x η , y ζ, x η, - xy ζ , - xy η , xy η ζ , xy, xy 2 ζ 2 η , x 2 y η 2 ζ , - y 2 x ζ η , - x 2 y η ζ .
Then Kummer's tetralogarithmic web W K 4 is the planar 18-web defined by the functions V i 's.

Since we will show later that a certain cluster web is equivalent to W K 4 , it is worth giving several of invariants of the latter:

• Kummer's tetralogarithmic web is not of maximal rank (since its total curvature does not vanish identically); Some computations show that rk(W K 4 ) ≤ 127 (strictly less than ρ(W K 4 ) = 136);

• For any i = 1, . . . , 18, one has B i = {0, 1, ∞} so this web has polylogarithmic ramification;

• Considering only iterated integrals ramified at 0, 1 or at infinity on P 1 , one gets: 28,28,16,3) ;

polrk • W K 4 = (
• Regarding the hexagonal and flat subwebs of W K 4 , one has: [START_REF] Kummer | Über die Transcendenten, welche aus wiederholten Integrationen rationaler Formeln entstehen[END_REF], or formula (7.104) p. 216 in [START_REF] Lewin | Polylogarithms and associated functions[END_REF]) that the pentalogarithmic function Λ 5 satisfies the following functional identity for any reals x and y such that 0 < x < y < 1:

Hex W K 4 = (186,
+Λ 5 x 2 yη ζ + Λ 5 - x 2 y ζη 2 + Λ 5 - x 2 η y 2 ζ + Λ 5 - xζ yη + Λ 5 xζη 2 y + Λ 5 xy 2 ζ η + Λ 5 x yζ 2 η + Λ 5 - xη 2 yζ 2 + Λ 5 - xy 2 ζ 2 η -9 Λ 5 -xy -9 Λ 5 - x y -9 Λ 5 -xη -9 Λ 5 - x η -9 Λ 5 xy η -9 Λ 5 xη y -9 Λ 5 xy ζ -9 Λ 5 x yζ -9 Λ 5 xη ζ -9 Λ 5 x ζη -9 Λ 5 - xy ζη -9 Λ 5 - xη yζ -9 Λ 5 -yζ -9 Λ 5 -ζη -9 Λ 5 yζ η -9 Λ 5 - y ζ -9 Λ 5 - η ζ -9 Λ 5 y ζη + 18 Λ 5 -x + 18 Λ 5 -ζ + 18 Λ 5 x ζ + 18 Λ 5 -y + 18 Λ 5 -η + 18 Λ 5 y η = 18 log x y log(ζ) 4 -108 log(y) log(ζ) 2 log(η) 2 - 36 5 log(ζ) 5 + 36 log(η) 3 log(ζ) 2 -18 ζ(5) .
Remark 2.11. The functional equation for the classical pentalogarithm Li 5 corresponding to the one just above has been worked out in [AL] (see also (3.12) p. 30 in [START_REF] Lewin | Structural properties of polylogarithms[END_REF]). If the sum of the 33 pentalogarithmic terms (each multiplied with the suitable integer coefficient) given there is the correct one (since identity (K 5 ) below holds true identically), it does not seem to be the case for the logarithmic second member 18 ζ(5)

+ 18 ζ(4) log(ζ) + 3 ζ(2) log(ζ) 2 log(ζ/η 3 ) +
In the light of ( 73), if one considers the opposite of the arguments of Λ 5 in the equation above, one gets a functional identity satisfied by the classical pentalogarithm. Indeed, setting

(U i ) 9 i=1 = - x 2 yη ζ , - xy 2 ζ η , x 2 y ζη 2 , xy 2 ζ 2 η , x 2 η y 2 ζ , xη 2 yζ 2 , - x yζ 2 η , - xζη 2 y , xζ yη (V j ) 18 j=1 = xy , x y , x η , x η , - xy η , - xη y , - xy ζ , - x yζ , - xη ζ , - x ζη , xy ζη , xη yζ , yζ, ζη, - yζ η , y ζ , η ζ , - y ζη (W k ) 6 k=1 = x , ζ , - x ζ , y , η , - y η ,
one verifies that Zagier's pentalogarithm L 5 satisifies identically the following functional identity:

(K 5 ) 9 i=1 L 5 (U i ) -9 18 j=1 L 5 (V j ) + 18 6 k=1 L 5 (W k ) = 18 ζ(5) . .
This equation, that we call Kummer's functional equation of the pentalogarithm, involves 33 pentalogarithmic terms, but the arguments W k for k = 1, . . . , 6 altogether define only two foliations, since obviously

F x = F ζ = F x/ζ
, and similarly F y = F η = F y/η . Consequently, the web naturally associated to (K 5 ) is the following 29-web

W K 5 = W x , y , U i , V j i = 1, . . . , 9 j = 1, . . . , 18 .
Here are some features of W K 5 which have been established by direct computations:

• The total curvature of Kummer's pentalogarithmic web does not vanish identically hence this web is not of maximal rank: rk(W K 5 ) is strictly less than ρ(W K 5 ) = 378;

• For any i = 1, . . . , 29, one has B i = {0, 1, ∞} so as Bol's web, Spence-Kummer's web and Kummer's tetralogarithmic web, W K 5 has polylogarithmic ramification as well;

• Considering iterated integrals ramified at 0, 1 or at infinity on P 1 , one gets: 48,53,42,22,4 ;

polrk • W K 5 =
• Regarding the count of hexagonal subwebs of W K 5 , one has: That this web has polylogarithmic ramification let us think that it might be the case. This is the reason why we have given the few numerical invariants of W K 5 above: any (cluster?) planar 29-web sharing the same invariants would be a good candidate for being equivalent to W K 5 .

Hex • W K 5 = 474,

2.2.5

Webs associated to some recent polylogarithmic AFEs. The problem of finding and better understanding functional equations of higher polylogarithms is an active area of current research. In this subsection, we briefly discuss some equations of this type recently discovered by several authors. The corresponding webs are typically formed by an important number of foliations (several hundreds) hence are out of reach by the formal/algebraic computations (of their ARs, their rank, etc.) which would allow to understand them better. So we do not have so much to say about them. They are essentially mentioned here to show that there are many interesting polylogarithmic webs in weight higher than 2 or 3 which would be worth studying.

2.2.5.1 Remarks about a series of tetralogarithmic AFEs discovered by Gangl. In [START_REF] Gangl | Functional equations for higher logarithms[END_REF],

Gangl exhibits a whole series of AFEs for the tetralogarithm L 4 that we are going to discuss succinctly from the perspective of webs.

Let n > 0 be a fixed integer, set φ(t) = t n-1 (t-1) and given two indeterminates x and y, one denotes by x 1 , . . . , x n (resp. by y 1 , . . . , x n ) the roots of the polynomial equation φ(t) = x (resp. φ(t) = y).

Then, according to Theorem 4.1 in [START_REF] Gangl | Functional equations for higher logarithms[END_REF], the following element is annihilated by L 4 :

Gan(n) = n(n -2)        n i=1 x i n j=1 y j        -(n -1) 2 n i, j=1 y j (1 -x i ) x i (1 -y j ) + n 2 n i, j=1 1 -x i 1 -y j -n 2 (n -1) 2 n i, j=1 x i y j + n(n -1) 2 n i=1 1 -x -1 i -1 -y -1 i .
It is necessary to assume n > 1 otherwise the statement is not correct: indeed, it would be equivalent to the relation L 4 ((1 + x)/(1 + y)) + L 4 (x/y) = 0, which obviously is not true. Nevertheless, the case n = 1 is still interesting from the point of view of webs, as will be discussed below. Note that assuming n > 1, the first term of Gan(n) simplifies since n i=1 x i / n j=1 y j is equal to x/y. The case n = 2 is also particular and should be disregarded. Indeed, in this case one has x 1 = (1+ √ 1 + 4x)/2 and x 2 = (1-√ 1 + 4x)/2 with the same formulas, but where x has been replaced by y, for y 1 and y 2 . Thus thanks to the inversion formula L

4 ([x]+ [x -1 ]) = 0, it comes that each of the terms 2 i=1 [1-x -1 i ] and 2 i=1 [1-y -1 i ] is already annihilited by L 4 .
The same inversion formula also implies that n i, j=1 [(1x i )/(1y j )] vanishes when evaluated by L 4 . Finally, each term of the sum n i, j=1 [(1x i )/(1y j )] is the inverse of one of the terms appearing in n i, j=1 [x i /y j ]. Thus Gan(2) is a linear combination of elements of the form [R] + [1/R] for some rational function R ∈ C(x, y). The associated tetralogarithmic functional equation is accessible from the inversion relation, which makes it not so interesting: it is not a genuine two-variables functional equation for the tetralogarithm. Nevertheless, again, this case is still interesting from the point of view of webs (see below).

Since it is indeed the case when n = 2, one may wonder if the identity L 4 (Gan(n)) = 0 is not accessible from the inversion identity for any n ≥ 2. We believe that it is not the case and that one gets genuine tetralogarithmic identities starting from n = 3. We are brought to this conclusion by looking at the web whose first integrals are the algebraic functions appearing in the definition of Gan(n):

(74) W Gan(n) = W G n , y j (1 -x i ) x i (1 -y j ) , 1 -x i 1 -y j , x i y j , x i , y j i = 1, . . . , n j = 1, . . . , n
with G 1 = (x + 1)/(y + 1) and G n = x/y for n ≥ 2. Since, as functions of the variables x, y, the x i 's only depend on x whereas the y j 's only on y, it follows that F x i = F x and F y i = F y for any i.

Consequently, Gangl's web W Gan(n) actually is formed by at most 3(n 2 + 1) foliations: one has

W Gan(n) = W x , y , G n , y j (1 -x i ) x i (1 -y j ) , 1 -x i 1 -y j , x i y j i = 1, . . . , n j = 1, . . . , n .
By direct computations, we have verified that when n = 3, the corresponding 30 foliations are pairwise distinct hence W Gan(3) is a genuine 30-web. Thus, in the identity L 4 (Gan(3)) = 0, there are 30 purely tetralogarithmic terms which are pairwise functionally independent. This contrasts with the case n = 2 for which precisely the opposite holds true. 67 We suspect that, for any n ≥ 3, W Gan(n) is a planar 3(n 2 + 1)-web which carries a genuine tetralogarithmic AR not accessible from the inversion relation, but we have not any proof of that.68 

The n = 1 and n = 2 cases, although not really compelling regarding tetralogarithmic functional equations as seen just above, are quite interesting from the perspective of web geometry. First, we remark that the definition of W Gan(n) makes sense when n = 1 or n = 2 as well. For n = 1, one has

W Gan(1) = W x , y , x y , 1 + x 1 + y , x(1 + y) y(1 + x) ,
which is nothing else but Bol's web, associated to Abel's 5-terms relation of the dilogarithm.

As for the case n = 2, it is no less interesting: one verifies that the web W Gan( 2) is actually a 9-web defined by algebraic first integrals, whose explicit formulas are not difficult to give:

x y , √ 1 + 4x -1 1 + 4y + 1 ( √ 1 + 4x + 1)( 1 + 4y -1) , √ 1 + 4x + 1 1 + 4y + 1 √ 1 + 4x -1 1 + 4y -1 , . . . . . . , √ 1 + 4x -1 1 + 4y + 1 , √ 1 + 4x + 1 1 + 4y + 1 , √ 1 + 4x -1 √ 1 + 4x + 1 , 1 + 4y -1 1 + 4y + 1 . ooo
Then, setting x = (X 2 -1)/4 and y = (Y 2 -1)/4, one defines a rational map ϕ : (X, Y) → (x, y) which is such that ϕ * (W Gan(2) ) is defined by the following rational first integrals:

X + 1 Y + 1 , X -1 X + 1 , Y -1 Y + 1 , - X + 1 Y -1 , - X -1 Y + 1 , X -1 Y -1 , X 2 -1 Y 2 -1 , (X -1)(Y + 1) (X + 1)(Y -1) and (X + 1)(Y + 1) (X -1)(Y -1) .
It is not difficult to recognize the nine rational first integrals defining (the projective canonical model of) Spence-Kummer web W SK associated to the famous functional equation (SK) satisfied by the trilogarithm (see §2.2.3.1 above).

It is quite surprising that the first two of the webs associated to a series of tetralogarithmic functional equations specialize to the two webs (namely, Bol's web and Spence-Kummer web) which actually do not carry any tetralogarithmic functional equation, but the simplest truly multivariable AFEs of the dilogarithm and the trilogarithm respectively. 69 We find this very intriguing and have absolutely no idea of any explanation of this fact (if there is one, of course).

2.2.5.2 A functional equation with 40 tetralogarithmic terms. In [GGSVV], the authors study what they call 'motivic amplitudes', that is motivic objects containing all the mathematical content of some scattering amplitudes (as they describe it). They find that these objetcs can be better understood by means of the 'cluster structures' of spaces of projective configurations Conf n (P 3 ). In particular, as a byproduct of their approach, they 'find and prove the first known functional equation for the trilogarithm in which all 40 arguments are cluster X-coordinates of a single algebra'.

The functional equation discussed here lives on the space Conf 6 (P 2 ) of configurations of six points in the projective plane. We denote here by K the field of rational functions on this space (which is rational, hence K is isomorphic to C(t 1 , . . . , t 4 ) but not in a canonical way). For any i ∈ {1, . . . , 6}, one denotes by π i : Conf 6 (P 2 ) Conf 5 (P 1 ) (resp. f i : Conf 2 (P 6 ) Conf 5 (P 2 )) the rational map induced by projecting from (resp. forgetting) the i-th point of a configuration. Let also (2, 4, 3, 25 ∩ 36) be the map associating to (x i ) 6 i=1 ∈ Conf 6 (P 2 ) the configuration of four points (x 2 , x 4 , x 3 , x 25∩36 ) ∈ Conf 4 (P 2 ) where x 25∩36 stands for the intersection of the two lines x 2 , x 5 and x 3 , x 6 in P 2 ; Then one defines two rational functions on Conf 6 (P 2 ) by setting:

(75) r 1 = Cr • π 1 • f 6 and r 3 = Cr • π 1 (2, 4, 3, 25 ∩ 36) .
(The rational function r 3 is the triple ratio introduced in [START_REF] Goncharov | Geometry of configurations, polylogarithms, and motivic cohomology[END_REF], see also §2.2.5.3 below.) For any Υ ∈ Q[K * * ], let Cyc 6 (Υ) (resp. Acyc 6 (Υ)) be the sum τ Υ τ where τ ranges in the set of cyclic (resp. anticyclic) permutations of {1, . . . , 6}. 70 Denoting respectively by a, b and c the permutations (3456) and ( 4326) and (235)(46), one defines elements of Q[K * * ] by setting

Γ = Γ 1 + Γ 3 with Γ 1 = [r 1 ] + r a 1 and Γ 3 = r b 3 + (1/3) r c 3 .
Then according to Theorem B.1 in [GGSVV],

GGSVV = Cyc 6 Γ -Acyc 6 Γ ∈ Q[K * * ] is annihilated by L 3 . Moreover, if each sum Cyc 6 (γ) -Acyc 6 (γ) involves 12 terms for γ = [r 1 ], [r a 1 ] and [r b 3 ], this is not the case for Cyc 6 ([r c 3 ])-Acyc 6 ([r c 3 ]
) which is a linear combination of only four primitive elements of Q[K * * ]. Consequently, the functional equation L 3 (GGSVV) = 0 involves only 3 × 12 + 4 = 40 trilogarithmic terms and the associated web

W GGSVV = W r τ 1 , r aτ 1 , r bτ 3 , r cτ 3 τ cyclic or anticyclic
is a 40-web on Conf 6 (P 2 ). By some direct computations, one establishes that ρ • W GGSVV = 36, 30, 20, 8, 1, 0 and polrk • W GGSVV = (64, 29, 2) 69 Since both W Gan(1) ≃ B and W Gan(2) ≃ W SK are webs with maximal rank, a natural question about the whole series of webs W Gan(n) 's is whether or not this still holds true for n ≥ 3. It doesn't seem easy to answer: even with the help of a computer, we haven't been able to verify if the curvature of the 30-web W Gan(3) vanishes identically... 70 I.e. τ ∈ {α k } 5 k=0 with α = (612345) in the cyclic case and τ ∈ {α k β} 5 k=0 with β = (654321) in the anticyclic one.

from which it comes that ρ W GGSVV = polrk W GGSVV = 95. It follows that W GGSVV is AMP, with only polylogarithmic ARs, of weight 1,2 and 3.

The web W GGSVV contains interesting subwebs. Indeed, setting

WΓ 1 = W r τ 1 , r aτ 1 and WΓ 3 = W r bτ 3 , r cτ 1
where, as above, τ ranges in the set of cyclic or anticyclic permutations of S 6 , one verifies that

ρ • WΓ 1 = (20, 14, 5) polrk • WΓ 1 = (34, 5)
and

ρ • WΓ 3 = (12, 6) polrk • WΓ 3 = (16, 2) ,
from which it comes that these two subwebs of W GGSVV are AMP as well, with only polylogarithmic ARs, of weight at most 2.

In §7.3.2.1 below, we will recognize and describe the web W GGSVV as a subweb of the X-cluster web of type D 4 , which is a 52-web in four variables.

2.2.5.3 Chow polylogarithms and associated webs. In [START_REF] Goncharov | Chow polylogarithms and regulators[END_REF], for each integer n ≥ 2, by restricting to linear subspaces the n-th Chow polylogarithm P n he has constructed by means of an integral transform of a current, on the space of algebraic n-cycles in P 2n-1 intersecting properly the faces of a fixed simplex in it, Goncharov obtains the n-th grassmannian polylogarithm L G n . It is a real analytic function defined on a Zariski open-subset G 0 n (C 2n ) of the grassmannian of n-planes in C 2n which enjoys interesting properties. First, L G n is constant along the orbit of a n-plane belonging to G 0 n (C 2n ) under the standard (diagonal) action of the maximal torus H 2n-1 of SL 2n (C). Hence, thanks to the natural identification between the quotient G 0 n (C 2n )/H 2n-1 and the space of generic configurations Conf 0 2n (P n-1 ) (see [GM,§2.2.2]), L G n can be seen as a function on the latter. Viewed this way, it satisfies the following functional equations

(76) 2n+1 i=1 (-1) i L G n f i = 0 and 2n+1 j=1 (-1) j L G n π j = 0
which hold true on the configuration spaces Conf 0 2n+1 (P n-1 ) and Conf 0 2n+1 (P n ) respectively. Here, as in the preceding paragraph, f i : Conf 2n+1 (P n-1 ) → Conf 2n (P n-1 ) stands for the map given by forgetting the i-th point of a configuration and π i : Conf 2n+1 (P n-1 ) → Conf 2n (P n-1 ) for the one induced by the linear projection P n P n-1 from the i-th point.

Actually, as proved by Goncharov, L G n can be defined on the whole space Conf 2n (P n-1 ) but as such, is not smooth (and even continuous?) on it. Anyway, Goncharov shows that there exists a stratum of non-generic configurations c z depending on z ∈ C \ {0, 1} such that for any such complex number, one has

L G n (c z ) = L n (z) which indicates that L G n is related to the classical n-th polylogarithm.
Remark 2.12. Associated to the two functional equations (76), we can consider the two webs with first integrals, the forgetful maps ϕ i on the one hand, and the projections π j on the other hand. These are webs with n-dimensional leaves which turn out to be the same up to the Gelfand-MacPherson correspondence (or Gale Transform) Conf 2n+1 (P n-1 ) ≃ Conf 2n+1 (P n ). The identity 2n+1 i=1 (-1) i L G n ( f i ) = 0 can be seen as a real-analytic abelian relation of order 0 for this web. It would be interesting to know more about these webs, in particular about their k-abelian relations and their k-rank, for k = 0, . . . , n. 71For n = 2, one recovers Bol's web: indeed for x = [x 1 , . . . , x 4 ] ∈ Conf 4 (P 1 ), one has L G 2 (x) = L 2 (Cr(x 1 , . . . , x 4 )) hence ( 76) coincides with identity (39) satisfied by Bloch-Wigner function L 2 = D. It has been a question regarding grassmannian (and even Chow) polylogarithms to know whether the general value L G n (x) for a generic configuration x ∈ Conf 2n (P n-1 ) can be expressed as a finite sum i L n (r i (x)) for some rational functions r i . It does not seem to be the case already for n = 3 but in [GZ], Goncharov and Zhao express L G 3 in terms of a motivic grassmannian trilogarithm L G 3 which, in turn, can be expressed by means of

L 3 since L G 3 = Alt 6 (L 3 (r 3 )), that is L G 3 (x) = σ∈S 6 sgn(σ) L 3 r 3 x σ(1) , . . . , x σ(6)
for a generic configuration x = [x 1 , . . . , x 6 ] ∈ Conf 6 (P 2 ), where r 3 : Conf 6 (P 2 ) P 1 stands for the triple-ratio (defined in (75) above). Moreover, the trilogarithm L G 3 satisfies the same identity as L G 3 on Conf 7 (P 2 ), namely 7 i=1 (-1) i L G 3 ( f i ) = 0 (cf. Theorem 3.11 in [START_REF] Goncharov | Polylogarithms and motivic Galois groups[END_REF]), which, expressed in terms of Zagier's trilogarithm L 3 , takes the following nice (anti)symmetric form:

(77) 7 i=1 σ∈S 6 (-1) i sgn(σ) L 3 r σ 3 • f i = 0 .
We recall that for any σ ∈ S 6 , one has r σ 3 (x) = r 3 (x σ(1) , . . . , x σ(6) ) for x = (x i ) 6 i=1 ∈ Conf 6 (P 2 ). The previous identity leads us to consider the web on Conf 7 (P 2 ), denoted by WL G 3 , defined by the rational functions r σ 3 • f i : Conf 7 (P 2 ) → Conf 6 (P 2 ) P 1 :

(78)

WL G 3 = W r σ 3 • f i i = 1, . . . , 7, σ ∈ S 6 .
One verifies that, thanks to some invariance properties of the triple-ratio, some of the r σ 3 's with σ ∈ S 6 coincide (as rational functions on Conf 6 (P 2 )) and that the set of such functions is of cardinality 120. Consequently, there are only 840 trilogarithmic terms in (77) (cf. Remark p. 66 of [START_REF] Goncharov | Polylogarithms and motivic Galois groups[END_REF]) and one verifies that WL G 3 is indeed a 840-web in 6 variables. After some lengthy computations on a computer, one gets

ρ • WL G 3 = 834 , 819 , 784 , 714 , 588 , 399 , 168 and polrk 1 WL G 3 = 1547 .
We have been unable to obtain the polylogarithmic rank of higher weight but considering the previous numbers leads us to doubt that WL G 3 is AMP. ⋆

The general case has been considered in [CGR] where the authors study the n-th grassmannian polylogarithm L G n for any n ≥ 2: they prove that it can be expressed as a linear combination of weight 4 iterated integrals (in one or two variables) and give a formula for the corresponding symbol (cf. their Theorem 6). Then, specializing their formula to the case when n = 4 (see [CGR, Theorem 6]), they are able to find an explicit element q of Z[K 8 (3) * * ] (where K 8 (3) stands for the field of rational functions on Conf 8 (P 3 )) such that the functional equation ( 79)

9 i=1 (-1) i L 4 Alt 8 (q) • f i = 0
is satisfied on Conf 9 (P 3 ). They see this abelian functional equation in 12 variables as the tetralogarithmic analogue of the 5-terms relation for the dilogarithm and of Goncharov's 840-terms relation (77) for the trilogarithm. It would be interesting to know more about the web associated to (79).

2.2.6 Radchenko's polylogarithmic functional equations and associated webs. In his PhD dissertation [Rad], Radchenko elaborates a new approach to construct functional equations for higher polylogarithms. The main new conceptual ingredient he uses is the notion of 'S -crossratio''. According to Radchenko (we refer to his dissertation for more details), this notion is a 'generalization of the classical cross-ratio which, roughly speaking, is a function of n points in a projective space that is invariant under the change of coordinates and satisfies an arithmetic condition somewhat similar to the Plücker relation'. In particular, the usual cross-ration Cr on Conf 4 (P 1 ) as well as Goncharov's triple ratio r 3 on Conf 6 (P 2 ) are just particular cases of the generalized cross-ratios which can be obtained following Radchenko's approach.

After describing the generalized cross-ratios on Conf m (P k ) when m and k are small enough (see [Rad, Appendix A]), he studies the AFE of the form N i=1 c i L n (r i ) when the r i 's are generalized cross-ratios and the c i 's are rational numbers. In the final chapter of his dissertation, Radchenko gives an important number of such new AFEs obtained using this approach, in weight 3, 4 and 5 (see the tables 5.1 and 5.2, and Appendix B in [Rad]).

We briefly discuss below a few of the new polylogarithmic AFEs obtained by Radchenko from the point of view of web geometry. We have very little to say about these webs: there are mentioned here to advertise future researches. The notation used for the r i 's in the lines below are those of [Rad, Appendix A].

• The following functional equation

L 3 Sym 5 [r 5 ] -2[r 3 ] = σ∈S 5 L 3 r σ 5 -2 L 3 r σ 3 = 20 ζ(3)
holds true on M 0,5 and provides a trilogarithmic AR for

W Sym 5 ([r 5 ]-2[r 3 ]) = W r σ 3 , r σ 5 | σ ∈ S 5 .
The latter is a planar 45-web with polrk • (W Sym 5 ([r 5 ]-2[r 3 ]) ) = (85, 86, 36, . . .).

• Looking at Tables 5.1 and 5.2 in [Rad], we get that the following identities hold true

L 3 Sym 5 [r 7 ] -3[r 4 ] -5[r 3 ] = -40 ζ(3) (80) and L 3 Alt 5 [r 7 ] + 3[r 4 ] -3[r 3 ] = 0
and provide trilogarithmic ARs for the web W r σ 3 , r σ 4 , r σ 7 | σ ∈ S 5 on M 0,5 . After cleaning, we obtain a 135-web in two variables with (harmonic) polylogarithmic rank polrk • = (245, 276, . . .). That the second polylogarithmic rank be higher than the first is a bit surprising. It would be interesting to understand this phenomenon better.

• From our perspective, it might be interesting to consider the 'complete Radchenko's web' on M 0,5 , namely the web W r σ i | i = 1, . . . , 7 , σ ∈ S 5 defined by all the generalized cross-ratios on M 0,5 , up to permutations: this web clearly carries polylogarithmic ARs up to weight 3 at least. It can be verified that it is a 170-web in two variables. It would be interesting to describe all its ARs and to know its rank.

• The symmetric identity on M 0,6

L 3 Sym 6 3[r 11 ] -4[r 8 ] = 120 ζ(3)
gives rise to a trilogarithmic AR for W r σ 8 , r σ 11 | σ ∈ S 6 . After cleaning, one sees that the latter is a 105-web in three variables such that ρ • = (102, 99,95,90,84,77,69,60,50,39,27,14) and polrk • = (186, 170, . . .). We remark that ρ σ-1 = ρ σ + σ + 1 for σ = 2, . . . , 12: this nice behavior for its virtual ranks might indicate that this web could have other interesting features.

• Looking at [START_REF] Radchenko | Higher cross-ratios and geometric functional equations for polylogarithms[END_REF]Table 5.2], we get that the following identity holds true on M 0,6

L 5 Alt 6 [r 7 ] + 9[r 4 ] -15[r 3 ] = 0
and provides a pentalogarithmic AR for the web W r 3 ,r 4 ,r 7 = W r σ 3 , r σ 4 , r σ 7 | σ ∈ S 6 which can be verified to be a 810-web in three variables. Since for any i = 1, . . . , 6, it admits, as a subweb, the pull-back under the forgetful map ϕ i of the 135-web on M 0,5 associated to the functional equations (80), we see that this web carries many trilogarithmic ARs as well. Some computations give us ρ • W r 3 ,r 4 ,r 7 = (807, 804, 800, 795, 789, 783, 777, 771, 765, 759, 753, 747, . . .) hence it seems that ρ σ+1 = max(0, ρ σ -6) starting from σ = 5. These nice relations between its virtual ranks and the fact that it carries many polylogarithmic ARs of weight ≤ 5 make this web particularly interesting.

Cluster algebras and associated webs

In this section, we discuss some interesting webs constructed from cluster algebras. We will first of all consider webs associated to cluster algebras of finite type but in a second step, we will have to work with more general cluster algebras.

We first give a review of the theory of cluster algebras before introducing the webs associated to them that we will study afterwards. We will essentially consider two kinds of cluster webs: the X-cluster webs' that are the webs defined by all the X-cluster variables of a given cluster algebra of finite type, and the Y-cluster webs which are the webs associated to a 'period' of a non-necessarily finite cluster algebra.

Our web-theoretic motivations will make us ask some questions about cluster variables which already make senss and are interesting within the theory of cluster algebras (without any references to webs) and we will mention some conjectural answers to them.

As a (already interesting) warm-up, we will consider the webs associated to finite type cluster algebras of rank 2. Then, we will turn to the cases of X-cluster webs or Y-cluster webs associated to a finite type cluster algebra. We will discuss many of these webs and state several conjectures about them (more precisely about their (virtual or standard) rank(s) and their abelian relations).

⋆

We denote by [•] + : R → R ≥0 the function defined by [x] + = max(0, x) for any real x.

Cluster algebras

The notion of cluster algebra has been introduced by Fomin and Zelevinsky at the beginning of the 2000's and has been recognized since as a very fertile one. Indeed, cluster algebras have been intensively studied from several points of views: it appears now that these objects are related to many other subjects of mathematics and mathematical physics, among which one can mention the following ones: Poisson geometry, positivity and dual canonical bases for (quantum) algebraic groups, higher Teichmüller theory, Lie Theory and representation theory of quivers, discrete (integrable) dynamical systems, (quantum and classical) dilogarithmic identities, algebraic geometry (more precisely geometry of log-Calabi-Yau varieties and Donaldson-Thomas invariants), mathematical physics (BPS states, scattering amplitudes). 72There are nowadays several introductions to or survey papers about cluster algebras to which we refer the reader for more details and background: to name a few, we mention the seminal papers by Fomin and Zelevinsky (e.g. [START_REF] Fomin | Y-systems and generalized associahedra[END_REF]FZ2,FZ2] cited in the bibliography), the books [GSV], [FWZ] or [Mar], the short(er) introductions [Wi, GRu], and the survey papers [START_REF] Fomin | Total positivity and cluster algebras[END_REF][START_REF] Keller | Algèbres amassées et applications (d'après Fomin-Zelevinsky[END_REF]. Among the research papers on cluster algebras which are important regarding the material to come, one can mention [START_REF] Fock | Cluster ensembles, quantization and the dilogarithm[END_REF] by Fock and Goncharov, the papers by Keller cited in the bibliography (especially [START_REF] Keller | On cluster theory and quantum dilogarithm identities[END_REF] and [START_REF] Keller | The periodicity conjecture for pairs of Dynkin diagrams[END_REF]) and those by Nakanishi such as [START_REF] Nakanishi | Dilogarithm identities for conformal field theories and cluster algebras: simply laced case[END_REF][START_REF] Nakanishi | Periodicities in cluster algebras and dilogarithm identities[END_REF][START_REF] Nakanishi | Tropicalization method in cluster algebras[END_REF].

The theory of cluster algebras has developed in a very dynamic way over the last twenty years and several deep and important results in the field have been obtained, some quite recently. Although we will state some of the most important results in concise form, we will not discuss them that much since we will essentially use them as black boxes for our purpose, which can be summarized as that of 'getting new webs defined by cluster variables (as first integrals) which are interesting from the point of view of web geometry since carrying many (mostly polylogarithmic) abelian relations'.

⋆

Before going more seriously into the details, let us say a few general words about the kind of cluster algebras we will work with in the sequel. There are several versions, more or less general, of cluster algebras. Those we will consider in this text all are cluster algebras without frozen variables. Another ingredient used is a certain 'semi-field of coefficients' P. The simplest case is when this semi-field is trivial, that is when P = 1. It is the one we will consider almost everywhere. Another important case encountered in the literature is the one of 'principal coefficient', when P is the tropical semi-field on n generators, where n stands for the rank of the considered cluster algebra. Considering our purpose, this case is important from a theoretical point of view, regarding the key notion of 'F-polynomial' of the theory of cluster algebras. It will be briefly discussed in §3.2.1.2.2. Everywhere else, the underlying semi-fields of coefficients of the cluster algebras we will consider will be implicitly assumed to be trivial.

Basics on cluster algebras

We will mainly consider cluster algebras over the field of rational or complex numbers. Accordingly, we will work within a field F = k(z 1 , . . . , z n ) of rational functions in n indeterminates with coefficients in k = Q or C, for some integer n ≥ 2. By definition, for k ∈ {1, . . . , n}, the matrix mutation µ k (B) of B in the direction k is the matrix

B ′ = (b ′ i j ) n i, j=1
whose coefficients b ′ i j are given by the following formulas:

b ′ i j =              -b i j if k ∈ {i, j}; b i j if k {i, j} and b ik b k j ≤ 0; b i j + |b ik | b k j if k {i, j} and b ik b k j > 0.
It can be verified that: (1) DB ′ is antisymmetric hence

B ′ = µ k (B) is again skew-symmetrizable; (2) this operation is involutive, that is µ k (µ k (B)) = B.
The point is that the different mutations µ i 's do not commute all together and this is the source of all the complexity and all the richness of the cluster algebras. Now let Q be a finite quiver with n vertices, that is an oriented graph together with two maps, the source s and the target t, defined on the set of oriented edges (or 'arrows') Q 1 of Q, with values in its set of vertices Q 0 . We will always assume that there is no loop nor 2-cycle in Q.

A valued quiver (see [START_REF] Dupont | An approach to non-simply laced cluster algebras[END_REF]§2.1.2] for more details) is a quiver Q endowed with a function v : Q 1 → N 2 such that (i) there is at most one arrow between any two vertices of Q; and (ii) there is a function d : Q 0 → N >0 such that for each arrow a : i -→ j (with i, j ∈ Q 0 ) one has

d(i) v(a) 1 = d( j) v(a) 2 where v(a) = (v(a) 1 , v(a) 2 ).
On the graph of a valued quiver we write the weights on the top or bottom of the arrows. Note that i

(v 1 ,v 2 )
-→ j is the same weighted arrow as j

(v 2 ,v 1 )
←i. In the case when v 1 = v 2 = w, we replace the weighted arrow by i w -→ j or by w arrows from i to j. We also adopt the following convention:

(81)

• we allow edge e ∈ Q 1 with v(e) = (0, 0) with the convention that i (0,0) -→ j (or equiva -lently i 0 -→ j) means that there is no arrow from i to j; and

• i (-v 1 ,-v 2 )
-→ j with both v 1 and v 2 non-negative stands for i

(v 1 ,v 2 ) ←-j.
Now to a valued quiver Q with vertex set Q 0 = {1, . . . , n}, one associates an integer matrix B = B Q = (b i j ) i, j∈I as follows: b i j = 0 if there is no arrow between i and j; b i j = v(a) 1 if there is an arrow a : i -→ j; and b i j = -v(α) 2 if there is an arrow α from j to i. Then denoting by D the I-diagonal matrix with diagonal entries d(i) with i ∈ I, one verifies that DB is antisymmetric thus the matrix B is skew-symmetrizable. Conversely, to a skew-symmetrizable matrix B, one associates the valued quiver Q = Q(B) with set of vertices Q 0 = {1, . . . , n} and valued arrow a i j : i-→ j for any distinct i, j ∈ Q 0 , with v(a i j ) = (|b i j |, |b ji |). One obtains this way a bijection

(82) B = B Q ← ----→ Q = Q B
between the set of skew-symmetrizable I-square matrices with integer entries and that of valued quivers with vertex set I. Using this bijection, one defines the mutation µ k (Q) in the direction k ∈ I of a valued quiver Q via the formula

µ k (Q) = Q µ k (B Q ) .
(There are well-known rules allowing to construct µ k (Q) directly from Q, without using the bijection (82), see [FZ2,Prop. 8.1] for instance).

Here is a skew-symmetrizable example (of Dynkin type B 3 , see §3.2.1.1 further):

B B 3 =           0 1 0 -1 0 -2 0 1 0           ← ----→ Q B 3 : 1 1 ------→ 2 (1,2)
← ----------3 .

Seeds, mutations and cluster algebras

We now describe a central notion of the theory of cluster algebras, that of seeds. There are two parallel notions of seeds, the A-seeds, and the X-seeds. The latter is the most relevant for applications to web theory, but since the former is a fundamental one, we introduce it as well.

A (labeled) seed is a triple S = (a, x, B) where a = (a 1 , . . . , a n ) is a n-tuple of indeterminates, x = (x 1 , . . . , x n ) is another one (independant of the former) and B = (b i j ) n i, j=1 is a skew-symmetrizable n × n integer matrix, called the exchange matrix of the seed. The associated (labeled) A-seed (resp. X-seed) is the pair (a, B) (resp. (x, B)). The n-tuples a and x are called 'A-(resp. X-) clusters' and their elements a i and x i 'A-(resp. X-) cluster variables'. Note that all these objects are a priori associated to the considered seed.

By definition, for k ∈ {1, . . . , n}, the (cluster) mutation in the k-th direction of the seed S is the new seed

S ′ = a ′ , x ′ , B ′ = µ k a, B , µ k x, B , µ k (B) = µ k S
with B ′ = µ k (B) being the matrix mutation of B in direction k and where the new clusters a B) are defined by the following formulas for the corresponding cluster variables:

′ = (a ′ 1 , . . . , a ′ n ) = µ k (a, B) and x ′ = (x ′ 1 , . . . , x ′ n ) = µ k (x,
a ′ j = a j if j k and a ′ k = 1 a k         b ℓk >0 a b ℓk ℓ + b lk <0 a -b lk l         if j = k (83) x ′ j = x j -1 if j = k and x ′ j = x j 1 + x [-b k j ] + k -b k j if j k .
Again, one can verify that this mutation is an involution: one has µ k (µ k (S )) = S as a seed from which it comes that the the 'A-mutation' in the k-th direction a → a ′ = µ k (a, B) as well as the associated 'X-mutation' x → x ′ = µ k (x, B) both are birational maps (whose inverse respectively are a ′ → a = µ k (a ′ , B ′ ) and

x ′ → x = µ k (x ′ , B ′ ), with B ′ = µ k (B)).
Given a seed S = (a, x, B) as above and a permutation σ ∈ S n , one sets S σ = (a σ , x σ , B σ ) with ( 84)

a σ = a σ(i) n i=1 , x σ = x σ(i) n i=1
and

B σ = b σ(i)σ( j) n i, j=1
.

Then another seed S ′ = (a ′ , x ′ , B ′ ) is said to be equivalent to S if is of the form S σ for a certain σ. The notion of equivalence for two Aor X-seeds can be stated similarly in an obvious way. We will write S ≃ S ′ whenever these two seeds are equivalent and [S ] will stand for the set of S-seeds equivalent to S . Now let T n stand for the n-regular tree, that is the connected acyclic simple n-regular graph with a labeling by integers from 1 to n of the edges of T n , requiring moreover that the n edges emanating from a vertex t of T n receive pairwise different labels. By definition, a cluster pattern CP (possibly of S-seeds with S = A or S = X) is an assignment of a S-seed S t to any vertex t of T n such that for any edge, say between t and t ′ and labeled by k, S t ′ is obtained from S t by means of the mutation of the latter seed in the direction k (and equivalently for S t from S t ′ ), i.e.:

t k t ′ =⇒ S t ′ = µ k S t ⇐⇒ S t = µ k S t ′ .
We define the S-exchange graph of a S-cluster pattern as the quotient of T n by the relation t ≃ t ′ for two vertices if the two corresponding seeds S t and S t ′ are equivalent S-seeds. This exchange graph can be finite or infinite.

Given a cluster pattern, for any vertex t of T n , we denote by a t i (resp. x t i ) the corresponding A-(resp. X-) cluster variables and by b t i j the coefficients of the exchange matrix B t of the seed S t = (a t , x t , B t ). When a vertex t 0 is chosen, one refers to the associated seed S t 0 as the initial seed, and to the corresponding cluster variables a t 0 i (or x t 0 i ) as the 'initial cluster variables', and to B t 0 as the 'initial exchange matrix'. Note that an initial seed S t 0 entirely determines the full cluster pattern. And since this seed is completely determined by B t 0 , actually everything rely on the initial matrix. To simplify the notation, we will often drop the suscript t 0 for the initial objects, that is the 'cluster objects' associated to S t 0 .

Assume that S is empty or is A. The cluster algebra A = A(CP) (also denoted by A(S t 0 ) or A(B t 0 ) assuming that an initial seed has been chosen) associated to a S-cluster pattern CP is the k-subalgebra of F = k(a 1 , . . . , a n ) generated by all the A-cluster variables a t i of all the cluster (a t , B t ) of the considered cluster pattern. In other terms, given an initial seed (a, B), A(B) is the subalgebra of F generated by all the A-cluster variables which can be constructed from (a, B) by means of a finite but arbitrary number of seed mutations.

At some points, it will be useful to use the following notation: given an initial seed (a, x, B) = ((a i ) n i=1 , (x i ) n i=1 , B), one sets

Avar B = Avar A(B) = A -cluster variables of A(B) ⊂ k(a 1 , . . . , a n )
and

Xvar B = Xvar A(B) = X -cluster variables of A(B) ⊂ k(x 1 , . . . , x n ) .
A priori, both sets are infinite sets of rational functions in the initial variables a i 's and x i 's respectively.

A warning and an apology: there are two distinct conventions for the terminology in the theory of cluster algebra, one by Fomin and Zelevinsky, the other by Fock and Goncharov: the Aand X-cluster variables of the two latter authors are respectively called X-and Y-cluster variables by the former two. Moreover, the mutations of a seed (a, x, B) considered by Fock and Goncharov correspond to those of Fomin and Zelevinsky, but with the transpose of B instead of B.

Here, due to a clumsiness that occurred at an early stage in the development of this work, we have accomplished the feat of using the 'A/X-cluster terminology' of Fock and Goncharov while working with the formula of Fomin and Zelevinsky for the mutations. If this doesn't cause any error if working carefully, this can make it uneasy to connect with the papers of the authors mentioned above, which are basic references on cluster algebras. We apologize to the reader for any inconvenience this may cause.

In this text, we will consider several examples of cluster algebras constructed from Dynkin diagrams, to which we refer in the sequel. As for another classical and interesting type of cluster algebras, we mention the ones associated to triangulated surfaces introduced by Fomin, Shapiro and D. Thurston in [FST].

Example 8. Let (S , P) be a 'bordered surface with marked points': S is an oriented surface with (possibly empty) boundary ∂S and P is a finite set of points in S which has non-empty intersection with any connected component of ∂S . Let T = (τ 1 , . . . , τ n ) be a set of arcs in S \ ∂S , with endpoints in P which together with the boundary segments (namely, the closure of the connected components of ∂S \ P) form a triangulation T of S . 73 One associates to such a T a n × n 'exchange matrix' B(T ) whose (i, j)-th coefficient is given by the difference between the number of triangles in T with sides τ i and τ j with τ j following τ i in clockwise order, minus the number of triangles with sides τ i and τ j , but this time when τ j follows τ i in counterclockwise order.

For any k ∈ {1, . . . , n}, one sets τ i = τ i for i k and one defines τ ′ k as the ideal arc obtained by flipping τ k in the topological quadrilateral formed by the two adjacent triangles of T having τ k as common edge (see Figure above). Then as T , µ k (T ) = (τ ′ j ) n j=1 is a maximal collection of ideal arcs on S and one can verify that the exchange matrix associated to it coincides with the one obtained by mutation of B T in the k-th direction: i.e. µ k (B(T )) = B(µ k (T )). One defines the cluster algebra A(S , P) associated to the pair (S , P) as the one with exchange matrix B(T ) for a maximal collection of arcs T as above. Since any other such collection can be obtained from T after a finite number of flips, A(S , P) does not depend on the choice of T (up to mutations) hence this definition makes sense.

Cluster webs.

We have reached the point where we can finally define the main objects of study in this text. As many good and relevant definitions in mathematics, the general definition we first give is quite simple, general and not very precise. Let A = A(B) be a cluster algebra defined by a skew-symmetrizable n × n matrix B, for some n ≥ 2. Let Σ be a non-empty finite set of (A-or X-)cluster variables. By definition, the cluster web associated to it is the web W Σ admitting as first integrals the elements of Σ:

W Σ = W x | x ∈ Σ .
Such a 'Aor X-cluster web' (the terminology depending on Σ is included in Avar(B) or in Xvar(B)) is a web on C n defined by rational first integrals. We will give further some general properties of such webs but for the moment we agree that this definition is a bit elliptic.

The notion of 'cluster web' is one of the most important of this text and a few preliminary basic remarks about it are in order:

• First, in general the set of cluster variables is infinite and the potential relevance of the notion of cluster web resides precisely in considering finite subsets of cluster variables giving rise to interesting webs.

• Second, there is a slight inaccuracy in the above definition of what is a 'cluster web' since the space on which it has to be considered is not clearly indicated. We will settle this later on in §3.2.1.3.

• The way they are defined above, cluster webs are unordered webs a priori since there is no natural ordering of the cluster variables. However, we will always work with ordered webs in practice, after having ordered the cluster first integrals elements of Σ in one way or another.74 

• A basic but important thing that might happen is that two distinct cluster variables belonging to Σ define the same foliation on C n and that even knowing Σ quite explicitly, it may be rather difficult to describe precisely the foliations of W Σ , or even just to enumerate them. This point, regarding which we have precise conjectures, will be discussed more in length further on in §3.4.

• Finally, we have to say that from a web-theoretic perspective, the interesting cluster webs are the ones of X-type, that is those defined by rational first integrals which are X-cluster variables. This is not surprising since it is known that such cluster variables are of a much more geometric nature than the A-cluster variables. In this text, we will focus on X-cluster webs.

At this point, it is time to look at a first example, which is already interesting although very basic.

3.2.1 An example: the A 2 case. To the Cartan matrix 2 -1 -1 2 of type A 2 is associated the following exchange matrix and quiver:

B A 2 = 0 1 -1 0 and Q A 2 : 1 -→ 2 .
In this case, and this contrasts with what happens in general, it is not difficult to write down explicit formulas for the seeds obtained by successive mutations. In order to get nicer formulas for the X-variables, one takes S 0 = (1/x 1 , x 2 ) , B A 2 for the initial X-seed. Then the seeds which can be constructed from S 0 by means of mutations are given in Figure 10 below.

1

x 1 , x 2 , 0 1 -1 0 µ 1 ( ( ◗ ◗ ◗ ◗ ◗ ◗ ◗ ◗ ◗ ◗ ◗ ◗ ◗ µ 2 v v ♠ ♠ ♠ ♠ ♠ ♠ ♠ ♠ ♠ ♠ ♠ ♠ ♠ 1+x 2 x 1 , 1 x 2 , 0 1 -1 0 µ 1 x 1 , x 2 1+x 1 , 0 -1 1 0 µ 2 x 1 1+x 2 , 1+x 1 +x 2 x 1 x 2 , 0 1 -1 0 (12) ( ( ◗ ◗ ◗ ◗ ◗ ◗ ◗ x 1 x 2 1+x 1 +x 2 , 1+x 1 x 2 , 0 1 -1 0 µ 1 v v ♠ ♠ ♠ ♠ ♠ ♠ ♠ ♠ ♠ ♠ ♠ ♠ ♠ 1+x 1 +x 2 x 1 x 2 , x 1 1+x 2 , 0 -1 1 0
Figure 10: The X-exchange graph of the cluster algebra of type A 2

We see that the two X-seeds S = µ 2 • µ 1 (S 0 ) and

S ′ = µ 1 • µ 2 • µ 1 (S 0
) are equivalent by means of the transposition (1, 2) (i.e. one has S (12) = S ′ , see (84) for this notation). This implies that the X-exchange graph of the cluster algebra defined by B A 2 is a pentagon and that there are precisely five X-clusters and just as many X-custer variables (up to inversion x ↔ x -1 ):75 

Xvar B A 2 = x 1 , x 2 , 1 + x 2 x 1 , 1 + x 1 x 2 , 1 + x 1 + x 2 x 1 x 2
By definition (see (85) further), the 'X-cluster web of type A 2 ', denoted by XW A 2 , is the 5-web on C 2 defined by all the X-custer variables, i.e.

XW A 2 = W x 1 , x 2 , 1 + x 2 x 1 , 1 + x 1 x 2 , 1 + x 1 + x 2 x 1 x 2 .
The main feature of this web, and this was our main motivation to consider and study the 'cluster webs', is that the following functional identity holds true for any

x 1 , x 2 ∈ R >0 R(x 1 ) + R(x 2 ) + R 1 + x 2 x 1 + R 1 + x 1 x 2 + R 1 + x 1 + x 2 x 1 x 2 = π 2 /2 ,
where R stands for the 'cluster dilogarithm' defined by R(u) = -Li 2 (-u) -1 2 Log(u)Log(1 + u) for u ∈ R >0 (introduced and discussed in §2.2.2.1 above).

It is not difficult to verify that XW A 2 is equivalent to Bol's web B. The latter being so important regarding web-geometry, this motivates for studying cluster webs more systematically. This is the main theme of the present section of this text.

⋆

In the next paragraph, using a basic result of the theory of cluster algebras, we are going to introduce several series of webs generalizing the X-cluster web of type A 2 considered above, and which look quite interesting in what concerns their abelian relations and their rank(s).

3.2.1.1 Cluster algebras of finite type. We now describe the classification of cluster algebras of 'finite type'. This is a fundamental result of the theory due to Fomin and Zelevinsky [FZ2] which allows us to define several families of cluster webs, one for each Dynkin diagram ∆.

Let EΓ Q be the exchange graph associated to the cluster pattern defined by (the skew-symmetrizable matrix B = B Q associated to) a valued cluster quiver Q. Then the associated cluster algebra A Q is said to be of finite type if EΓ Q is finite. It is clearly equivalent to the facts that (i) B is mutation finite; and (ii) there exists only a finite number of A-clusters or equivalently, of Acluster variables.

Dynkin diagram and valued quivers. Let (Q, v) be a valued quiver. By (81), one can assume that v 1 (e) > 0 for any edge e in it. Then, by definition, the diagram associated to it is the quiver D(Q, v) with the same vertices as Q but where each oriented edge e : i-→ j is replaced by v 1 (e) distinct oriented edges from i to j if v 1 (e) > 1, and just by i j otherwise. Then (Q, v) is said to be of Dynkin type ∆ if D(Q, v) = ∆ for ∆ being one of the Dynkin diagrams in Figure 11 below.

Conversely, let us associate a valued quiver ∆ attached to any Dynkin diagram ∆. First, we remind that a source (resp. a sink) in a quiver Q is a vertice which is not the endpoint (resp. the initial point) of any oriented edge e ∈ Q 1 . A quiver is bipartite if any of its vertices is either a source or a sink. In such a quiver, sinks will be indicated by black dots •, whereas the sources by white ones . Let ∆ be a connected Dynkin diagram. Then there exists a unique coloring of the vertices of ∆ as sources of sinks in order to get a bipartite graph ∆ b with the first vertex being a source. When ∆ is simply-laced (A, D, E case), one gets the valued quiver ∆ by orienting the edges of ∆ b from sources to sinks as follows ----→ • and setting v(e) = (1, 1) for any such oriented edge e. In case when ∆ is multi-laced, for two vertices i and j in ∆ b with k ∈ {1, 2, 3} edges from i to j, one associates an edge in ∆ which goes from i to j and has valuation (k, 1) if i is a source, and which goes from j to i with valuation (1, k) if i is a sink. Some Dynkin quivers are pictured in Figure 12. Given ∆, we denote by B ∆ the bipartite skew-symmetrizable matrix associated to ∆. For instance, these matrices for ∆ of rank 2 and 3 are the following:

B A 2 = 0 1 -1 0 B A 3 =           0 1 0 -1 0 -1 0 1 0           B B 2 = 0 2 -1 0 B B 3 =           0 1 0 -1 0 -2 0 1 0           B C 2 = 0 1 -2 0 B C 3 =           0 1 0 -1 0 -1 0 2 0           and B G 2 = 0 3 -1 0
By definition, the cluster algebra of Dynkin type ∆ is the one obtained by taking B ∆ as initial exchange matrix. One can then state one of the main basic results of the theory of cluster algebras, due to Fomin and Zelevinsky:

Theorem 3.1 ([FZ2]
). 1. The cluster algebra A Q associated to a valued quiver Q is of finite type if and only if Q is mutation equivalent to a valued quiver of Dynkin type ∆.

2. Two valued cluster quivers Q 1 and Q 2 of Dynkin type are mutation equivalent if and only if they define the same Dynkin (or 'Cartan-Killing') type.

To any Dynkin Diagram ∆, since the total number of associated cluster variables of A ∆ is finite, one can consider the following two webs:

AW ∆ = W all A -cluster variables of A ∆ (85)
and XW ∆ = W all Xcluster variables of A ∆ .

By definition, these two webs are respectively the Aand X-cluster web of type ∆.

From the second point of the preceding theorem, it follows that the Dynkin type of a finite type cluster algebra A is well-defined hence for R standing for A or X, we will call (a bit abusively) 'R-cluster web' and will denote by the same notation RW ∆ , any cluster web whose the first integrals are all the R-cluster variables of a finite type cluster algebra of Dynkin type ∆. In other words, RW ∆ will stand for any webs in the equivalence class (up to isomorphisms of webs induced by cluster mutations) of the web with initial matrix B ∆ . Since the objetcs/properties of webs we are dealing with (RAs, rank(s), being AMP, etc.) make sense and behave well up to equivalence, this will not be the source of any real problem. Some examples of cluster webs associated to finite type cluster algebras. Since B 2 ≃ C 2 , the cluster webs of these two types are equivalent. Thus there exist only three Dynkin diagrams of rank 2 to consider: A 2 , already studied in §3.2.1, B 2 and G 2 . The A-cluster webs for the initial

A-seeds ((a 1 , a 2 ), B ∆ ) with B A 2 = 0 1 -1 0 , B B 2 = 0 2 -1 0 and B G 2 = 0 -1 3 0 are AW A 2 = W 1 a 1 , 1 a 2 , 1 + a 2 a 1 , 1 + a 1 a 2 , 1 + a 1 + a 2 a 1 a 2 , AW B 2 = W 1 a 1 , 1 a 2 , 1 + a 2 a 1 , 1 + a 1 2 a 2 , 1 + a 2 + a 1 2 a 1 a 2 , a 1 2 + (1 + a 2 ) 2 a 1 2 a 2 ,
and

AW G 2 = W 1 a 1 , 1 a 2 , 1 + a 1 a 2 , 1 + a 2 3 a 1 , 1 + a 1 + a 2 3 a 1 a 2 , ( 1 
+ a 1 ) 2 + a 2 3 a 1 a 2 2 , ( 1 
+ a 1 ) 3 + a 2 3 a 1 a 2 3 , ( 1 
+ a 1 ) 3 + 3 a 1 a 2 3 + a 2 6
a 1 2 a 2 3 , whereas, when taking (x -1 1 , x 2 ) as initial X-cluster in the cases A 2 and B 2 , and (x 1 , x -1 2 ) in the G 2 -case, the associated X-cluster webs are the following ones:

XW A 2 = W 1 x 1 , 1 x 2 , 1 + x 2 x 1 , 1 + x 1 x 2 , 1 + x 1 + x 2 x 1 x 2 XW B 2 = W       1 x 1 , 1 x 2 , 1 + x 2 x 1 , (1 + x 1 ) 2 x 2 , ( 1 
+ x 1 ) 2 + x 2 x 1 x 2 , ( 1 
+ x 1 + x 2 ) 2 x 2 1 x 2       and XW G 2 = W 1 x 1 , 1 x 2 , 1 + x 1 x 2 , ( 1 
+ x 2 ) 3 x 1 , x 1 + (1 + x 2 ) 3 x 1 x 2 , ( 1 
+ x 1 ) 2 + 3(1 + x 1 )x 2 + 3x 2 2 + x 3 2 x 1 x 2 2 , ( 1 
+ x 1 + x 2 ) 3 x 1 x 3 2 , (x 1 + (1 + x 2 ) 2 ) 3 x 2 1 x 3 2 .
For an example in rank 3, the two cluster webs in type A 3 with initial seeds ((a 1 , a 2 , a 3 ), B A 3 ) and ( x -1 1 , x 2 , x -1 3 ) , B A 3 are respectively:

AW A 3 = W 1 a 1 , 1 a 2 , 1 a 3 , 1 + a 2 a 1 , 1 + a 2 a 3 , 1 + a 1 a 3 a 2 , 1 + a 2 + a 1 a 3 a 1 a 2 , 1 + a 2 + a 1 a 3 a 2 a 3 , 1 + 2 a 2 + a 2 2 + a 1 a 3 a 1 a 2 a 3 and XW A 3 = W 1 x 1 , 1 x 2 , 1 x 3 , 1 + x 2 x 1 , 1 + x 1 x 2 , ( 1 
+ x 1 )(1 + x 3 ) x 2 , 1 + x 3 x 2 , 1 + x 2 x 3 , 1 + x 1 + x 2 (1 + x 1 )x 3 , 1 + x 2 + x 3 (1 + x 3 )x 1 , 1 + x 2 + x 3 x 2 x 3 , 1 + x 1 + x 2 + x 3 + x 1 x 3 x 1 x 2 , ( 86 
) 1 + x 1 + x 2 + x 3 + x 1 x 3 x 2 x 3 , (1 + x 1 + x 2 )(1 + x 2 + x 3 ) x 1 x 2 x 3 .
As it appears clearly when considering the examples above (but this is a general fact which follows easily from the 'separation formulas' ( 88) and (89) given below), the A-cluster webs are defined by cluster variables which are formally simpler than thoses defining the X-cluster webs.

However, in all the examples we have studied, the latter webs seem far more interesting than the former from a web-theoretic perspective, especially in what concerns their ARs and their rank (see for instance §3.3.1.5.2 for an illustration of this fact). Accordingly, we will only consider X-cluster webs in this text and will study these webs more in depth further.

Remark 3.2. The cluster variables 1/x 1 , 1/x 2 and (1 + x 2 )/x 1 are first integrals of a 3-subweb of XW A 3 and obviously only depend on x 1 and x 2 . Consequently, this 3-subweb has intrinsic dimension 2 hence the X-cluster web of type A 3 does not satisfy the 'strong general position assumption' for webs discussed in §1.1.1. This seems to be a general fact regarding cluster webs: they only satisfy the assumption (wGP).

3.2.1.2 Some fundamental objects and results. We discuss here some important properties of cluster variables and what these properties imply for cluster webs. Since only the X-side is relevant for webs, we will focus on the cluster variables of this type even though the properties discussed below admit versions for the A-variables.

3.2.1.2.1 F-polynomials and c-vectors. We describe some objects associated to each seed of a given cluster algebra, introduced very early in the development of the theory, by Fomin and Zelevinsky in [FZ2].

Let S t = (x t , a t , B t ) t∈T n be the cluster pattern of a cluster algebra A of rank n, with initial seed corresponding to a vertex t 0 . To it is associated another pattern indexed by the vertices of T n , formed by FC-seeds Γ t = (F t , C t ) where for any t:

• F t is a n-tuple (F t i (u)) n i=1 of rational function in n indeterminates u 1 , . . . , u n ; • C t = (c t i j ) n i, j=1
is a n × n square matrix with integer entries.

The Γ t 's are obtained recursively from Γ t 0 by requiring that for the FC-seed, one has

F t 0 i (u) = 1 for i = 1, . . . , n and C t 0 = Id n ;
and assuming that, for any edge t k t ′ in T n , one has for any i, j = 1, . . . , n with j k:

c t ′ ik = -c t ik and c t ′ i j = c t i j + c t ik • b t i j + + -c t ik + • b t k j (87) F t ′ k (u) = M t k (u)/F t k (u) and F t ′ j (u) = F t j (u) , where M t k (u) = n l=1 u c t lk + l F t l (u) b t lk + + n l=1 u -c t lk + l F t l (u) -b t lk + .
From the previous formulas, it is straightforward that

F t i belongs to Q sf (u) = Q sf (u 1 , .
. . , u n ) for any i = 1, . . . , n and seed vertex t. 76 Actually, much more is true since it can be proved that each F t i actually is a polynomial with integer coefficients, that is

F t i ∈ Z[u 1 , . . . , u n ] (see [FZ2, Proposition 3.6]).
For any t, the F t i 's with i = 1, . . . , n are called the F-polynomials of the seed S t . We will see below that the F-polynomials of a cluster algebra actually enjoy quite stronger properties. The interest of considering the F-polynomials F t i as well as the integer matrices C t is made clear once considering the following fundamental result: Theorem 3.3 (Separation formula for X-cluster variables, [FZ2,Prop. 3.13]). For any i = 1, . . . , n and any t ∈ T n , the corresponding X-cluster variable x t i expresses in terms of the initial cluster variables x 1 , . . . , x n by means of the following formula:

(88) x t i =          n j=1 x c t ji j                  n k=1 F t k (x) b t ki         .
The matrix C t is the C-matrix of the seed S t and by definition, its i-th column vector c t i = c 1i , . . . , c ni t is the c-vector of the cluster variable x t i . There is also a 'separation formula' for the A-cluster variable (see [FZ2,Cor 6.3]): there exists

G t = (g t i j ) n i, j=1 ∈ M n (Z) such that, if â = (â i ) n i=1 with âi = n j=1 a b ji j for any i = 1, . . . , n, one has (89) a t i =          n j=1 a g t ji j          • F t i (â) .
The notions of F-polynomial and of c-vector are fundamental in the theory of cluster algebras and have been intensively studied in recent times. Some deep conjectures about them have been proved recently by means of deep and conceptual approaches (categorification of cluster algebras, scattering diagrams). Among the most important results we are referring to here, let us mention the two following theorems:

Theorem 3.4 (Positivity for F-polynomials). For t ∈ T n and i = 1, . . . , n, the polynomial F t i (u): 1. has constant term equal to 1, that is F t i (0) = 1;

2. has only one monomial of maximal degree and the latter has coefficient 1 and is a (proper monomial) multiple of any other monomial appearing in F t i (u);

3. has positive integer coefficients, i.e. F t i (u) ∈ Z >0 [u 1 , . . . , u n ]. (The first two statements in the preceding theorem have been conjectured in [FZ2,§5] where it is proven that they actually are equivalent. In finite type, one can be much more precise about the monomial of maximal degree of the second point, see the paragraph just before Remark 3.7.) Theorem 3.5 (Sign-coherence for c-vector). For any t ∈ T n and any i = 1, . . . , n, the c-vector c t i is non-zero and has its non-zero entries either all positive or all negative.

We mention that the presentation above does not reflect accurately how the different statements appearing in these two fundamental theorems are related. Indeed, each of the two last points of Theorem 3.4 actually is equivalent to Theorem 3.5 (cf. Proposition 5.6 in [FZ2]). Moreover, despite their importance regarding the theory of cluster algebras, we will not really use these results in the current text, but only a few easy, but already important for our purpose, consequences.

F-polynomials are important objects attached to cluster algebras and they have been the subject of various studies from different points of view (e.g. see the references given in [START_REF] Cao | Non constant F-polynomials are irreducible[END_REF][START_REF] Arkani-Hamed | Grassmannian geometry of scattering amplitudes[END_REF]). When studying cluster webs, and more specifically their polylogarithmic ARs (see 3.4 further for more about this), it becomes relevant to know whether the hypersurfaces H F = {F t i (u) = 0} cut out by a non constant F-polynomial is irreducible or not. The consideration of many concrete examples led us to conjecture that it is always the case. Motivated by a question of ours, Cao and Keller prove that it indeed holds true in the recent preprint [CK]:

Theorem 3.6. Each non constant F-polynomial F t i is irreducible in Z[u 1 , . . . , u n ].
A remarkable feature of the results presented above is that they hold true for any choice of initial seed. This highly non trivial fact has very pleasant/useful consequence for the cluster webs we are going to study.

⋆

By definition, the F-polynomials associated to a given a cluster variable x t i are the F t j in (88) appearing with a non-vanishing exponent b t i j . Given a cluster web W Σ defined by a finite subset of X-cluster variables Σ, ones denotes by ( 90)

F W Σ
(or just by F Σ ) the union of the non-constant F-polynomials associated to the elements of Σ.

Remark that they are polynomials (with positive integers as coefficients) in the cluster variables x 1 , . . . , x n of the initial seed.

Following [START_REF] Nakanishi | Tropicalization method in cluster algebras[END_REF] (where this notion has been formally introduced for the first time and to which we refer for more details and perspective), we define the i-th tropical sign ε t i ∈ {-1, +1} of the cluster associated to a vertex t in the exchange graph of a cluster algebra, as the sign of the non-zero coefficients of the c-vector c t i . Note that, in this case again, this notion a priori depends on the choice of the initial seed. In the present text, we will use it to formulate some dilogarithmic identities associated to cluster algebras (for instance, see identity R i ǫ p. 146 further).

⋆

As an example, we consider the case of finite type A 2 (see [FZ2] and the different tables in [FZ2]). In Figure 13 below, we give the associated 'FC-exchange graph' whose vertices FC t corresponding to a vertex t of T 2 is (F t , C t ) where

F t = (F t 1 , F t 2 )
is the pair of associated Fpolynomials and where C t stands for the matrix of c-vectors. We note FC 0 the initial 'FC-seed' and for any i, j, two distinct elements of {1, 2}, we set FC i and FC i j for the 'FC-seeds' after mutation µ i and µ j • µ i respectively).

From Figure 13, it follows that

F(A 2 ) = F α | α ∈ (A 2 ) >0 = 1 + x 1 , 1 + x 2 , 1 + x 1 + x 1 x 2 .
If the expressions for the elements of F(A 2 ) are quite simple, we remark that there is a lack of symmetry since exchanging x 1 with x 2 in the F-polynomial 1 + x 1 + x 1 x 2 gives a polynomial which does not belong to F(A 2 ).

We will see just below that, up to inverting some of the initial cluster variables, one obtains some variants of the F-polynomials which, in case of cluster algebras of finite type, have a nice Lie-theoretic and combinatorial description.

FC 0 = 1, 1 , 1 0 0 1 µ 1 ) ) ❙ ❙ ❙ ❙ ❙ ❙ ❙ ❙ ❙ ❙ ❙ ❙ ❙ ❙ ❙ µ 2 u u ❦ ❦ ❦ ❦ ❦ ❦ ❦ ❦ ❦ ❦ ❦ ❦ ❦ ❦ ❦ FC 2 = 1, 1 + x 2 , 1 0 0 -1 µ 1 FC 1 = 1 + x 1 , 1 , -1 1 0 1 µ 2 FC 12 = 1 + x 1 + x 1 x 2 , 1 + x 2 , -1 0 0 -1 (12) ) ) ❙ ❙ ❙ ❙ ❙ ❙ ❙ ❙ FC 21 = 1 + x 1 , 1 + x 1 + x 1 x 2 , 0 -1 1 -1 µ 1 u u ❦ ❦ ❦ ❦ ❦ ❦ ❦ ❦ ❦ ❦ ❦ ❦ ❦ ❦ ❦ FC 121 = 1 + x 2 , 1 + x 1 + x 1 x 2 , 0 -1 -1 0
Figure 13: The FC-exchange graph of the cluster algebra of type A 2 (see also [FZ2,Table 2]).

3.2.1.2.2 Some features of F-polynomials in finite type. Since we are going to look at the cluster webs associated to finite type cluster algebras in a significant way, we describe below some particular features of F-polynomials in this case that will prove to be useful later on.

Because finite type cluster algebras are intimately related to Lie theory, it is not surprising that many things about the F-polynomials of a cluster algebra associated to a given Dynkin diagram ∆ can be described in terms of the root system Φ = Φ(∆) associated to the latter.

In what follows, we will use the following notations:

• n stands for the rank of ∆;

• a bit abusively, we write again ∆ for the set of simple roots δ 1 , . . . , δ n of Φ;

• then Φ >0 denotes the set of positive roots, that is the intersection of Z >0 ∆ with Φ, and Φ ≥-1 stands the set of almost-positive roots, i.e.

Φ ≥-1 = Φ >0 ⊔ -Π .
We will frequently denote Φ >0 (resp. Φ ≥-1 ) by ∆ >0 or ∆ + (resp. by ∆ ≥-1 );

Most of the facts recalled below are satisfied 'up to mutations', that is hold true for any choice of an exchange matrix B mutation equivalent to the bipartite matrix B ∆ = B ∆ defined above. 77 . For simplicity, we assume that B stands precisely for B ∆ in what follows.

In order to remind the definition of the F-polynomials of the cluster algebra associated to B given in [FZ2,§3], one needs to recall that, as explained in [FZ2] (and in many other places as well), one can consider cluster algebras with coefficients in any semi-field P, the case when the latter is trivial (that is P = {1}) corresponding to the case considered in the present text. An important case is that of 'principal coefficients', that is when P coincides (up to isomorphism) with the 'tropical semi-field' Trop(x) = Trop(x δ , δ ∈ ∆) (cf. Definition 2.2 in [FZ2]). Indeed, the cluster variables of the associated cluster algebra, denoted by A prin B , can be used to define the F-polynomials and also to give a separation formula (analogous to (89)) for the A-cluster variables of the cluster algebra A P B associated to any coefficient semi-field (cf. [FZ2,Thm. 3.7]). Let (a δ ) δ∈∆ be the cluster of the initial A-seed of A prin B . For any α = δ∈∆ α δ δ in Φ (with α δ ∈ Z for every δ ∈ ∆), one sets a α = δ a α δ δ . The A-cluster variable of A prin B associated to any pair (t, λ) ∈ T n × ∆ is denoted by A t,λ . By construction, it is a substraction-free element of the ring QP(a) of polynomials in the a δ 's with coefficients in the fraction field of ZP. Since this fraction field QP naturally identifies with Q sf (x δ , δ ∈ ∆), any cluster variable can be seen as a substractionfree rational function in the a δ 's and the x δ 's: one has

A t,λ ∈ QP(a) ⊂ Q sf (a, x) .
Then by definition, the F-polynomial F t,λ associated to the pair (t, λ) is the element of Q sf (y) obtained by specializing A t,λ by setting a δ = 1 for every δ: one has

F t,λ = S(A t,λ )
where S stands for the specialization map

Q sf (a, x) -→ Q sf (x), R(a, x) -→ R(a = 1, x).
In other terms : the previous map induces a surjection from the set of A-cluster variables of A prin B onto the set of associated F-polynomials. On the other hand, thanks to a fundamental result (namely, Theorem 1.9 of [FZ2]), it is known that there exists a (unique) bijection

(91) Φ ≥-1 -→ Avar A prin B , α -→ A[α]
such that, in terms of the initial cluster variables a δ , one has A[α] = P α (a)/a α , where P α is an element of ZP[a] with non-trivial constant term (moreover, under this bijection, one has A[-δ] = a δ for any -δ ∈ (-Π) = Φ ≥-1 \ Φ >0 ). Composing S with (91), one gets a surjective map between the set of almost-positive roots and that of F-polynomials of the cluster algebra considered:

(92) Φ >0 -→ F A B , α -→ f [α] .
Finally, it is known that for any α = δ∈∆ a δ δ ∈ Φ >0 , the monomial of highest degree of f [α] is precisely x α = δ (x δ ) α δ . 78 From this, it comes immediately that (92) is bijective.

Remark 3.7. The exchange matrix B being given, the bijection (91) actually exists for any cluster algebra of 'geometric type', that is for any cluster algebras A P B with coefficients in a tropical semifield P. The case when the latter is trivial (that is P = {1}) corresponds to the cluster algebras considered here and to which we associate some webs. Consequently, one deduces from this the following more explicit description of the A-cluster web associated to ∆: one has

AW ∆ = W a α α ∈ Φ ≥-1 = W a δ , P α (a)/a α δ ∈ ∆ , α ∈ Φ >0 .
78 This is a non trivial result. It is known that any cluster algebra A ∆ of finite type admits a categorification C ∆ . This allows to express any F-polynomial f [α] as the value taken by the so-called 'Caldero-Chapoton character' when evaluated at a specific object of C ∆ . That the highest degree monomial of f [α] is x α follows at once from this. See [START_REF] Keller | Cluster algebras and cluster categories[END_REF] for a general overview of the interplay between cluster algebras and their categorifications.

For the case of A 2 considered above (i.e. B = B A 2 ), if one denotes by α i the principal root attached to the ith vertex of the Dynkin diagram 1 2 , then the polynomial f [α]s associated to the positive roots are given in the second column of Table 3 below (extracted from Table 7 of [FZ2]).

α ∈ A + 2 f [α] F[α] α 1 1 + x 1 1 + x 1 α 2 1 + x 2 1 + x 2 α 1 + α 2 1 + x 1 + x 1 x 2 1 + x 1 + x 2 Table 3: F-polynomials in type A 2
We see that the polynomials f [α]s are not symmetric in the variables x 1 and x 2 , whilst everything regarding the roots is. This lack of symmetry for the f [α]'s holds true for any Dynkin diagram and tends to make artificially a bit too complicated the formulas for the cluster variables, which can be the source of difficulties (for instance when performing explicit computations in order to determine the ARs of a given cluster web).

There is a way to get more symmetric formulas for some variants of the polynomials f [α]'s, via a rational change of variables described in [FZ2,§11] (cf. Definition 11.5 therein). Let E be the automorphism E of Q(x 1 , . . . , x n ) characterized by the following relations:

(93) E(x i ) =          x i -1 if i is a source in ∆; x i if i is a sink in ∆ .
Then it follows from [FZ2,§11], that setting for any almost-positive root α ∈ ∆ ≥-1 :

F[α] = E f α (x) i source x i [α i ] + , one recovers the F-polynomials introduced in [FZ1].
What makes the F[α]s interesting compared to the f [α]s is first that the former behave in a better way than the latter from a Lie theoretic point of view (see Theorem 1.6 or Proposition 2.9 of [START_REF] Fomin | Y-systems and generalized associahedra[END_REF] for instance). Second, the F[α]s are formally simpler than the f [α]s 79 , which makes them more useful when performing some computations for instance. In classical simply-laced type (A and D), there even exists a closed (but complicated) formula for F [α] in terms of some combinatorial objects associated to any positive root α (cf. Proposition 2.10 in [START_REF] Fomin | Y-systems and generalized associahedra[END_REF]).

Example 9. In type A, everything is particularly elementary and there are nice descriptions of the F-polynomials: a closed combinatorial one, and another inductive one, which is simpler and which, moreover, has the merit of explaining the terminology. For n ≥ 1 fixed, one denotes by α 1 , . . . , α n the principal roots associated in the following way to the nodes of the Dynkin diagram:

79 For a simple but concrete example, compare the last two columns of Table 3 above.

∆(A n ) :

α 1 α 2 α n-1 α n .
It is well known that, for any non-trivial interval x Ω

where the sum is carried over all the totally disconnected subsets Ω of [a, b].

For an inductive formula for F [a, b], we recall the definition of what it is natural to call the 'Fibonacci's polynomials'

(F m ) m≥-1 : one sets F -1 = 1, F 0 = 1 and F m (s 1 , . . . , s m ) = F m-1 (s 1 , . . . , s m-1 ) + F m-2 (s 1 , . . . , s m-2 ) s m for m ≥ 1 (thus F 1 (s 1 ) = 1 + s 1 , F 2 (s 1 , s 2 ) = 1 + s 1 + s 2 , F 3 (s 1 , s 2 , s 3 ) = 1 + s 1 + s 2 + s 3 + s 1 s 3 , etc.)
For each m ≥ 1, F m is a polynomial in m variables with positive integers as coefficients and constant term equal to 1. And for any n and any subinterval [a, b] ⊂ [1, n], it can be verified that, as a polynomial in the variables x 1 , . . . , x n , one has

F[a, b](x 1 , . . . , x n ) = F b-a+1 (x a , . . . , x b ) .
Remark 3.8. Since any X-cluster variable x is expressed in terms of the initial cluster variables and of the F-polynomials in a rather simple way (see (88)), and because the polynomials F[α]s are given by simpler formulas than the f [α]s, it is more convenient in practice to consider x • E instead of x, where E stands for the rational change of coordinates (93). Since E is a birational involution, this doesn't change anything when considering cluster webs from a geometric point of view.

3.2.1.3 Cluster tori and cluster webs. For more on the material discussed in this paragraph and in the next one, the reader can consult [START_REF] Fock | Moduli spaces of local systems and higher Teichmüller theory[END_REF], [START_REF] Fock | Cluster ensembles, quantization and the dilogarithm[END_REF]§2] and the fifth and sixth chapters of [GSV].

Let A B be a cluster algebra of rank n with fixed initial seed (a, x, B) associated to a vertice t 0 of T n . Below, we use Z to denote either A or X since our discussion covers both cases.

To a Z-cluster z t = (z t 1 , . . . , z t n ) corresponding to a vertex t of T n , one associates the Z-cluster torus T z t which is the complex torus defined by

T z t = Spec C (z t 1 ) ±1 , . . . , (z t n ) ±1 ≃ C * n
and that we will also denote sometimes by ZT t (or even by T t if no ambiguity is possible) for simplicity. We will denote by T z t >0 or ZT t >0 its positive part, that is its points with values in the positive semi-field R >0 , that is:

T z t >0 = T z t (R >0 ) ≃ (R >0 ) n ⊂ (C * ) n .
Since Z is fixed, we drop it most of the time in what follows. Let W be a cluster web defined by cluster variables x σ indexed by a finite set Σ. We will see it as the web on the initial cluster tori T t 0 whose first integrals are the x σ 's seen as rational functions on it. It is not difficult to see that this definition does not really depend on the choice of the initial seed. Indeed, let µ P : T t 0 T t be the rational map of tori given by the composition of the mutations associated to the edges of a path P :

t 0 → t 1 → • • • → t n-1 → t n = t in T n
joining the initial vertex t 0 to another one t. Then it is a birational map whose inverse is the rational map µ P -1 : T t T t 0 associated to the inverse path P -1 : t = t n → • • • → t 0 . Moreover, since µ P and µ P -1 are composed by mutations, both are positive maps hence are defined at any point of T t 0 >0 and T t >0 respectively. Since µ P -1 •µ P = Id, it follows that µ P induces a real-analytic diffeomorphism from T t 0 >0 onto T t >0 . Now, let (ζ, ξ) be a pair of Z-cluster variables viewed as rational functions on T t 0 and denote by ζ t and ξ t the corresponding cluster variables but seen as rational functions on T t : then ζ = µ * P (ζ t ) and similarly ξ = µ * P (ξ t ). Since µ P is birational, it follows that the rational 2-form dζ ∧ dξ on T t 0 vanishes identically if and only if the same holds true for dζ t ∧ dξ t on T t . Equivalently: the two foliations F ζ and F ξ coincide on T t 0 if and only if the same holds true for F ζ t and F ξ t on T t . From the discussion above, one immediately gets the Proposition 3.9. 1. The notion of cluster web does not depend on the choice of an initial seed. 2. The foliations of a cluster web are globally defined on the positive part of any cluster tori. 80 Since we are interested only in studying cluster webs up to equivalence, we can consider them only on the initial cluster torus T t 0 , and even to consider only their real versions given by considering their restrictions on the positive part

T t 0 >0 = T t 0 (R >0 ) ≃ (R >0
) n since it appears that both share exactly the same invariants (their virtual, polylogarithmic, or total rank in particular). A notable feature of cluster webs is that each one of the foliations composing such a web is defined by a cluster variable, which in particular is a substraction-free hence a positive rational function on T t 0 . A natural question is whether such a first integral obtained through the inductive algebraic machinery of cluster algebras are also primitive in the sense of foliation theory, that is have connected generic fiber. We will address this point further on in §3.4.2.1.

3.2.1.4 Cluster varieties, cluster ensembles and U-cluster webs. We now introduce the notion of cluster varieties, which is of great importance since it connects the theory of cluster algebras with many fields of geometry. We continue to use the notation introduced in the preceding pargraph, with Z denoting either A or X and B standing for the exchange matrix of the initial seed. One denotes by D a skewsymmetrizer for B: one has D = diag(d 1 , . . . , d n ) with d 1 , . . . , d n ∈ N * such that DB is skewsymmetric. We assume that the d i 's are relatively prime and denote by r the rank of B.

Let (t, t ′ ) be a pair of vertices in T n . Since the latter is a tree, there exists a unique injective continuous path p t ′ t : [0, 1] → T n joining t to t ′ to which corresponds the composition, denoted by µ t ′ t , of the mutations associated to the edges of T n encountered when one goes along Im(p t ′ t ). Then µ t ′ t is a positive birational map from T t to T t ′ with inverse µ t t ′ . On the disjoint union of cluster tori T t , one defines an equivalence relation 'Z-mut' by setting that z ∈ T t and z ′ ∈ T t ′ are equivalent if µ t ′ t is defined at z and similarly for µ t t ′ at z ′ and z ′ = µ t ′ t (z). Then one defines the Z-cluster variety Z B associated to B as the quotient of ⊔ t T t by this equivalence relation:

(94) Z B = t∈T n ZT t Z-mut
.

80 However, it may not be excluded that (some of) these foliations have singularities on some positive part T t >0 .

It can be proved that Z B is a smooth rational positive manifold. In particular, the positive parts T t (R >0 ) of the Z-cluster tori glue together and form the 'positive part Z B (R >0 )' of the cluster variety whose importance in geometry is well known. For us, the interest of considering this positive part of the cluster variety comes from the fact that it is topologically trivial (since it is isomorphic to any T t >0 , each of them being in turn isomorphic to the positive orthant (R >0 ) n ) and that the restriction on it of any cluster variable is a real-analytic positive function (with no indeterminacy points in particular).

Warning 3.10. Actually, the definitions of the Aand X-cluster varieties associated to a cluster algebra are more subtile and much more involved than as presented just above. Note also there are several variations of the constructions described above (e.g. the varieties A ⋆ and X ⋆ considered in [Mand] for instance). For a rigorous definition/construction in the realm of algebraic geometry, of the cluster varieties under scrutiny here, we refer to the second section of [GHK] and in particular to Proposition 2.4 therein. This proposition allows to give a rigorous meaning to (94) from which it follows that the varieties A B and X B are well-defined schemes. However, it appears that these varieties, if well defined, can be a bit wilder than those usually considered: for instance, the X-cluster variety is usually not separated, contrarily to the A-version, and it is not clear whether both are noetherian in general, see Remark 2.6 of [GHK]. However, consequently to what is explained in the latter remark, this will not cause any particular problem when dealing with webs on these varieties, since in this case there is no loss of information by working locally, in particular, on any cluster torus in a cluster variety. This is what we are going to do systematically (but implicitly) in the sequel hence we will not elaborate further about any possible pathology (like non-separatedness) of the cluster varieties we will deal with.

To a cluster algebra A B , we thus have associated two cluster varieties of dimension n, namely A B and X B . It turns out that these varieties carry supplementary structures. Indeed, for any seed coresponding to a vertex t of T n , one considers:

(i). the following monomial map from the A-cluster torus to the X-cluster torus:

p t : AT t -→ XT t , (a i ) n i=1 -→ n j=1 a b ji j n i=1
.

(ii). for any n-tuple of integers w = (w 1 , . . . , w n ) whose transpose is in the kernel of B t , one has a 1-dimensional torus action

C * × AT t → AT t : (t, (a i ) n i=1 ) → (t w i a i ) n i=1 .
Summing up on a basis of ker(B t ), these actions give rise to a torus action

q t : (C * ) n-r × AT t → AT t . (iii). the closed holomorphic logarithmic 2-form Ω t = n i, j=1 (d i b t i j ) • da t i a t i ∧ da t j a t j on AT t ; (iv). the Poisson bracket { • , • } t on XT t , associated to the bivector ω t = n i, j=1 (b t i j /d j ) • ∂ ∂x t i ∧ ∂ ∂x t j .
Then it can be proved that all these objects behave well modulo mutations 81 and globalize to the whole cluster varieties and give rise to a global map

(95) p = p B : A B -→ X B
81 More precisely, given an edge with label k between t and an adjacent vertex t ′ in T n with associated mutation µ t k , it can be verified that [GSV] and [START_REF] Fock | Cluster ensembles, quantization and the dilogarithm[END_REF]).

µ t k • p t = µ t k • p t ′ , (µ t k ) * (Ω t ′ ) = Ω t ′ , (µ t k ) * (ω t ) = ω t ′ , etc (see
whose rank is equal to that of B 82 and whose fibers are precisely the orbits of the global toric action q = q B : (C * ) n-r × A B → A B obtained as the gluing of the local torus actions q t of (ii). Moreover, the Ω t 's (resp. the ω t 's) give rise to a global pre-symplectic 2-form Ω = Ω B (resp. a Poisson bivector ω = ω B ) on the corresponding cluster variety. 83 The leaves of the null-foliation defined by Ω on the A-cluster variety A B are precisely the orbits of q hence the fibers of p. As a result, the map p can be seen as the pre-symplectic reduction of (A B , Ω B ).

We denote by U B (or just by U if no confusion can arise) the image of A B by the map ( 95):

(96)

U = U B = Im p B = p B A B ⊂ X B .
It can be proved that it is a smooth rational subvariety of X B which moreover is positive (in the sense of 'positive geometry', cf. [FG3, §1.1]). It carries the non-degenerate closed 2-form p * (Ω) hence is naturally a holomorphic symplectic variety. Moreover, one verifies that the restriction of the Poisson structure of X B along U B coincides with the one induced by p * (Ω).

The subvariety U B of X B is called the 'secondary cluster manifold' in [GSV]. 84 Following a terminology introduced by Fock and Goncharov, one now refers to the 3-tuple (A B , X B , p B ) as the 'cluster ensemble' associated to the cluster algebra determined by B.

Here are some classical concrete examples of cluster varieties or of cluster ensembles:

Example 10. 1. Surface type. Let S be a compact oriented smooth surface and p 1 , . . . , p n be n distinct points on it. We denote by S = S \ {p i } the associated punctured surface. Let G be a semi-simple algebraic group with trivial center and denote by G ′ the associated adjoint group (e.g. in type A m , one has G = SL m and G ′ = PGL m ).

In [START_REF] Fock | Moduli spaces of local systems and higher Teichmüller theory[END_REF], Fock and Goncharov define two moduli spaces A G,S and X G ′ ,S : the first para--metrizes 'twisted' G-local systems on S , the second 'framed' G ′ -local systems on S , which are in both cases local systems equipped with some extra data near the punctures. These two moduli spaces come with a natural map p G,S : A G,S → X G,S and an important result regarding these objects is that (A G,S , X G ′ ,S , p G,S ) is a cluster ensemble. 85 2. Type A n . In type A n , when the considered decorated surface is the unit disk in C with n + 3 pairwise distinct points on its boundary, one obtains a X-cluster variety which can be proved to identify in a natural way to the moduli space M 0,n+3 . From this, one gets that the latter identifies with the cluster variety X A n (see [START_REF] Fock | Cluster X-varieties, amalgamation, and Poisson-Lie groups[END_REF]Appendix B], [FG5, §1.2] and [Kin] for more details).

3. Type A m ⊠ A n . By a classical construction, to a pair (∆, ∆ ′ ) of Dynkin diagrams, one can construct a certain product quiver ∆ ⊠ ∆ ′ (see §3.3.1.4.2 below). When ∆ = A m and ∆ ′ = A n , it is known (cf. [Wen] or [START_REF] Golden | Motivic amplitudes and cluster coordinates[END_REF]§6]) that the associated X-cluster variety X A m ⊠A n identifies naturally with the moduli space Conf m+n+2 (P m ) of projective configurations of m + n + 2 points in P m . 82 We recall that the rank of a skew-symmetrizable matrix is stable by mutations. 83 This explains the terminology, introduced by Fock and Goncharov, of 'cluster Poisson manifold' to designate X B . 84 Note that our cluster variety A B is called the (first) 'cluster manifold' (associated to A B ) in [GSV], where it is denoted by X B . And Y B is used there in place of our U B . 85 For G = SL m , this is due to Fock and Goncharov (see [START_REF] Fock | Moduli spaces of local systems and higher Teichmüller theory[END_REF]§9]). For classical groups, this has been obtained by Le in [Le] by an impressive case by case treatment. The general result follows from a more conceptual and general approach developed recently by Goncharov and Shen [GS].

4. Finite type ∆. In a work in progress [START_REF] Pirio | Cluster varieties of finite type and moduli spaces of polygons[END_REF], we endeavour to show that quite similarly to what happens in type A, the X-cluster variety X ∆ associated to any Dynkin diagram ∆ might possibly be interpreted as a moduli space of polygons.

⋆

Now given a X-cluster web W Σ defined by a finite set Σ of X-cluster variables, we define a new web by considering its restriction along U, that we denote by UXW Σ :

UXW Σ := W Σ U .
We will call a web obtained in this way a 'U-cluster web' when U is a proper subvariety of X (otherwise this web coincides with W Σ hence one gets nothing new). As for their A or -Xversions (cf. Proposition 3.9), it is not difficult to show that the notion of U-cluster web does not depend on the choice of the initial seed.

An interesting case we will study further on, is the finite type case. Given a Dynkin diagram, we use the notation A ∆ , X ∆ and U ∆ to denote the corresponding cluster varieties associated to the initial bipartite Dynkin quiver ∆. When the inclusion U ∆ ⊂ X ∆ is proper, one obtains a new cluster web by considering the restriction of XW ∆ along U ∆ . One gets what we call the U-cluster web of type ∆, denoted as follows

UXW ∆ := XW ∆ U ∆ .
We will use a similar notation for the Y-cluster webs: we will denote by UYW ∆ the restriction of the Y-cluster web along the secondary cluster variety, i.e.

UYW ∆ := YW ∆ U ∆ .
The dimension of U ∆ coincides with the rank of the initial exchange matrix B ∆ , which is not difficult to determine. This rank is maximal (that is equal to the rank of ∆) in the following cases: A 2n , B 2n , C 2n , E 6 , E 8 , F 4 and G 2 . For ∆ of another type, the rank of B ∆ is not maximal and is given in the following table:

∆ A 2n+1 B 2n+1 C 2n+1 D n E 7 rk B ∆ 2n 2n 2n n -2 for n even n -1 for n odd 6
Table 4: Rank of the exchange matrix B ∆ when it is not maximal.

The first example of U-cluster web in finite type to be considered is certainly the one associated to A 3 : in this case p has rank 2 hence UXW A 3 is a web in two-variables. In the X-cluster torus associated to the initial seed ((x -1 1 , x 2 , x -1 3 ), B A 3 )86 , the image of p is cut out by x 1 = x 3 .

Injecting this in (86) and after a few elementary computations, one deduces the following explicit expression for UXW A 3 in the coordinates x 1 , x 2 :

UXW A 3 = W x 1 , x 2 , 1 + x 2 x 1 , 1 + x 1 x 2 , ( 1 
+ x 1 ) 2 x 2 , 1 + x 1 + x 2 x 1 x 2 , ( 97 
) (1 + x 1 ) 2 + x 2 x 1 x 2 , 1 + x 1 + x 2 x 1 (1 + x 1 ) , ( 1 
+ x 1 + x 2 ) 2 x 2 1 x 2 .
We will study this planar 9-web defined by positive rational functions further in §5.2, where we will prove that it is equivalent to Spence-Kummer trilogarithmic web W SK of §2.2.3.1.

Another interesting example is the case of D 4 : since B D 4 has rank 2, UXW D 4 is a web in twovariables. In the X-cluster torus associated to the initial seed ((

x -1 1 , x 2 , x -1 3 , x -1 4 ), B D 4 ), the map p is given by (a i ) 4 i=1 → (a -1 2 , a 1 a 3 a 4 , a -1 2 , a -1 2 ) hence U D 4 is cut out by x 1 = x 3 = x 4 .
After some computations, one gets the following explicit expression for UXW D 4 in the coordinates x 1 and x 2 on the intersection of U D 4 with the X-cluster tori associated to the initial seed:

UXW D 4 = W x 1 , x 2 , 1 + x 2 x 1 , 1 + x 1 x 2 , ( 1 
+ x 1 ) 2 x 2 , ( 1 
+ x 1 ) 3 x 2 , 1 + x 1 + x 2 x 1 x 2 , 1 + x 1 + x 2 x 1 (1 + x 1 ) , (1 + x 1 + x 2 ) 2 x 1 2 x 2 , (x 2 + 1 + x 1 ) 2 (1 + x 1 ) 2 + x 2 , (1 + x 1 + x 2 ) 3 x 1 3 x 2 , (1 + x 1 ) 2 + x 2 x 1 , (1 + x 1 ) 2 + x 2 x 1 (1 + x 1 ) 2 , (1 + x 1 ) 2 + x 2 3 x 2 2 x 1 3 , (1 + x 1 ) 3 + x 2 x 1 x 2 , ( 98 
) (1 + x 1 ) 3 + 2 x 2 + x 2 2 + 3 x 1 x 2 x 1 2 x 2 , ( 1 
+ x 1 ) 2 + x 2 2 x 1 x 2 (1 + x 1 + x 2 ) , ( 1 
+ x 1 ) 2 + x 2 2
x 1 2 x 2 (1 + x 1 ) .

One obtains this way a planar 18-web, again defined by positive rational functions. We will also study it further and will prove further (cf. Theorem 5.5 below) that it is equivalent to Kummer's tetralogarithmic web W K 4 considered in §2.2.4.1.

The fact that the webs in the two preceding examples are equivalent to webs associated to classical polylogarithmic identities (of weight 3 and weight 4 respectively) shows that the notion of 'Ucluster web' deserves to be studied more in depth.

Cluster webs associated to Y-systems and periods

The several notions of cluster webs introduced in the previous subsections are very specific to the finite type case since to define theses webs, we consider all the cluster variables we have at disposal. In order to consider interesting webs when the set of all cluster variables is not finite, one has to be more subtle and find particular finite subsets of such variables.

From this perspective, a relevant notion of the theory of cluster algebras is that of 'period', which has been introduced then studied by Nakanishi in several papers devoted to understand better, in terms of cluster algebras, some periodicity phenomena satisfied by certain families of rational identities coming from mathematical physics, the so-called 'Y-systems'. The webs associated to some Y-systems of Dynkin type being particularly interesting from the point of view of their ARs and their rank, we first give a very concise account of the theory of Y-systems before introducing the more general notion of (cluster) period.

Y-systems and webs associated to them.

A 'Y-system' is a set of countable rational identities concerning the solutions of the 'Thermodynamic Bethe Ansatz', a method designed to better understand some integrable systems coming from conformal fields theory. There are many such Y-systems and there is now a rich literature (in physical as well as in mathematical journals) on the subject. In the sequel, we will only consider some particular examples and focus on the mathematical side of the theory, saying almost nothing of the physical one. For more details about this notion, from a mathematical point of view, the interested reader can consult [START_REF] Fomin | Y-systems and generalized associahedra[END_REF], [START_REF] Kuniba | T -systems and Y-systems in integrable systems[END_REF], [START_REF] Keller | The periodicity conjecture for pairs of Dynkin diagrams[END_REF], [START_REF] Nakanishi | Dilogarithm identities for conformal field theories and cluster algebras: simply laced case[END_REF], [START_REF] Nakanishi | Periodicities in cluster algebras and dilogarithm identities[END_REF] and the references therein.

Y-systems.

Let I be a fixed finite set of indices. We consider A = (a i j ) i, j∈I , a matrix with integer coefficients and ǫ = (ǫ i j ) a matrix of signs (i.e. ǫ i j ∈ {1, -1} for any i, j ∈ I). By definition, the Y-system associated to these data is the family of rational identities

Y A,ǫ Y i (t+1)Y i (t-1) = j∈I 1+Y j (t) ǫ i j a i j i ∈ I, t ∈ Z .
In full generality, it is certain that not much can be told about such a set of identities, but for some particular cases of physical importance, and most of the time related to Lie theory, two important properties are conjectured to hold true for any set of variables {Y i (t)} i∈I,t∈Z satisfying (Y A,ǫ ):

• [Periodicity]: for a certain positive integer m, one has

Per(Y A,ǫ ) Y i (t + m) = Y i (t)
for all (i, t) ∈ I × Z ;

• [Dilogarithmic identity]: one sets u i = Y i (0) for any i ∈ I and one considers the u i 's as initial variables. Then there exist:

a certain finite set S(Y A,ǫ ) of pairs (i, t) ∈ I × Z; some rational functions y i (t) in the u i 's, for (i, t) ∈ S(Y A,ǫ );

some non-zero integers d i,t for (i, t) ∈ S(Y A,ǫ );

a rational constant c(Y A,ǫ ), such that the following dilogarithmic identity is satisfied

R(Y A,ǫ ) (i,t)∈S(Y A,ǫ ) d i,t • R y i (t) 1 + y i (t) = c(Y A,ǫ ) π 2 6
(where R stands for the original Rogers' dilogarithm, cf. §2.2.2.1).

As far as we know, these two properties (the latter can only be formulated if the former holds true) are still conjectural in full generality. But they have been established in many interesting cases, some of which are discussed more in detail in the next subsection.

But two important remarks, on which we will elaborate further, are already in order for a given Y-system (Y), under the assumption that the periodicity holds true.

Remark 3.11. 1. There are formulae for all the quantities (the set of indices S(Y), the rational functions y i (t)'s, the integers d i,t s, etc.) involved in the dilogarithmic identity (R(Y)), in terms of the data used to construct Y;87 

The y i (t)'s involved in the dilogarithmic identity (R(Y)) are of course related to the Y i (t)'s

appearing in the very definition of the considered Y-system (Y) and in many classical cases the two corresponding sets of rational functions in the u i 's, namely { y i (t) | (i, t) ∈ S(Y)} and { Y i (t) | i ∈ I, 0 ≤ t < m}, are the same (possibly up to inversion x ↔ x -1 ). However, this does not hold true in full generality.

Webs associated to Y-systems.

What makes the notion of Y-system interesting for us is that as soon as the two properties above are satisfied for such a system (Y), then it is natural to associate to it the web formed by the y i (t)'s appearing in the dilogarithmic identity (R(Y)), viewed as rational functions of the initial Y-variables u i = Y i (0)'s (with i ∈ I):

W(Y) = W y i (t) y i (t) appears in the dilog- -arithmic identity R(Y) .
This is a web defined by rational functions on C n where n = |I|. Assuming that R(Y) holds true gives that W(Y) carries a non-trivial dilogarithmic AR that will be denoted (a bit abusively) again by R(Y).

We will say that (Y) is W-regular (as a Y-system) if it can also be defined as the web admitting the Y i (t)'s as first integrals (cf. Remark 3.11.2 just above). Assuming that (Y) is of this type, then taking the logarithm of any multiplicative relation Y i (t+1)Y i (t-1) = j∈I 1+Y j (t) ǫ i j a i j appearing in the definition of Y gives the following additive relation

LogAR i (t) Log Y i (t + 1) + Log Y i (t -1) = j∈I a i j Log 1 + Y j (t) ǫ i j ,
which can be seen as a logarithmic AR for W(Y). Thus one gets a linear inclusion (99)

LogAR i (t) i ∈ I, t ∈ Z ⊕ R(Y) ⊂ A(W(Y))
from which it follows that W(Y) carries many polylogarithmic ARs (of weight 1 and 2 at least).

The preceding considerations make us ask the following questions:

Questions 3.12. Let (Y) be a Y-system.

Is the web W(Y) AMP with only polylogarithmic ARs (of weight 1 or 2)?

2. Does the linear inclusion (99) induce an isomorphism ?

Do the LogAR i (t)'s form a basis of the space of logarithmic ARs of W(Y)?

4. When the answer to 3. is negative, what are the relations between the LogAR i (t)'s and how can a supplementary space of LogAR i (t) i ∈ I, t ∈ Z in LogAR W(Y) be described?

What makes the notion of Y-system interesting and the previous questions relevant from the point of view of web geometry is that the answer to the first seems to be affirmative, at least for many of the most classical types of Y-systems, that we will now introduce. 

∆ A n B n C n D n E 6 E 7 E 8 F 4 G 2 h n +
= (a i j ) = 2 Id n -C. If ∆ ′ denotes another Dynkin diagram, we use prime notations n ′ , h ′ , A ′ = (a ′
i j ) etc. to denote the corresponding objects. We now introduce some of the most classical Y-systems considered in the literature. For each of them, we give precise forms for the periodicity and for the associated dilogarithmic identity when these latter do already appear in the existing literature.

• [Type Y(∆)]. The Y-system associated to a Dynkin diagram ∆ of rank n is Y(∆) Y i (t-1)Y i (t+1) = n j=1 1+Y j (t) a i j i = 1, . . . , n, t ∈ Z ;
In this case, the periodicity (Per(Y ∆ )) is expressed as Y i (t + 2(h + 2)) = Y i (t) for all i and t ∈ Z, and the associated dilogarithmic identity (R(Y ∆ )) takes the following form

R(∆) n i=1 2(h+2)-1 t=0 R Y i (t) 1 + Y i (t) = 2hn π 2 6 ; • [Type Y(∆, ∆ ′ )].
Let ∆, ∆ ′ be two Dynkin diagrams of rank n and n ′ . One denotes by I the set of pairs (i, i ′ ) with i ∈ {1, . . . , n} and i ′ ∈ {1, . . . , n ′ }. The associated

Y-system is Y(∆, ∆ ′ ) Y i,i ′ (t+1)Y i,i ′ (t-1) = n j=1 1 + Y j,i ′ (t) a i j n ′ j ′ =1 1 + Y -1 i, j ′ (t) a ′ i ′ j ′ i = 1, . . . , n i ′ =1, . . . , n ′ , t ∈ Z The periodicity is Y i (t + 2(h + h ′ )) = Y i (t) for all (i, i ′ ) ∈ I and t ∈ Z.
When both ∆ and ∆ ′ are simply-laced, the associated dilogarithmic identity is (see [Nakan1, Conjecture 1.6]):

R(∆, ∆ ′ ) (i,i ′ )∈I×I ′ 2(h+h ′ )-1 t=0 R Y ii ′ (t) 1 + Y ii ′ (t) = 2hnn ′ π 2 6 .
When at least one of the Dynkin diagrams is not simply-laced, the dilogarithmic identity (R(∆, ∆ ′ )) does not appear in explicit form in the existing literature (except if one of those is of type A, see just below). However, such an identity is a particular case of the theory of dilogarithmic identities associated to cluster periods developed by Nakanishi, that will be succinctly discussed in the next subsection.

Finally, we mention the fact that exchanging ∆ and ∆ ′ corresponds to inverting the variables

Y i,i ′ (t) ↔ 1/Y i ′ i (t)
in the corresponding Y-systems, hence is essentially not relevant from the web geometric perspective we are interested in.

• [Type Y ℓ (∆)]. Let ∆ be a Dynkin diagram of rank n and let ℓ be a 'level', that is an integer bigger than or equal to 2 88 . Then one can define the Y-system of Dynkin type ∆ and level ℓ, denoted by (Y ℓ (∆)). If ∆ is of type ADE, this Y-system is equivalent to (Y(A ℓ-1 , ∆)) hence one gets something new only when ∆ is not simply-laced. In the latter case, there is no uniform way (with respect to the Cartan matrix of ∆) to write down the algebraic relations characterizing Y ℓ (∆). To save space, we will not write these here but refer to [START_REF] Inoue | Periodicities of T--systems and Y-systems[END_REF]§2.2] where they are given in explicit form.

The Y-system Y ℓ (∆) involves a set of variables Y i,m (t) with (i, m) ∈ I ×N >0 and t ∈ Z and the associated periodicity condition is :

'Y i,m (t + 2(h ∨ + ℓ)) = Y i (t) for all (i, m) ∈ I and t ∈ Z'.
As for the associated dilogaritmic identity, it is written (cf. [START_REF] Nakanishi | Periodicities in cluster algebras and dilogarithm identities[END_REF] and [START_REF] Inoue | Periodicities of T--systems and Y-systems, dilogarithm identities and cluster algebras II: types C r , F 4 and G 2[END_REF])

R ℓ (∆) (i,m,t)∈Y ℓ (∆) R Y i,m (t) 1 + Y i,m (t) = 2τn(ℓh-h ∨ ) π 2 6
where Y ℓ is a finite set (depending on ∆ and ℓ) and τ is an integer equal to 1,2 or 3. 89 .

Remark 3.13. 1. Among the Y-systems described above, it seems that those which are Wregular according to the terminology introduced above are: the Y(∆)'s for any ∆ and the Y(∆, ∆ ′ ) when both ∆ and ∆ ′ are simply laced (note that this covers the level ℓ Y-systems for any Dynkin diagram of type ADE).

2. When ∆ or ∆ ′ , say ∆, is not simply-laced, then it seems that the dilogarithmic identities (R(∆, ∆ ′ )) or R ℓ (∆) (with ℓ ≥ 2) can be expressed in terms of rational functions y i (t)'s, some of which define foliations which do not admit any function Y i (t) as a first integral. Consequently, the corresponding Y-system is not W-regular.

As already mentioned before, the notion of Y-system comes from mathematical physics, as well as the expectation that such a system always satisfies the two fundamental properties mentioned above (periodicity and dilogarithmic identity). These properties were only conjectured at the end of the 80s/beginning of the 90s 90 and have given rise since to a great deal of mathematical papers in which the periodicity and the associated dilogarithmic identities are established:

Theorem 3.14. For any three of the Y-systems of Dynkin type presented above, the periodicity property as well as the corresponding dilogarithmic identity hold true.

The corresponding references for the different cases are given in Table 6 above. It is interesting to make a few comments on how these results have been established

88 When ∆ is not simply-laced, one can even take ℓ = 0, 1 but we will not consider these particular cases here.

89 More precisely, one has t = 1 for ∆ simply-laced, τ = 3 for ∆ = G 2 and τ = 2 otherwise. 90 As for early references on the subject, in which the periodicity and/or the corresponding dilogarithmic identity are conjectured (and even established in some cases), we mention [START_REF] Zamolodchikov | On the thermodynamic Bethe ansatz equations for reflectionless ADE scattering theories[END_REF][START_REF] Gliozzi | ADE functional dilogarithm identities and integrable models[END_REF] for the periodicity and more specifically [START_REF] Kuniba | Functional relations in solvable lattice models I. Functional relations and representation theory[END_REF][START_REF] Kirillov | Identities for the Rogers dilogarithmic function connected with simple Lie al--gebras[END_REF][START_REF] Klassen | Purely elastic scattering theories and their ultraviolet limit[END_REF][START_REF] Kirillov | Quantum field theory, integrable models and beyond[END_REF] in what concerns the corresponding dilogarithmic identities.

Y-system

Periodicity Dilogarithmic identity • The crucial point to establish seems to be the periodicity property of a given type of Ysystem. Once it has been established, the proof that the corresponding dilogarithmic identities hold true always consists in verifying that the algebraic criterion given by Theorem 2.4 is satisfied. Note however that establishing the latter fact is far from being trivial in general. But this has been established in the quite more general context of 'periods' of the theory of cluster algebras by Nakanishi in [START_REF] Nakanishi | Periodicities in cluster algebras and dilogarithm identities[END_REF] that will be discussed further below.

Y(A m ) [FS], [GT2] [FS], [GT2] Y(A m , A n ) [Sz], [Vol1] [Nakan1] Y(∆) [FZ1] [Chap] (∆ ADE) Y(∆, ∆ ′ ) [Ke5] [Nakan1] (∆ & ∆ ′ ADE) [Nakan2] Y ℓ (∆) [Ke5] [IIKKN1] [IIKKN2] [Nakan1] (∆ ADE) [IIKKN1] (B n ) [IIKKN2] (C n , F 4 , G 2 )
• To establish the periodicity property of a given type of Y-system, several distinct methods have been used so far. For instance, rather direct methods are used in [START_REF] Gliozzi | Thermodynamic Bethe ansatz and three-fold triangulations[END_REF] (in relation with 3-dimensional differential geometry), in [START_REF] Volkov | On the periodicity conjecture for Y-systems[END_REF] (via projective geometry) or in [Sz] (using the flatness of certain connexions on some graphs). Each of these approaches seems however quite specific and ad hoc to the considered cases. There are also other, more general methods of establishing periodicity (cf. [START_REF] Inoue | Periodicities of T--systems and Y-systems[END_REF]§3.4] for instance). Those of greater scope and which seem the most powerful are the 'cluster algebra/category method' and the one by means of tropicalization (see [START_REF] Keller | The periodicity conjecture for pairs of Dynkin diagrams[END_REF] and [START_REF] Nakanishi | Tropicalization method in cluster algebras[END_REF] respectively). Both rely in a crucial way on the fact that the Y-systems of Dynkin type can be formalized by means of cluster algebras.

The two previous remarks indicate that their interpretation in terms of cluster algebras allows to better understand the Y-systems of Dynkin type. This gives us grounds for looking at the webs associated to Y-systems introduced above from the same point of view.

3.3.1.4 Interpretation of the periodicity of Y-systems of Dynkin type in terms of cluster algebras. We only deal here with the Y-systems associated to pairs of Dynkin diagrams (∆, ∆ ′ ). This covers all the cases, except those of the form Y ℓ (∆ ′′ ) with ℓ ≥ 2 and ∆ ′′ not simply-laced. These can also be interpreted by means of cluster algebras, but this will be discussed briefly below, in relation to the notion of period.

3.3.1.4.1

We start with the case when ∆ ′ coincides with A 1 . Our main references are [START_REF] Fomin | Y-systems and generalized associahedra[END_REF] and more specifically the eighth section of [FZ2]. Let n > 1 be the rank of ∆ and denote by B = B ∆ = (b i j ) the exchange matrix associated with the bipartite quiver of type ∆ (see §3.2.1.1). This matrix is bipartite: b i j > 0 if and only if i is a source and j a sink. We use • (resp. •) to denote an arbitrary source (resp. sink) of ∆ and µ k stands for the mutation at k. Then the two 'composite' mutations (100)

µ • = k source µ k and µ • = ℓ sink µ ℓ
are well defined, involutive and µ

• (B) = µ • (B) = -B.
In particular µ • transforms the initial bipartite X-seed, denoted by (y 0 , B) with y(0) = (y 1 (0), . . . , y n (0)), into a seed (y(1), -B) of the same type (that is bipartite) to which the same construction applies. This way, one defines the bipartite belt as the family of X-seeds S t = (y(t), (-1) t B) with y(t) = (y 1 (t), . . . , y n (t)) for t ∈ Z, defined inductively by

S t+1 = y(t + 1), (-1) t+1 B = µ t y(t), (-1) t B with µ t =        µ • if t is even µ • otherwise.
Within this formalism, the half-periodicity property is that for a certain involution σ of {1, . . . , n} depending on ∆91 the seed S t+h+2 is σ-isomorphic to S t for any t ∈ Z, and consequently in terms of cluster variables, one has y i (t + h + 2) = y σi (t) for any i = 1, . . . , n. As a consequence, there is only a finite number of cluster variables appearing in the bipartite belt which leads to consider the cluster web defined by them. Let ǫ : {1, . . . , n} → {±1} be the map given by ǫ(i) = 1 if i is a source and -1 if it is a sink. Because y i (t + 1) = y i (t) -1 if ǫ(i)(-1) t = 1, one can only consider the y i (t)'s with ǫ(i)(-1) t = -1 in order to construct the web associated to the bipartite belt. One constructs that way the bipartite belt cluster web of type ∆ (101) BBW ∆ = W y i (t) i = 1, . . . , n t = 0, . . . , h + 1, with ǫ(i)(-1) t = -1 that will be shown further equivalent to the Y-cluster web YW ∆ . Remark that h + 2 is always even, except when ∆ = A n with n even, in which case h = n + 1 is odd, hence so is h + 2. But in any case, n(h + 2) is even as well and considering the condition ǫ(i)(-1) t = -1 appearing in the RHS of (101), we deduce that YW ∆ is defined by n(h + 2)/2 cluster variables hence is a

d ′ ∆ -web in n variables, with d ′ ∆ ≤ d ∆ = n(h + 2)/2
. Note that the majoration may be strict since one cannot exclude, at this point, that two of the n(h + 2)/2 cluster first integrals of YW ∆ do define the same foliation.

⋆

There is an equivalent way to construct the bipartite belt web, by means of a birational map of finite order, which may be useful in practice. The periodicity (resp. half-periodicity) property of the Y-system of type ∆ is equivalent to the fact that the birational map u → F ∆ (u) of u = (u i ) n i=1 ∈ C n induced by the action on the X-cluster variables by the successive composition of mutations µ • and µ • (thus one can write

F ∆ = µ • • µ • a bit abusively), is of order m ∆ = 2(h + 2)/ gcd(h, 2) (resp. m ′ ∆ = (h + 2)/ gcd(h, 2)).
Then the web BBW ∆ can be seen as the web on C n defined by the components of the iterations (F ∆ ) •ℓ for ℓ = 0, . . . , m ′ ∆ , seen as rational functions in the u i 's.

3.3.1.4.2

We now discuss the case when both ∆ and ∆ ′ have rank 2 or more. We recall some constructions of [START_REF] Keller | The periodicity conjecture for pairs of Dynkin diagrams[END_REF] first when both considered Dynkin diagrams are simply laced, then we say a few words about the (more involved) general case.

We assume that both ∆ and ∆ ′ are simply laced. To simplify, we denote in the same way the associated bipartite quivers ∆ and ∆ ′ . In [Ke5, §3.3], Keller defines the tensor product quiver ∆ ⊗ ∆ ′ , from which he constructs two others, the square product ∆ ∆ ′ and the triangle product ∆ ⊠ ∆ ′ . Each of these last two quivers could be used and the resulting webs are equivalent. However, typically ∆ ∆ ′ is simpler than ∆ ⊠ ∆ ′ (the former carries less arrows than the latter, see e.g. [Ke5, Fig. 2]) hence we will leave aside the cross product in the lines below, except for a few examples.

The tensor product ∆ ⊗ ∆ ′ is the quiver whithout loops whose set of vertices is the set of pairs (i, i ′ ) ∈ ∆ × ∆ ′ where the number of arrows from (i, i ′ ) to ( j, j ′ ) is equal to the number of arrows from j to j ′ if i = i ′ ; equal to the number of arrows from i to i ′ if j = j ′ ; and equal to 0 otherwise. The square product ∆ ∆ ′ is obtained from ∆ ⊗ ∆ ′ by reversing all arrows in the full subquivers of the form {i} × ∆ ′ and ∆ × {i ′ } where i is a sink and i ′ a source (of ∆ and ∆ ′ respectively). The vertices of ∆ ∆ ′ are of two kinds: even vertices (pair of two sources or of two sinks), denoted with •, or odd vertices (mixed pairs), denoted by •. An example of crossed product is given in Figure 14 below. Similarly as in the previous case when ∆ ′ = A 1 , one denotes by µ • (resp. µ • ) the compositions of the mutations with respect to all even (resp. odd) vertices of ∆ ∆ ′ (the orders are not important) and one considers µ ∆ ∆ ′ = µ • • µ • . The action on the X-cluster variables of this composition of mutations corresponds to a birational map

F ∆ ∆ ′ of C ∆×∆ ′ ≃ C nn ′ .
Then as proved by Keller, the periodicity property for the Y-system Y(∆, ∆ ′ ) is equivalent to the fact that

F ∆ ∆ ′ is m ∆,∆ ′ = 2(h + h ′ )/ gcd(h, h ′ )
-periodic as a rational map. As for the half-periodicity, it corresponds to the fact that, setting

m ′ ∆,∆ ′ = (h + h ′ )/ gcd(h, h ′ ), the birational map (F ∆ ∆ ′ ) m ′ ∆,∆ ′ acts on C ∆×∆ ′ as the permutation u = (u ii ′ ) → (u σ(i)σ ′ (i ′ ) )
, where σ and σ ′ stand respectively for the permutations associated to ∆ and ∆ ′ described in footnote 91.

Then, although the term 'bipartite' (and therefore the notation with two B's) is no longer warranted we define the web ( 102)

BBW ∆ ∆ ′ = W f (u)
f (u) is a cluster variables appearing as a component of (F ∆ ∆ ′ ) ℓ for some ℓ = 0, . . . , m ′ ∆,∆ ′ -1 .

Because both ∆ and ∆ ′ have been assumed to be simply laced, it can be demonstrated that this web precisely coincides with the Y-cluster web YW ∆ ∆ ′ associated to the dilogarithmic identity R(∆, ∆ ′ ).

⋆

We now quickly discuss the general case when the considered Dynkin diagrams can have multiplicities higher than 1. We define two integers m ∆,∆ ′ and m ′ ∆,∆ ′ thanks to the same formulas than above. Following [Ke5, §9.6], one extends the products of quivers discussed above to the case of valued quivers and one can then play the same game as in the simply-laced case. Considering a certain composition of some mutations, one obtains a birational map F ∆ ∆ ′ of order m ∆,∆ ′ , which is equivalent to the periodicity of the associated Y-system. One can thus consider a web BBW ∆ ∆ ′ defined as in 102 but it does not necessarily coincides with the suitable Y-cluster web YW ∆ ∆ ′ in general (see §3.3.1.5.6 below for an explicit example).

3.3.1.5 Some explicit examples of cluster webs associated to Y-systems. For any Dynkin diagram ∆, it is clear that YW ∆ is a subweb of the associated X-cluster web XW ∆ . It is always a proper subweb, except in rank 2 where both webs coincide. For that reason, we do not consider Y-cluster webs associated to Dynkin diagrams of rank 2 here: these will be studied in depth further on (cf. §5.1).

Below, we discuss a few examples of Y-cluster webs from the point of view of their ARs and of their rank. As we will see, many of them, but not all, are AMP. Using u = (u 1 , u 2 , u 3 ) as initial coordinates, we obtain that, up to composition at the source and at the target by the birational involution, u → (u -1 1 , u 2 , u -1 3 ) (see ( 93)), the composition of the mutations of the X-seeds corresponding to the sink then followed by the ones associated to the two sources is given by:

F A 3 (u) = F • F • (u) = 1 + u 2 u 1 , (1 + u 1 + u 2 )(1 + u 2 + u 3 ) u 1 u 2 u 3 , 1 + u 2 u 3 .
One verifies that (F A 3 ) •3 (u) = (u 3 , u 2 , u 1 ) (half-periodicity) from which one deduces that the Y-cluster web of type A 3 is the following 9-subweb of the cluster 15-web XW A 3

YW A 3 = W u 1 , u 2 , u 3 , 1 + u 2 u 1 , (1 + u 1 ) (1 + u 3 ) u 2 , 1 + u 2 u 3 , 1 + u 1 + u 2 + u 3 + u 1 u 3 u 1 u 2 , 1 + u 1 + u 2 + u 3 + u 1 u 3 u 2 u 3 , (1 + u 1 + u 2 ) (1 + u 2 + u 3 ) u 1 u 2 u 3 .
After some computations, one gets ρ • (YW A 3 ) = (6, 3, 1) and polrk • (YW A 3 ) = (9, 1) from which it comes that this web is AMP with only polylogarithmic ARs of weight 1 and 2.

3.3.1.5.2 An aside: the cluster web AW A 3 . It is interesting to compare YW A 3 with the A-cluster web of type A 3 , which is the web

AW A 3 = W a 1 , a 2 , a 3 , 1 + a 2 a 1 , 1 + a 2 a 3 , 1 + a 1 a 3 a 2 , 1 + a 2 + a 1 a 3 a 1 a 2 , 1 + a 2 + a 1 a 3 a 2 a 3 , ( 1 
+ a 2 ) 2 + a 1 a 3 a 1 a 2 a 3 .
The two webs YW A 3 and AW A 3 are very similar in some ways: both have degree 9 and are defined by Laurent polynomials the monomial denominators of which can be put in bijection with the set of almost-positive roots of the root system of type A 3 (cf. §6.2.2 or §4.1.2 further).

Moreover, one has ρ

• AW A 3 = ρ • YW A 3 = (6, 3, 1) .
However, despite these similarities, both webs are quite different in what concerns their ARs and their ranks. Indeed, by direct computations, we have established that contrarily to YW A 3 , the web AW A 3 :

• does not carry any dilogarithmic AR but only logarithmic ones. More precisely, one has polrk • AW A 3 = (5, 0) ;

• does carry a rational (hence non-polylogarithmic) abelian relation, which is the one corresponding to the following functional identity satisfied by the function J : u → 1/(1 + u):

(103) J(a 2 ) + J 1 + a 1 a 3 a 2 + J (1 + a 2 ) 2 + a 1 a 3 a 1 a 2 a 3 ≡ 1 ; 92
• has rank rk AW A 3 = 6 < 10 = ρ AW A 3 hence is not AMP.

To be honest, we have no idea why YW A 3 is much more interesting than AW A 3 regarding their ARs, their ranks and the property of being AMP. However other investigations have led us to be quite convinced that webs defined by A-cluster variables do not carry many abelian relations and are not those to be considered in view of the study undertaken in this text. This explains why, up to very few exceptions, we are not dealing with webs defined by A-cluster variables in the whole text.

3.3.1.5.3 The cluster web YW D 4 . The quiver D 4 and the associated exchange matrix are:

and

B D 4 =                0 1 0 0 0 1 0 0 -1 0 -1 -1 0 1 0 0                . Using u = (u i ) 4
i=1 as initial coordinates, we obtain that, up to conjugation by the birational involution u → (u -1 1 , u 2 , u -1 3 , u -1 4 ), the composition of the mutations of the X-seeds corresponding to the sources followed by the one associated to the sink is given by:

F D 4 (u) = F • F • (u) = 1 + u 2 u 1 , (1 + u 2 + u 3 ) (1 + u 1 + u 2 ) (1 + u 2 + u 4 ) u 1 u 2 u 3 u 4 , 1 + u 2 u 3 , 1 + u 2 u 4
One verifies that (F D 4 ) •4 = Id C 4 (half-periodicity) and that the associated web BBW D 4 , which coincides with the Y-cluster web of type D 4 , is a 16-subweb of the X-cluster web XW D 4 which can be explicited. One has:

YW D 4 = W u 1 , u 2 , u 3 , u 4 , 1 + u 2 u 1 , (1 + u 1 )(1 + u 3 )(1 + u 4 ) u 2 , 1 + u 2 u 3 , 1 + u 2 u 4 , . . . . . . , ((1 + u 1 ) u 4 + u 1 + u 2 + 1) ((1 + u 1 ) u 3 + u 1 + u 2 + 1) ((1 + u 3 ) u 4 + u 3 + u 2 + 1) u 1 u 2 2 u 3 u 4 Some computations give us ρ • (YW D 4 ) = (12, 6, 1), polrk • (YW D 4 ) = (16, 1) and (104) rk YW D 4 = polrk YW D 4 = 17 < 19 = ρ(YW D 4 )
hence this web only carries polylogarithmic ARs (of weight 1 and 2) but is not AMP (contrarily to what one may naively expect).

The web YW

A 2 A 2 . The quiver A 2 A 2 is
from which it is easy to construct the associated exchange matrix B A 2 A 2 hence the birational map F A 2 A 2 which is such that (F A 2 A 2 ) •3 acts as a permutation on C 4 . One verifies that the web BBW A 2 A 2 coincides with YW A 2 A 2 and is a 12-web in four variables. By direct computations, one obtains that

ρ • YW A 2 A 2 = (8, 4, 1) and polrk • YW A 2 A 2 = (12, 1) .
It follows that YW A 2 A 2 is AMP with all its ARs polylogarithmic (all logarithmic, except the dilogarithmic one associated to R(A 2 , A 2 )).

Remark 3.15. It is known that the D 4 quiver is mutation equivalent to the quiver A 2 A 2 hence the two corresponding cluster algebras are mutation equivalent as well. Despite this, the two Y-cluster webs YW D 4 and YW A 2 A 2 are not equivalent (they are not of the same degree) which might be a bit surprising at first. Actually, there is no inconsistency here and this can be understood in terms of the notion of 'cluster period' which will be discussed below (cf. §3.3.2). Indeed, both webs can be understood within any one of the two involved (isomorphic) cluster algebras: within the one associated to D 4 say, the cluster web YW D 4 corresponds to the cluster period of length 16 associated to the Y-system of type D 4 whereas YW A 2 A 2 corresponds to a different cluster period for this cluster algebra, of length 12. It follows that YW A 2 D 4 is AMP with all its ARs polylogarithmic (all logarithmic, except a dilogarithmic one). It is surprising that YW A 2 D 4 is AMP whereas the a priori simplest web YW D 4 is not. If we believe that it is a general phenomenon (see §7.4.4 further and in particular our conjecture there), we do not have any explanation of that to offer for now.

3.3.1.5.6 The web BBW A 2 ⊠B 2 . In this case and in the next one, we deal with quivers obtained by means of the triangle product ⊠. Using instead would have led to similar results.

The weighted quiver of type A 2 ⊠ B 2 and the associated exchange matrix are the following:

2 -+ (1,1) / / 4 -- (1,2) z z ✉ ✉ ✉ ✉ ✉ ✉ ✉ ✉ ✉ ✉ ✉ ✉ ✉ ✉ ✉ ✉ 1 ++ (2,1) O O (1,1) / / 3 +- (2,1) O O and B A 2 ⊠B 2 =                0 2 1 -2 -1 0 0 1 -1 0 0 2 1 -1 -1 0                . The associated map F A 2 ⊠B2 is given by u = (u i ) 4 i=1 → ( f i (u)) 4 i=1 with f 1 (u) = u 1 u 2 u 4 u 3 2 + u 3 2 + 2 u 3 + 1 (1 + u 3 ) Φ A 2 ⊠B2 (u) f 2 (u) = (u 1 u 3 + u 1 + 1) 2 u 1 2 u 2 u 4 u 3 2 + u 3 2 + 2 u 3 + 1 f 3 (u) = u 4 u 3 (u 1 u 3 + u 1 + 1) u 4 u 3 2 + u 3 2 + 2 u 3 + 1 f 4 (u) = (1 + u 3 ) 2 Φ A 2 ⊠B2 (u) u 4 u 3 2 (u 1 u 3 + u 1 + 1) 2
where Φ A 2 ⊠B2 (u) stands for the following polynomial expression in the u i 's:

Φ A 2 ⊠B2 (u) = u 1 2 u 2 u 3 2 u 4 + u 1 2 u 2 u 3 2 + 2 u 1 2 u 2 u 3 + u 1 2 u 3 2 + u 1 2 u 2 + 2 u 1 2 u 3 + u 1 2 + 2 u 1 u 3 + 2 u 1 + 1 .
One verifies that the birational map F A 2 ⊠B 2 has order h(A 2 ) + h(B 2 ) = 3 + 4 = 7 and that the associated cluster web BBW A 2 ⊠B 2 is a 28-web in four variables such that ρ • (BBW A 2 ⊠B 2 ) = (24, 18, 8), polrk • (BBW A 2 ⊠B 2 ) = (28, 2) and rk(BBW A 2 ⊠B 2 ) = 30.

Thus BBW A 2 ⊠B 2 is not AMP but all its ARs are polylogarithmic, of weight 1 or 2. We will see further that this web is distinct from the corresponding Y-cluster web YW A 2 ⊠B 2 which is AMP.

3.3.1.5.7 The web BBW B 2 ⊠B 2 . The weighted quiver of type B 2 ⊠ B 2 and the associated exchange matrix are the following (see p. 162 in [START_REF] Keller | The periodicity conjecture for pairs of Dynkin diagrams[END_REF]):

(105)

-+

(2,1)

/ / 4 --

(1,4) z z ✉ ✉ ✉ ✉ ✉ ✉ ✉ ✉ ✉ ✉ ✉ ✉ ✉ ✉ ✉ ✉ 1 ++ (2,1)
O O

(2,1)

/ / 3 +- (2,1) O O and B B 2 ⊠B 2 =                0 2 2 -4 -1 0 0 2 -1 0 0 2 1 -1 -1 0                .
As in the preceding case of A 2 ⊠ B 2 , the map F B 2 ⊠B 2 (corresponding to the composition of mutations µ ⊠ = µ -+ •µ ++ •µ --•µ +-, cf. formula (3.6.1) in [START_REF] Keller | The periodicity conjecture for pairs of Dynkin diagrams[END_REF]), can be made explicit and one verifies that, as a birational map of C 4 , it is of order (h(B 2 ) + h(B 2 ))/2 = h(B 2 ) = 4 (half-periodicity) and that the associated Y-cluster web BBW B 2 ⊠B 2 is a 16-web in four variables such that

ρ • BBW B 2 ⊠B 2 = (12, 6), polrk • BBW A 2 ⊠B 2 = (10) and rk BBW B 2 ⊠B 2 = 10.
Thus this web is not AMP, all its ARs are logarithmic and it does not carry any dilogarithmic AR. This contrats with the suitable Y-cluster of type (B 2 , B 2 ): we will see in §3.3.2.3.2 below that YW B 2 ⊠B 2 is AMP with only logarithmic ARs, except one which corresponds to R(B 2 , B 2 ).

3.3.2 Periods of cluster algebras and webs associated to them. We now turn to the notion of period within the theory of cluster algebras. It has been formally introduced by Nakanishi who has proved very interesting results associating a dilogarithmic identity to any cluster period. We briefly review this material here before explaining how it leads to consider new cluster webs of interest, in particular to the Y-cluster webs associated to Y-systems previously discussed.

Our main reference for this subsection is Nakanishi's paper [START_REF] Nakanishi | Periodicities in cluster algebras and dilogarithm identities[END_REF].

3.3.2.1 Periods. Let S = (a, x, B) be a seed of a cluster algebra A of rank n ≥ 2. Given an integer k ≥ 2, we consider a k-tuple i = (i k , . . . , i 1 ) of consecutive distinct elements of I = {1, . . . , n} and, unsurprisingly, we define the associated (composition of) mutation(s) by

µ i = µ i k • • • • • µ i 1 .
For a permutation ν ∈ S n , we will say that i is a ν-period for the seed S if

µ i (S ) = S ν .
The interpretation in terms of cluster algebras of the periodicity property of a Y-system considered in the preceding subsection gives us some examples of periods. But this notion is more general, as we will see below by considering some examples of different kinds.

3.3.2.2 Nakanishi's dilogarithmic identity associated to a period. The main interest of the notion of period is that, thanks to a very nice result of Nakanishi (fully proved by him in [START_REF] Nakanishi | Periodicities in cluster algebras and dilogarithm identities[END_REF] only in the particular case of seeds with a skew-symmetric exchange matrix), there is a dilogarithm identity, hence a possibly interesting web, associated to any cluster period.

We assume that i = (i k , . . . , i 1 ) is a ν-period of length k for a seed S 0 = (a 0 , x 0 , B 0 ). In order to state Nakanishi's result, we need to introduce some notations.93 

• For ℓ = 1, . . . , k, one defines

S ℓ = µ i ℓ • • • • • µ i 1 (S 0 ) = (a ℓ , x ℓ , B ℓ
) and one denotes by x ℓ (i) (with i = 1, . . . , n) the X-cluster variables of this seed, seen as rational functions in the cluster variables x 0 (1), . . . , x 0 (n) of the initial seed S 0 .

Then one defines the ℓ-th cluster coordinates x ℓ (i) associated to the ν-period i as the i ℓ component of the X-cluster x ℓ , i.e.

(106)

x ℓ (i) = x ℓ (i ℓ ) .

• Let D be the right skew symmetrizer of B 0 : it is the diagonal matrix D = diag(d 1 , . . . , d n ) with d i ∈ N * for i = 1, . . . , n and lcm(d i ) minimal, such that B 0 D is skew-symmetric.

• A X-cluster variable x is said to be negative (notation x < 0) if all the non-zero entries of its c-vector are negative (beware that this notion makes sense only with respect to a fixed initial seed). 94 Then one defines

N i = ℓ=1,...,k, x ℓ (i)<0 d i ℓ ∈ N >0 .
Then with the preceding notation, Nakanishi's result states as follows:

Theorem 3.16. The following dilogarithmic identity holds true identically:

R i k ℓ=1 d i ℓ R x ℓ (i) 1 + x ℓ (i) = π 2 6 N i .
A few remarks are in order about this statement:

1. In [START_REF] Nakanishi | Periodicities in cluster algebras and dilogarithm identities[END_REF], only the case when the initial exchange matrix is skew-symmetric is fully proved. The more general statement above is only established (at the very end, in §6.5) under the assumption that a certain conjecture (Conjecture 2.1 in [START_REF] Nakanishi | Periodicities in cluster algebras and dilogarithm identities[END_REF]) is satisfied. At the time when Nakanishi wrote his article, this conjecture (which is essentially equivalent to the 'sign-coherence' of the c-vectors of X-cluster variables) was known to hold true only in the skew-symmetric case. However, thanks to recent advances in the theory of cluster algebras, mainly obtained in [GHKK], we now know that the aforementioned conjecture holds true in full generality, which allows us to state the preceding result in all cases.

2. Actually, the results given in Nakanishi's paper corresponding to the theorem just above (namely Theorem 6.4 and Theorem 6.8 in [START_REF] Nakanishi | Periodicities in cluster algebras and dilogarithm identities[END_REF]) are stated in a more general form, with respect to what Nakanishi's calls a 'slice' of the considered period i. Since this basically does not change the associated dilogarithmic identity (hence the web associated to it, see (107) below), we have chosen to simplify the presentation as much as possible by only considering the maximal slice of the period i.

3. In the identity (R i ), the x ℓ (i)'s are seen as (positive) rational functions in the initial cluster variables x 1 (0), . . . , x n (0) and the theorem asserts that this functional identity is satisfied on the positive part (isomorphic to the positive orthant (R >0 ) n ) of the X-cluster torus T S 0 associated to the initial seed S 0 .

4. In terms of the cluster dilogarithm R considered in §2.2.2.1, the dilogarithmic identity (R i ) can be written in the simpler but equivalent following form:

R i k ℓ=1 d i ℓ R x ℓ (i) = (π 2 /6) N i .
5. When B 0 is skew-symmetric, one has d i ℓ = 1 for every ℓ and there is a equivalent version of R i with trivial constant second member: if ǫ ℓ stands for the tropical sign of x ℓ (i) for any ℓ = 1, . . . , k, then one has (cf. [KN, Theorem 2.9]):

R i ǫ k ℓ=1 ǫ ℓ R x ℓ (i) ǫ ℓ = 0 .
The identity (R i ) (or equivalently, (R i ) or (R i ǫ )) induces a dilogarithmic AR, denoted again (a bit abusively) by R i (or (R i ), it does not really matter), for the cluster web defined by the x ℓ (i)'s for ℓ ranging from 1 to k. By definition, the latter is the P-cluster (dilogarithmic) web associated to the period i (the P referring of course to the word 'period') and it is denoted by ( 107)

PW i = W x ℓ (i) ℓ = 1, . . . , k .
Such a web carries a complete dilogarithmic AR, hence many logarithmic ARs as well. It is then natural to ask the following question about it:

Question 3.17. Is a P-cluster web necessarily AMP with only polylogarithmic ARs?

In view of the examples of different kinds considered in the paragraphs below, if the answer to this question is not always positive, it is positive in sufficiently many cases to make it appear particularly relevant hence deserving further studies.

As by now, almost nothing is known about P-cluster webs in general (except that each carries a dilogarithmic AFE of course). For instance, even what is the degree of such a web is not clear. Indeed, given a cluster period i, it is not clear yet whether all the associated cluster variables x ℓ (i) define pairwise distinct foliations or not. Of course, it could not be the case if i is not irreducible 95 , but when i is assumed to be irreducible, we believe that this is indeed the case and state it as the following Conjecture 3.18. Let i be a period of a cluster algebra, of length k. If it is irreducible, then the associated cluster variables x i (ℓ) for ℓ = 1, . . . , k are pairwise differentially distinct, i.e. two of them define distinct foliations. Equivalently: the cluster web PW i has degree k. 95 For instance, the cluster web associated to i|i is easily seen to be the same as the one defined by i.

Examples of periods I: Y-systems

Any of the Y-systems considered in §3.3.1.3 above can be formalized in terms of cluster algebras and from this point of view, its (half-)periodicity property corresponds to the fact that a certain finite sequence of mutations is a cluster period.

For the Y(∆, ∆ ′ )'s, this is evident from §3.3.1.4. In the case when both Dynkin diagrams ∆, ∆ ′ are simply-laced, let j • (resp. j • ) be a tuple of the numbers of the odd (resp. even) vertices (in any order, this does not matter for what follows). Then one sets j ∆,∆ ′ = j • | j • where the short vertical line stands for the concatenation between the tuples on both sides. Setting h ∆,∆ ′ = h + h ′ , it comes that the full-periodicity for the Y-system Y(∆, ∆ ′ ) is equivalent to the fact that the concatenation

(108) i ∆,∆ ′ = j ∆,∆ ′ | • • • | j ∆,∆ ′ (h ∆,∆ ′ )-times
of h ∆,∆ ′ copies of j ∆,∆ ′ is a period for the initial X-seed with exchange matrix B ∆ ∆ ′ .

Remark 3.19. 1. Actually, in many cases (and possibly in all, see below), i ∆,∆ ′ is not irreducible as a period. And there is a 'half-periodicity' property satisfied by the Y-system Y(∆, ∆ ′ ) which corresponds to the fact that i ∆,∆ ′ admits a non-trivial factorization as a period. 2. When both ∆ and ∆ ′ are simply laced, there are permutations ω = ω ∆ and ω ′ = ω ′ ∆ ′ of the sets of vertices of ∆ and ∆ ′ respectively, such that, according to [START_REF] Inoue | Periodicities of T--systems and Y-systems[END_REF]Theorem 4.27], one has:

if both h and h ′ are even or if both are odd, then

(109) i hal f ∆,∆ ′ = j ∆,∆ ′ (h+h ′ )/2
is a (ω ⊗ ω ′ )-period for the initial X-seed with quiver ∆ ∆ ′ , such that i ∆,∆ ′ = i hal f ∆,∆ ′

;

if h is even but h ′ is odd, then ∆ ′ = A r for an even integer r. Then setting j

•,• = j ∆,A r = j • | j • and j •,• = j ∆,A r -1 = j • | j • , it comes that (110) i hal f •,• = j • j •,• h+h ′ -1 2 or equivalently i hal f •,• = j • j •,• h+h ′ -1 2
are periods for the initial X-seed with quiver ∆ A r , which are such that i

∆,A r = i hal f •,• -1 | i hal f •,• .
3. Much less has been established in the case when at least one of the two involved Dynkin diagrams is not simply-laced. When one of them is not simply laced, say ∆, the half-periodicity is known in full-generality only when ∆ ′ = A 1 (and this is due to Fomin and Zelevinsky, see Theorem 4.4 in [IIKNS] and the references therein).

4. The period i ∆,∆ ′ can be seen to be of length (h + h ′ )nn ′ where n and n ′ stand for the rank of ∆ and ∆ ′ respectively. When the half-periodicity property holds true, i ∆,∆ ′ can be factorized as the concatenation of two periods, each of length (h + h ′ )nn ′ /2 (which makes sense since this number is always an integer). In all the explicit examples we have considered (see below regarding a few of them), the half-periodicity was verified. So we conjecture that it holds true in full generality.

5. The half-periodicity of the Y-system Y ℓ (∆) has also been established in many cases (cf. [IIKNS], [START_REF] Inoue | Periodicities of T--systems and Y-systems, dilogarithm identities, and cluster algebras I: type B r[END_REF], [START_REF] Inoue | Periodicities of T--systems and Y-systems, dilogarithm identities and cluster algebras II: types C r , F 4 and G 2[END_REF]).

At this point, it is interesting to discuss the links between the cluster webs BBW ∆ ∆ ′ considered above and the cluster web associated to i ∆,∆ ′ :

• writing j ∆,∆ ′ = ( j nn ′ , . . . , j 1 ), the P-cluster web PW i ∆,∆ ′ is by definition the one associated to i ∆,∆ ′ , the latter being considered as a nn ′ m δ,∆ ′ -tuple of elements of {1, . . . , nn ′ }. 96 It follows from Theorem 3.16 that this web coincides with the Y-cluster web YW ∆,∆ ′ defined before in §3.3.1.2.

• the web BBW ∆ ∆ ′ is rather associated to its writing as the concatenation (108) of some copies of j ∆,∆ ′ than to j ∆,∆ ′ per se. This is related to the notion of 'slice' of a period considered in [START_REF] Nakanishi | Periodicities in cluster algebras and dilogarithm identities[END_REF] about which there is no real need to elaborate with some details here. We just say that when the period considered is 'regular' (cf. Definition 5.1 in [START_REF] Nakanishi | Periodicities in cluster algebras and dilogarithm identities[END_REF]), then the Y-systems (and as it happens, the associated Y-cluster webs) associated to its slices, all are equivalent.

• When both ∆ and ∆ ′ are simply-laced, the period i ∆,∆ ′ is regular hence the three webs BBW ∆ ∆ ′ , PW i ∆,∆ ′ and YW ∆,∆ ′ coincide. This is not the case when (at least) one of the Dynkin diagram ∆ of ∆ ′ is not simply-laced (see §3.3.2.3.2 below for the case ∆ = ∆ ′ = B 2 for instance).

For further details, see [START_REF] Keller | The periodicity conjecture for pairs of Dynkin diagrams[END_REF]§3] and [START_REF] Nakanishi | Periodicities in cluster algebras and dilogarithm identities[END_REF]. The case when one (or two) of the Dynkin diagrams involved is (or are) not simply-laced is treated in [START_REF] Keller | The periodicity conjecture for pairs of Dynkin diagrams[END_REF]§9]. The cluster formulations of the Y-systems Y ℓ (∆)'s when ∆ is not simply-laced 97 is given in the second section of [START_REF] Inoue | Periodicities of T--systems and Y-systems, dilogarithm identities, and cluster algebras I: type B r[END_REF] in type B and in [START_REF] Inoue | Periodicities of T--systems and Y-systems, dilogarithm identities and cluster algebras II: types C r , F 4 and G 2[END_REF] for the other cases (type C, F 4 , G 2 ). For some explicit examples, one can also look at the third section of [START_REF] Nakanishi | Periodicities in cluster algebras and dilogarithm identities[END_REF].

3.3.2.3.1

The Y-cluster web of type A 2 ⊠ B 2 . We work with the same initial exchange matrix as in §3.3.1.5.6. From [START_REF] Keller | The periodicity conjecture for pairs of Dynkin diagrams[END_REF] (in particular formula (3.6.1) therein), the half-periodicity property of the Y-system is equivalent to the fact that (111) i A 2 ⊠B 2 = 3, 4, 1, 2, 3, 4, 1, 2, 3, 4, 1, 2, 3, 4 (obtained by taking the 14 first entries of the concatenation of h(A 2 ) + h(B 2 ) = 7 copies of (3, 4, 1, 2)) is a period for the initial seed with exchange matric B A 2 ⊠A 2 . We deduce that YW A 2 B 2 is a 14-web in four variables and by direct computations, one gets that ρ • YW A 2 ⊠B 2 = (10, 4, 1) and polrk • YW A 2 ⊠B 2 = (14, 1) .

It follows that this web is AMP with only logarithmic ARs plus the dilogarithmic one R A 2 ⊠B 2 .

3.3.2.3.2

The Y-cluster web of type B 2 ⊠ B 2 . We have seen above that the web BBW B 2 ⊠B 2 is not AMP. We now explain that this web actually differs from YW B 2 ⊠B 2 .

The map F B 2 ⊠B 2 considered in §3.3.1.5.7 corresponds to the sequence of mutations j B 2 ,B 2 = (2, 1, 4, 3) hence the half-periodicity is equivalent to the fact that (112) i B 2 ⊠B 2 = 2, 1, 4, 3, 2, 1, 4, 3, 2, 1, 4, 3, 2, 1, 4, 3 96 Actually, since a certain 'power' of i hal f ∆,∆ ′ is equal to i ∆,∆ ′ , it comes that the two P-cluster webs associated to these periods coincide. In practice, it is more convenient to work with i hal f ∆,∆ ′ which is shorter than i ∆,∆ ′ . 97 We remind that Y ℓ (∆) is equivalent to Y(A ℓ-1 , ∆) when ∆ is simply-laced. is a period for the initial seed with exchange matrix B B 2 ⊠B 2 (see (3.3.2.4.1)). The P-cluster 16web associated to the period of length 16 above, and denoted here by YW B 2 ⊠B 2 , is equivalent to the Y-cluster web YW B 2 B 2 (cf. §3.3.1.2). By direct computations, one gets

ρ • YW B 2 ⊠B 2 = (12, 6, 1) and polrk • YW B 2 ⊠B 2 = (16, 1) thus polrk YW B 2 ⊠B 2 = 17 < 19 = ρ • YW B 2 ⊠B 2 .
Denoting by x 1 , . . . , x 16 the cluster first integrals associated to the period (112) and setting A(x) = arctan( √ x ) for any x > 0, one verifies that the two following functional identities hold true identically:

2 = 1 1 + x 3 + 1 1 + x 7 + 1 1 + x 11 + 1 1 + x 15 , π = A(x 2 ) + A(x 6 ) + A(x 10 ) + A(x 14 ) .
The two ARs associated to these two identities provide a supplementary space to the space of logarithmic and dilogarithmic ARs of

YW B 2 ⊠B 2 which ensures that ρ(YW B 2 ⊠B 2 ) = rk • (YW B 2 ⊠B 2 ).
Thus this web is AMP, unlike BBW B 2 ⊠B 2 . Note however that not all the ARs YW B 2 ⊠B 2 are polylogarithmic (but they are not far from being almost of this kind, see the notion of 'generalized iterated integral' considered at the end of §1.5.2).

The Y-cluster web of type

A 2 ⊠ G 2 .
The exchange skew-diagonalizable matrix associated to the valued quiver A 2 ⊠ G 2 is the one obtained from that of A 2 ⊠ B 2 by replacing the 2's by 3' in it (and keeping the corresponding signs). From [START_REF] Keller | The periodicity conjecture for pairs of Dynkin diagrams[END_REF] (see formula (3,6,1) therein in particular), we know that that the concatenation µ A 2 ,G 2 of h(A 2 ) + h(G 2 ) = 3 + 6 = 9 copies of (2, 4, 1, 3) is a cluster period. Actually, µ A 2 ,G 2 is not irreducible as its 18 first terms already form a cluster period. We deduce that YW A 2 ⊠G 2 is a 18-web in four variables and by direct computations, we have obtained that

ρ • YW A 2 ⊠G 2 = (14, 8, 1) , polrk • YW A 2 ⊠G 2 = (18, 1) and rk • YW A 2 ⊠G 2 = 19 .
In particular, one has polrk

YW A 2 ⊠G 2 = rk YW A 2 ⊠G 2 = 19 < 27 = ρ • YW A 2 ⊠G 2
hence all the ARs of this web are polylogarithmic (of weight ≤ 2) but it is not AMP.

3.3.2.3.4 The Y-cluster web of type B 2 ⊠ G 2 . The exchange matrix in the case B 2 ⊠ G 2 is B B 2 ⊠G 2 =                0 3 2 -6 -1 0 0 2 -1 0 0 3 1 -1 -1 0                .
The associated period has length 20, and is obtained by concatenating 5 copies of (2, 4, 1, 3). The associated cluster web YW B 2 ⊠G 2 is a 20-web in four variables, such that

ρ • YW B 2 ⊠G 2 = (16, 10, 1) , polrk • YW B 2 ⊠G 2 = (20, 1) and rk YW B 2 ⊠G 2 = 22 .
In particular, one has rk YW B 2 ⊠G 2 = 22 < 27 = ρ • YW B 2 ⊠G 2 hence this web is not AMP.

3.3.2.3.5

The Y-cluster web associated to Y 2 (B 2 ). We refer to [IIKKN1, §2.3] for a description of the quiver Q ℓ (B n ) associated to the Y-system of level ℓ ≥ 2 and of type B n . In the case ℓ = n = 2 that we consider here, this quiver and the associated exchange matrix are and

B Q 2 (B 2 ) =                      0 1 -1 1 0 -1 0 1 0 0 1 -1 0 -1 1 -1 0 1 0 0 0 0 -1 0 0                      .
Then the concatenation of 5 copies of (3, 1, 2, 4, 3, 5, 2, 4) gives a cluster period i Q 2 (B 2 ) = (i 40 , . . . , i 1 ) for the initial X-seed S 0 = ((

x i ) 5 i=1 B Q 2 (B 2 ) ). Actually, half of i Q 2 (B 2 )
, namely (i 20 , . . . , i 1 ), is already a period for S 0 , but relatively to the permutation i → 6i of {1, . . . , 5}. The associated P-cluster web is YW Q 2 (B 2 ) : it is a 20-web in five variables which, after some direct computations, can be proved to be such that

ρ • YW Q 2 (B 2 ) = (15, 5, 1) and polrk • YW Q 2 (B 2 ) = (20, 1) .
Thus the Y-cluster web of type Q 2 (B 2 ) is AMP with only polylogarithmic ARs (all of weight 1, except the dilogarithmic one R 2 (B 2 )).

3.3.2.4

Examples of periods II: Zamolodchikov periodic quivers. The general machinery of Y-systems can be generalized to a more general framework considered in [GP].

Let Q be a quiver with bipartite underlying graph: its vertices are either black • or white •. Let j • (resp. j • ) be a tuple consisting of all the black (resp. white) vertices of Q and denote by µ • (resp. µ • ) the associated composition of mutations. Since mutations associated to vertices of the same color pairwise commute, both µ • and µ • are well-defined. The quiver Q is said to be

-'recurrent' if µ Q = µ • • µ • transforms Q into its 'dual' -Q
, which is the quiver with the same underlying bipartite graph but with all its arrows reversed in it;

-'Zamolodchikov periodic' if it is recurrent and if the concatenation, denoted by i Q , of a certain number N Q ∈ N * of copies of j Q = j • | j • is a cluster period for the initial X-seed with Q as its associated quiver.

In [GP], the authors give a complete classification of the 'Zamolodchikov periodic quivers', a result which can be interpreted as the classification of certain cluster periods. They prove that a bipartite recurrent quiver Q is Zamolodchikov periodic if and only if a certain bipartite bigraph G(Q), associated to ±Q in a one-to-one way, is of a certain kind, namely 'admissible and of ADE type' (see §1.3.2 in [GP] for more details and more specifically Theorem 1.10 therein). Since bigraphs of this kind have been classified before (cf. [St,Thm 3.1]), one obtains a complete list of Zamolodchikov periodic quivers up to duality: there are five infinite families as well as eight exceptional cases. The tensor products ∆ ⊠ ∆ ′ (where both Dynkin diagrams are simply-laced) constitute of course one of these families, and the four other families as well as the exceptional cases can be described quite explicitly (see respectively §1.3.2 and Appendix A in [GP]).

Given a Zamolodchikov periodic quiver Q, one denotes by ZW Q the X-cluster web associated to the period i Q = j N Q Q . Theorem 3.16 ensures that this web carries a complete dilogarithmic AR. Thanks to the classification of Zamolodchikov periodic quivers, we have now at disposal five families and eight exceptional cases of cluster webs carrying polylogarithmic ARs (of weight 1 and 2) which all are good candidates for being AMP webs with only logarithmic and dilogarithmic ARs. Two explicit examples are discussed below, which support our belief that all the cluster webs associated to Zamolodchikov periodic quivers are indeed AMP.

3.3.2.4.1

The cluster web associated to the twist A 3 × A 3 . Another infinite family of Zamolodchikov periodic quivers is the one formed by the 'twists' ∆ × ∆ for any ADE Dynkin diagram ∆ (cf. Example 1.4 in [St] or p. 453 in [GP]). For instance, the corresponding Zamolodchikov periodic quiver and the associated exchange matrix in the case when ∆ = A 3 are the following:

and B A 3 ×A 3 =                           0 0 -1 1 0 0 0 0 1 -1 0 0 1 -1 0 0 1 -1 -1 1 0 0 -1 1 0 0 -1 1 0 0 0 0 1 -1 0 0                          
.

In this case one has j A 3 ×A 3 = (4, 3, 6, 5, 2, 1) and one verifies that i A 3 ×A 3 = ( j A 3 ×A 3 ) 4 is a cluster period for the initial X-seed whose quiver is the one just above. The associated cluster web ZW A 3 ×A 3 is a 24-web in 6 variables such that ρ • ZW A 3 ×A 3 = 18, 6, 1 polrk • ZW A 3 ×A 3 = (24, 1) .

So ZW A 3 ×A 3 is AMP with only polylogarithmic ARs (all of weight 1, except the dilogarithmic one).

3.3.2.4.2

The cluster web associated to the sporadic Zamolodchikov periodic quiver D 6 * D 6 .

The simplest of the eight sporadic/exceptional Zamolodchikov periodic quivers, denoted by D 6 * D 6 , is the following one:

In this case one has j D 6 * D 6 = (11, 9, 8, 6, 4, 2, 12, 10, 7, 5, 3, 1) and one verifies that i D 6 * D 6 = ( j D 6 * D 6 ) 15 is a cluster period for the initial X-seed whose associated quiver is the one just above. 98The associated cluster web ZW D 6 * D 6 is a 180-web in twelve variables. It would be interesting to know whether or not this web is AMP with only polylogarithmic ARs. We have tried to verify this by direct computations but these were too heavy to give us a definitive answer. Preliminary computations suggest that this web is not AMP.

Question 3.20. Determine the Zamolodchikov periodic quivers Q such that ZW Q is AMP.

3.3.2.5 Some topological cluster periods. Given a cluster algebra A (of rank n ≥ 1, say), there is a one-to-one correspondance between between cluster periods and non-trivial (finite and closed) loops in the associated exchange graph Γ A .

In [KY], H. Kim and M. Yamazaki discuss a certain property of Γ A that they call 'Property ⋆'.

In order to state it, we introduce the following subgroup, denoted by π ′ A (or just by π ′ when the cluster algebra we are dealing with is fixed), of the fundamental group of the exchange graph of A: it is the subgroup generated by elements of the form PLP -1 , where L is a closed loop (with a base point) obtained by mutating 2 of the n cluster variables while keeping the remaining other n -2 variables fixed, and P is an arbitrary path originating at the base point, and P -1 is its inverse. With this definition at hand, the aforementioned property can be stated concisely as follows:

Property ⋆ : π ′ A coincides with the full fundamental group π 1 (Γ A ) of the exchange graph of A. The main motivation of Kim Yamazaki to consider this property is the accessability of the dilogarithmic identity (R P ) associated to any period/loop P in Γ A . Indeed, considering the equivalence 'cluster period↔loop in Γ A ', then it is intuitively natural to think that, given a period P, if the associated dilogarithmic identity (R P ) is accessible from Abel's 5-terms relation, then seen as a loop in exchange graph, P belongs to the subgroup π ′ A of π 1 (Γ A ) spanned by elements of the form PLP -1 as above (and it is also natural to require additionally that the loops L in such elements be, in some way, isomorphic to the unique length 5 cluster period of type A 2 corresponding to Abel's identity). Thus, one might think that Property ⋆ might be related (or even better, might be equivalent) to the following statement: 'for any cluster period P in A, the dilogarithmic identity (R P ) is accessible from dilogarithmic identities in two variables'.

It is known that Property ⋆ holds true in several interesting cases99 , such as (1) for any seed of a finite type cluster algebra. Moreover, in this case, the loops L in the statement of Property ⋆ correspond to sequences of mutations of rank two skew-symmetrizable matrices of type either

A 1 × A 1 , A 2 , B 2 or G 2 ;
(2) for any seed generated from a signed adjacency matrix of an ideal triangulation of a bordered surface with marked points, except when the surface is a closed surface with exactly two punctures.

Since the dilogarithmic identities associated to cluster periods of rank 2 finite cluster algebras all are accessible from Abel's identity (which is associated to A 2 ), it might follow from (1) above that the identity (R P ) for any period P of a cluster algebra of finite type is accessible from (Ab).

Questions 3.21. (1). If the preceding statement holds true, give a rigorous proof of it.

(2). Under the reasonable assumption that it indeed holds true, give a way (or better, an algorithm) allowing to express any dilogarithmic identity associated to a period of a finite type cluster algebra as a (finite) linear combination of 5-terms Abel's identities.

An interesting result (cf. [START_REF] Kim | Comments on Exchange Graphs in Cluster Algebras[END_REF]Proposition 4.1]) is that Property ⋆ does not hold for the seed associated to a certain ideal triangulation of a closed surface (of genus 1 or higher) with two punctures. And explicit examples, one for each genus g ≥ 1, are given in [START_REF] Kim | Comments on Exchange Graphs in Cluster Algebras[END_REF]§4].

We consider here the simplest example which corresponds to the case when g = 1. In Example 4.1 of [KY], the authors describe a triangulation of the 2-punctured torus to which is associated the following exchange matrix

                          0 0 -1 1 -1 1 0 0 1 -1 1 -1 1 -1 0 1 0 -1 -1 1 -1 0 1 0 1 -1 0 -1 0 1 -1 1 1 0 -1 0                          
Then one verifies that the following 32-tuple ( 113) (5,6,4,3,6,5,[START_REF] Arkani-Hamed | Grassmannian geometry of scattering amplitudes[END_REF]2,4,3,6,5,3,4,2,[START_REF] Arkani-Hamed | Grassmannian geometry of scattering amplitudes[END_REF]6,5,3,4,5,6,[START_REF] Arkani-Hamed | Grassmannian geometry of scattering amplitudes[END_REF]2,3,4,5,6,4,3,2,[START_REF] Arkani-Hamed | Grassmannian geometry of scattering amplitudes[END_REF] is a period for the X-seed having the matrix above for exchange matrix. The web associated to it, denoted by W K M,1 (where the suscript 1 referers to the genus g = 1), is a 32-web in six variables which can be verified to be such that

ρ • W K M,1 = 26, 11, 1 , polrk • W K M,1 = (32, 1) and rk W K M,1 = 33 .
Thus if all the ARs of W K M,1 are polylogarithmic (of weight 1 or 2), this web is not AMP. On the other hand, it should be noted that (113) is precisely an example of a period which, when seen as a loop in the exchange graph, does not belong to the subgroup π ′ of the fundamental group of the exchange graph described above. Whether it is concomitant with the fact that the web W K M,1 associated to ( 113) is not AMP makes us wonder how these two facts are related. These considerations suggest the following questions which, because of the interest they have for us, are worth formulating for any cluster period:

Question 3.22. Let P be a period of a cluster algebra. How are related the following properties?

1. The cluster web W P is AMP with only polylogarithmic ARs (of weight 1 and 2).

2. As a loop, P belongs to the subgroup π ′ of the fundamental group of the exchange graph.

The dilogarithmic identity (R P ) is accessible from cluster dilogarithmic identities in one or two variables of type A

1 , A 1 × A 1 , A 2 , B 2 and G 2
, in which all the arguments of the dilogarithm functions involved are X-cluster variables (of the cluster algebra considered).

If we do think that these three properties are related, some examples we are aware of show that they are not equivalent. Such an example is provided by the Y-cluster web of type D 4 . The associated period is i hal f D 4 ,A 1 (cf. ( 108)) for which property 2. above is known to hold true (because of finite type) as well as the third (according to [KY] 100 ). However, it follows from (104) that the associated cluster web YW D 4 is not AMP.

Some (conjectural) properties of cluster variables

Considering finite collections of cluster variables from the perspective of web geometry naturally leads to look at a given cluster variable on its own from a new perspective, more differential geometric in nature, which hasn't been done until now. Indeed, given a cluster variable x, we are actually more interested in the foliation F x that it defines, than in x itself. And given another such variable x ′ , it is crucial, for instance in order to get a better understanding of the iterated integrals ARs of a web containing both F x and F x ′ , to know more about the algebraic subsets of the ambiant space which are invariant by these two foliations.

More specifically, given a web W = W(x 1 , . . . , x d ) defined by d cluster variables x i (of a same fixed cluster algebra), the following questions naturally arise and appear to us as very relevant from a web-theoretic perspective:

1. Is x i a primitive first integral for the foliation F x i it defines? If yes, what can be said about the singular fibers x -1 i (λ) and the corresponding singular values λ ∈ P 1 ?

2. What can be said when two foliations F x i and F x j coincide? Does this imply that the two cluster variables x i and x j defining them coincide or are related in a simple way?

3. Assuming that F x i and F x j are distinct foliations, what can be said about the invariant subsets Σ for both? And for the corresponding values x i (Σ) and x j (Σ)?

During the preparation of this text, we have considered an important number of cluster webs (those of the preceding subsection forming only a part of it) the study of which gave us rather precise ideas about what could be the answers to the above questions. In order to discuss our insights more in depth, we first recall some classical notions about (complex) rational functions.

3.4.1 Reminder about rational functions. Let R be a rational function in n variables: for a fixed n-tuple t = (t i ) n i=1 of indeterminates, one has R(t) = P(t)/Q(t) where P, Q ∈ C[t] are two polynomials without common factors. Then the following facts hold true101 :

the general fiber under R is not connected if and only is R is composite, i.e. there exists R ∈ C(t) and a non-invertible rational morphism g :

P 1 → P 1 such that R = g • R;
thus R is a primitive first integral of the foliation F R if and only if it is non-composite;

an element λ of P 1 is a remarkable value for R if the associated fiber R -1 (λ) is not irreducible. By definition, the spectrum Spect(R) of R is the set of its remarkable values;

it is well-known that R is non-composite if and only if Spect(R) ⊂ P 1 is finite;

there exists a homogeneous polynomial in two variables spect P,Q (λ 0 , λ 1 ) such that Spect(R) = λ 0 : λ 1 ∈ P 1 spect P,Q (λ 0 , λ 1 ) = 0 .

Moreover, spect P,Q can be constructed from P and Q in an effective way.

We stress that everything above is stated and makes sense relatively to a fixed set of indeterminates t i . Given a birational map ϕ : P n P n , one can wonder how is related the spectrum of R (relatively to the t i 's) with the one of R • ϕ (relatively to the indeterminates ti = ϕ * (t i ) in this case). It seems to us that it is difficult to give a general answer to this question. However, for R fixed and ϕ generic, it is easy to see that the following inclusion holds true

Spect(R • ϕ) ⊂ Spect(R • ϕ) ∪ R S ϕ \ I R ⊂ P 1 ,
where S ϕ and I R stand for the set of singular values of ϕ and the indeterminacy locus of R respectively.102 

The case of cluster variables.

In what follows, we fix a certain cluster algebra (of rank n ≥ 2) defined by means of an initial seed with initial quiver Q 0 . We will mainly focus on the case of X-cluster variables, while that of A-cluster variables, which is similar in many ways, will only be mentioned briefly.

We use below the following notation: we denote by u 1 , . . . , u n the initial X-cluster variables and accordingly, u = (u i ) n i=1 stands for the initial cluster. We set C[u] (resp. C(u)) for the polynomial ring C[u 1 , . . . , u n ] (resp. for its fraction field C(u 1 , . . . , u n )) and C[u ±1 ] denotes the ring of Laurent polynomials in the u i 's. To these complex algebras are associated the following geometric objects:

-T 0 = Spec C[u ±1 ] : the initial 'cluster torus'; -C n 0 = Spec C[u]
: the initial 'cluster affine space'; -P n 0 = Proj C h [u, u 0 ] : the initial 'cluster projective space' (u 0 is an extra variable). We have of course the following inclusions of these spaces T 0 ⊂ C n 0 ⊂ P n 0 . In the initial projective space P n 0 , we consider the following divisors: the initial 'cluster hyperplanes divisors' H j = {u j = 0} for j = 1, . . . , n, and the divisor at infinity H 0 = {u 0 = 0}. Next, for any F-polynomial F of the considered cluster algebra, one denotes by H F the effective divisor defined as the closure in P n 0 of the irreducible affine hypersurface {F(u) = 0} ⊂ C n 0 . We recall the following important property of such a F: one has F(0) = 1 and F admits a unique monomial of the highest degree, which is moreover a multiple of all the other monomials appearing in it. Finally, for any vertex t ∈ T n , we denote by H t the union of the divisors H s 's for s = 0, 1, . . . , n with the set of those cut out by the F-polynomials F t 1 , . . . , F t n at t:

(114) H t = H 0 , H i , H F t i i = 1, . . . , n ⊂ Div P n 0 .

3.4.2.1

Let x be a (X-)cluster variable that we consider as a rational function in the initial cluster variables u i 's. By definition, x = x t i for some vertex t of T n and some i ∈ {1, . . . , n}. The rational map u x t = (x t k ) n k=1 being invertible (birational), it comes that x ∈ C(u) is not composite. Hence the following lemma holds true: Lemma 3.23. The cluster variable x is a primitive first integral of the foliation F x it defines. Moreover, it is homaloidal thus its generic fiber is rational.

An immediate remark coming after this is that, regarding the foliations they define, cluster variables always come in pairs. Indeed, from the basic formulae ( 83) for mutations, it comes that the new cluster variable x ′ obtained by mutating x = x t i in the i-th direction is nothing else but 1/x as a rational map. If x and x ′ are (formally) distinct cluster variables, they define the same foliation. Consequently, from a web-theoretic perpective, we will deal with cluster variables up to inversion x ↔ 1/x. Before turning on the general case, let us consider the particular case when the cluster algebra we are dealing with is the one of finite type A n .

3.4.2.2

We will see further in §4.2.1 that the X-cluster variety X A n identifies birationaly to the moduli space M 0,n+3 (in some ways which can be made precise, see 4.2.1 further) and that, up to such an identification, any X-cluster variable can be written as a cross-ratio ( 115)

x i jkl (c) = (ξ i -ξ j )(ξ k -ξ l ) (ξ i -ξ l )(ξ j -ξ k )
for some indices i, j, k, l ∈ {1, . . . , n+3} cyclically ordered modulo n+3103 , where c

= [0, -1, ξ 1 , . . . , ξ n , ∞] n i=1 ∈ M 0,n+3 with (ξ s ) n s=1 ∈ C n .
Using the explicit (quadratic) formula ( 115) in terms of the ξ s 's which form a system of rational coordinates on M 0,n+3 , it is then easy to study the foliation F x i jk j from a differential geometric point of view, when considered as a rational fibration on the projective space P n ξ associated to the ξ i 's. For instance, it is easy to verify that (116)

1. The remarkable values of x i jkl are 0, -1 and ∞, i.e. Spect(x i jkl ) = {0, -1, ∞};

2. Given another cluster variable x i ′ j ′ k ′ l ′ , the two following facts hold true: i. F x i jkl and

F x i ′ j ′ k ′ l ′ coincide ⇔ (i, j, k, l) = (i ′ , j ′ , k ′ , l ′ ) or (i, j, k, l) = (k ′ , l ′ , i ′ , j ′ ) ⇔ x i jkl = x i ′ j ′ k ′ l ′ or x i jkl = 1/x i ′ j ′ k ′ l ′ ; ii. if F x i jkl and F x i ′ , j ′ ,k ′ ,l ′ are distinct then any biinvariant irreducible hypersurface H of P n ξ is a component of reducible fibers of x i jkl and x i ′ j ′ k ′ l ′ . Thus x i jkl (H) and x i ′ j ′ k ′ l ′ (H) are remarkable values hence both belong to {0, -1, ∞}.
Regarding to what we have in mind, a warning is in order about the properties listed above: these are properties of cross-ratios on M 0,n+3 , stated when these cross-ratios are considered as rational functions in the standard coordinates ξ i 's on this moduli space. But obviously it also follows from (115) that the ξ i 's, are not cluster coordinates, but only depend birationally from any X-cluster of type A n . As a result, it is a priori unclear whether or not (116) admits an analog when x i jkl and x i ′ j ′ k ′ l ′ are now truly considered as cluster variables, that is as rational functions of the initial cluster variables u i 's. The point 2.i. above can be obtained rather easily (cf. Corollary 4.4.2) and we believe that, with some supplementary work, it should be possible to prove statements similar to 1. and 2.ii. for the X-cluster variables in type A above (see Remark 4.5 further and more generally Conjecture 3.24 and Conjecture 3.26 below).

3.4.2.3

We now come back to the general case considered at the very beginning of this subsection: x is a cluster variable of the cluster algebra with (u, Q 0 ) as initial X-seed. One has x = x t i for some i ∈ {1, . . . , n} and a certain vertex t ∈ T n .

Since the general fiber of x is irreducible (by Lemma 3.23), it is natural to look at its remarkable values. The separation formula (88) for x = x t i is inspiring in this respect. Indeed, since it is meaningless to deal with its inverse 1/x, one can assume that the tropical sign ǫ x ∈ {±1} of x is positive: all the coefficients c t ji of the associated c-vector c x = (c t ji ) n j=1 are non-negative and at least one of them is non-zero hence positive (by 'sign-coherence'). Consequently, it follows that the fiber x -1 (λ 0 ) of the pencil F x passing through the origin of C n 0 corresponds to the value λ 0 = 0 and, up to the addition of a non-negative multiple of the divisor at infinity H 0 , is the effective divisor n j=1 c t ji H j = c t ji >0 c t ji H j . Hence any irreducible component of x -1 (0) belongs to H t and except in the particular case when |c x |= j c t ji = 1 = deg(x), we have that 0 belongs to the spectrum of x.

We now consider the fiber x -1 (∞). Still assuming that ǫ x = 1, it follows again from (88) that in the affine chart C n 0 , this fiber is cut out by b ki <0 (F t k ) -b ki = 0. Hence all the irreducible components of x -1 (∞) belong to H t as well and except in another particular case, it follows that ∞ is also a remarkable value of x.

Eventually, we deal with the fiber of x over -1 which is cut out by the equation x + 1 = 0. Since the initial quiver Q 0 is connected, the same holds true for for Q t (this property being invariant by mutations) hence there exists j ∈ {1, . . . , n} distinct from i such that b i j = b t i j 0. Assume that b i j is negative (the case when it is assumed positive can be treated along the same arguments) and let x j = x t j be the k-th cluster variable of the cluster x t to which x = x t i belongs. Then according to (83), the mutation x ′ j = µ i (x j ) of x j in the i-th direction is given by x ′ j = x j 1 + x -b i j hence one has 1 + x = (x ′ j /x j ) -1/b i j in the field of algebraic functions in the u i 's. 104 Thus 1 + x = 0 implies that x ′ j = 0 or x j = ∞ and considering the two preceding paragraphs (regarding x ′ j and x j respectively), we deduce that any irreducible component of x -1 (-1) belongs to H t ∪ H t ′ , where t ′ stands for the vertex in T n obtained from t by the i-th mutation. Thus -1 as well is a good candidate for being a remarkable value for the considered cluster variable x.

3.4.2.4 A conjectural description of reducible fibers of cluster variables. The above considerations, first about the finite case of type A n , then in the case of an arbitrary cluster algebra, have led us to state several conjectures about some differential and geometric properties of the foliations defined by cluster variables. We begin by stating these conjectures before giving a few comments regarding them.

In order to be precise, we recall the nature of the foliations we are dealing with: x is a cluster variable hence is considered as a rational function in the initial cluster variables u 1 , . . . , u n and consequently, we see F x as a rational fibration on the initial cluster projective space P n 0 . To make some statements shorter and although this is not standard, any one of the u i 's will be also called a 'F-polynomial' below.

Our first conjecture is about the decomposable fibers of F x : Conjecture 3.24. (a). The set of remarkable values of x is included in { 0 , -1 , ∞ }.

(b). The irreducible components of the reducible fibers of x are cut out by some F-polynomials.

The statements in this conjecture deserve to be commented.

• A first remark is that only an inclusion can hold true in (a): taking for x one of the initial cluster variables u i , we see that there is no singular or remarkable value at all. But one can get a proper inclusion Spect(x) ⊂ { 0 , -1 , ∞ } even for a non-initial cluster variable x.

For instance, u 1 u 2 /(1 + u 2 ) is a X-cluster variable of the cluster algebra of finite type A 2 and it has only two remarkable values. Indeed, one has Spect u 1 u 2 /(1 + u 2 ) = {0, ∞}.

• The previous remark naturally leads to wonder about the case when x has no remarkable value. This will be discussed just below (cf. Conjecture 3.25).

• As it follows from the considerations in paragraph §3.4.2.3 above, any of the fibers x -1 (0), x -1 (-1) or x -1 (∞) can be written as a sum with positive integer coefficients of divisors H F for some F-polynomials F of the considered cluster algebra. Since any divisor H F is irreducible according to Theorem 3.6, we obtain that (a) implies (b).

• It is natural to wonder if there exists a version of the above conjecture for A-cluster variables. It might be so, but the statements should certainly be modified, as the sfollowing examples (concerning assertion (b)) show: (1 + y + x 2 )/xy is a A-cluster variable in finite type B 2 and it can be verified that its remarkable values are i, -i and ∞: one has Spect (1 + y + x 2 )/xy = ± i , ∞ . Another example is given by (1 + y + x 3 )/xy which is a A-cluster variable of type G 2 : one has Spect (1

+ y + x 3 )/xy = ∞ , -1 , (1 ± i √ 3)/2 .
The two preceding examples suggest a generalization of the previous conjecture: let Q be a weighted quiver. Then for any A-cluster variable a of A Q , one has: Spect(a) ⊂ {0, ∞} ∪ µ q where q stands for a certain positive integer obtained from the weights in Q (for instance, it could be the least common multiple of these weights).

A conjectural characterization of initial cluster variables by their spectrum.

A question that emerges naturally from the above conjecture and comments is that of characterizing the cluster variables in terms of the cardinality of their spectra. Thinking about that and looking at numerous explicit examples led us to state the following conjecture about the characterization of initial cluster variables (where, as above, x stands for a X-cluster variable):

Conjecture 3.25. The following statements are equivalent:

-Spect(x) = ∅, i.e. x has no remarkable value;

-Spect(x) ≤ 1, i.e. x has at most one remarkable value;

-deg(x) = 1, i.e.
x is fractional linear in the u i 's;

x or its inverse 1/x coincides with one of the initial cluster variables.

Several authors have introduced the notion of 'compatibility degree' for cluster variables which could be relevant to investigate the validity of the above conjecture (see [CKQ] for an overview and some references). Assuming this conjecture holds true as well as point (a) in Conjecture 3.24 naturally leads to wonder about the cluster variables whose spectrum has cardinality only 2: what can be said about them in addition of this single hypothesis?

3.4.2.6 A conjecture about hypersurfaces invariant two cluster fibrations. The material above is about some (conjectural) geometric or algebraic properties of the fibration F x defined by a cluster variable x, considered on its own. We now discuss and propose some interesting but conjectural statements about how two such fibrations are related.

Considering the description of the fibers of cluster variables over 0, -1 and ∞ in §3.4.2.3, it comes that elements of H t (cf. ( 114)) for some t ∈ T n are good candidates for being invariant by two distinct cluster fibrations F x and F x and that the corresponding values for x and x are elements of {0, -1, ∞}. In view of this, the question arises as to whether there exist fibers x -1 (λ) and x-1 ( λ) sharing an irreducible component, for λ or λ not in {0, -1, ∞}. About this, an extensive investigation of many explicit cases led us to make the following Conjecture 3.26. Let x be another X-cluster variable (of the same cluster algebra as x).

1. The fibrations F x and F x coincide if and only if x = x or x = x -1 .

2. Assuming that F x and F x are distinct, the following holds true:

given λ, λ ∈ P 1 , if the two fibers {x = λ} and { x = λ} have an irreducible component H in common then both λ and λ belong to { 0, -1, ∞ } and H is cut out by a F-polynomial.

It is worth commenting these two statements:

• The first statement being birationally invariant, one can assume that x is precisely one of the initial cluster variables u i . On the other hand, since x is non composite (by Lemma 3.23), one has x = g(x) for a certain projective transformation g ∈ PSL 2 (C) if F x and F

x coincide. Then 1. follows from our above Conjecture 3.26;

• We recall that the initial cluster variables u i are considered as F-polynomials in 2.

• A consequence of the second statement is that actually F x and F x necessarily coincide as soon as they share a single leaf of the type x -1 (λ) = x-1 ( λ) for some λ, λ {0, -1, ∞}. This is quite stronger than statement 1. which can also be read as the fact that if the generic leaf of F x is also invariant by F x then x coincides with x or x -1 .

• The first statement in the above conjecture can be proven to hold true for any cluster algebra of finite type, see Proposition 4.1 further (see also Corollary 4.11 for some other results in this direction).

• We don't see how to prove the second statement in full generality, even when restricting to the better understood case of cluster algebras of finite type.

⋆

The conjectural properties of cluster variables stated in the three preceding conjectures have to be compared with those of the cross-ratio stated in (116). From this, one can state the following general (but rather vague hence non truly mathematical) motto:

in many ways, X-cluster variables behave like cross-ratios.

It would be interesting to make this more rigorous and to know to which extent it holds true.

3.4.2.7 Consequences of the preceding conjectures for cluster webs. The previous conjectures have interesting consequences regarding the ARs with iterated integrals components of cluster webs. We shall now discuss these consequences.

Let W be a cluster web defined by a finite set {x s } s∈S of cardinality d of X-cluster variables.

We assume that the corresponding cluster variables x s and x s ′ associated to two distinct elements s, s ′ ∈ S are not the same (as rational functions of the fixed initial cluster coordinates), even up to inversion. Then W is a d-web in n variables (by Conjecture 3.26.1).

Let H W be the set of F-polynomials such that the principal divisor H F appears with positive multiplicity in a fiber x -1 s (λ) for some points s in S and some values λ ∈ {0, -1, ∞}. Then it follows from the second point of Conjecture 3.26 that the irreducible components of the set of common leaves Σ c (W) of W (discussed in §1.3.1 above), is included in H W . By Proposition 1.5, this implies that for any s ∈ S , the x s -ramification locus of W is included in {0, -1, ∞} hence is polylogarithmic (cf. Definition 1.8). Thus, assuming than the conjecture stated in the preceding paragraphs are satisfied, one can deduce that the same holds true for the following one: Conjecture 3.27. A X-cluster web has polylogarithmic ramification: all its ramification locus are included in {0, -1, ∞} and consequently, all its iterated integral ARs are polylogarithmic.

Assuming that this conjecture holds true, the next step would be to have a more precise guess about the (virtual/polylogarithmic/standard) rank and the (polylogarithmic) abelian relations of a X-cluster web. In the next sections, we are going to investigate webs associated to Dynkin diagrams from this perspective.

Some general properties of cluster webs associated in finite type

This section is devoted to the Xand Y-cluster webs of finite type. We first recall or introduce some notations about them that will be used in the sequel, and state several questions regarding their rank and ARs which are worth studying according to us. After that in §4.2, we establish some very basic properties of these webs.

Some notation and several basic questions

First we recall/collect some notation that will be used in the sequel. Next we make explicit the basic questions about cluster webs in finite type we are interested in.

Root systems:

-∆ stands for a given irreducible root system of rank n ≥ 2 (thus A 1 is excluded);

we also use the same notation ∆ to denote either the associated Dynkin diagram or the corresponding (weighted bipartite) quiver (denoted by ∆ in §3.2.1.1 above). This abuse of notation will not cause any lack of understanding; -α 1 , . . . , α n denote fixed simple roots of ∆; -∆ >0 (or ∆ + ) stands for the set of positive roots;

by definition, ∆ is simply laced if all its roots have same length. Otherwise (that is when ∆ is of type B n , C n , F 4 or G 2 ) there are precisely two kinds of roots, depending on their length: the short ones and the long ones, whose sets are denoted by ∆ short and ∆ long respectively; the map α → α ∨ = 2α/ α, α induces a duality between ∆ and the dual root system ∆ ∨ . We recall that ∆ and ∆ ∨ are isomorphic, except for B n and C n when n ≥ 3;105 for ∆ simply laced (i.e. of type A, D or E), one has α = α ∨ but otherwise the duality is not trivial (for instance it exchanges the short roots with the long ones i.e. (∆ short ) ∨ = (∆ ∨ ) long ); given a root α = n i=1 n i α i ∈ ∆ (with n i ∈ Z for any i = 1, . . . , n), one sets u α = i u n i i .

Cluster notation:

-A ∆ denotes the cluster algebra with initial seed (a, x, B ∆ ) where a = (a i ) n i and B ∆ is the exchange matrix associated to ∆ (cf. page ). As for the initial X-cluster, we will take either

x = (u i ) n i=1 or x = (u ǫ(i) i ) n i=1
, where in the second case ǫ : {1, . . . , n} → {±1} is the function corresponding to the bipartition of ∆: one has ǫ(i) = -1 if and only if the i-th vertex of the bipartite quiver ∆ is a source; for Z ∈ { A , X }, we denote by ZW ∆ the cluster web (on the initial Z-cluster torus ZT n ) defined by all the Z-cluster variables of A ∆ ; -YW ∆ stands for the subweb of XW ∆ defined by all the Y-cluster variables, which are the X-cluster variables appearing in the bipartite belt of the cluster algebra A ∆ (see §3.3.1.4.1);

the set Y ∆ of Y-cluster variables up to inversion (y ↔ y -1 ) is in bijection with ∆ ≥-1 . More precisely, for any α ∈ ∆ ≥-1 , there exists a unique Y-cluster variable, denoted by y[α], which can be written y

[α] = P[α]/u α ∨ relatively to the initial X-cluster x = (u ǫ(i) i ) n i=1 , where P[α]
is a polynomial with positive integer coefficients (in the u i 's) with constant term equal to 1 (cf. [START_REF] Fomin | Y-systems and generalized associahedra[END_REF]Theorem 1.5]). Consequently, one has ( 117)

YW ∆ = W y[α] α ∈ ∆ ≥1 = W u i , y[α] i = 1, . . . , n, α ∈ ∆ >0 ;
when ∆ is not simply laced, YW ∆ short (resp. YW ∆ long ) is the subweb of YW ∆ formed by the Y-cluster variables indexed by the short roots (resp. by the long roots) of ∆: one has

YW ∆ short = W y[α] α ∈ ∆ short ≥-1 and YW ∆ long = W y[α] α ∈ ∆ long ≥-1 with ∆ -- ≥-1 = ∆ ≥-1 ∩ ∆ --
, wherestands for anyone of the two words short or long; for Z ∈ { A , X , Y }, we denote by d Z ∆ the degree of the web ZW ∆ (that is, the number of distinct foliations appearing in it). 106 , it follows from ( 117) that ( 118) d Y ∆ ≤ n(h + 2)/2 ; the Y-cluster variables can also be indexed by integers, as it follows from the paragraphs §3.3.2.2 and §3.3.2.3. Denote by i ∆ the period i hal f ∆,A 1 of ( 110), except when ∆ is of type A n with n even, in which case i A n stands for the period i •,• defined in (108). In any case, i ∆ is of length n(h + 2)/2 and its ℓ-cluster coordinates y ℓ = x ℓ (i ∆ ) for ℓ = 1, . . . , n(h + 2)/2 (defined in ( 106)) form a set of first integrals for YW ∆ .

-since |∆ ≥-1 |= |∆ >0 |+n = hn/2 + n = h(n + 2)/2,
4.1.3 F-polynomials and the cluster arrangement. For the finite type cluster algebra A ∆ , there are nice descriptions of the geometric objects attached to XW ∆ in §3.4.2.7.

-We denote by F ∆ the set of F-polynomials of A ∆ . There is a bijection α → f [α] between the set of almost-positive roots ∆ ≥-1 and the set F ∆ of F-polynomials of A ∆ which moreover is such that f [-α i ] = u i for any simple root α i ∈ ∆ >0 (cf. ( 92)).

-This gives us a way to enumerate the elements of H ∆ = H XW ∆ : its elements are the hyperplanes H i = (u i = 0)'s for i = 0, . . . , n (H 0 being the divisor at infinity) and the irreducible hypersurfaces

H α = H f [α] 's for α ∈ ∆ >0 .
-We define Arr ∆ , the 'cluster arrangement of type ∆' as the one in P n 0 whose irreducible components are the elements of H ∆ :

Arr ∆ = ∪ n i=0 H i ∪ ∪ α∈∆ >0 H α .
It is an arrangement of n + 1 + |∆ >0 | irreducible hypersurfaces in P n 0 .

-We denote by U ∆ the complement of the cluster arrangement of type ∆:

(119) U ∆ = P n 0 \ Arr ∆ .
-Assuming that (point 2. of) Conjecture 3.26 holds true for all pairs of X-variables, we get that the divisor of common leaves

Σ c ∆ = Σ c (XW ∆ ) is included in the cluster arrangement: (120) Σ c ∆ ⊂ Arr ∆ .
4.1.4 Some basic questions about cluster webs. With the notations introduced above, we can now state and comment on the main questions we are interested about the cluster webs of the form ZW ∆ for Z = X or Y107 :

- Same question for the full space A(XW ∆ ) of all ARs.

-[f X ]. Is the inclusion (120) proper?

-[c Y ], [d Y ], [e Y ] and [f Y ]
. Same questions as the ones above, but for the web YW ∆ .

The sequel of this text can be seen mainly as an attempt to answer these questions. Those about the rank and the ARs will be investigated in the next sections. In the subsections below, we answer to [a X ] and [b Y ]. Note that if these two questions sound quite basic, it is necessary to refer to some non-trivial previous results in order to provide them with some answers.

Differential independence of cluster variables and consequences

In this section, we prove the first point of Conjecture 3.26 for the X-cluter variables in finite type and deduce from this a general formula for the degree of any cluster web XW ∆ . All this follows rather easily from some results by Shermann-Bennet in [S-B2] (see also [S-B1]) where she enumerates the number of cluster variables in terms of some combinatorial objects associated to the finite type cluster algebra considered.

We get that the first point of Conjecture 3.26 always holds true for a finite type cluster algebra:

Proposition 4.1. For any X-cluster variables x and x of a cluster algebra of finite type: x and x define the same foliation if and only if x = x or x = x -1 (as rational functions).

From this, we will answer to questions [a X ] and [b Y ] by providing explicit closed formulas for the degrees of the Xand Y-cluster webs of Dynkin type (see Corollary 4.9).

⋆

The five exceptional cases (namely E 6 , E 7 , E 8 , F 4 and G 2 ) are settled via brute force computations, by generating all the clusters using a computer algebra system (Maple ® as it happens) and verifying that the statement of Proposition 4.1 holds true for each pair of cluster variables.

Our approach for proving Proposition 4.1 when ∆ is a Dynkin diagram of type A, B, C or D consists just in pushing a bit forward the one used in [S-B1] to enumerate the cluster variables of the corresponding cluster algebra. In each case, there is a (classical) combinatorial description of the (A-or) X-clusters and associated cluster variables in terms of some triangulations of a (possibly punctured) polygon P ∆ . From this, one can explicitly compute the differential dx of a given cluster variable x (in some suitable coordinates) and verify that, given another cluster variable x, one necessarily has x ∈ { x , x -1 } if the rational 2-form dx ∧ d x vanishes identically. However, a problem with this approach is that we are not aware of a uniform description of P ∆ and of the associated cluster combinatorics which cover all the types. Indeed, the combinatorics associated to P ∆ is specific to each type A, B, C or D considered hence one has to deal with each type independently of the others, even if all these are handled along the same lines.

Below, we consider the cases of type A and D but leave aside types B and C. These can be treated in similar ways (and this is left to the reader). As for some general references (some more specific are given below), we mention [FST] (for type A and D) and the fourth and fifth chapters of the book [FWZ] (for type B and C). All the material we need can be found in it which henceforth is a handy reference regarding our purpose.

Triangulations, clusters and cluster variables in type

A. Since this case will be considered again later, we give many details about it, even if it is very well understood.

For some additional references specific to this case, we mention among many others: the PhD dissertation [Kin], section §1.3 of [START_REF] Fock | Cluster ensembles, quantization and the dilogarithm[END_REF] and the appendix of [START_REF] Fock | Cluster X-varieties, amalgamation, and Poisson-Lie groups[END_REF].

⋆

For n ≥ 2, let P n+3 = P A n by the standard (n + 3)-gon, with vertices labeled cyclically by elements of Z/(n + 3)Z (i.e. n + 3 + i = i for any i). We consider triangulations of P n+3 whose set of vertices is the one of the latter polygon. Let T n+3 stand for the set of all such triangulations, each of them being identified with the set of its interior edges (which is of cardinality n).

For four pairwise distinct points z 1 , . . . , z 4 ∈ C, one sets

(121) r z 1 , z 2 , z 3 , z 4 = (z 1 -z 2 )(z 3 -z 4 ) (z 1 -z 4 )(z 2 -z 3 ) ∈ C \ {0, -1}
and one verifies that this expression enjoys the following invariance properties:

(122) r(z 1 , z 2 , z 3 , z 4 ) = r(z 3 , z 4 , z 1 , z 2 ) and r(z 2 , z 3 , z 4 , z 1 ) = r(z 1 , z 2 , z 3 , z 4 ) -1 .
This map induces a rational map

r : M 0,4 -→ C \ {0, -1} [p i ] 4 i=1 -→ r(p 1 , p 2 , p 3 , p 4 ) ,
which is a cross-ratio normalized such that r(∞, -1, 0, z) = z for any z ∈ C \ {0, -1}.

Now let (i, j, k, l) be a quadruple of elements of Z/(n + 3)Z. Then post-composing by r the forgetful map M 0,n+3 -→ M 0,4 : [p s ] n+3)Z s=1 -→ [p i , p j , p k , p l ] (with the convention that the p s 's are labeled modulo n + 3), one gets a surjective morphism

r i, j,k,l : M 0,n+3 -→ C \ {0, -1} (123) [p i ] n+3 i=1 -→ r(p i , p j , p k , p l ) .
Let T ∈ T n+3 be a triangulation of P n+3 . Any edge t ∈ T is a diagonal of a unique and welldefined quadrilateral q T t with sides in T . Denote by (i T t , j T t , k T t , l T t ) ∈ {1, . . . , n + 3} 4 the 4-tuple whose components are the vertices of q T t , labeled as they appear cyclically on the boundary ∂P n+3 , Figure 15: on the left, the quadrilateral q T t associated to the edge t of T (in blue) and its four vertices, noted here i,j,k and l. On the right, the flip T ′ of T at t (with q T ′ t ′ = q T t ).

with the supplementary assumption that i T t (hence k T t as well) be an extremity of t, see Figure 15.

Then one defines a rational morphism by setting

x T t = r i T t , j T t ,k T t ,l T t : M 0,n+3 -→ C \ {0, -1} (124) c(s) n+3 s=1 -→ r c i T t , c j T t , c k T t , c l T t .
Note that although the 4-tuple (i T t , j T t , k T t , l T t ) is actually only defined by q T t up to a cyclic shift of length 2, the map x T t only depends on the pair (T, t) (thanks to the first invariance property in (122)). Considering all the maps x T t for all the edges t ∈ T , we get a well-defined morphism

x T : M 0,n+3 -→ C T (125) c -→ x T t (c) t∈T ,
which can be proved to be birational. 108Given t a edge of T , one defines the flip of T at t as the new triangulation T ′ = T ′ t ∈ T n+3 defined as follows: T ′ shares with T all its edges except t which is replaced by the other diagonal of q T t , denoted by t ′ . Of course, T can be recovered from T ′ by flipping t ′ . Then one defines a graph Γ n+3 as follows: it has T n+3 as set of vertices and there is an edge between two triangulations T 1 , T 2 if and only if one is obtained from the other by a flip. It is well known that Γ n+3 is connected. Let T 0 be the 'zig-zag triangulation of P n+3 defined as the one whose interior edges are the segments [1, 3], [3, n + 3], [n + 3, 4], . . .. We label these edges according to their order of appearance when going along the interior zig-zag starting from the first vertex of P n+3 : [1, 3] is labeled by 1, [3, n + 3] by 2, etc (see Figure 16) Since Γ n+3 is connected, this gives a labeling by {1, . . . , n} of the interior edges of any T ∈ T n+3 , from which we deduce a well-defined identification C T ≃ C n for any triangulation. Accordingly, we denote by x T 1 , . . . , x T n the components of the map x T in (125). For two (interior) edges labeled by i, j ∈ {1, . . . , n}, one defines an integer b i j as follows: it is zero if these two edges are not adjacent; otherwise, both are sides of a same 2-face τ i j of T (a triangle)

• the cross-ratios x T t for T ∈ T n+3 and t ∈ T identify with the X-cluster variables;

• any map (125) induces a birational identification M 0,n+3 ≃ X A n ;

Regarding the question we are interested in here, we get the Corollary 4.4.

1. Up to pull-back on M 0,n+3 under x T 0 , the X-cluster variables of type A n are the cross-ratios r i, j,k,l for all cyclically oriented 4-tuples (i, j, k, j) ∈ (Z/(n + 3)Z) 4 . Thus, up to inversion (i.e. modulo x ↔ x -1 ), there are precisely n+3 4 such cluster variables.

Two X-cluster variables define the same foliation if and only if both coincide (possibly up to inversion).

3. The pull-back of XW A n under x T 0 coincides with the web W M 0,n+3 considered above in §1.2.7. Hence XW A n is AMP with only polylogarithmic ARs (of weight 1 or 2).

Proof. The first point follows from all what has been said just before. When combined with Lemma 1.1, it gives 2. Finally, the third point comes from the first combined together with the results of [Per] mentioned in §1.4.4.1 above.

Remark 4.5. From the first point of the previous corollary, one can deduce easily that relatively to the rational coordinate system z = (z 1 , . . . , z n ) [∞, 0, 1, z 1 , . . . , z n ] on M 0,n+3 (cf. §6.3.2 further), the spectrum of the pull-back of any X-cluster variable on M 0,n+3 under x T 0 is exactly {0, -1, ∞}. Moreover, given two such cluster variables, one verifies that the statement corresponding to the second point of Conjecture 3.26 holds true for their pull-back under x T 0 . One should be able to deduce from these facts that the conjectures 3.24 and 3.26 hold true for the X-cluster variables of Dynkin type A n .

Triangulations, clusters and cluster variables in type D.

Everything in this case is very similar to the preceding A case, modulo slight differences. The material below is taken from subsections §3.1 and §5.4 of [S-B1]. We refer to this paper for more details, pictures and additional references.

We assume n ≥ 4. Let P • n be the (topological) n-gon with a puncture • in its interior. One considers arcs of two different types: arcs between two exterior vertices of P • n or radii joining such a vertex with the puncture p109 . These arcs are labeled in two ways: 'notched' or 'plain'. We also need to consider a 'cut' which is the radius between the middle of the boundary arc between 1 and n and the puncture •. We will use it to specify some rational functions associated to arcs in P • n below. One considers the set T • n of 'tagged triangulations' of P • n , these being defined as maximal collections of pairwise compatible tagged arcs in P • n (for a certain compatibility about which we will not elaborate here). A triangulation T ∈ T • n is identified with the set of its edges, which is of cardinality n. Each t ∈ T can be flipped, which allows to construct a graph with T • n as set of vertices, denoted by Γ • n . It can be proved that it is connected, hence any T ∈ T • n can be obtained by a finite sequence of flip from any other one, for instance from the triangulation T 0 consisting only of radii, pictured on the left in Figure 18 Our goal is to construct rational functions x T t for all (T, t) with T ∈ T • n and t ∈ T , which will turn out to be the X-cluster variables of a cluster algebra of finite type D n . In order to do so, we first define an extension T of T by adjoining to it the n circular arcs of ∂P • n . Using the same rule as the one used to construct an iced quiver from a triangulation of P n+3 in type A, one associates an iced quiver to T : its non frozen vertices correspond to the the edges of T (interior edges) and there is one frozen vertex for each boundary circular arc joining i to i + 1 for i = 1, . . . , n (with n + 1 identified with 1). However in type D, the construction of the cluster variables requires to introduce an additional frozen vertex, denoted by λ, to get a quiver Q T with 2n + 1 vertices, n + 1 of which are frozen. In the case of T 0 , there is a unique arrow adjacent to λ in Q T 0 , which goes from λ to 1 (see the picture on the right in Figure 18). Since the graph Γ • n is connected, this defines unambiguously the arrow(s) adjacent to λ in Q T for any tagged triangulation T ∈ T • n . Finally, we denote by Q T the unfrozen part of Q T .

Let K be the field of rational functions in n + 1 indeterminates v 1 , . . . , v n and λ. Each v i has to be thought of as associated to the i-th vertex of P • n and λ is an extra indeterminate which is needed (about the reason why this supplementary variable is needed, see the discussion in the paragraph just after (129) below). For 1 ≤ i < j ≤ n, one defines some elements of K by setting ( 126)

P i, j = (v i -v j ) , P i, j = v j (2 -v i ) -v i , P i,• = v i -1 and P i,• ⊲⊳ = v i + 1
and for any arc t in P

• n , one sets (127)

P t =                   
P i, j if t has endpoints i, j with i < j and does not cross the cut; P i, j if t has endpoints i, j with i < j and does cross the cut; P i,• if t is the plain radius from i to the puncture •; P i,• ⊲⊳ if t is the notched radius from i to the puncture • .

Setting in addition P λ = λ, the previous definitions allow to define a K-valued map on the set of vertices of Q where the numerator (resp. denominator) is the product of the P τ 's for all vertices τ such that there is an arrow from τ to t (resp. from t to τ) in Q T .

Example 11. For the triangulation T 0 of Figure 18, if x i stands for the rational expression associated to the radius between i and •, one gets easily that

x 1 = λ w 1,2 w n w 2 w 1n , x i = w i-1 w i,i+1 w i+1 w i-1,i for i = 2, . . . , n -1 and x n = w n-1 w 1n w 1 w 1n
where we have set w i = P i,• = v i -1 and w i, j = P i, j = w iw j for i, j = 1, . . . , n with i < j and w 1n = w nw 1 (2 + w n ). It is then easy to verify that the rational map (w 1 , . . . , w n , s) → (x i ) n i=1 is dominant. This implies that the functions x 1 , . . . , x n are algebraically independent in K hence generate a subfield isomorphic to the field of rational functions in n indeterminates.

It follows from general results about cluster algebra associated to (tagged) triangulations of bordered surfaces (cf. [FST]) that the statement of Lemma 4.2 applies to any T, T ′ ∈ T • n related by a flip with respect to an edge τ ∈ T : as rational functions of the x T t 's (for t ∈ T ), the x T ′ t ′ 's (with t ′ ∈ T ′ ) are given by means of the X-cluster mutation formulas (83) (in the direction corresponding to τ), relatively to the quiver Q T . It then follows from Example 11 just above that for any

T ∈ T • n , {x T t | t ∈ T } is a set of n algebraically independent elements of K. Finally, one verifies that the quiver µ n-2 • . . . µ 2 • µ 1 (Q T 0 ) is of Dynkin type D n . 110
From all the preceding observations, we deduce the following analog for D n , of Theorem 4.3:

Theorem 4.6. The map associating (x T , B T ) to T ∈ T • n is a X-cluster pattern of type D n .
As in the A n -case, many interesting things come along with this theorem since it provides some geometric and combinatorial interpretations of the objects attached to the cluster algebra A D n : for instance, the triangulation graph ΓT • n identifies with the exchange graph Γ D n , the set Xvar D n of X-cluster variables in type D n is in bijection with { x T t | T ∈ T • n , t ∈ T }, etc. The whole picture in type D n is analogous to the one in type A n but there is a difference as well, which requires to be discussed. Let M D n stand for the affine space Spec(C[v 1 , . . . , v n , λ] whose function field is K. As they have been defined, the x T t 's are rational functions on M D n which are the components of dominant rational maps (129)

x T = x T t t∈T : M D n C T ,
one for each T ∈ T • n , which is similar to (129). But a notable difference with the A n -case is that the source M D n has dimension n + 1, which is one more than the dimension of the 'cluster affine spaces C T '. The reason for that lies of course in the use of the additional indeterminate λ to construct the cluster variables x T t 's, and not only the v i 's, as it would have be more natural (but naive) to do considering the A n -case. But the use of such an extra variable with no natural geometric interpretation actually seems unavoidable: one verifies that any specialization of λ in a map (129) gives rise to a map which is not dominant any more. 111Despite the preceding fact, in order to compare the foliations attached to cluster variables which is the problem we are interested in, it will be sufficient to specialize λ to 1, i.e. to work with the restrictions, denoted by xT t , of the x T t 's to the affine hyperplane M D n = {λ = 1} ⊂ M D n . In [S-B1], the author gives explicit expressions for the X-cluster variables. To any x T t is associated a quadrilateral q T t whose edges are in T and admitting t as one of its diagonals. By definition, the type τ(x T t ) of x T t is the set of vertices of q T t lying on the boundary ∂P • n . The different combinatorial types of quadrilateral q T t are described and pictured p. 286 in [S-B1]: there are four possibilities, one for each type of cardinality 2 or 4, but two when the cardinality is 3. The vertices being naturally ordered, the types can be written as a k-tuples of strictly increasing numbers in {1, . . . , n} for k = 2, 3 or 4. Accordingly, the four aforementioned combinatorial types for q T t are denoted by (i, j), (i, j, k) and (i, j, k) ′ (for k = 3) and (i, j, k, l) where i, j, k, l are elements of {1, . . . , n}. For each type, it is not difficult to give a finite list of possible explicit formulas for the cluster variable x T t : up to inversion and multiplication by λ or its inverse, x T t has the following expression according to its type (cf. formulas (5.7) to (5.10) ), there are precisely n(n -1)(n 2 + 4n -6)/6 such cluster variables.

Two such cluster variables define the same foliation if and only if both coincide possibly

up to inversion. Consequently, one has d X D n = n(n -1)(n 2 + 4n -6)/6. Proof. Everything has already be proved above, except the count for the number of quadrilaterals q T t which has been computed in [S-B1, Proposition 4.8].

4.2.3

Types B and C. The X-cluster variables in type B and C can be constructed following an approach similar to the one used in cases A and D, namely in terms of some triangulations of some polygons, the combinatorial type of these latter being specific to each type. As in the D n -case, it is possible to define a notion of type for a X-cluster variable x and for each type, there is a finite list of possible explicit rational expression in some coordinates for x: see the formulas analogous to (130) in §5. 1. The degree d X ∆ of XW ∆ is equal to the cardinal of the set Xvar ± ∆ and is given in Table 7.

The degree d

Y ∆ of YW ∆ is equal to |∆ ≥-1 |= n + |∆ + | (thus (118)

is indeed an equality). Closed formulas for |∆ + | and d Y

∆ are given in Table 8. Proof. The first point follows from [S-B1] combined with the verifications to be made described before (our Table 7 below is extracted from the one at the end of [S-B1, §1]).

Regarding the second point, we recall that for each α ∈ ∆ ≥-1 , one has y[α] = P α /u α ∨ for a polynomial P α with constant term 1 hence α can be recovered from the fiber through the origin of the fibration F y [α] . Consequently all the y[α]'s are pairwise distinct (even up to inversion) hence the first point gives us that d Y ∆ is equal to the cardinality of ∆ ≥1 . The computation of |∆ + | in terms of the rank of ∆ according to its type is classical, see [START_REF] Schiffler | Quiver representations[END_REF]p. 216] for instance.

We thus have determined the very first basic invariant of cluster webs : their degree. Remark that it was not trivial to get the answer in full generality. In the next subsection, we consider the case of Y-cluster webs associated to pairs of Dynkin diagrams: we conjecture a nice simple formula for their degrees that however are able to be proveb only in type (A, A).

∆ A n B n , C n D n E 6 E 7 E 8 F 4 G 2 d X ∆ n+3 4 1 6 n(n + 1)(n 2 + 2) 1
6 n(n -1)(n 2 + 4n -6) 335 1050 3120 98 8

Table 7: Degrees of X-cluster webs of finite type. A,A) and some conjectures.

∆ A n B n , C n D n E 6 E 7 E 8 F 4 G 2 ∆ + 1 2 n(n + 1) n 2 n(n -

Degrees of Y-cluster webs of type (

We consider the case of the Y-cluster web of type (A m , A n ) where m, n are two positive integers.

Since the case when one of them is 1 has already be treated before, we assume here that both are bigger than or equal to 2.

The Dynkin diagrams are simply-laced, the half-periodicity holds true thus YW A m ,A n is the web associated to the period i hal f A m ,A n if m and n have the same parity, or i hal f

•,• otherwise (see respectively ( 109) and ( 110) in Remark 3.19 above). In both cases, it is a period of length mn(h

+ h ′ )/2 with h = h(A n ) = n + 1 and h ′ = h(A m ) = m + 1

which gives us d Y

A m ,A n ≤ (m + n + 2)mn/2. Our goal is to prove that this majoration actually is an equality. To this end, we are going to use the explicit formulas, in terms of cross-ratios, given by Volkov in [START_REF] Volkov | On the periodicity conjecture for Y-systems[END_REF] for the Y-variables of the Y-system Y(A m , A n ). As in the A n -case, there are natural birational identifications between Conf m+n+2 (P m ) and the X-cluster variety of type A m ⊠ A n (see [START_REF] Golden | Motivic amplitudes and cluster coordinates[END_REF]§6.3] and [START_REF] Weng | Donaldson-Thomas Transformation of Grassmannian[END_REF]§2.3]): given a graph Γ of a certain type (namely, a 'minimal bipartite graph' ), one constructs a birational map x Γ : Conf m+n+2 (P m ) X A m ⊠A n . For instance, one can (and we will) consider the graph Γ 0 of [START_REF] Weng | Donaldson-Thomas Transformation of Grassmannian[END_REF]Example 2.11]. Composed with the natural projection

C m+1 Conf m+n+2 (P m ) (x s ) n+m+2 s=1 -→ [x 1 ], . . . , [x m+n+2 ]
where [•] stands for the projectivization

C m+1 \ {0} → P r and [[ -]] means 'modulo PSL m+1 (C)', one obtains a dominant rational map x Γ 0 : C m+1 m+n+2 X A m ⊠A n .
We now recall formula(1.10) of [START_REF] Volkov | On the periodicity conjecture for Y-systems[END_REF] which is an explicit expression for the (pull-back under x Γ 0 of) the Y-variable Y i, j (t) of the Y-system Y A m ,A n , in terms of the normalized (one could say 'cluster') cross-ratio r defined in (121): for any (i, j) ∈ {1, . . . , m} × {1, . . . , n} and any t ∈ Z such that i + j + t is even, one has

(131) x Γ 0 * Y i, j (t) = r x a t i, j , x b t i, j , x c t i, j , x d t i, j
as a rational function on C m+1 m+n+2 , where

• the x s 's are now cyclically indexed by s ∈ Z/(m + n + 2)Z (i.e. x s+(m+n+2) = x s for any s);

• a, b, c, d are the four integers given by (132

) A = (-i -j -t)/2 , B = A + i , C = B + j and D = C + m + 1 -i ; • [•] t i, j
stands from the linear projection P m P 1 from the linear subspace (generically of dimension m -1) spanned by the

[x σ ]'s for σ ∈] A, B [∪] C, D [. Actually, one has Y i, j t + 2(m + n + 2) = Y i, j (t) thanks to the full-periodicity of the Y-system of type (A m , A n ) hence only the class of t modulo 2(m + n + 2)Z matters. Let (a, b, c, d) be a 4-tuple of integers such that (133) 0 < b -a < m + 1 , 0 < c -b < n + 1 and (b -a) + (d -c) = m + 1 .
These conditions being invariant up to translations (applied componentwise), they make sense for the class [a, b, c, d] 

(x Γ 0 ) * (Y i τ , j τ (t τ )) = Π τ .
From the above, we first deduce the Proposition 4.10. The pull-back of YW A m ,A n under x Γ 0 is the web on Conf m+n+2 (P n ) whose first integrals are the maps (135), for all classes [a, b, c, d] m,n in Y m,n :

(136) x Γ 0 * YW A m ,A n = W F Π τ τ ∈ Y m,n .
From this proposition, we deduce the result we were looking for:

Corollary 4.11.

1. The Y-cluster variables of type (A m , A n ) satisfy the first point of Conjecture 3.26: two of them define the same foliation iff they coincide (possibly up to inversion).

As a consequence of 1., one obtains that d Y

A m ,A n = mn m + n + 2 /2.

Proof. From Lemma 1.1, it follows that for [a, b, c, d] 133), we get that [a, b, c, d] 

m,n = [a ′ , b ′ , c ′ , d ′ ] m,n in the first case, whereas [a, b, c, d] m,n = [c ′ , d ′ , a ′′ , b ′′ ] m,n in the second one, with a ′′ = a ′ + (m + n + 2) and similarly b ′′ = b ′ + (m + n + 2).
In the second case, one deduces immediately from ( 135) that

Π [a ′ ,b ′ ,c ′ ,d ′ ] m,n = 1/Π [a,b,c,d] m,n , which proves 1.
It is then easy to get the second point from the arguments above. Indeed, the (easily seen welldefined and involutive) map , d, a+(m+n+2), b+(m+n+2)] m,n has no fixed point (otherwise there would exist

Y m,n → Y m,n , [a, b, c, d] m,n → [c
Π [a,b,c,d] m,n such that Π [a,b,c,d] m,n = 1/Π [a,b,c,d] m,n ).
Hence from ( 136), it comes that the number of distinct foliations of the Y-cluster web of type (A m , A n ) is half the cardinality of Y m,n . But computing the latter is easy: there are m + n + 2 choices for a, m choices for b, n for the one of c and that is all since then d is determined by the rightest relation in ( 133). Thus one has |Y m,n |= (m + n + 2)mn from which 2. follows.

The determination of the degree of YW A m ,A n is not really difficult, but not trivial either. Note however that we used an ad hoc method for each case.

Since YW A m ,A n is the cluster web associated to a period of length mn(m + n + 2)/2 (halfperiodicity), we knew for free that its degree is less than or equal to this number. If Conjecture 4.12 was known to hold true, it would have given directly the second point of Corollary 4.11.

It still makes sense to replace (A m , A n ) by any pair (∆, ∆ ′ ) of Dynkin diagrams in the preceding paragraph. Assuming that any Y-system Y(∆, ∆ ′ ) satisfies half-periodicity (cf. Remark 3.19)) and that Conjecture 4.12 holds true, we would get a proof of the following Conjecture 4.12. Let ∆, ∆ ′ be two Dynkin diagrams, of rank n, n ′ and Coxeter numbers h, h ′ respectively.

1. The Y-cluster variables of type (∆, ∆ ′ ) satisfy the first point of Conjecture 3.26.

One has d

Y ∆,∆ ′ = nn ′ h + h ′ /2.
This conjecture is the first of a series of conjectural statements about Y-cluster webs of type (∆, ∆ ′ ) that will be discussed further on in §7.4.

4.2.6

Non-linearizability of Y-cluster webs of Dynkin type. For any n ≥ 2, the X-cluster web of type A n contains (pull-backs under forgetful maps of) several Bol's webs (aka cluster webs of type A 2 ) henceforth is known to be non-linearizable. This does not apply to its subweb YW A n which does not contain any such pull-back hence another argument is needed to show that this web cannot be linearized.

In this subsection, arguing by induction on the ranks of Dynkin diagrams (of arbitrary type), we are going to prove the Proposition 4.13. For any Dynkin diagram ∆, the web YW ∆ is not linearizable.

When ∆ has rank 2, one can use the classical characterization of linearizable planar webs (see [START_REF] Pereira | An invitation to web geometry[END_REF]§6.1.3] for instance) to verify that none of the cluster webs of type A 2 , B 2 and G 2 is linearizable.

We now assume that n = rk(∆) ≥ 3. Let YW 1 ∆ be the 2n-subweb of 117)) whose first integrals are the y[±α i ]'s for i = 1, . . . , n. It can easily be verified (using the formalism explained in [START_REF] Keller | The periodicity conjecture for pairs of Dynkin diagrams[END_REF]§2] if needed) that one has

YW ∆ = W y[α] | α ∈ ∆ ≥-1 (cf. (
(137) YW 1 ∆ = W u i , z[α i ] i ≤ n with z[α i ] = n j=1 1 + u j a i j u i i = 1, . . . , n ,
where the integers a i j 's are the coefficients of the matrix A ∆ = (a i j ) n i, j=1 = 2Id n -C ∆ where C ∆ stands for the Cartan matrix of type ∆. We are going to prove that YW 1 ∆ is not linearizable which will imply Proposition 4.13 immediately.

We first consider the case when n = 3. Even if the web YW 1 ∆ for ∆ = A 3 , B 3 or C 3 does not satisfy the 'Strong general position assumption' discussed in §1.1.1 (see Remark 3.2 in case A 3 ), one can adapt for it the approach of [Pi4] (especially the arguments used in the proof of Proposition 4.3 therein) and verify by means of explicit computations that YW 1 ∆ is not compatible with a projective connexion and consequently, cannot be linearized.

To handle the higher rank case, we notice that for any k ≤ n labeling an exterior vertex of ∆ (that is a vertex adjacent with only one edge of the Dynkin diagram), then the graph ∆ k obtained by removing the k-th vertex (and the edge adjacent to it) in ∆ is still a Dynkin diagram. The crucial fact which will allow us to argue by induction is given by the following Lemma 4.14. For any complex number λ distinct from 0 and -1, the trace of YW 1 ∆ along the affine hyperplane cut out by u k = λ coincides with the 2(n -1)-web YW 1 ∆ k : one has

YW 1 ∆ u k =λ = YW 1 ∆ k .
Proof. This follows easily from the explicit formulas given in (137) for the first integrals z[α i ] combined with the fact that the Cartan matrix of ∆ k is the one obtained by removing the k-th line and the k-th column of C ∆ .

With the preceding lemma, we can argue by induction as follows: assume that YW 1 ∆ is linearizable and that k labels an exterior vertex of ∆. Hence for λ generic, the fiber u k = λ is a leaf of YW 1

∆ hence the trace of this web on it is linearizable as well. Hence so is YW 1 ∆ k according to the previous lemma. Since YW 1 ∆ is not linearizable when n = 3, we obtain that the same holds true for n arbitrary which in turn proves Proposition 4.13.

Some specific examples of cluster webs

In this somehow intermediary section, we look at some webs associated to some of the most classical polylogarithmic identities and show that these are of cluster type.

We first discuss carefully the cluster webs associated to rank 2 Dynkin diagrams. In particular, we give an explicit basis of the space of their ARs. Then we turn to more sophisticated cluster webs and/or cluster algebras and are able to recover several webs associated to polylogarithmic FEs, for weights from 2 to 4. Our results are gathered in Theorem 5.5.

Cluster webs in rank 2

Here we consider the case when ∆ is a (bipartite weighted) Dynkin quiver of rank 2, namely one of the following type A 2 , B 2 = C 2 and G 2 respectively:

. The associated exchange matrices are

B A 2 = 0 1 -1 0 , B B 2 = 0 2 -1 0 and B G 2 = 0 3 -1 0 .
Taking in each case ((a 1 , a 2 ), (x -1 1 , x 2 ), B ∆ ) as initial cluster seed, we get that the associated cluster webs are :

• Type A 2 : AW A 2 = W a 1 , a 2 , 1 + a 1 a 2 , 1 + a 2 a 1 , 1 + a 1 + a 2 a 1 a 2 , XW A 2 = W x 1 , x 2 , 1 + x 1 x 2 , 1 + x 2 x 1 , 1 + x 1 + x 2 x 1 x 2 ;
• Type B 2 :

AW B 2 = W       a 1 , a 2 , 1 + a 1 a 2 , 1 + a 2 2 a 1 , 1 + a 1 + a 2 2 a 1 a 2 , ( 1 
+ a 1 ) 2 + a 2 2 a 1 a 2 2       , XW B 2 = W x 1 , (1 + x 1 ) 2 x 2 , ( 1 
+ x 1 ) 2 + x 2 x 1 x 2 , ( 1 
+ x 1 + x 2 ) 2 x 1 2 x 2 , 1 + x 2 x 1 , x 2 ;
• Type G 2 : (there is no need to write down AW G 2 , see Remark 5.1 below) :

XW G 2 = W x 1 , (1 + x 1 ) 3 x 2 , ( 1 
+ x 1 ) 3 + x 2 x 1 x 2 , 1 + x 1 2 + x 2 3 x 1 3 x 2 2 , 1 + x 1 3 + 2x 2 + 3x 1 x 2 + x 2 2 x 1 2 x 2 , 1 + x 1 + x 2 3 x 1 3 x 2 , 1 + x 2 x 1 , x 2 .
All the cluster webs above are ordered. The first integrals of the A-cluster webs are ordered with respect to the natural order on the weights of their denominators. As for the X-versions, their first integrals are labeled according to (106), with respect to the following periods:

(138) i A 2 = (1, 2) 2 |1 , i B 2 = (1, 2) 3 and i G 2 = (1, 2) 4 ,
where for any k ∈ N * , (1, 2) k stands for the concatenation of k copies of (1, 2).

⋆

Below, we are going to study these webs by determining some of their invariants, more specifically those related to their ARs.

Remark 5.1. An interesting (or possibly just curious) fact about the cluster webs above is that

p * (XW ∆ ) = AW ∆
for any Dynkin diagram ∆ of rank 2. This implies that in this case, the A-cluster webs carry interesting polylogarithmic ARs (of weight 1 or 2) as well. This seems to be very specific to the rank 2 case since all the other cluster webs defined by A-cluster variables that we have been able to consider do not carry any dilogarithmic ARs. It would be interesting to know a conceptual explanation of this (if there is one).

5.1.1 The cluster web of type A 2 . It is well-known that the dilogarithmic identity

(139) R(x 1 ) + R(x 2 ) + R 1 + x 2 x 1 + R 1 + x 1 + x 2 x 1 x 2 + R 1 + x 1 x 2 = π 2 2
(which holds true indentically for x 1 , x 2 > 0) is equivalent to (Rogers' version (37) of) Abel's functional equation (Ab). It gives us that XW A 2 is equivalent to Bol's web. Another (more geometric) way to prove this comes by noticing that the first four rational arguments of R in (139) define four pencils of lines the vertices of which form the base locus of the pencil of conics defined by the fifth argument of R in this identity. In more mathematical terms, we have an equivalence of webs:

(140) B ≃ XW A 2 .
We denote by X 1 , . . . , X 5 the rational functions appearing in (139) in the corresponding order: etc. 112 Setting X 0 = X 5 and X 6 = X 1 , it is known that the following relation holds true for any ℓ = 1, . . . , 5 (as it is well-known, these relations can be used to define the X ℓ 's inductively):

X 1 = x 1 , X 2 = x 2 , X 3 = (1 + x 2 )/x 1 ,
(141)

X ℓ+1 X ℓ-1 = 1 + X ℓ ⇐⇒ Log X ℓ-1 -Log 1 + X ℓ + Log X ℓ+1 = 0 .
For each ℓ, the logarithmic identity on the right in (141) can be seen as an AR for XW A 2 , denoted by LogAR ℓ . We denote by R A 2 the dilogarithmic AR associated to (139). Then one has (142)

A XW A 2 = LogAR ℓ | ℓ = 1, . . . , 5 ⊕ R A 2
from which it can be deduced that XW A 2 is of maximal rank, hence is AMP. Since the period i A 2 = (1, 2, 1, 2, 1) used to get XW A 2 is unchanged by a cyclic shift of length 2, it follows that F A 2 : (x 1 , x 2 ) → ((1 + x 1 )/x 2 , x 1 ) is a birational automorphism of order 5 of this web such that F A 2 * (X ℓ ) = X ℓ+1 for ℓ = 1, . . . , 5. Thus F A 2 * (LogAR ℓ ) = LogAR ℓ+1 for any ℓ ∈ Z/5Z and F A 2 * (R A 2 ) = R A 2 from which we deduce that the decomposition as a direct sum ( 142) is invariant with respect to the natural action of the (birational) automorphism F A 2 .

Another nice feature of choosing the cluster variables X ℓ as first integrals for the X-cluster web of type A 2 is that one can easily construct the dilogarithmic identity R A 2 from the five logarithmic abelian relations LogAR ℓ 's. Indeed, considering the differential of LogAR ℓ , it follows that

dX ℓ 1 + X ℓ = dX ℓ-1 X ℓ-1 + dX ℓ+1 X ℓ+1
for any ℓ. Then, summing for ℓ in Z/5Z, it comes

- ℓ LogAR ℓ dX ℓ X ℓ = ℓ -Log X ℓ-1 + Log 1 + X ℓ -Log X ℓ+1 dX ℓ X ℓ = ℓ Log 1 + X ℓ dX ℓ X ℓ - ℓ Log X ℓ dX ℓ-1 X ℓ-1 + dX ℓ+1 X ℓ+1 = ℓ Log 1 + X ℓ X ℓ - Log X ℓ 1 + X ℓ dX ℓ (143) = ℓ 2 R ′ X ℓ dX ℓ = 2 d ℓ R X ℓ .
Since all the LogAR ℓ 's vanish, the same holds true for the total derivative of 5 ℓ=1 R(X ℓ ) hence this sum is identically equal to a constant. We thus have recovered very symmetrically the A 2dilogarithmic identity (R A 2 ) from the logarithmic identities LogAR ℓ 's.

⋆

All the material discussed above is well-known. The reason which motivated us to recall all that is that everything can be formulated in a very nice and effective way within the cluster algebra formalism.

5.1.2

The cluster web of type B 2 . Here, we denote by X ℓ the X-cluster variables appearing in the definition of XW B 2 above: we have X 1 = x 1 and

X 2 = (1 + x 1 ) 2 x 2 , X 3 = 1 + x 2 x 1 , X 4 = (1 + x 1 + x 2 ) 2 x 1 2 x 2 , X 5 = (1 + x 1 ) 2 + x 2 x 1 x 2 and X 6 = x 2 .
The associated B 2 -cluster dilogarithmic identity is

R B 2 : 2 R(X 1 ) + R(X 2 ) + 2 R(X 3 ) + R(X 4 ) + 2 R(X 5 ) + R(X 6 ) = π 2 .
On the other hand, one verifies that the following rational relation between the cluster variables X 1 , X 3 and X 5 holds true identically:

(144) 1 1 + X 1 + 1 1 + X 3 + 1 1 + X 5 = 1 .
Then one defines the following three rational quantities

X = X 1 +1 = 1+ x 1 , Y = X 5 +1 = 1 + x 1 + x 2 x 1 and Z = X 3 +1 = (1 + x 1 )(1 + x 1 + x 2 ) x 1 x 2 in such a way that ϕ : (x 1 , x 2 ) → (X, Y) induces a (birational) change of coordinates such that (145) ϕ * XW B 2 = W X , X + Y -XY , Y , YZ -Y -Z , Z , XZ -X -Z
(equality between ordered webs), where X, Y and Z satisfy the relation

X -1 + Y -1 + Z -1 = 1 (cf. ( 144 
)
). In this way, one obtains that XW B 2 is equivalent to Newman's web W N associated to Newman's bilogarithmic identity discussed in paragraph §2.2.2.3 above. Then setting

X = x , Y = x(1 -y) y(1 -x) and Z = - x(1 -y) 1 -x , one deduces that Newman's 6-web is equivalent to W x, xy, x y , x(1-y) y(1-x) , x(1-y) 1-x , x(1-y) 2 y(1-x) 2
. This is a subweb of Spence-Kummer web W SK , denoted by W 248 in [START_REF] Pirio | Équations fonctionnelles abéliennes et théorie des tissus[END_REF]. In particular, we know that this web, hence consequently XW B 2 , has maximal rank.

We now turn to describing a nice basis of the space of ARs of XW B 2 . To deal with dilogarithmic ARs, one considers the following two iterated integrals (of weight 2), defined for any u > 0:

(146) L 10 (u) = u 0 log(s) 1 + s ds and L 01 (u) = u 0 log(1 + s) s ds .
Then one verifies that the symmetric iterated integral of weight two (147) S = 1 2 L 10 + L 01 satisfies identically the following identity:

S B 2 2 S(X 1 ) -S(X 2 ) + 2 S(X 3 ) -S(X 4 ) + 2 S(X 5 ) -S(X 6 ) =0
and that together with (R B 2 , it forms a basis of the space of dilogarithmic abelian relations of XW B 2 . Note that (S B 2 ) is symmetric with respect to the non-trivial involution σ = (12) on weight two polylogarithmic iterated integrals, whereas (R B 2 ) is antisymmetric for the action of σ, i.e.

R B 2 σ = -R B 2 and 
S B 2 σ = S B 2 .
As for the logarithmic ARs, recall that the cluster variables X ℓ 's can also be defined recursively by means of the following polynomial relations (where ℓ is taken modulo 6):

X ℓ+1 X ℓ-1 = (1 + X ℓ ) (for ℓ even) and X ℓ+1 X ℓ-1 = (1 + X ℓ ) 2 (for ℓ odd) .
To these relations are associated the following logarithtmic identities which can be considered as as many ARs for XW B 2 :

Log X ℓ-1 -Log 1 + X ℓ -Log X ℓ+1 = 0 (for ℓ even) (148) and Log X ℓ-1 -2 Log 1 + X ℓ -Log X ℓ+1 = 0 (for ℓ odd) .
We get six logarithmic abelian relations, denoted by LogAR ℓ for ℓ = 1, . . . , 6, which are linearly independant and which, together with the dilogarithmic ARs (R B 2 and (S B 2 ) and the rational one (144), span a subspace of dimension 9 of A(XW B 2 ). One last AR is missing, in order to have a basis of this space. One verifies that it is the one associated to the following identity :

A B 2 A X 2 + A X 4 + A X 6 = 0
which holds true for any x 1 , x 2 > 0, where A stands for the function defined by ( 149)

A(u) = Arctan √ u , u > 0 .
Thus, we end with the following decomposition of the space of ARs:

(150) A XW B 2 = LogAR ℓ | ℓ = 1, . . . , 6 logarithmic ⊕ R B 2 , S B 2 dilogarithmic ⊕ (144) rational ⊕ A B 2 .
Remark 5.2. At first sight, the abelian relation (A B 2 ) looks a bit particular compared to the others since it doesn't look (and rigorously speaking, is not) of the same nature as the others, which all are polylogarithmic (here we see the rational AR (144) as polylogarithmic, but of weight 0). But there is a way to make this go away. Indeed, considering the expression arctan(u) = i 2 log (u+i)/(u-i) +π/2 (valid for any u > 0) of the arctangent function by means of logarithms, it comes that (A B 2 ) is not far from being a logarithmic AR, the obstruction for this being the square root appearing in the definition (149) of A. But denoting by Xℓ the pull-back of X ℓ under Ψ : (u 1 , u 2 ) → (u 1 , u 2 2 ) = (x 1 , x 2 ), we obtain that Xℓ is a square for ℓ even: for any such ℓ, there exists Z ℓ ∈ Q s f (u 1 , u 2 ) such that Xℓ = (Z ℓ ) 2 , from which it follows that Ψ * (A B 2 ) is written Arctan(Z 2 ) + Arctan(Z 4 ) + Arctan(Z 6 ) = 0 , which is an identity actually of logarithmic type since it corresponds to the vanishing of the logarithmic derivative of the following expression which can be verified to be identically equal to -1:

(Z 2 + i) (Z 2 -i) (Z 4 + i) (Z 4 -i) (Z 6 + i) (Z 6 -i) .
From the above considerations, it follows that the pull-back of XW B 2 under Ψ is a model of this web which is defined by positive (substraction-free) rational first integrals (with coefficients in Z) and whose ARs are all of iterated integral type, of weight 0 (rational), 1 or 2. Note however that Ψ * XW B 2 is no longer polylogarithmic since for instance the ramification locus associated to its first integral Z ℓ is { 0, -1, ±i , ∞ } for any ℓ ∈ {2, 4, 6}.

A completely similar phenomenon holds true for the cluster web of type G 2 (cf. Remark 5.4). Both could be two particular cases of a general phenomenon (see Conjecture 1.15 above).

The following map

F B 2 : (x 1 , x 2 ) → X 3 , X 4 = (1 + x 2 )/x 1 , (1 + x 1 + x 2 ) 2 /(x 2 1 x 2 ) is a birational automorphism of order 3 such that F * B 2 (X ℓ ) = X ℓ-2 for any ℓ.
The decomposition as a direct sum (150) is invariant by this map. More precisely, one has F B 2 * (LogAR ℓ ) = LogAR ℓ-2 for any ℓ whereas all the other ARs appearing in (150) are invariant by F B 2 .

It is known that Newman's identity (N 6 ) is accessible from three copies of Abel's five terms relation (cf. §16.3 in [START_REF] Lewin | Polylogarithms and associated functions[END_REF]). Another interesting feature of F B 2 is that it can be used to obtain this quite neatly. Indeed, modulo the inversion relation R(1/x) = R(x) + π 2 /6 (satisfied for any x > 0), Abel's identity is equivalent to the fact that the function of two variables x, y > 0

AB(x, y) = R 1 x -R(y) + R x 1 + y -R 1 + x + y xy + R y 1 + x vanishes identically. So the same holds true for the combination AB + AB • F B 2 + AB • F B 2 2 and
one verifies that this is formally equivalent to

2 R 1 x -R(y) + 2 R x 1 + y -R (1 + x + y) 2 x 2 y + 2 R xy (1 + x) 2 + y -R (1 + x) 2 y ≡ 0 ,
an identity which is nothing but (R B 2 ) (up to several uses of the inversion relation for R).

⋆

The presentation above of the cluster web of type B 2 and of its main features is neat and well formalized, in a much better way than what was known before about Newman's web. It is another illustration of the value of having a description of a web as a web of cluster type.

5.1.3

The cluster web of type G 2 . The cluster web associated to the initial seed (1/x 1 , x 2 ), B G 2 ) with respect to the period (1, 2) 4 is

XW G 2 = W x 1 , (1 + x 1 ) 3 x 2 , ( 1 
+ x 1 ) 3 + x 2 x 1 x 2 , 1 + x 1 2 + x 2 3 x 1 3 x 2 2 , 1 + x 1 3 + 2x 2 + 3x 1 x 2 + x 2 2 x 1 2 x 2 , 1 + x 1 + x 2 3 x 1 3 x 2 , 1 + x 2 x 1 , x 2 . (151)
We denote by X 1 , . . . , X 8 the cluster variables defining XW G 2 :

X 1 = x 1 , X 2 = (1+x 1 ) 3 x 2 , . . ., X 8 = x 2 .
Recall the root system of type G 2 , denoted by R: see Figure 19 where the principal roots are denoted by α 1 and α 2 . There are eight elements in R ≥-1 : four short roots ±α 1 , α 1 + α 2 and 2α 1 + α 2 , and as many long roots, which are ±α 2 , 3α 1 + α 2 and 3α 1 + 2α 2 .

In rank 2, the Xand Y-cluster webs coincide, hence one can label the Y-variables which are first integrals for XW by the elements α ∈ R ≥1 or equivalently by the pair of coordinates (a 1 , a 2 ) ∈ Z 2 of α = a 1 α 1 + a 2 α 2 with respect to α 1 and α 2 . In (151), the coordinate x 1 is related to the short root α 1 , whereas x 2 is related to α 2 hence the first integrals of XW G 2 can be labeled as follows (where U a 1 ,a 2 stands for U a 1 α 1 +a 2 α 2 for any a 1 , a 2 ∈ Z):

U -1,0 = x 1 U 1,0 = 1 + x 2 x 1 U 1,1 = (1 + x 1 ) 3 + x 2 x 1 x 2 U 3,1 = 1 + x 1 + x 2 3 x 1 3 x 2 U 0,-1 = x 2 U 0,1 = (1 + x 1 ) 3 x 2 U 2,1 = 1 + x 1 3 + x 2 (2 + 3x 1 + x 2 ) x 1 2 x 2 U 3,2 = 1 + x 1 2 + x 2 3 x 1 3 x 2 2 .
In terms of the X ℓ 's or of the U α 's, the dilogarithmic identity of type G 2 is written: As in the B 2 -case, there is another polylogarithmic functional identity satisfied by the symmetric dilogarithm S defined in (147). Indeed, the following identity is satisfied for every x 1 , x 2 > 0:

R G 2 : 3 ℓ odd R X ℓ + ℓ even R X ℓ = 3 α∈R short ≥-1 R U α + β∈R long ≥-1 R U β = 2 π 2 .
S G 2 : 3 ℓ odd S X ℓ - ℓ even S X ℓ = 3 α∈R short ≥-1 S U α - β∈R long ≥-1 S U β = 0 .
The two ARs associated to (R G 2 ) and (S G 2 ) (denoted in the same way) form a basis of the space of weight two iterated integrals ARs of the cluster web of type G 2 .

Remark 5.3. Contrarily to (R ∆ ) when ∆ = A 2 or B 2 , the identity (R G 2 ) does not seem to have been known by classical authors. To the best of our knowledge, it only appeared rather recently in the literature once a link between Lie algebras and dilogarithmic indentities was uncovered by math-physicists. For some references in which (some variants of) this identities appear, see [START_REF] Alexandrov | Wall-crossing, Rogers dilogarithm, and the QK/HK correspondence[END_REF]§B.5.3] and [KY].

Regarding the logarithmic ARs, what happens is similar to the previous cases: the X ℓ 's can also be defined recursively by means of the following polynomial relations (where ℓ is taken modulo 8):

X ℓ+1 X ℓ-1 = (1 + X ℓ ) (for ℓ even) and X ℓ+1 X ℓ-1 = (1 + X ℓ ) 3 (for ℓ odd) .
To these relations are associated the following logarithtmic identities which can be considered as as many ARs for XW G 2 :

Log X ℓ-1 -Log 1 + X ℓ -Log X ℓ+1 = 0 for ℓ even , (152) 
and Log X ℓ-1 -3 Log 1 + X ℓ -Log X ℓ+1 = 0 for ℓ odd.

We get eight logarithmic abelian relations, denoted by LogAR ℓ for ℓ = 1, . . . , 8, which are linearly independant and which, together with the dilogarithmic ARs (R B 2 and (S B 2 ), span a subspace of dimension 10 of A(XW G 2 ). It turns out that the web XW G 2 is not of maximal rank 21 but of rank 14 (this can be established using the method sketched in §1.5.2). In addition of its polylogarithmic ARs, XW G 2 carries four other ARs which are not of this kind. These are ARs of the two following 4-subwebs of the web under scrutiny:

W short G 2 = W X ℓ | ℓ = 1, 3, 5, 7 = W U α | α ∈ R short ≥-1 = W U -1,0 , U 1,0 , U 1,1 , U 2,1 and W long G 2 = W X ℓ | ℓ = 2, 4, 6, 8 = W U α | α ∈ R long ≥-1 = W U 0,-1 , U 0,1 , U 3,1 , U 3,2 .
The subweb associated to short roots carries two linearly independent ARs with rational components, namely the ones associated to the following two rational identities:

1 = ℓ odd 1 1 + X ℓ = α∈R short ≥-1 1 1 + U α (153) and 1 = 1 1 + X 1 2 + 1 + 2 X 3 1 + X 3 2 + 1 1 + X 5 2 + 1 + 2 X 7 1 + X 7 2 .
The 4-web W long G 2 has rank 3. It carries one logarithmic AR (which belongs to the linear span of the LogAR ℓ 's) and two other new ARs, whose type is different from all the types of the previously considered abelian relations. Indeed, it can be verified (cf. Example 6 above) that the following identity holds true identically

0 =F X 2 -F X 4 + F X 6 -F X 8 (154)
where for any u ∈ R >0 , F(u) stands for Log 1 + u

1 3 or Log 1 -u 1 3 + u 2 3 .
Thus, we end with the following decomposition of the space of ARs:

(155) A XW G 2 = LogAR ℓ | ℓ = 1, . . . , 8 logarithmic ⊕ R G 2 , S G 2 dilogarithmic ⊕ (153) rational ⊕ (154) .
Remark 5.4. All the ARs in (155) are polylogarithmic, except the two 'exotic' ones associated to the two identities (154). But as in the B 2 case (cf. Remark 5.4 above), there is a formally natural way to remedy this and to get a model of XW G 2 whose all ARs are of iterated integral type. Indeed, denoting by Xℓ the pull-back of X ℓ under

Ψ : (u 1 , u 2 ) → (u 1 , u 3 2 ) = (x 1 , x 2 )
, we obtain that Xℓ is a cube for ℓ even: for any such ℓ, there exists Z ℓ ∈ Q s f (u 1 , u 2 ) such that Xℓ = (Z ℓ ) 3 . In terms of these Z ℓ 's, the ARs associated to (154) are logarithmic since one verifies that they are obtained by taking the logarithmic derivatives of the following multiplicative identities:

(1 + Z 2 )(1 + Z 6 ) (1 + Z 4 )(1 + Z 8 ) = 1 and Z 2 + ̺ Z 2 + ̺ • Z 6 + ̺ Z 6 + ̺ Z 4 + ̺ Z 4 + ̺ • Z 8 + ̺ Z 8 + ̺ = 1 (156) with ̺ = (1 + i √ 3)/2 (thus ̺ 3 = -1 and 1 -X + X 2 = X + ̺ X + ̺ as polynomials in X).
It follows that Ψ * XW G 2 is a model of the G 2 -cluster web which is again defined by positive (substraction-free) rational first integrals (with coefficients in Z) and whose ARs are all of iterated integral type, of weight 0 (rational), 1 or 2. Note however that it is no longer polylogarithmic since for any even ℓ, the ramification locus associated to its first integrals Z ℓ is { 0, -1, ̺ , ̺ , ∞ }.

All this is completely similar to what holds true in the B 2 -case (cf. Remark 5.2) and we believe that it is just a particular case of a more general phenomenon.

Finally we mention that, as far as we know, the accessibility of (R G 2 ) from Abel's five terms relation has not been worked out in detail yet in the published literature. It is mentioned in [KY] where the authors claim that it can be obtained, by folding, from the accessibility of the Ycluster dilogarithm identity of type D 4 , which can be established easily. 113 For all we know, the description of the D 4 -identity as a combination of several 5-terms identities (R A 2 ) has not been worked out in explicit form anywhere.

Some classical polylogarithmic identities are of cluster type

If it is now common knowledge that cluster algebras provide many interesting dilogarithmic identities, the same was not clear concerning the case of higher polylogarithms. In the result below, we show that some of the most well-known polylogarithmic AFEs of weight 2,3 and 4 are of cluster type.

Theorem 5.5. Up to some birational automorphisms (which can be make explicit in each case), one has the following interpretations in terms of cluster webs of the planar webs associated to the classical functional equations of low-order polylogarithms presented in Section §2.2:

• Rank 2 : B ≃ XW A 2 ; W N 6 ≃ XW B 2 ; • Rank 3 : W SK ≃ UXW A 3 ; W K 4 ≃ UXW C 3 ; W N 6 ≃ UYW A 3 ; • Rank 4 : W K 4 ≃ UXW D 4 ; XW G 2 ≃ UYW D 4 .
Before entering into a proof, let us comment briefly this result which was the one which motivated the author to undertake a more systematic study of cluster webs. First, the most interesting equivalences in this theorem are the ones relating the polylogarithmic webs associated to the classical AFEs (Ab), (SK) and (K 4 ) to some cluster webs of Dynkin types. The equivalences between two cluster webs in the statements above are just manifestations for cluster webs of the well-known folding property of Dynkin diagrams, with the unique exception of UXW C 3 and UXW D 4 which both are equivalent to W K 4 . This is a bit surprising since the Dynkin types D 4 and C 3 are not related in a natural way. This contrasts with D 4 and B 3 , the latter being a 2 : 1 folded version of the former. However, UXW B 3 is not equivalent to W K 4 (for instance because one has Hex 3 (UXW B 3 ) = 96 < 186 = Hex 3 (W K 4 ). 114Finally, it is expected (at least by the author of these lines) that other previously known polylogarithmic identities can also be formulated using cluster variables. For instance, since it holds true in weight 3 and 4, one would not be surprised whether the answer to the following question were affirmative:

Question 5.6. Is Kummer's pentalogarithmic web W K 5 equivalent to a cluster web?

Proof. Since all the webs involved are completely explicit, in order to prove the theorem it suffices to give for each case, an appropriate explicit birational map.

For Bol's and Newman's webs, this has been done above, see ( 140) and ( 145) respectively.

Regarding Spence-Kummer's 9-web, setting ϕ : (x, y) 1/y -1 , -1/(xy) , it is easy to verify by direct easy computations that ϕ * UXW A 3 ) = W SK hence proving the theorem in this case. However, the simple analytical form of ϕ could let the reader think that finding an appropriate birational equivalence between the two webs involved is straightforward and that proving the statement we are interested in only amounts to some elementary computations. We claim that it is not the case. Below, we explain how we have been able to find explicitly the appropriate birational equivalence in two cases, namely ϕ between UXW A 3 and W SK . This case will show the reader that finding a suitable ϕ relies on some non-trivial (but classical indeed) results and constructions of web geometry. In our opinion, treating the case under scrutiny is sufficiently enlightening so that we do not give details about the other cases, since they can be treated using similar arguments.

The key point for finding an explicit equivalence between UXW A 3 and W SK is to realize that both contain a unique hexagonal 6-subweb (as explained in §6.2.1.1, testing if a given web is hexagonal amounts to compute the curvatures of all of its 3-subwebs, and this can be done easily with the help of a computer algebra system), which will be denoted by UXW ′ A 3 and W ′ SK respectively. 115 Any (even local) analytic equivalence φ between UXW A 3 and W SK induces an equivalence between UXW ′ A 3 and W ′ SK and this is going to simplify everything. Indeed, according to Bol's theorem (cf. §1), these 6-webs both are equivalent to webs denoted by UXW lin A 3 and W lin SK respectively, each formed by six pencils of lines. Then, since the linearization of a linear k-web is projectively unique as soon as k ≥ 4 (cf. Proposition 1.18), one obtains that UXW lin A 3 and W lin SK are necessarily equivalent by means of a projective transformation, which can be determined using elementary techniques of plane projective geometry 116 . We now briefly discuss the case of W K 4 and UXW D 4 . By straightforward computations (done with the help of a computer algebra system), one can determine explicitly the hexagonal 6subwebs of each of these two 18-webs. Each contains precisely four such subwebs, the union of which forms a 14-subweb. By considering the complement of these latter, one gets two 4subwebs W ′ K 4 and W ′ D 4 of W K 4 and UXW D 4 respectively. Explicitly, one has

W ′ K 4 = W xy 2 (1 -y)(1 -x) 2 , x 2 y (1 -y) 2 (1 -x) , - xy 2 (1 -x) 1 -y , - x 2 y(1 -y) 1 -x and W ′ D 4 = W 1 y , (x + 1) 3 y , (x + 1 + y) 3 x 3 y , (x 2 + 2x + y + 1) 3 x 3 y 2 .
One verifies easily that both these 4-subwebs have maximal rank hence are linearizable in a unique way (up to projective equivalence). Determining explicitly their abelian relations is not difficult using Abel's method. Thus one can compute the associated Poincaré-Blaschke maps PB[W ′ K 4 ] and PB[W ′ D 4 ] (see §1.6.4). From Proposition 1.18, it comes that any (even local) analytic equivalence between W K 4 and UXW D 4 necessarily induces an equivalence between D 4 ] for some g ∈ PGL 3 (C) which can be determined explicitly. One eventually gets the following birational map

W ′ K 4 and W ′ D 4 from which one deduces that PB[W ′ K 4 ] -1 • g • PB[pXW ′
Φ : (x, y) -→ x + y -1 (x -1)(y -1) , x 2 y (x -1)(y -1) 2
which can easily be verified to be such that Φ * UXW D 4 = W K 4 . Using the same arguments, one finds an explicit birational maps ψ inducing an equivalence between UXW C 3 and W K 4 .

All the other equivalences in Theorem 5.5 are obtained using a similar approach.

Considering the previous result naturally leads to wonder about other polylogarithmic identities. The two first explicit examples coming to author's mind are Kummer's pentalogarithmic identity (cf. Question 5.6 just above) or Goncharov's functional equation (Gon 22 ) of the trilogarithm (see §2.2.3.3 above and also §8.2.2 in the last section). At the other extreme, the most general question Theorem 5.5 suggests is that of knowing whether there are some polylogarithmic AFEs which are not accessible from polylogarithmic identities of cluster type. Answering this seems completely out of reach at the time of writing.

We recall some notation we are going to use below: ∆ stands for the root system of type A n for a fixed n ≥ 2 and we use α > 0 (resp. α ≥ -1) as a shorthand for α ∈ ∆ >0 (resp. for α ∈ ∆ ≥-1 ). By (R A n ) we refer to any one of these two (equivalent) dilogarithmic identities:

α≥-1 R Y[α] = n(n + 1) 2 • π 2 6 ⇐⇒ n i=1 R u i - α>0 R 1/Y[α] = 0 . (157)
6.2.1 The virtual ranks of YW A n . We set d = n(n + 3)/2 and we denote by V the complex vector space C n . Keeping in mind that n is fixed and to simplify the notation, we set here ρ σ = ρ σ (YW A n ) for any σ ≥ 1.

Since YW A n is a subweb of XW A n , it follows immediately from point (i) of §6.1 that ρ σ = 0 for any σ ≥ 3, hence we just have to prove that ρ 1 = n(n + 1)/2, ρ 2 = n and ρ 3 = 1.

Let ζ be a generic point of the initial cluster torus T n 0 and for i = 1, . . . , N, denote by ℓ i the differential of y i at ζ, viewed as a linear form on V.

Clearly, the ℓ i 's span V ∨ (actually, so do ℓ 1 , . . . , ℓ n already) and there are d of them. So obviously, there are dn = n(n + 1)/2 linear relations between them, thus ρ 1 = n(n + 1)/2. The cases of ρ 2 and ρ 3 cannot be settled so easily. Actually, we are going first to prove the following bounds (in §6.2.1.3 and §6.2.1.4 respectively):

(158) ρ 2 ≤ n and ρ 3 ≤ 1 .
Combined with ρ 1 = n(n + 1)/2, it gives

(159) ρ YW A n = ρ 1 + ρ 2 + ρ 3 ≤ d + 1 .
On the other hand, in Subsection §6.2.2 just below, one establishes that 158) and (160) together that

(160) rk YW A n ≥ polrk YW A n ≥ polrk 1 + polrk 2 = d + 1 . Since rk YW A n ≤ ρ YW A n , it follows from (
(161) rk YW A n = polrk YW A n = ρ YW A n = d + 1
which in turn implies that all the majorations in ( 158), ( 159) and ( 160) actually are equalities.

The pull-back of YW

A n on M 0,n+3 . Instead of working with YW A n , we are going to work with its pull-back on M 0,n+3 , denoted by YW M 0,n+3 . We will then take benefit of the geometric description of the latter to prove the majorations (158).

First, combining Corollary 4.4 above with the description in terms of projective configurations given in [START_REF] Volkov | On the periodicity conjecture for Y-systems[END_REF] (see formula (1.10) and §2 in this paper) of the Y-variables Y i (t) (with i ranging from 1 to n and t ∈ Z) of the Y-system of type A n , we obtain the Proposition 6.2. The pull-back YW M 0,n+3 of YW A n under the map x T 0 is the subweb of XW M 0,n+3 admitting as first integrals the cross-ratios r i-1,i, j, j+1 : M 0,n+3 → C \ {0, 1} (cf. (123)) for the cyclically ordered quadruples (i -1, i, j, j + 1) ∈ (Z/(n + 3)Z) 4 associated to all pairs (i, j) with i = 2, . . . , n + 2 and j = i + 1, . . . , n + 3, with the exception of (2, n + 3).

Remark 6.3.

1. The cross-ratios r i-1,i, j, j+1 essentially coincide117 with some others considered in [START_REF] Brown | Multiple zeta values and periods of moduli spaces M 0[END_REF], where they are denoted by [i-1, i | j, j+1] and called 'dihedral coordinates' (see §2.2 therein). As Brown's results show, these appear as very convenient to compute periods on M 0,n .

In relation with dilogarithmic identities, the dihedral coordinates have alreadt been used

in [Sou] to give a constructive proof that the identity (R A n ) is accessible from Abel's five terms equation for any n ≥ 2.

3. Except in the bibliography, no mention of cluster algebras is made in [Sou]. However, the combinatoric used in the proof of Théorème 4.1 therein bears strong similarities with the combinatoric used to describe X-cluster objects (clusters, cluster variables, etc.) for the cluster algebra of finite Dynkin type A n . For this reason, we may think it is possible to rephrase the whole fourth section of Soudères' paper in terms of cluster algebras, which could be very interesting in order to prove in an effective way the accessibility of the cluster dilogarithmic identity (R ∆ ) from Abel's identity (R A 2 ) for any Dynkin diagram ∆.

Let Y n be the set of pairs (i, j) defined in the previous proposition:

Y n = (i, j) ∈ N 2 2 ≤ i < j ≤ n + 3 , (i, j) (2, n + 3) .
For (i, j) in this set, we use r i, j as a shorthand for the cross-ratio r i-1,i, j, j+1 (to simplify). Since [i -1, i | j, j + 1] = r i, j + 1 is also a primitive first integral of the foliation of YW M 0,n+3 defined by r i, j , we will sometimes use it instead of r i, j at some places below.

6.2.1.2

Transporting the problem on the moduli space M 0,n+3 allows us to work geometrically and to use the same powerful (albeit elementary) techniques used in the proof of [START_REF] Pereira | Resonance webs of hyperplane arrangements. In 'Arrangements of hyper-planesSapporo 2009[END_REF]Proposition 4.1]. We first recall below some notations taken from this paper which are needed for our purpose.

Let W be a subweb of XW M 0,n+3 . Then for any a ∈ {1, . . . , n + 3}, we denote by

• W a the subweb of W the first integrals of which are the first integrals r i, j,k,l of W with a ∈ {i, j, k, l};

• W a the subweb of W the first integrals of which are the first integrals r i, j,k,l of W with a {i, j, k, l}.

Obviously, one has W = W a ⊔ W a and one verifies easily that W a is the pull-back of a (uniquely determined) subweb of XW M 0,n+2 , denoted by W a under the forgetful map f a : M 0,n+3 → M 0,n+2 corresponding to forgetting the a-th point: one has (162)

W a = f * a W a .
Let I ⊂ {1, . . . , n + 3} be a subset of cardinality n and set V I = ⊕ i∈I C ≃ C n . Denoting by p, q, r the elements of {1, . . . , n + 3} \ I labeled in increasing order, one sets x I (p) = 0, x I (q) = 1 and x I (r) = ∞ (as elements of P 1 ) and one defines a birational map V I M 0,n+3 by associating to (x i ) i∈I ∈ V I the projective class of (x I,s ) n+3 s=1 ∈ (P 1 ) n+3 where x I,s = x s if s ∈ I and x I,s = x I (s) as defined above otherwise. We obtain that way a system of affine coordinates (x i ) i∈I on M 0,n+3 .

We assume that I as above is fixed, we write V instead of V I to simplify and consider the crossratios r a,b,c,d of XW M 0,n+3 as rational functions in the x i 's for i ∈ I. Let N be the degree of the considered subweb W and denote by ℓ 1 , . . . , ℓ N be the differentials (viewed as linear forms on V) of its first integrals at a generic point of M 0,n+3 (birationally identified with V). We recall that A σ (W) stands for the space of homogeneous ARs of degree σ of the linear web whose first integrals are the ℓ s for s = 1, . . . , N (cf. (9) above). For a ∈ I, the partial derivative ∂/∂x a acts on Sym(V * ) = C[x i | i ∈ I] and, for any σ ≥ 2, induces a linear map A σ (W) → A σ-1 (W a ) whose kernel can easily be seen to be A σ (W a ). In other terms, there is an exact sequence of complex vector spaces

(163) 0 → A σ W a -→ A σ W -→ A σ-1 W a
from which one deduces that the following inequality holds true 163) is a priori not exact at right, this majoration has no reason to be sharp).

(164) ρ σ W ≤ ρ σ W a + ρ σ-1 W a (note that since (

6.2.1.3

We are going to apply the material above to a certain subweb of YW M 0,n+3 then argue by induction on n to finally get ρ 2 ≤ n. Let Y ′ n be the subset of Y n formed by the pairs (i, j) not of the form (i, n + 3), i.e. Y ′ n = Y n \ (3, n + 3), . . . , (n + 2, n + 3) and consider the associated web

YW ′ M 0,n+3 = W r i, j | (i, j) ∈ Y ′ n . It is a n(n + 1)/2-subweb of YW M 0,n+3 , whose complement web W [2, 3 | n + 3, 1] , . . . , [n + 1, n + 2 | n + 3, 1]
can easily be seen as being a coordinate n-web, that is equivalent to the web defined by the n standard coordinates on C n . Proposition 6.4. For any n ≥ 2, one has ρ 2 (YW ′ M 0,n+3 ) = 0 and consequently ρ 2 (YW M 0,n+3 ) ≤ n.

Proof. Since the complement of YW ′ M 0,n+3 in YW M 0,n+3 is a n-web, the second majoration for ρ 2 (YW M 0,n+3 ) is an immediate consequence of ρ 2 (YW ′ M 0,n+3 ) = 0. The proof that the latter equality holds true goes by induction on n. The initial case is obvious (YW ′ M 0,5 is a planar 3-web) hence we assume that n ≥ 3 and that ρ 2 (YW ′ M 0,n+2 ) = 0. Let I ⊂ {1, . . . , n + 3} be a subset of cardinality n as above, and let us assume moreover that it contains n + 3.

We then apply the results of §6.2.1.2 to W = YW ′ M 0,5 and a = n + 3. With these notations:

• W n+3 is the web defined by the cross-ratios [i -1, i | j, j + 1] for i = 2, . . . , n + 1 and j = i + 1, . . . , n + 2. Hence it is the pull-back of the web YW ′ M 0,n+2 under the (n + 3)forgetful map f n+3 : M 0,n+3 → M 0,n+2 : one has

W n+3 = ( f n+3 ) * YW ′ M 0,n+2 ;
• W n+3 is the web defined by the cross-ratios [i -1, i | n + 2, n + 3] for i = 2, . . . , n + 1. It is easily seen to be equivalent to a coordinate n-web.

Since the virtual rank is invariant by pull-back, one has ρ σ (W a ) = ρ σ (YW ′ M 0,n+2 ) for any σ > 0 and because all the virtual ranks of a coordinate web are trivial, ( 164) is written as follows in the case when σ = 2: ρ 2 W ≤ ρ 2 YW ′ M 0,n+2 + 0. From the induction hypothesis, it follows that ρ 2 YW ′ M 0,n+3 = 0 which concludes the proof.

6.2.1.4

We now turn to ρ 3 , which we are going to prove to be 1 at most, using similar methods as in the preceding paragraph.

Setting W = YW M 0,n+3 , a = n + 3 and σ = 3 in (164), we have ( 165)

ρ 3 ≤ ρ 3 W n+3 + ρ 2 W n+3 .
The web W n+3 admits as first integrals the cross-ratios r i, j for any pairs (i, j) ∈ Y n such that 2 ≤ i < j ≤ n + 1 hence can be seen as the pull-back under the (n + 3)-th forgetful map of YW ′ M 0,n+2 , whose third virtual rank is zero (since its second virtual rank already vanishes according to Proposition 6.4): one has (166)

ρ 3 W n+3 = ρ 3 YW ′ M 0,n+2 = 0 .
We now apply the techniques of paragraph §6.2.1.2 to W = W n+3 , but now with a = 1. Since it is the 2n-web defined by the r i, j for pairs (i, n + 2) with i = 2, . . . , n + 1 and pairs (i, n + 3) with i = 3, . . . , n + 2, it is not difficult to describe the two corresponding webs:

• W 1 is the (n -1)-web defined by the cross-ratios [i -1, i | n + 2, n + 3] for i = 3, . . . , n + 1;

• W 1 is the web with the following cross-ratios as first integrals:

[1, 2 | n + 2, n + 3] and [i -1, i | n + 3, 1] for i = 3, . . . , n + 3.
Clearly, W 1 is equivalent to a (n-1)-subweb of a coordinate n-web in dimension n, thus ρ 2 (W 1 ) = 0. As for the (n + 1)-web W 1 , its subweb defined by the n cross-ratios [i -1, i | n + 3, 1] for i = 3, . . . , n + 3 is a coordinates web as well. Thus ρ 1 (W 1 ) = 1 and when σ = 2, (164) is written as follows in the case under scrutiny:

ρ 2 W ≤ ρ 2 W 1 + ρ 1 W 1 = 0 + 1 = 1 .
Combined with ( 165) and ( 166), this gives us the majoration ρ 3 ≤ 1 we were looking for.

6.2.2

The polylogarithmic ARs of YW A n . Our main goal here is to prove that polrk 1 (YW A n ) is bigger than or equal to n(n + 3)/2. Combined with the upper bounds obtained above for the virtual ranks ρ σ for σ = 1, 2, 3, it will show that actually the equality holds true. Our main tools to achieve this are some nice formulas of [START_REF] Fomin | Y-systems and generalized associahedra[END_REF]. We will also discuss the problem of describing an explicit basis of the space of {0, -1, ∞}-logarithmic ARs of YW A n , a space that we denote just by LogAR below.

In this subsection, we work with holomorphic functions f on the positive orthant (R >0 ) n (that is, with germs of functions a representative of which is a holomorphic function defined on an open neighborhood of (R >0 ) n ), up to addition of a constant118 . It is the same as working indiscriminately with the differential d f of such a function f .

⋆

We assume that n ≥ 2 is fixed and we denote by ∆ the root system of type A n . We recall that ∆ >0 (resp. ∆ ≥-1 ) stands for the subset of positive (resp. almost-positive) roots. To deal with the logarithmic ARs of YW A n , we use the following model of this web, in terms of (some of) the Y-variables appearing in the Y-system Y A n , but indexed by the almost-positive roots:

YW A n = W Y[α] α ∈ ∆ ≥-1 .
We see the Y[α]'s as rational functions of the initial variables Y[-α i ] = u i , i = 1, . . . , n. For α ∈ ∆, we recall that [α, α i ] ∈ Z stands for its i-th coordinates with respect to the set (α 1 , . . . , α n ) of simple roots (thus

α = n i=1 [α, α i ] • α i ), one denotes the product of the u [α,α i ] i
's by u α and one sets ũα = u α if α ∈ ∆ >0 and ũα = 1 otherwise.

In [START_REF] Fomin | Y-systems and generalized associahedra[END_REF], Fomin and Zelevinsky have introduced the so-called 'F-polynomials' F[α], indexed by α ∈ ∆ ≥-1 (with F[-α i ] = 1 for any i) which appear to be very useful for investigating the logarithmic relations between the first integrals Y[α]'s of YW A n , thanks to two nice formulas : Proposition 6.5 (formulas (2.14) and (2.18) in [START_REF] Fomin | Y-systems and generalized associahedra[END_REF]). For any α ∈ ∆ ≥-1 , one has

(167) Y[α] = (β,d)∈Ψ(α) F[β] d u α and 1 + Y[α] = F[τ + α]F[τ -α] ũα for a certain set Ψ(α) ⊂ ∆ ≥-1 × N >0 and two permutations τ ± of ∆ ≥-1 (defined in [FZ1, §1]). 119
We consider the following complex vector space of functions on (R >0 ) n :

Log u, F ∆ = Log(u i ) i = 1, . . . , n ⊕ Log F[α] α ∈ ∆ >0 . From (167), it follows that Log Y[-α i ] = Log(u i ) and Log 1 + Y[-α i ] = Log F[α i ] for i = 1, . . . , n whereas for any α ∈ ∆ >0 , one has Log Y[α] = (β,d)∈Ψ(α) d Log F[β] - n i=1 [α; α i ] • Log(u i ) and Log 1 + Y[α] = Log F[τ + α] + Log F[τ -α] - n i=1 [α; α i ] • Log(u i ) .
We thus have a well-defined

C-linear map Log Y[α] , Log 1 + Y[α] → Log u, F ∆ for any α,
from which we deduce the following exact sequence of vector spaces:

(168) 0 -→ LogAR -→ ⊕ α∈∆ ≥-1 Log Y[α] , Log 1 + Y[α] -→ Log u, F ∆ . Since ⊕ α∈∆ ≥-1 Log Y[α] , Log 1 + Y[α] is obviously of dimension 2d (since each space in the direct sum is 2-dimensional) and because dim Log u, F ∆ ≤ |∆ ≥-1 |= d, it comes that one necessarily has (169) polrk 1 YW A n = dim(LogAR) ≥ d = n(n + 3)/2 . Since (R A n ) provides a non trivial dilogarithmic AR, one has also polrk 2 YW A n ≥ 1 thus rk YW A n ≥ polrk 1 YW A n + polrk 2 YW A n ≥ d + 1 .
As explained above, this gives us that the following equalities hold true for YW A n :

ρ 1 = n(n + 1)/2 , ρ 2 = n , ρ 3 = 1 , polrk 1 = n(n + 3)/2 and polrk 2 = 1 .
In particular, it follows from these equalities that Log u, F ∆ has dimension d, which is easy to establish directly, but also that ( 168) is exact at right, what can be formulated as the fact that the linear map

⊕ α∈∆ ≥-1 Log Y[α] , Log 1 + Y[α] -→ Log u, F ∆ is surjective.
One interesting feature of the above approach is that it makes sense when ∆ stands for any Dynkin diagram (provided that one considers formulas (2.14) and (2.18) of [START_REF] Fomin | Y-systems and generalized associahedra[END_REF] instead of those of (167) when ∆ is not simply-laced). In particular, there exists an exact sequence similar to (168) for any ∆.

We thus can ask the following questions:

Question 6.6. Given a Dynkin diagram ∆ (not necessarily of type A any more):

1. is the space Log u, F ∆ of dimension |∆ ≥-1 |?
2. is the exact sequence (168) exact at right?

We have proved above than the answers to both questions is affirmative in type A. We believe that this is the case in full generality. Let us sketch a proof that 1. indeed holds true in full generality. First, from the fact that F[α] is a positive polynomial with integer coefficients and constant term equal to 1, it comes that Log u,

F ∆ = Log(u) ⊕ Log(F ∆ ) where Log(u) = Log(u i ) | i = 1, . . . , n and Log(F ∆ ) = Log F[α] | α ∈ ∆ >0
, hence the question is reduced to the one of proving that the latter space has dimension |∆ >0 |. Taking for granted the result announced by Cao and Keller that the F[α]'s are irreducible (cf. Theorem 3.6 above), it then suffices to prove that two polynomials F[α] and F[α ′ ] are distinct if α, α ′ ∈ ∆ >0 are. But this follows from the fact that (92) is bijective (which in turn follows from the Caldero-Chapoton formula and relies on the fact that the cluster algebra associated to ∆ admits a categorification).

Regarding the second question, we think that this is true as well, but possibly not in a completely uniform manner. Indeed, denoting by h the Coxeter number of ∆, some investigations lead us to believe that the two following assertions are true:

• if h is even, then Log 1 + Y[α] α ∈ ∆ >0 = Log(F ∆ ) modulo Log(u) ; • in any case, one has Log 1 + Y[α] , Log(u i ) α ∈ ∆ >0 i = 1, . . . , n = Log u, F ∆ .
What has led us to consider statements such as the two ones above is the problem of describing an explicit basis of the space of logarithmic ARs LogAR which is uniform in n (possibly according to its parity as well). We discuss this in the next subsection.

6.2.3 About bases of the space of logarithmic ARs of YW A n . In the previous subsection, we have proved that polrk 1 (YW A n ) = n(n + 3)/2 but in a non-constructive way, which is not fully satisfying. Our primary approach was more ambitious: it consisted in building an explicit basis of the corresponding space of ARs, a task that unfortunately could not be completed. However, this leads us to identify two possible approaches to tackle this problem. We discuss both below, starting with the case of A 2 in both cases as a motivation.

6.2.3.1 Building logarithmic abelian relations via the 'Y-method'. We have seen above in §5.1.1 that the set of ARs associated to the multiplicative relations (141) constitutes a basis of the space LogAR(A 2 ) of logarithmic ARs of YW A 2 (see ( 142)).

An immediate but interesting remark is that the relations (141) are just the specialization, in the A 2 -case under consideration, of the general identities of the Y-system of type A n

Y i (t) Y i (t + 1)Y i (t -1) = j i 1 + Y j (t)
-a i j for i = 1, . . . , n and t ∈ Z (where (a i j ) n i, j=1 stands for the corresponding Cartan matrix). To any identity (Y i (t)) is associated the followin logarithmic abelian relation:

LogAR i (t) dLog Y i (t -1) + j i a i j dLog 1 + Y i (t) + dLog Y i (t + 1) = 0 .
This suggests to wonder whether or not the LogAR i (t)'s span the whole space of logarithmic ARs of YW A n , as in the case when n = 2. We set the following notations: ∆ = A n , h = h(∆) (Coxeter number; here h = n + 1), I = {1, . . . , n} and σ ∆ : i → ı denotes the involution of I involved in the half-periodicity property of the Ysystem of type ∆ (for ∆ = A n , one has ı = n + 1i for any i ∈ I). Then, denoting by ǫ : I → {±1} the map associating 1 or -1 to i, depending on whether the i-th node of the bipartite quiver ∆ is a source or a sink, one sets

I ∆ = (i, t) i ∈ I, t = 0, . . . , h + 1 and I ± ∆ = (i, t) ∈ I ∆ | ǫ(i)(-1) t = ±1
, and as a model for YW ∆ in this paragraph, one takes the one admitting as first integrals the Y-variables Y i (t) for i and t such that ǫ(i)(-1) t = -1 (see (101) above and (8.10) in [FZ2]):

YW ∆ = W Y i (t) (i, t) ∈ I - ∆
(with the u i 's defined by u i = Y i (0) -ǫ(i) for any i ∈ I as initial variables). In the lines below, it is useful to set

-Y i (-1) = Y ı (n + 2) and Y i (n + 3) = Y ı (0), for any i ∈ I; -Y 0 (t) = Y n+1 (t) = 0 for any t ∈ Z.
(Note: the first convention is in accordance with the half-periodicity property in type A n (see Remark 3.19 above) and the second is introduced to write the ARs LogAR i (t) in an uniform manner regarding i). Now for i and t in the same ranges of indices but such that ǫ(i)(-1) t = 1, is associated to the multiplicative identity Y i (t) the following logarithmic abelian relation

(170) Log Y i (t -1) -Log 1 + Y i-1 (t) -Log 1 + Y i+1 (t) + Log Y i (t + 1) = 0
for YW ∆ , denoted by LogAR i (t). This abelian relation has 4 or 3 logarithmic terms, the latter occurring only in the 'extremal cases' when i = 1 or i = n. We denote by YLogAR(∆) the space of ARs spanned by the LogAR i (t)'s:

(171)

YLogAR(∆) = LogAR i (t) (i, t) ∈ I + ∆ ⊂ LogAR(∆)
. The main questions considered here are first to know whether this inclusion is strict or not, and second, to determine the linear relations between the LogAR i (t)'s and in particular the dimension of YLogAR(A n ) (we recall that LogAR(A n ) has dimension d, as proved above). Proposition 6.7. When n is even, the LogAR i (t)'s for (i, t) ∈ I + n constitute a basis of the space of logarithmic ARs of YW A n and consequently, the inclusion (171) actually is an equality.

The proof use the following elementary fact, the proof of which is left to the reader: Fact 6.8. Let (a s ) s∈Z be a k-periodic sequence of complex numbers such that a s + a s+1 = 0 for any s ∈ Z. If it is k-periodic with k odd then all the a s vanish. Proof. Assume that (i,t)∈I + ∆ λ i,t LogAR i (t) = 0 as an abelian relation, for some complex constants λ i,t . Considering the coefficients of Log(Y i (t)) for (i, t) ∈ I - n in this abelian relation, we get that the following relations hold true:

λ i,t-1 + λ i,t+1 = 0 for t ∈ {1, . . . , n + 1} (172) and λ ı,n+2 + λ i,1 = λ i,n+1 + λ ı,0 = 0 (case t ∈ {0, n + 2}) .
Then, we set m = ⌊n/2⌋ ∈ N * and for i ∈ {1, . . . , m} such that ǫ(i) = 1 (which is equivalent to i being odd), we define a (n + 3)-periodic sequence of complex numbers (ℓ i,s ) s∈Z by setting

ℓ i,s =        λ i , 2s for s = 0, . . . , m + 1 , λ ı , 2s-n-3 for s = m + 1, . . . , n + 2 .
Because n is even, the sequence (ℓ i,s ) s∈Z is odd-periodic and from (172) it follows that the sums of two consecutive terms all vanish. From the Fact above, it follows that all the terms λ i,t and λ ı,t with (i, t) ∈ I + ∆ and (ı, t) ∈ I + ∆ vanish. For i ∈ {1, . . . , m} such that ǫ(i) = -1 (i.e. i is even), one proceeds similarly to obtain the vanishing of all the coefficients λ i,t and λ ı,t . This shows that the LogAR i (t)'s for (i, t) ∈ I + n form a basis of YLogAR(A n ). Therefore this space has dimension |I + ∆ |= d = polrk 1 (YW A n ) which finishes the proof of the proposition.

Since the statement of Fact 6.8 obviously does not hold when the period k is even, the above proof does not apply when n is odd. Actually, in this case and contrarily to what one could (too naively) expect at first, it appears that the inclusion (171) is strict as the LogAR i (t)'s do no longer form a free family of abelian relations. Indeed, setting n = 2m + 1 with m ≥ 1 and using the same approach as in the proof above, it is not difficult to determine the possible form that a linear relation between the LogAR i (t)'s can have. One sets

LogAR i = m+1 τ=0 (-1) τ LogAR i (2τ) + (-1) m LogAR 2n+2-i (2τ) for i = 1, . . . , m ;
and

LogAR m+1 = m+1 τ=0 (-1) τ LogAR m+1 (2τ) .
Then by a direct computation, one verifies that the following proposition holds true: Proposition 6.9. For ∆ = A 2m+1 , the LogAR i (t)'s for (i, t) ∈ I + ∆ satisfy the linear relation:

(173) ⌊m/2⌋ j=0 (-1) j LogAR 2 j+1 = 0 .
Moreover, this is the unique linear relation between the LogAR i (t)'s with (i, t) ∈ I + 2m+1 and consequently, the space YLogAR(A 2m+1 ) they span has corank 1 in LogAR(A 2m+1 ).

When n is odd, this result tells us that one has to find a new logarithmic AR not belonging to YLogAR(A n ) in order to get a spanning family for the whole space of logarithmic ARs. We do think that this is not a difficult task but we let this for future investigation, possibly by others.

⋆

Let us comment about the approach presented in this paragraph to build a basis of LogAR(A n ).

First, it shows again, but from a new perspective, the interest of presenting a web algebraically, by means of a Y-system as here, or more generally, of a period of a cluster algebra. In the case under scrutiny here, the relations Y i (t) for some pairs (i, t), first serve to define the web YW A n itself, whereas other pairs correspond in a quite immediate way to simple logarithmic ARs, and sufficiently many of them span a space which is almost equal to LogAR(A n ). Second, this approach is not specific to the type A but also makes sense for an arbitrary Dynkin diagram, as very briefly discussed at the beginning of the current paragraph. Our third point goes in the opposite direction, since it concerns the limitations of this approach: the dichotomy according the parity of the rank already in type A n , shows that this approach does not allow to build a basis of the space of logarithmic ARs of a web YW ∆ (see also just after Proposition 6.13, where the cases of D 4 , D 5 and E 6 are briefly discussed).

As interesting and powerful it may be to build logarithmic ARs, the 'Y-method' presented in this paragraph carries its own limitations hence one can wonder whether another more systematic approach exists or not. We believe that it is indeed the case and this is the subject of the next paragraph.

6.2.3.2 Dilogarithmic generation of logarithmic abelian relations. The idea behind the approach discussed below also comes from the consideration of the A 2 -case. It is well-known (at least by the author of these lines) that the dilogarithmic abelian relation R A 2 (which is the one naturally associated to the 5-terms identity denoted by (R) in [START_REF] Pirio | Abelian functional equations, planar web geometry and polylogarithms[END_REF]) can be seen as the most important of the ARs of YW A 2 (which is equivalent to Bol's web) since it generates its whole space of ARs by analytic continuation (see [START_REF] Pirio | Abelian functional equations, planar web geometry and polylogarithms[END_REF] and in particular §3.1.1 therein).

One can wonder whether something similar holds true in general or not. More precisely, for ∆ = A n with n ≥ 2, the ARs of YW ∆ extend holomorphically (as multivalued ARs) on the complement U ∆ of the set of common leaves Σ c ∆ ⊂ P n . Given a base point ⋆, in (R >0 ) n say, analytic continuation of the dilogarithmic abelian relation

R ∆ along any γ ∈ π 1 (U ∆ , ⋆) gives rise to a new AR, denoted by R γ A n , such that L γ ∆ = R γ ∆ -R ∆ be (the germ at ⋆ of) a logarithmic AR of YW ∆
. Since the answer is affirmative when n = 2, it is natural to ask the Question 6.10. Is the inclusion of vector spaces L

γ ∆ | γ ∈ π 1 (U ∆ , ⋆) ⊂ LogAR(∆) an equality? If not, what are the linear relations between the L γ ∆ 's and what is dim L γ ∆ | γ ∈ π 1 (U ∆ , ⋆) ?
Note that the question makes perfectly sense when replacing ∆ by any other Dynkin diagram. We conjecture that the answer to this question is 'yes' in full generality. But an inherent difficulty to handle it is that it relies on monodromy arguments hence of a global nature. In particular, it is necessary to know more about U ∆ and in particular about its fundamental group (a set of some generators for instance), which is not known in general (however, see Proposition 6.21 just below in type A).

There is a more formal approach to construct logarithmic ARs from R ∆ , which relies on differentiation. It consists in taking the total derivative of the identity (R ∆ ) and isolating its components. More precisely, since R(u) = (1/2)

u 0 log(1 + s)ds/s - u 0 log(s)ds/(1 + s) , one has 2dR = log(1 + u)/u -log(u)/(1 + u) for any u > 0 from which it follows that 2 dR Y[α] = 2 • Y[α] * dR = Log 1 + Y[α] dLog Y[α] -Log Y[α] dLog 1 + Y[α] holds true for any first integral Y[α] of YW ∆ . We set ω i = ω -α i = du i /u i for i = 1, . . . , n and ω α = dLog(F[α]) = dF[α]/F[α] for any α ∈ ∆ >0 .
With this notation, it follows from the relations (167) that for i = 1, . . . , n and α ∈ ∆ >0 , one has

dLog Y[-α i ] = ω i , dLog 1 + Y[-α i ] = ω α i dLog Y[α] = (β,q)∈Ψ(α) q ω β - n i=1 [α, α i ] ω i dLog 1 + Y[α] = ω α -+ ω α + - n i=1 [α, α i ] ω i ,
where for simplicity α ± stands for the root denoted by τ ± (α) in [START_REF] Fomin | Y-systems and generalized associahedra[END_REF][START_REF] Arkani-Hamed | Grassmannian geometry of scattering amplitudes[END_REF]. From the formulas above, it follows that for any α ∈ ∆ ≥-1 , there exists an expression

2 • Y[α] * dR = β∈∆ ≥-1 L α,β ω β
where for any β, L α,β stands for a function of the form

(174) L α,β = L 0 α,β • Log Y[α] + L 1 α,β • Log 1 + Y[α] with L 0 α,β , L 1 α,β ∈ Z .
Taking the total derivative of the identity (157), one gets

0 = α∈∆ ≥-1 2 d R(Y[α]) = α,β∈∆ ≥-1 L α,β ω β = β∈∆ ≥-1 α∈∆ ≥-1 L α,β ω β . ( 175 
)
The proof of the following lemma is easy and left to the reader Lemma 6.11. The O((R >0 ) n )-module generated by the ω β 's with β ∈ ∆ ≥-1 is free: there is no non trivial identity β≥-1

c β ω β = 0 with c β ∈ O((R >0 ) n ) for every β ∈ ∆ ≥-1 .
Since the coefficients in (175) all belong to the subspace Log(u,

F ∆ ) = Log(Y[α]) , Log(1 + Y[α]) | α ∈ ∆ ≥-1 of O((R >0 ) n ), this lemma implies that for any β ∈ ∆ ≥-1 , the following relation holds true identically on (R >0 ) n : α∈∆ ≥-1 L α,β = α∈∆ ≥-1 L 0 α,β • Log Y[α] + L 1 α,β • Log 1 + Y[α] = 0 .
This identity can be seen as a logarithmic abelian relation for YW ∆ , denoted by L ∆,β .

Question 6.12. Is the inclusion of vector spaces L ∆,β | β ∈ ∆ ≥-1 ⊂ LogAR(∆) an equality?

If not, what are the linear relations between the L ∆,β 's and what is dim

L ∆,β | β ∈ ∆ ≥-1 ?
Note that since the cardinality of ∆ ≥-1 coincides with d = dim LogAR(∆) , an affirmative answer to the first question would imply that

L ∆,β | β ∈ ∆ ≥-1 is a basis of LogAR(∆).
Example 12. The cluster variables u 1 = x, u 2 = (1 + x + y)/(xy), u 3 = y, u 4 = (1 + x)/y and u 5 = (1 + y)/x can be taken as first integrals for (a model of) YW A 2 . The associated Fpolynomials are x, y, 1 + x, 1 + y and 1 + x + y. Writing ω F for the logarithmic derivative dLog(F) = dF/F for any F-polynomials, It can be verified that the total derivative of the LHS of the (identically satisfied) identity 5 i=1 R(u i ) = π 2 can be written L F • ω F , the summation being over the set of F-polynomials, with

L x = Log 1 + u 1 + Log u 2 1 + u 2 + Log u 5 1 + u 5 L y = Log u 2 1 + u 2 + Log (1 + u 3 ) + Log u 4 1 + u 4 L 1+x = -Log (u 1 ) -Log (u 2 ) + Log (1 + u 4 ) L 1+y = -Log (u 2 ) -Log (u 3 ) + Log (1 + u 5 ) and L 1+x+y = Log (1 + u 2 ) -Log (u 4 ) -Log (u 5 ) .
One verifies easily that these five ARs form a basis of the space LogAR(A 2 ).

By direct computations, we have verified that it is indeed the case for n ≤ 8 and we conjecture that it actually holds true for every n ≥ 2. We discuss this in a more general setting in the next paragraph.

6.2.3.3 Generalizations to the case of an arbitrary Dynkin diagram. The approaches discussed in the two preceding paragraphs both generalize, each in a straightforward way, when replacing A n by an arbitrary Dynkin diagram ∆. We discuss very briefly these two generalizations below.

The Y-method of paragraph §6.2.3.1 applies as such in general. Everything in it makes sense when ∆ stands for an arbitrary Dynkin diagram. The question whether there are non trivial linear relations between the LogAR i (t)'s with (i, t) ∈ I + ∆ can be investigated using the same approach as in the proof of Proposition 6.7, by first taking into consideration the parts Log(Y i (t -1)) + Log(Y i (t + 1)) of the LogAR i (t)'s. From this, one can deduce rather precisely the general form that any relations between the LogAR i (t)'s can take.

For any i ∈ I, let I + ∆ (i) be the set of t's such that (i, t) ∈ I + ∆ : if ǫ(i) = 1 (resp. ǫ(i) = -1), it is the set of even (resp. odd) elements of {0, . . . , h + 1}. One sets

m i = I + ∆ (i) and logAR i = τ∈I + ∆ (i) (-1) ⌊τ/2⌋ LogAR i (τ) . (Note that m i = h/2 + 1 for all i if h is even, whereas m i ∈ {⌊h/2⌋ + 1, ⌊h/2⌋ + 2} if h is odd). Now let J = J ∆ ⊂ I be the set of representatives of σ ∆ -orbits in I such that j ≤  for any j ∈ J. LogAR j =        logAR j if j =  logAR j + (-1) m j logAR  if j <  .
Finally, one defines K = K ∆ ⊂ J as the subset of the element k of J such that an even number of terms LogAR l (t) are involved in the sum defining LogAR k just above, i.e.

K = k ∈ J k = k and m k is even; or k < k and m k + m k is even .
Then using similar arguments as those used in the proof of Proposition 6.7, one can prove the Proposition 6.13. 1. Any linear relation between the logarithmic abelian relations LogAR i (t)'s with (i, t) ∈ I + ∆ can be written as a linear combinations of the elements LogAR k for k

∈ K ∆ . 2. Consequently, the dimension of YLogAR(∆) = LogAR i (t) | (i, t) ∈ I + ∆ is at least d Y ∆ -|K ∆ |. The bound dim YLogAR(∆) ≤ d ∆ -|K ∆ |
is not sharp, as the case of ∆ = A n with n odd considered above already shows. This occurs for other types as well, as the three following cases, which have been studied by means of explicit computations, show:

• D 4 : one has σ D 4 = Id, h(D 4 ) = 6, m i = 4 for any i ∈ I = {1, . . . , 4}, from which it comes that K = J = I thus |K|= 4. However one verifies that dim YLogAR(D 4 ) = 14 = 16 -2.

In particular, in this case the relations LogAR k for k = 1, . . . , 4 between the LogAR i (t)'s are not linearly independant.

• D 5 : σ D 5 is the transposition ( 45), one has h(D 5 ) = 8, and m i = 4 for any i ∈ {1, . . . , 5}, from which it comes that K is the singleton {4}. It turns out that LogAR 4 corresponds to a genuine linear relation between the LogAR i (t) for i ∈ {4, 5} with (i, t) ∈ I + D 5 hence one has dim YLogAR(D 5 ) = 24 = 25 -1.

• E 6 : σ E 6 is the product of the two transpositions ( 16) and ( 25), h(E 6 ) = 12 and m i = 7 for every i. It follows that K = {1, 2}. But it turns out that there is actually no linear relation at all between the LogAR i (t)'s which form a basis of the space of logarithmic ARs of YW E 6 : one has dim YLogAR(E 6 ) = 42.

Thus the Y-method furnishes an important number of linearly independent logarithmic ARs, but not always a basis of LogAR(∆). It would be interesting to describe another family of elements of this space, whose union with {LogAR i (t) | (i, t) ∈ I + ∆ } forms a spanning set. ⋆

The generation of a basis of LogAR(∆) by means of the dilogarithmic identity (R ∆ ) discussed in §6.2.3.2 allows to get closed formulas for the L ∆,β , but in terms of the involutions τ ± : ∆ ≥-1 and of the sets Ψ(α)'s for α ∈ ∆ ≥-1 . But these formulas are not as explicit and simple as those of the LogAR i (t)'s given by the 'Y-method'. However, the construction of the L ∆,β 's is effective, in the sense that given ∆, one can find the L ∆,β explicitly, a procedure that we have implemented on a computer algebra system. Playing with it leads us to state the following Conjecture 6.14. For any Dynkin diagram ∆, the logarithmic abelian relations L ∆,β (with β ∈ ∆ ≥-1 ) obtained from (R ∆ ) by taking its total derivative, form a basis of the space LogAR(∆).

By direct computations, we have verified that this conjecture is satisfied for all Dynkin diagrams of rank less than or equal to 8 (hence in particular for all the exceptional cases).

Finally, we mention a last natural question about the two families

{ LogAR i (t) | (i, t) ∈ I + ∆ } and { L ∆,β | β ∈ ∆ ≥-1 } of logarithmic abelian relations of YW ∆ :
Question 6.15. How are these two families related? In particular, assuming that the conjecture just above holds true, how is each LogAR i (t) expressed in terms of the basis { L ∆,β } β∈∆ ≥-1 of LogAR(∆)?

6.3 The zig-zag map x T 0 and its inverse.

Our goal here is to give an explicit formula for the birational map x T : M 0,n+3 X A n associated to a certain zig-zag triangulation T of the (n + 3)-gon P n+3 and to get from this interesting results about the geometry of

X A n .
In what follows, n ≥ 2 stands for an integer bigger than 1 and one sets:

(176) m = ⌊n/2⌋ ≥ 1 , m * = m + 1 and m = ⌊(n -1)/2⌋ .
One verifies that, independently of the parity of n, m * and m are always such that m * + m = n.

6.3.1 The zig-zag. We consider the zig-zag triangulation

Z n = Z A n of P n+3 starting by 3 → 1 → 4 → n + 3 → • •
• and ending as follows, depending on the parity of n:

• • • -→ m + 2 -→ m + 5 -→ m + 3 for n even; • • • -→ m + 6 -→ m + 3 -→ m + 5 for n odd.
This triangulation is pictured below in Figure 20. In order to get simpler formulas for the F-polynomials we will deal with below, we will not work exactly with the cluster variables associated to the triangulation Z n of P n+3 but will invert the ones associated to the sources of the quiver associated to Z n (cf. Remark 3.8 above). To this end, we consider the birational involution 93)).

E = E n characterized by E * (v i ) = v i when i is even and E * (v i ) = 1/v i when i is odd (cf. (

6.3.2

The map U n . To deal with a concrete explicit model for the birational map x Z n : M 0,n+3 X A n associated to the zig-zag Z n (defined in ( 125)), we consider the birational parametrization µ :

C n M 0,n+3 , (x i ) n i=1 -→ [∞, 0, 1, x 1 , . . . ,
x n ] and consider the affine birational map

U n = E • x Z n • µ : C n C n .
To make things as clear as possible, we denote by C n x the source affine space (with coordinates x 1 , . . . , x n ) and by C n u the target one (with coordinates u 1 , . . . , u n ). Then it is not difficult to get explicit expressions for the components

U k n of U n = u k n n k=1 : C n x C n u : one has u 1 n = 1 x 1 -1 , u 2 n = x 1 -x n 1 -x 1 , u 3 n = x 2 -x n x 1 -x 2 , u 4 n = (x 2 -x n-1 )(x 1 -x n ) (x n-1 -x n )(x 1 -x 2 ) , u 5 n = (x 2 -x n )(x 3 -x n-1 ) (x n-1 -x n )(x 2 -x 3 ) , . . . . . . . . . u n n = (x m+1 -x m+2 )(x m -x m+3 ) (x m -x m+1 )(x m+2 -x m+3 ) (177)
Our goal here is to study the birational map U n and its converse. Aiming at arguing inductively, we consider the two following linear projections (defined for any n ≥ 3):

• p n : C n u -→ C n-1 u
stands for the projection given by forgetting the n-th coordinate: one has

p n (u) = (u 1 , . . . , u n-1 ) for any u = (u i ) n i=1 ∈ C n u ; • π n : C n x -→ C n-1
x denotes the projection given by forgetting the m * -th coordinate, i.e.

π n (x) = x 1 , . . . , x m , x m * , x m+2 , . . . , x n for any x = (x i ) n i=1 ∈ C n x .
The basic result which will allow to study U n inductively is the following Lemma 6.16. For any n ≥ 3, as rational maps from C n x to C n-1 u , one has

(178) p n • U n = U n-1 • π n .
Proof (sketched). One sets χ = (χ s ) n+3 s=1 = (∞, 0, 1, x 1 , . . . , x n ) (thus χ i+3 = x i for i = 1, . . . , n). Denote by Z x n , the zig-zag Z n decorated by attaching χ s to its s-th vertex for s = 1, . . . , n + 3. Given x = (x i ) n i=1 , one sets for simplicity x • = π n (x) = (x 1 , . . . , x m , x m * , x m+2 , . . . , x n ). Then the lemma follows easily by noticing that, Z x • n-1 is obtained from Z x n by first removing the last arrow of the zig-zag (from m + 5 to m + 3 when n is even, from m + 3 to m + 5 when it is odd) and its (m + 4)-th vertex (decorated by x m * ) then re-labeling the remaining n + 2 vertices cyclically (looking at Figure 20 should make everything cristal clear).

In view of given a closed formula for the converse map to U n , we need first to discuss some nice properties of F-polynomials in the cluster type we are dealing with. 6.3.3 Some properties of F-polynomials in type A. Below, we deal with rational functions in the u i 's. Being aware of this, we will sometimes denote an element R(u) of C(u) just by R in order to simplify the writing. We will also use the following notations: given any n-tuple u = (u 1 , . . . , u n ), one sets u ′ = (u 1 , . . . , u n-1 ), u ′′ = (u ′ ) ′ = (u 1 , . . . , u n-2 ); and ′ u = (u 2 , u 3 , . . . , u n ), ′′ u = ′ ( ′ u) = (u 3 , . . . , u n ), etc. (with the convention that a k-tuple is the empty set for any k ≤ 0).

One defines recursively polynomials

F n = F n (u) ∈ Z >0 [u 1 , . . . , u n ] for every n ∈ N by setting (179) F 0 = 1, F 1 = 1 + u 1 and F n (u) = F n-1 (u ′ ) + u n F n-2 (u ′′ ) for any n ≥ 2 .
For instance, one has F 2 = 1+u 1 +u 2 , F 3 = 1+u 1 +u 2 +u 3 +u 1 u 3 , etc. It also follows immediately from the recurrence relations above that the non zero coefficients of any F n are positive integers.

Proposition 6.17. ] can be written as increasing tuples I = (i 1 , . . . , i ℓ ) of integers i s ∈ |a, b| such that no i s be adjacent to another element of I, i.e. i s+1 > i s + 1 for every s = 1, . . . , ℓ -1.

For any n and any u

= (u i ) n i=1 ∈ C n , one has F n (u) = F n (u n , u n-1 , . . . , u 1 ). 2. Consequently, for n ≥ 2, the identity F n (u) = F n-1 ( ′ u) + u 1 F n-1 ( ′′ u) is satisfied as well. 3. Let a, b ∈ N be such that 1 ≤ a ≤ b ≤ n and set m = b + 1 -a ≥ 1. The F-polynomial F [a
We also set Ω ∅ = {∅}. For such a tuple I, one defines a monomial in the u i 's (for i = 1, . . . , n), by setting u I = ℓ s=1 u i s (with u ∅ = 1) and summing over all the elements of Ω [a,b] , one gets a polynomial with positive integer coefficients:

(181) F [a,b] (u) = I∈Ω [a,b] u I .
Obviously, one has

F ∅ (u) = 1, F [1] (u) = 1+u 1 (Ω [1]
is the union of the empty set with the singleton {1}) and for any n ≥ 2, Ω [1,n] is the disjoint union of Ω [1,n-1] with the set of concatenations (J, n) for all elements ,n] for every n ≥ 0.

J ∈ Ω [1,n-2] . Consequently, for u ∈ C n , one has F [1,n] (u) = F [1,n-1] (u ′ ) + u n F [1,n-2] (u ′′ ), from which it follows that F n = F [1
Since (i 1 , . . . , i ℓ ) → (n + 1i ℓ , . . . , n + 1i 1 ) induces an involution of Ω [1,n] , we get immediately that the polynomial F n = F [1,n] is invariant by (u s ) n s=1 → (u n+1-s ) n s=1 , which proves the first point of the proposition. When combined with (179), this gives us the second one.

As for point 3., it follows from (181) combined with Proposition 2.14 of [START_REF] Fomin | Y-systems and generalized associahedra[END_REF].

We are now ready to define an explicit rational map which will turn out to be the converse of U n .

6.3.4

The map X n . Let n * be the biggest even integer less than or equal to n, i.e. one has n * = n if it is even and n * = n -1 otherwise (mathematically: n * = 2⌊n/2⌋ = 2m). Then one defines an affine rational map of u 1 , . . . , u n by setting ( 182)

X n =        F [1,1+2k] u 1 F [3,1+2k] m k=0 , F [1,n * -2ℓ] u 1 F [3,n * -2ℓ)] m-1 ℓ=0        .
Since ( m + 1) + m = n, X n can (and will) be considered as a rational map from

C n u to C n x . The rational map X n : C n u C n
x also admits a nice inductive definition. For any n ≥ 2, one defines a pair (Y n , Z n ) of rational maps in the variables u 1 , . . . , u n , by first setting

Y 2 , Z 2 = F [1] u 1 , F [1,2] u 1 = 1 + u 1 u 1 , 1 + u 1 + u 2 u 1
and for any n ≥ 2, we define the pair (Y n+1 , Z n+1 ) by setting:

Y n+1 = Y n , ϕ n+1 and Z n+1 = Z n for n even; (183) Y n+1 = Y n and Z n+1 = ϕ n+1 , Z n for n odd,
where for any n ≥ 3, ϕ n stands for the following rational function in u 1 , . . . , u n :

(184)

ϕ n = ϕ n (u) = F [1,n] u 1 F [3,n] ∈ C(u) .
Then it is not difficult (and left to the reader) to verify that the tuple of rational functions obtained by concatenating the two corresponding to Y n and Z n (in this order) coincides with the one formed by the components of X n , a relation which can be written a bit abusively (for any n ≥ 3) as ( 185)

X n = Y n , Z n = Y n-1 , ϕ n , Z n -1 .
One can notice that the rational function ϕ n inserted between Y n-1 and Z n-1 to get X n (for n ≥ 3) can be characterized as the m * -component of the latter. On the other hand, one verifies that Y n-1 and Z n-1 only depend on u ′ = (u 1 , . . . , u n-1 ) and that ϕ n is the single component of X n depending on the variable u n as well. From these observations, one deduces the following counterpart of Lemma 6.16: Lemma 6.18. For any n ≥ 3, as rational maps from C n u to C n-1 x , one has

(186) X n-1 • p n = π n • X n .
Using the relations ( 178) and ( 186) and the properties of F-polynomials discussed in the preceding paragraph, we are going to prove our first main result about U n and X n : Proposition 6.19. As affine rational maps, X n and U n are inverse to each other, i.e. one has

(187) X n • U n = Id C n x and U n • X n = Id C n u .
Proof. Since U n is known to be birational, it suffices to prove that X n • U n coincides with the identity of C n x as an affine rational map, which we are going to prove by induction on n ≥ 2. For n small enough (say n less than 10), one verifies that (187) indeed holds true by explicit direct computations. Let n be big enough for what is to come (n ≥ 6 is ok) and let us assume that the proposition holds true for all n ′ ≤ n, in particular for n ′ = n -1. Then, thanks to (185) and ( 186), establishing the proposition for n reduces to only proving that the following rational identity in the variables x 1 , . . . , x n holds true :

ϕ n U n (x) = x m * .
From (179) combined with formulas (177) and ( 184) for u 1 n and ϕ n , we deduce that this equality between rational functions is equivalent to the following one

⋆ n F [2,n] U n (x) F [3,n] U n (x) = x m * -1 x 1 -1 ,
which we are going to prove by induction. To simplify the writing, below we write U, u k n instead of U n (x), u k n (x), etc. (but we remain aware that all the functions we are dealing with are actually rational functions in the x i 's). Using (179), one obtains that

F [2,n] U F [3,n] U = F [2,n-1] U ′ + u n n • F [2,n-2] U ′′ F [3,n-1] U ′ + u n n • F [3,n-2] U ′′ (188) 
where U ′ stands for (u k n (x)) n-1 k=1 viewed as a (n -1)-tuple of rational functions in x 1 , . . . , x n (and similarly for U ′′ ). Using (⋆ n-1 ) and (⋆ n-2 ) to express

F [2,n-1] U ′ and F [2,n-2] U ′′ in terms of F [3,n-1] U ′ , F [3,n-2]
U ′′ (respectively) and the x i 's in (188), one gets that

F [2,n] U F [3,n] U = x ⌊(n-1)/2⌋+1 • F [3,n-1] U ′ + x ⌊(n-2)/2⌋+1 • u n n • F [3,n-2] U ′′ F [3,n-1] U ′ + u n n • F [3,n-2] U ′′ .
Thanks to the technical lemma below, the

F-polynomial F [3,n-1] U ′ is equal to F [3,n-2]
U ′′ times a certain explicit rational function (in the x i 's) of degree 1. Using this and the explicit formula for u n n given in (177), it is then easy to obtain that (⋆ n ) indeed holds true, which concludes the proof.

Lemma 6.20. For m big enough, the following equalities hold true (as rational functions of x120 ):

(189) F [3,2m-1] U ′ F [3,2m-2] U ′′ = x m-1 -x m+2 x m-1 -x m and F [3,2m] U ′ F [3,2m-1] U ′′ = x m -x m+3 x m+2 -x m+3
.

Proof. The proof goes by recurrence as well, the first cases being easily verified by means of direct explicit computations.

Assume that 2m -1 is big enough and that the identities (189) have been established for all the previous cases. Considering the inductive property of the F-polynomials, it comes:

F [3,2m-1] U ′ F [3,2m-2] U ′′ = F [3,2m-2] U ′′ + (u ′ ) 2m-1 2m-1 • F [3,2m-3] U ′′′ F [3,2m-2] U ′′ = 1 + (u ′ ) 2m-1 2m-1 • F [3,2m-3] U ′′′ F [3,2m-2] U ′′ . ( 190 
)
All the terms in the RHS of the second equality can be made explicit. Indeed, one has

(u ′ ) 2m-1 2m-1 = (x m -x m+2 )(x m-1 -x m+3 ) (x m+2 -x m+3 )(x m-1 -x m ) and F [3,2m-3] U ′′′ F [3,2m-2] U ′′ = x m+2 -x m+3 x m-1 -x m+3 ,
the former formula following easily from (177) and the latter being given by the induction hypothesis. Injecting both formulas in the RHS of equality (190) and after some trivial simplifications, one obtains the left formula of (189). The proof that the right formula holds true is similar.

6.3.5 Some properties of the maps U n and X n . In view of establishing that U n and X n induce isomorphisms between nice Zariski open domains of C n x and C n u , we first establish a few basic properties of these maps, considered as affine rational maps. 6.3.5.1 We begin with the map X n . Considering its inductive definition discussed above, it comes that its indeterminacy locus, denoted by Ind(X n ), is exactly the union of the hyperplane

H u 1 = {u 1 = 0} with the irreducible hypersurfaces H F [3,k] = { F [3,k] = 0 } for k = 3, . . . , n: one has Ind(X n ) = H u 1 ∪ n k=3 H F [3,k] ⊂ C n u .
Recall that except the m * -component ϕ m of X n , all the others actually only depend on u ′ = (u 1 , . . . , u m * , . . . , u n ). Thus if J X n stands for the jacobian determinant of X n (in the variables u 1 , . . . , u n ), it follows from ( 185) and ( 184) that for any n ≥ 3, one has [3, n] 2 for any n ≥ 3 (as it can easily be proven, still by induction), we deduce that [3, k] 2 for any n ≥ 3 . Denoting by JX n the union (in C n u ) of Ind(X n ) with ∪ n k=3 H u j , it follows from the formula above for J X n that X n induces an isomorphism from the complement of JX n in C n u onto its image in C n

J X n = (-1) n+m * ∂ ∂u n F [1,n] u 1 F [3,n] • J X n-1 • p n Since ∂ F [1,n] /(u 1 F [3,n] ) /∂u n = (-1) n n-1 j=2 u j / u 1 F
J X 2 = - 1 u 3 1 and J X n = - n-1 j=2 u n-j j u n+1 1 n k=3 F
x . Since the complement U ∆ of the arrangement of type ∆ = A n (see (119) above) is included in C n u \ JX n , we get that the map under scrutiny induces a rational affine isomorphism (191)

X n | U ∆ : U ∆ ∼ -→ X n (U ∆ ) ⊂ C n x .
In what follows, to simplify, we will denote again this isomorphism by X n . 6.3.5.2 We now consider the map U n . To state some of its properties, we recall the definition of the 'Braid arrangement' of type A n , denoted here by A n (see also [START_REF] Pereira | Resonance webs of hyperplane arrangements. In 'Arrangements of hyper-planesSapporo 2009[END_REF]§4], where it is denoted by A 0,n+3 ): by definition, it is the arrangement of n(n + 3)/2 affine hyperplanes in C n x cut out by ( 192)

n i=1 x i n i=1 x i -1 n 1≤i< j≤n x i -x j .
We denote by X ∆ = C n x \ A n the complement of A n in C n x : it is known that this Zariski open subset of C n x can naturally (although not in a unique way) be identified with the moduli space M 0,n+3 . From the formulas (177) and using Lemma 178, one gets that the indeterminacy set Ind(U n ) of U n is included in X ∆ and that the Jacobian determinant J U n of the induced morphism satisfies

(193) J U 2 = - 1 (x 1 -1) 3 and J U n = (-1) n+m * ∂U n n ∂x m * J U n-1 • π n for any n ≥ 3 .
Let S n,x be the multiplicative subgroup of the field of rational functions in the x i 's spanned by the affine functions x i , x i -1 and x ix j for all i, j = 1, . . . , n (with i j) appearing in (192):

(194)

S n,x = x i , x i -1 , x i -x j i, j = 1, . . . , n, i j ⊂ C(x) .
From ( 177) and ( 193), one deduces easily that J U n belongs to S n,x for any n ≥ 2.121 Consequently, U n induces a rational affine isomorphism

(195) U n | X ∆ : X ∆ ∼ -→ U n (X ∆ ) ⊂ C n u
that we will denote again by U n in what follows to simplify the writing.

The result we aim to prove regarding the two morphisms considered above is the following Proposition 6.21. 1. One has X n (U ∆ ) = X ∆ and U n (X ∆ ) = U ∆ .

2. Consequently, the affine morphism X n in (191) induces an isomorphism from X ∆ onto U ∆ whose converse is induced by the isomorphism U n in (195).

3. It follows that the fundamental group of U ∆ is isomorphic to the one of X ∆ ≃ M 0,n+3 , namely the pure braid group on n + 2 strands : π 1 (U ∆ ) ≃ PB n+2 .

The second and third points of this proposition follow rather straightforwardly from the first, so we will only focus on it. Since both ( 191) and ( 195) are isomorphisms onto their respective images, it suffices to prove that the two following inclusions hold true:

(196)

U n X ∆ ⊂ U ∆ and X n U ∆ ⊂ X ∆ .
We prove successively both inclusions in the next two paragraphs.

6.3.5.3 Proof that U n (X ∆ ) is included in U ∆ .
One has to prove that given any x ∈ X ∆ , that is x = (x i ) n i=1 ∈ C n with none of the linear expressions x i , x i -1 and x ix j for i, j = 1, . . . , n with i < j, being equal to zero, then U n (x) does not belong to any of the coordinate hyperplanes H u k (for k = 1, . . . , n) nor to any hypersurface H α with α ∈ ∆ >0 . This is implied by the fact that (197) for any k or any pair (a, b) ∈ N 2 such that 1 ≤ a ≤ b ≤ n, as rational functions of the x i 's, the k-th component U k n of U n and the composition P a,b = F [a,b] u n belong to the set S n,x defined in (194).

For the u k n 's, this follows immediately from their formulas (177) hence we only have to prove that P a,b ∈ S n,x for any pair (a, b) as above, which we are going to do by induction on n.

For n small, everything can be established by means of explicit computations. So we assume that the statement under scrutiny has been established for n -1 ≥ 2: setting x • = π n (x) = (x 1 , . . . , x m * , . . . , x n ), one has P a,b (x) = P a,b (x • ) ∈ S n-1,x • for any (a, b) with 1 ≤ a ≤ b ≤ n -1. Since S n-1,x • is naturally a subset of S n,x , this answers the question for all these cases and we only have to deal with the P k,n 's for k = 1, . . . , n. The case of P n,n is easy to deal with: since F [n,n] = 1 + u n , it follows from the formula for u n n in (177) that

P n,n = 1 + u n n = (x m+1 -x m+3 )(x m -x m+2 ) (x m+2 -x m+3 )(x m -x m+1 ) ∈ S n,x .
To deal with the other cases, we set:

• ρ k,n = P k,n /P k,n-1 ∈ C(x) for k = 1, . . . , n -1;
• ǫ = (-1) n ∈ { ±1 } (i.e. ǫ is equal to 1 if n is even and to -1 when it is odd); For each k, ρ k,n is considered as an element of C(x) with x = (x 1 , . . . , x n ). But the reader will have in mind that in the formula ρ k,n = P k,n /P k,n-1 defining it, the denominator P k,n-1 coincides with F [k,n-1] (U n-1 ) evaluated on the (n -1)-tuple of indeterminates x • .

• c = (c s ) n+3 s=1 = (0, 1, ∞, x), that is c 1 = 0, c 2 = 1, c 3 = ∞ and c k = x k-3 for k = 4, . . . , n + 3; • K = K ′ = m -2 when n is odd and K = K ′ + 1 = m -2 (i.e. K ′ = m -3) when n is even; • σ = σ n : {1, n -1} → {1, n}
With these notations at hand, we can state the technical result which we will use to prove (197) for the remaining cases:

Lemma 6.22. For n ≥ 3 and k = 1, . . . , n -1, one has

(198) ρ k,n = x m * -ǫ -x m * +ǫ x m * -x m * +ǫ x m * -c σ(k) x m * -ǫ -c σ(k) .
(Note that for k = 3, one has c σ(3

) = c 3 = ∞ hence (x m * -c σ(k) ) (x m * -ǫ -c σ(k) ) = (x m * -∞) (x m * -ǫ -∞) = 1 by convention).
Proof. The proof goes by induction as well. From ( 178) and ( 179), it comes that for n big enough, one has

F [k,n] (U n (x)) = F [k,n-1] (U n-1 (x • )) + u n n • F [k,n-2] (U n-2 (x ••
)) where x •• stands for the (n -2)-tuple of indeterminates given by π n-1 (x • ). Thus, one gets

ρ k,n = F [k,n-1] (U n-1 (x • )) + u n n • F [k,n-2] (U n-2 (x •• )) F [k,n-1] (U n-1 (x • )) = 1 + u n n ρ k,n-1 .
Injecting formula (177) for u n n and the one for ρ k,n-1 given by the induction hypothesis, it is then not difficult to verify that formula (198) for ρ k,n is satisfied as well.

Using the preceding lemma, the fact that (197) holds true for P k,n becomes obvious (for any k ∈ {1, . . . , n -1}): (198) gives us that ρ k,n ∈ S n,x and because P k,n-1 ∈ S n,x • ⊂ S n,x according to the induction hypothesis, we get immediately that P k,n = ρ k,n P k,n-1 ∈ S n,x as well, which finishes the proof that the first inclusion in (196) indeed holds true. 6.3.5.4 Proof of the inclusion of X n (U ∆ ) into X ∆ . Our proof is very similar in spirit to the one given in the preceding paragraph hence many details are left to the reader.

For n ≥ 2, we recall that u stands for the n-tuple of indeterminates (u i ) n i=1 and we denote by F n,u the multiplicative stable subset of C(u) generated by all the u i 's and the F-polynomials F [a,b] and their inverses:

(199) F n,u = u ±1 i , F [a,b] ±1 i = 1, . . . , n , 1 ≤ a ≤ b ≤ n ⊂ C(u) .
For i = 1, . . . , n, we denote by x i n the i-th component of X n . The inclusion under scrutiny follows from the following fact: (200) for any i, j, k = 1, . . . , n such that 1 ≤ j < k ≤ n, the rational functions (of the u i 's) x i n , x i n -1 and x j nx k n all belong to F n,u .

That each x i n belongs to F n,u follows immediately from (182). As for the x i n -1's, this follows from the fact that for any k ≤ n, thanks to the second point of Proposition 6.17, one has

F [1,k] u 1 F [3,k] -1 = F [2,k] + u 1 F [3,k] u 1 F [3,k] -1 = F [2,k] u 1 F [3,k] ∈ F n,u ,
the second equality following from the second point of Proposition 6.17. Lemma 6.18 allows us to argue by induction in what concern the differences x j nx k n and for n given, to only consider the case of those for which j is equal to m * . To this end we set (201) where n stands for the smallest even integer bigger than or equal to n (that is n is equal to n if the latter is even but to n + 1 otherwise; mathematically: n = 2⌊(n + 1)/2⌋). 122 Then, using (183) and some properties of the F-polynomials discussed in §6.3.3, one can verify that for any n ≥ 3, both tuples α n = (α l n ) m l=1 and β n = (β ℓ n ) m ℓ=1 satisfy the following recursive relations:

α l n = x m * n -x l n F [2+2l , n] for l = 1, . . . , m and β ℓ n = x m * n -x m * +ℓ n F [n +3-2ℓ , n] for ℓ = 1, . . . , m
α n = α n-1 , ψ n and β n = β n-1 for n even; (202) α n = α n-1 and β n = ψ n , β n-1 for n odd,
where we have set

ψ n = (-1) n u 3 • • • u n /F [3,n-1] .
From this and still arguing inductively, one deduces closed formulas for the differences x m * nx j n : one has

x m * n -x l n = 2l s=1 u s u 1 u 2 F [2+2l,n] F [3 , 2k-1] and x m * n -x m * +ℓ n = -u 3 m+1-ℓ s=2 u 2s u 2s+1 F [n +3-2ℓ,n] F [3 , n -2ℓ] .
for any l = 1, . . . , m and any ℓ = 1, . . . , m. In particular, one has x m * nx j n ∈ F n,u for any j. As said above, this implies that X n (U ∆ ) is included in X ∆ . 6.3.5.5 For other Dynkin types. The arguments of the two preceding paragraphs taken together give a proof of the first point of Proposition 6.21, from which the last two can be deduced easily.

It is natural to wonder whether this proposition admits versions for the other Dynkin types. One can say that the affine birational map X n : C n u C n x allows to 'linearize' the arrangement of hypersurfaces Arr ∆ when ∆ has type A n in the sense that the complement of the image of the complement of Arr ∆ by X n is an arrangement of hyperplanes (namely, it is A n ). Does a similar statement holds true for Dynkin diagram of other types? More precisely, one asks the Question 6.23. Given a rank n Dynkin diagram of arbitrary type ∆, is there an (explicit?) affine birational map

X ∆ : C n u C n
x inducing an isomorphism when restricted to U ∆ = C n u \ Arr ∆ and such that the complement of X ∆ (U ∆ ) in C n

x by a linear arrangement?

If the answer is yes (and is explicit) in type A, some considerations when ∆ = D 4 suggest that it may not be the case for other types. The fact that the fundamental group of U ∆ in type A is a well-known group in geometry suggests to look at the π 1 (U ∆ )'s for ∆ of arbitrary type.

Questions 6.24. Given a Dynkin diagram ∆ not of type A, is there a presentation of π 1 (U ∆ ) by generators and relations similar to the classical one of the pure braid group? More generally, is π 1 (U ∆ ) isomorphic to a group already known and studied in topology and/or geometry?

For other considerations and questions in the same vein, see §8.3.2.3 further on.

We denote by µ • (resp. µ • ) the composition of mutations on the set of sources (resp. of sinks) in B n (for each, the order does not matter) and we define tuples of integers by setting

ν • = n , n -2 , . . . , 4, 2 , ν • = n -1 , n -3 , . . . , 3 , 1 for n even ; and ν • = n , n -2 , . . . , 3 , 1 , ν • = n -1 , n -3 , . . . , 4, 2 for n odd . Then the n-tuple ν •,• = ν • |ν • obtained by concatenating ν • and ν • is such that µ = (ν •,• ) n+1
(which is the n(n + 1)-tuple obtained by concatenating n + 1 copies of ν •,• ) is a period for S 0 . Indeed, setting µ = i n(n+1) , i n(n+1)-1 , . . . , i 2 , i 1 with i s ∈ {1, . . . , n} for all s = 1, . . . , n(n + 1), we define new seeds inductively as follows:

S 1 = µ i 1 S 0 =       
µ 1 S 0 for n even µ 2 S 0 for n odd and S s+1 = µ i s (S s ) for all s ≥ 1.

Then one has S n(n+1) = µ S 0 = S 0 (as X-seeds).

Given s ∈ {1, . . . , n(n + 1)}, one denotes by Y s the i s -th cluster variable of the s-th seed S s , that we see as an element of C(u). The model of the Y-cluster web of type B n we will deal with is the n(n + 1)-web defined by the all the Y s :

(204)

YW B n = YW Y s s = 1, . . . , n(n + 1) .
Finally, we notice that a right skew-symmetrizer for B B n is given by the diagonal matrix whose diagonal coefficients form the n-tuple d B n = (2, . . . , 2, 1) since one has 

B B n •                     2 0 • • • 0 0 . . . . . . . . . . . . . . . 2 0 0 • • • 0 1                     =                                    0 (-2) n 0 • • • • • • 0 (-2
• • • 0 0 -2 0                                    ∈ Asym n (C) .
We denote by d 1 , . . . , d n (with no reference to B n to simplify the notations) the coefficients of d B n , i.e. one has d i = 2 for i = 1, . . . , n -1 and d n = 1.

7.1.2 The dilogarithmic identity R B n . According to Nakanishi's theorem (cf. Theorem 3.16 above), the Y-cluster dilogarithm identity of type B n is written as follows:

R B n n(n+1) s=1 d i s R Y s = N B n π 2 6
for a certain non-negative integer N B n , which can verified to be equal to n(2n -1). In order to make this (a bit) more explicit, we introduce a new labelling of the Y s 's by setting Y [κ] i = Y i+κn for i = 1, . . . , n and κ = 0, . . . , n. Then the dilogarithmic identity above can also be written as

n κ=0         n-1 i=1 2 R Y [κ] i + R Y [κ] n         = n(2n -1)
π 2 6 .

• Still denoting by A B 3 the non-polylogarithmic AR associated to the preceding functional identity, we thus have the following decomposition in direct sum of the space of ARs of YW B 3 (to be compared with (150)):

(205)

A YW B 3 = LogAR YW B 3 ⊕ R B 3 ⊕ A B 3 .
Comparing the results above to the corresponding ones for YW B 2 , we notice that:

contrarily to YW B 2 which is of maximal rank, YW B 3 is not AMP; • Thus YW B 4 is not AMP ;

-
• One has polrk 2 YW B 4 = 2 hence the space of weight 2 polylogarithmic ARs is not solely spanned by R B 4 .

Let δ = δ B 4 = (δ s ) 20 s=1 be the 20-tuple obtained by concatenating in a row 5 copies of (2, 2, -2, -1). Then the following relation holds true identically on (R >0 ) 4 :

S B 4 20 s=1 δ s S Y s = 4 κ=0 2 S Y [κ] 1 +2 S Y [κ] 2 -2 S Y [κ] 3 -S Y [κ] 4 = 0
where S stands for the symmetric dilogarithm defined in (147) (see also (208) below). Then the two weight 2 polylogarithmic ARs R B 4 and S B 4 form a basis of DilogAR YW B 3 ;

• The space of the polylogarithmic ARs of YW B 4 is 1-codimensional in A YW B 4 . As a supplementary space, one can take the line spanned by the non-polylogarithmic AR associated to the following functional relation which holds true identically on the positive orthant:

A B 4 A Y 4 +A Y 8 +A Y 12 +A Y 16 +A Y 20 = 5 k=1 A Y 4k = 2 π ;
• Consequently, we have the following decomposition in direct sum of the space of ARs:

(206)

A YW B 4 = LogAR YW B 4 ⊕ R B 4 S B 4 ⊕ A B 4 .

⋆

Comparing the properties of the webs YW B n for n ≤ 4 allows us to make the following observations:

compared to the Y-cluster webs associated to B 3 and B 4 , the one associated to B 2 seems a bit particular. Indeed, contrarily to the two former, (1) it is of maximal rank (hence AMP) and ( 2) it carries a rational AR;

As will be clear further in §7.2 where we will discuss the Y-cluster webs of type C, (2) reflects the fact that YW B 2 is also the Y-cluster web of type C 2 (which follows from the fact that B 2 and C 2 are isomorphic as Dynkin diagrams). And the fact that YW B 2 is of maximal rank comes from this extra rational AR.

-Considering only the weight 2 polylogarithmic ARs, we observe that, contrarily to YW B 3 for which DilogAR YW B 3 is spanned by (R B 3 ), the webs YW B n for n = 2, 4 both carry two linearly independent dilogarithmic ARs, (R B n ) and the symmetric one (S B n ).

These two observations suggest a general pattern for the ranks and the ARs of the webs of the family YW B n that we have explored (by means of direct computations) in many cases (say n ≤ 10) and that we are going to present in the next subsection. The case when n = 2 being particular since an extra AR induces the maximality of its rank (this presumably thanks to the coincidence between B 2 and C 2 ), this case will left aside from now on. We thus assume that n ≥ 3 in what follows.

7.1.4 A conjectural pattern about the ranks and the abelian relations of YW B n . One has d Y B • = n(n + 1) so YW B n is a n(n + 1)-web in n variables. Below we use the definition (204) and use the Y s (for s = 1, . . . , n(n + 1)) as first integrals for it. We will also use the notation Y [κ] i = Y i+κn with i = 1, . . . , n and κ = 0, . . . , n. It is by studying many cases through explicit computations that we have been able to draw the general outline we are going to present about the generalization for n ≥ 3 arbitrary. We give below a list of facts verified for the webs YW B n for n ranging from 3 to 8.

Space of common leaves. One has Σ c (YW B n ) = Arr B n for all n ≤ 8.

Ranks. Using the technics discussed in §1.5, we obtain the following values for the (virtual, polylogarithmic and usual) ranks of the webs YW B n 's considered:

ρ • (YW B 3 ) = 9, 6, 2 ρ(YW B 3 ) = 17 polrk • YW B 3 = 12, 1 rk YW B 3 = 14 ρ • (YW B 4 ) = 16 , 10 , 2 ρ(YW B 4 ) = 28 polrk • YW B 4 = 20 , 2 rk YW B 4 = 23 ρ • (YW B 5 ) = 25 , 15 , 2 ρ(YW B 5 ) = 42 polrk • YW B 5 = 30 , 1 rk YW B 5 = 32 ρ • (YW B 6 ) = 36 , 21 , 2 ρ(YW B 6 ) = 59 polrk • YW B 6 = 42 , 2 rk YW B 6 = 45 ρ • (YW B 7 ) = 49 , 28 2 ρ(YW B 7 ) = 79 polrk • YW B 7 = 56 , 1 rk YW B 7 = 58 ρ • (YW B 8 ) = 64 , 36 , 2 ρ(YW B 8 ) = 102 polrk • YW B 8 = 72 , 2 rk YW B 8 = 75 .
We remark that the following relations are satisfied:

the non trivial virtual ranks are given by andρ 3 YW B n = 2 ; in what concerns the non zero polylogarithmic ranks, these are

ρ 1 YW B n = d Y B n -n = n 2 , ρ 2 YW B n = n(n + 1)/2 ,
polrk 1 YW B n = d Y
B n = n(n + 1) and polrk 2 YW B n = 1 (n odd); or 2 (n even) ; finally, the total rank and the polylogarithmic one are related by the following formula:

(207) rk YW B n = polrk YW B n + 1 .
Polyogarithmic ARs of weight 2. As explained above, the dilogarithmic identity (R B n ) always gives rise to a dilogarithmic AR (denoted in the same way) for YW B n .

When n is odd, this is the unique dilogarithmic AR (up to multiplication by a non zero scalar). This is not true when n is even (that is for n = 2, 4, 6, 8) since in this case there exists another such AR which is not a multiple of (R B n ). For each such n, this AR corresponds to a functional identity, denoted by (S B n ), satisfied by the symmetric (cluster) dilogarithm S the definition of which is recalled below: it is the weight 2 cluster iterated integral, with symmetric symbol 1 2 (01 + 10) with 0 as chosen base point: one has ( 208)

S(x) = 1 2 x 0 Log(1 + u) u du + x 0 Log(u) 1 + u du = 1 2 Log(x)Log(1 + x)
for any x ∈ R >0 .

For n even, set m = n/2 and denote by δ = δ B n = δ s n(n+1) s=1

the n(n + 1)-tuple obtained by concatenating in a row n + 1 copies of the n-tuple d

′ = d ′ B n = (d ′ i ) n i=1 defined by d ′ = d ′ B n = (d ′ i ) n i=1 = m copies 2 , . . . , 2 , -2 , . . . , -2 m-1 copies , -1 .
The generalization to B n = B 2m of the symmetric dilogarithmic identities (S B 2 ) and (S B 4 ) is

S B n n(n+1) s=1 δ s S Y s = 0 ,
a functional identity on (R >0 ) n which can as well be written (a bit) more explicitly as

n κ=0          2 m i=1 S Y [κ] i -2 m-1 j=1 S Y [κ] m+ j -S Y [κ] n          = 0 .
The non polylogarithmic AR. The fact that the rank and the polylogarithmic rank of YW B n differ by one (cf. ( 207)) is the manifestation of the existence of an extra non-polylogarithmic AR, whose components are multiples of the function A defined in (149) and which is the one associated to the following identity which holds true identically on (R >0 ) 4 :

A B n n+1 k=1 A Y kn = n π 2 .

⋆

All the assertions above are satisfied for any n less than or equal to 8 (and bigger than 2). But we have taken care to state things in order that everything makes sense, at least formally, for n ≥ 3 arbitrary. We believe that everything indeed holds true in full generality:

Conjecture YW B n . Let n be an integer bigger than or equal to 3. 

DilogAR YW B n =          R B n
when n is odd, R B n , S B n when n is even .

5.

The non-polylogarithmic AR . The following functional equation

(209) n+1 k=1 A Y kn = n ν=0 A Y [ν] n = n π 2
is identically satisfied on (R >0 ) n . The associated AR of YW B n is not of polylogarithmic type hence is linearly independent from the ARs described in 4. just above.

6. Rank and basis of ARs . One has

rk YW B n = polrk YW B n + 1 = n(n + 1) + β n + 1
hence the following decomposition in direct sum holds true:

(210) A YW B n = LogAR YW B n ⊕ DilogAR YW B n ⊕ A B n .
Assuming that this conjecture is true for any n ≥ 3, we obtain that contrarily to the corresponding webs in type A, the webs YW B n are not AMP. If this may seem a little disappointing at first sight, we really believe that the list of statements of this conjecture are interesting since they give a precise description of the ARs (most of these (if not all, see below) being of polylogarithmic type) of a any member of a whole countable series of webs.

Given n ≥ 3, the non logarithmic ARs of YW B n , if they are as indicated in the conjecture (which is known to hold true for n ≤ 8) are interesting for themselves. This is the subject of the next subsection.

7.1.5 A few remark about Conjecture YW B n . Here we discuss some interesting AFEs which would be satisfied assuming that the supplementary conjectured AR(s) of YW B n ((A B n ) for any n, and (S B n ) when n is even) hold true.

7.1.5.1 The case when n is even. An interesting feature of the cluster web of type B 2 is that, modulo equivalence with Newman 6-web (cf. §5.1.2), it carries an AR whose components all are multiple of the classical bilogarithm Li 2 (see §2.2.2.3). Denoting (a bit abusively) this AR by N 6 , it can be verified that it coincides with the difference between the antisymmetric and the symmetric ARs of YW B 2 : one has

N 6 = R B 2 -S B 2 ∈ A YW B 2 .
It is natural to wonder whether a similar phenomenon does occur when the space of dilogarithmic ARs has dimension 2, that is (conjecturally) when n is even: in this case, is the difference R B 2 n -S B n equivalent to an AFE whose components all are multiples of the classical dilogarithm? We discuss explicitly the case B 4 below, guessing that things go the same way for any B 2m with m ≥ 1.

The difference R B 4 -S B 4 is written as follows in explicit form:

4 k=0 2 L 01 Y 1+4k + 2 L 01 Y 2+4k -2 L 10 Y 3+4k -L 10 Y 4+4k = 28 π 2 6 .
where L 10 and L 01 stand for the two weight 2 iterated integrals defined in (146). Since

L 01 (x) = -Li 2 (-x) and L 10 (x) = -Li 2 1 + x -iπ Log(1 + x) + π 2 /6
for any positive x ∈ R, we deduce that setting Z i+4k = -Y i+4k for i = 1, 2 and Z j+4k = 1 + Y j+4k for j = 3, 4 (and k = 0, . . . , 4), then the previous functional identity can be written

(211) 4 k=0 2 Li 2 Z 1+4k + 2 Li 2 -Y 2+4k -2 Li 2 Z 3+4k -Li 2 Z 4+4k = -43 π 2 6 + iπ • L B 4 with L B 4 = 4 k=0 2 Log Z 3+4k + Log(Z 4+4k .
Noticing that all the arguments of the logarithms in the latter sum are real and strictly greater than 1, one deduces that L B 4 ∈ R >0 hence that the real part of the LHS of equality ( 211) is identically equal to -43π 2 /6 on (R >0 ) n . It would be interesting to know whether it is possible to modify the argument of the bilogarithm in (211) in order to make the non-constant imaginary part disappear and thus obtain an holomorphic identity analogous to Newman's identity (N 6 ) only involving the classical bilogarithm Li 2 .

7.1.5.2 About the identity (A B n ). We have verified that identity (A B n ) is satisfied for n ranging from 2 to 12. We are quite confident that it holds true for any n. We make two remarks about this identity below which could be useful to establish the latter fact. The first is a nice Lie-theoretic way to write down this identity. After that, we explain that (A B n ) is equivalent to an explicit algebraic identity which can be expressed in terms of certain F-polynomials.

To make the notations simpler below, we use in some places ∆ to denote the root system B n .

⋆

To begin with, we write down in explicit form the identity under scrutiny for n = 2, 3 and 4:

A B 2 2π 2 = A (u 1 + 1) 2 u 2 + A (u 1 + 1 + u 2 ) 2 u 1 2 u 2 + A (u 2 ) ; A B 3 3π 2 = A (1 + u 2 ) 2 u 3 + A (u 1 u 3 + u 1 + u 2 + u 3 + 1) 2 u 2 2 u 3 + A           u 1 u 2 + u 1 u 3 + u 2 2 + u 1 + 2 u 2 + u 3 + 1 2 u 1 2 u 2 2 u 3           + A (u 3 ) ; A B 4 4π 2 = A (u 3 + 1) 2 u 4 + A (u 2 u 4 + u 2 + u 3 + u 4 + 1) 2 u 3 2 u 4 + A           u 3 2 u 1 + 2 u 1 u 3 + • • • + u 4 + 1 2 u 2 2 u 3 2 u 4           + A (u 2 u 1 u 3 + u 1 u 2 u 4 + • • • + u 4 + 1) 2 u 1 2 u 2 2 u 3 2 u 4 + A (u 4 ) .
Considering the non trivial g-vectors of the arguments of A in each case, we obtain the following list: (0, 1), (2, 1) for n = 2; (0, 0, 1), (0, 2, 1) and (2, 2, 1) when n = 3; and (0, 0, 0, 1), (0, 0, 2, 1) and (0, 2, 2, 1) and (2, 2, 2, 1) if n = 4. We recognize, for each of these three cases, the coordinates (relatively to the usual principal roots) of the n long roots of the root system of type B ∨ n = C n . Since the long roots of C n correspond to the short ones of B n via duality α ↔ α ∨ and considering the labelling of the first integrals of YW B n by the elements α of ∆ ≥-1 discussed in §4.1.2, it comes that the Y[α]'s appearing as arguments of the function A in each of the three functional identities above are the ones associated with the short roots elements of ∆ ≥-1 . 123From the discussion above, it comes that one has (212)

n+1 k=1 A Y kn = α∈∆ ≥-1 α short A Y[α]
from which it follows immediately that (A n ) is equivalent to the following identity

A short B n α∈∆ short ≥-1 A Y[α] = n π 2
where ∆ short ≥-1 stands for the intersection ∆ ≥-1 ∩ ∆ short (see §4.1.2 again). Actually, all that is not at all specific to the cases n = 2, 3 and 4 since one has the Proposition 7.1. For any n ≥ 2, the set { Y kn } n+1 k=1 of cluster first integrals of YW B n appearing in (A n ) coincides with the one formed by the Y[α]'s labeled by the elements of ∆ short ≥-1 . Consequently, the equality (212) holds true identically and A B n can be written as A short B n .

Proof. One has Y n = u n hence it coincides with Y[-α n ] and -α n is a short root (α n is the unique short principal root in type B n ). Let µ •,• be the (composition of) mutation(s) corresponding to the n-tuple ν •,• considered in §7.1.1 above. Then it follows from Theorem 1.4 of [START_REF] Fomin | Y-systems and generalized associahedra[END_REF] that for k = 1, . . . , n + 1, one has Y kn = Y[τ k-1 (-α n )] where τ stands for the composition τ -• τ + where τ ± are the automorphisms of ∆ ≥-1 considered in [START_REF] Fomin | Y-systems and generalized associahedra[END_REF].

According to formula (2.7) therein, τ + (resp. τ -) is the product of the piecewise-linear modifications σ i of the simple reflexion s i 's for all integers i corresponding to a source (resp. to a skink) of the Dynkin quiver B n . Since each σ i transforms a short root into a root of the same type (thanks to [START_REF] Fomin | Y-systems and generalized associahedra[END_REF](2.5)]), we deduce that ∆ short ≥-1 is stable by τ which implies that τ k-1 (-α n ) is short for any k = 1, . . . , n. Since ∆ short >0 has cardinality n, this proves the proposition.

For k ∈ {1, . . . , n + 1}, we denote by α k the element of

∆ short ≥-1 such that Y kn = Y[α k ].
Note that in terms of the terminology introduced in [START_REF] Fomin | Y-systems and generalized associahedra[END_REF], one has α k = α(k -1; n) for every k.

⋆

The starting point of our second remark concerning the identity A B n is the following classical formula for the arctangent function (satisfied for any x ∈ R >0 ):

(213) Arctan(x) = 1 2i Log x -i x + i + π 2
which shows that it can be seen as a logarithmic (i.e. of weight 1) iterated integral on P 1 ramified at ±i and ∞. Since A(x) = Arctan( √ x) for x > 0, it appears that the fact that this function is not an iterated integral comes from the square root. At this point, considering the identities (A B n ) (for n = 2, 3, 4) written above in explicit form, an interesting remark is that replacing u n by its square have the result of transforming any of the n + 1 arguments of A into squares of positive rational functions. More formally, considering the elementary monomial map defined by ( 214)

η = η B n : R >0 n -→ R >0 n , u i n i=1 -→ u = u 1 , . . . , u n-1 , u 2 n ,
then we have the following result (where we use the notations of [START_REF] Fomin | Y-systems and generalized associahedra[END_REF]):

Proposition 7.2. For any κ ∈ {1, . . . , n}:

1. there exists

β κ ∈ ∆ >0 such that Y κn = F[β κ ] 2 /u α ∨ κ ;
2. there exists α κ ∈ {0, 1} n such that η * u α ∨ κ = u α κ 2 and consequently, one has

η * Y κn =       F[β κ ] u α κ       2 where F[β κ ] stands for F[β κ ] evaluated on u (i.e. F[β κ ] = η * F[β κ ] ).
Proof. From [START_REF] Fomin | Y-systems and generalized associahedra[END_REF]§2] and because

Y κn = Y[α κ ] with α κ = α(κ -1; n) ∈ ∆ short >0
(according to the proof of Proposition 7.1), it comes that Y κn = N[α κ ]/u α ∨ κ where the numerator is a product of powers of certain F-polynomials. More precisely, one has

N[α κ ] = (β,d)∈Ψ(α((κ-1);n) F[β] d for a certain subset Ψ(α k ) of ∆ ≥-1 × N >0 . Since α κ = α(κ -1; n),
we deduce from the formula for Ψ(α(k; i)) given p. 911 of [START_REF] Fomin | Y-systems and generalized associahedra[END_REF] that Ψ(α κ ) has only one element, namely α(1-κ; n-1), 2 . Thus setting

β κ = α(1 -κ; n -1), one has Y κn = F[β κ ] 2 /u α ∨
κ , proving the first point. Since the duality α ↔ α ∨ sends the short roots of ∆ = B n onto the long ones of the dual root system ∆ ∨ = C n , we obtain that the α ∨ κ 's (for κ = 1, . . . , n) are exactly the n positive long roots of C n . Relatively to the standard simple roots of ∆ ∨ (which form the dual basis of the one formed by the standard simple roots of ∆), the coordinate vectors of the n long roots of ∆ ∨ are exactly the n-tuples of the form a[ℓ] = (0 ℓ , 2 n-1-ℓ , 1) for ℓ = 0, . . . , n -1, where u ℓ stands here for the string formed by ℓ u's in a row for any u (with the convention that a 0 is the empty string). If α κ = a[ℓ], then setting α κ = (0 ℓ , 1 n-ℓ ) one indeed has η * (u α κ ) = (u α κ ) 2 hence the proposition.

We define n + 1 elements of C(u) by setting y κn = F[β κ ]/u α κ for κ = 1, . . . , n , and y (n+1)n = u n .

Then η * (Y kn ) = (y kn ) 2 and consequently, η * A(Y kn ) = Arctan(y kn ) for every k = 1, . . . , n + 1. Since (214) induces an isomorphism of the positive orthant, it follows that (A B n ) is equivalent (by pull-back under η) to the identity n+1 k=1 Arctan(y kn ) = nπ/2. Then using (213), one obtains that the following chain of equivalences holds true:

n+1 k=1 A Y kn = n π 2 ⇐⇒ n+1 k=1 Log y kn -i y kn + i = -iπ ⇐⇒ n+1 k=1 y kn -i y kn + i = -1 . ⇐⇒ n+1 k=1 (y kn -i) + n+1 k=1 (y kn + i) = 0 .
For ν = 0, . . . , n + 1, let σ ν be the ν-th elementary symmetric polynomial on n + 1 indeterminates. Since y = (y n , y 2n . . . , y (n+1)n ) is a (n + 1)-tuple of rational functions with positive integer coefficients, we deduce from the previous chain of equivalences the sequence of the OEIS given on the right corresponds (possibly up to a shift) to the formula on the left of the same line):

Conjecture about the ranks of XW B n . Assume that n is bigger than or equal to 2.

• [Virtual ranks]. One has

ρ 1 XW B n = d X B n -n = n(n -1)(n 2 + 2n + 4)/6 cf. A332697 ρ 2 XW B n = (n + 1) n + 1 3 cf. A004320 ρ 3 XW B n = n n + 1 3 cf. A00891 ρ 4 XW B n = (3n -2) n + 1 3 /4 cf. A001296 ρ 5 XW B n = n + 1 4 cf. A000332
and ρ σ XW B n = 0 for any σ ≥ 6 ;

• [Polylogarithmic ranks]. One has polrk 1 XW B n = 2(n + 1) n + 1 3 cf. A288961
and polrk w XW B n = 0 for any w ≥ 3 .

It would be quite interesting to know whether the above formulas indeed hold true but for the moment, we are not aware of any approach allowing to do so. Here are a few comments on the formulas above and on what should come just next:

• The sequence of weight 2 polylogarithmic ranks is 11, 37, 101, 226, 442, 785, . . . .

(215) polrk 2 XW B • = 2,
We have no idea of how this sequence continues and the OEIS is not helping in this regard.

Having a (even conjectural) general formula for this quantity would be interesting. The same remark applies to the sequence of total ranks rk 2 XW B • = (10, 50, 161, . . .) as well.

• However, if one disregards the case n = 3, then there is a (unique) entry in the OEIS corresponding to (215), namely the sequence A154323, the first height values of which are 1, 2, 10, 37, 101, 226, 442 and 785. Actually, the sequence A000537 whose general term is A000537(n) = A154323(n) -1 seems even more interesting: it appears in various contexts, and in particular each term can be combinatorially characterized as the number of hexagons with vertices in an hexagonal grid. There is certainly more to find out about the ranks of the X-cluster webs from a combinatorial perspective.

• It is known that numerology of cluster algebras is related, at least in many ways, to combinatoric (e.g. the enumeration of X-clusters and X-cluster variables in finite type in terms of certain polygons, see [S-B1]). This might again be the case for the diverse ranks of XW B n .

For instance, the OEIS provides the following combinatorial interpretation of the k-th term k 4 of the sequence A000332 which might coincide with ρ 5 XW B • = (0, 1, 5, 15, 35, . . .) (up to a shift by 1) : the binomial coefficient n+1 4 which is conjectured to coincide with ρ 5 XW B n is equal to the number of intersection points of diagonals of a (n + 1)-gon where no more than two diagonals intersect at any point inside. We believe that the fact that combinatorial objects of essentially the same type serve also to enumerate the cluster and the cluster variables of the cluster algebra of type B n (i.e. see ?? §12.3]FZII or [START_REF] Fomin | Introduction to Cluster Algebras[END_REF]§5.5]) is not a coincidence.

• Our true interest actually concerns abelian relations and we do not have any guess about a possible description of (a basis of) the space A XW B n for n arbitrary.

Since the Xand Y-cluster webs coincide in type B 2 , the space of ARs in this case has been described above in 5.1.2: it admits a basis formed by logarithmic ARs, two dilogarithmic ARs ((R B 2 ) and (S B 2 )), the AR (A B 2 ) plus an extra rational AR.

We have verified that there is a basis of A XW B 3 formed by logarithmic ARS, eleven dilogarithmic ARs, four rational ARs (all the components of which are multiples of J :

x → 1/(1 + x)) and three others whose components are multiples of the function A.

Extrapolating from the two preceding cases, one may wonder whether a decomposition in direct sum of the following from holds true for any n ≥ 2:

A XW B n = LogAR XW B n ⊕ DilogAR XW B n ⊕ JAR XW B n ⊕ A AR XW B n
where JAR XW B n (resp. A AR XW B n ) stands for the subspace of A XW B 3 formed by ARs whose components are multiples of J (resp. of A).

Cluster webs of type C

The Y-cluster webs of type C share many properties with the same webs in type B. In particular, for any n ≥ 2, YW B n and YW C n have the same (virtual, polylogarithmic, total) rank(s). However, these webs probably are not equivalent for n ≥ 3.

For this reason, on the one hand the structure of the present subsection is similar to that of the previous one, and on the second hand, we give less details and go straight to the point.

As before, below n stands for an integer bigger than 1.

7.2.1 Some notations in type C. The bipartite initial exchange matrix associated to the Dynkin diagram of type C n we will work with is

B C n =                                    0 (-1) n 0 • • • • • • 0 (-1) n+1 0 . . . . . . 0 (-1) n . . . . . . . . . . . . . . . . . . . . . -1 0 . . . . . . 1 0 1 0 • • • 0 0 -2 0                                    .
The other notations in type C n coincide with those of B n : the corresponding sets of sources and of sinks are the same as in the case of B n ; as initial X-seed, we take S 0 = v 0 , B C n where v 0 denotes a n-tuple of variables (203); µ • (resp. µ • ) stands for the composition of mutations on the set of sources (resp. of sinks), etc. Then the n-tuple ν •,• (defined as in the B n case) is a period for S 0 and denoting here by Y s the i s -th cluster variable of the s-th seed, we get 

⋆

We now discuss the non-logarithmic ARs of YW C n : conjecturally, such ARs are either dilogarithmic, or rational. We describe the ARs of these two types below before stating a general conjecture about the ranks and the ARs of the Y-cluster web of type C n for n ≥ 2 arbitrary.

Using the labelling of the Y s 's given by Y [κ] i = Y i+κn for i = 1, . . . , n and κ = 0, . . . , n, it follows from Nakanishi's theorem that the following identity holds true:

R C n n κ=0         n-1 i=1 R Y [κ] i + 2 R Y [κ] n         = n(n+1) π 2 6 .
Similarly to what does occur in type B, when n = 2m is even, it is expected that the web YW C n carries a supplementary symmetric dilogarithmic AR associated to the following identity

S C n n κ=0          m i=1 S Y [κ] i - m-1 j=1 S Y [κ] m+ j -2 S Y [κ] n          = 0
which is conjectured to hold true identically on (R >0 ) n .

Finally, one conjectures that the following rational identity holds true:

J C n J Y n + • • • + J Y (n+1)n = n+1 κ=1 J Y κn = 1
where J stands for the rational function J : x → 1/(1 + x). As it can be verified that the cluster variables Y κn 's for κ = 1, . . . , n + 1 coincide with the Y[α]'s with α ∈ ∆ long ≥-1 (where ∆ now stands for the root system of type C n ), the previous algebraic identity can also be written as 

α∈∆ long ≥-1 J Y[α] = 1 .
rk YW C n = polrk YW C n + 1 = n(n + 1) + β n + 1
hence the following decomposition in direct sum holds true:

(217) A YW C n = LogAR YW C n ⊕ DilogAR YW C n ⊕ J C n .
By direct computations, we have verified the above conjecture for n ≤ 10.

7.2.2 About the numerology of XW C n . We won't say much about the ranks of the cluster webs XW C n because all these seem to precisely coincide with the corresponding ones of XW B n .

Replacing B n by C n everywhere in §7.1.6 gives us a series of statements which all make sense and which all have been checked to be valid for every n ≤ 10.

The Y-cluster webs of type C share many properties with the same webs in type B. In particular, for any n ≥ 2, YW B n and YW C n have the same (virtual, polylogarithmic, total) rank(s). However, these webs probably are not equivalent for n ≥ 3.

Cluster webs of type D.

The structure of the present subsection is similar to that of the previous one, therefore we give less details and go straight to our points. Since the Dynkin diagrams D n are simply laced, one might expect that the Y-cluster webs of type D satisfy the same nice properties as those of the corresponding webs in type A. Unfortunately and somewhat surprisingly, this is not the case.

In the sequel n stands for an integer bigger than 3.We set m = ⌊n/2⌋ and m = ⌊(n -1)/2⌋.

7.

3.1 Numerology of cluster webs of type D. The bipartite initial exchange matrix associated to the Dynkin diagram of type D n we will work with is (cf. Figure 12):

B D n =                                         0 1 0 0 0 • • • 0 -1 0 -1 -1 0 • • • . . . 0 1 0 0 0 0 1 0 0 1 0 . . . 0 0 0 -1 0 . . . 0 . . . . . . . . . (-1) n-1 0 • • • • • • 0 (-1) n 0                                         .
The set of sources (resp. of sinks) is {1, 3} ∪ {2s | s = 2, . . . , m } (resp. {2} ∪ {1 + 2s | s = 2, . . . , m }).

The n 2 -tuple µ D n obtained by concatenating n copies of the n-tuple (1, 3, 4, . . . , 2m, 2, 5, 7, . . . , 1+ 2 m) is a period for the initial seed v, B D n where v stands for the n-tuple of variables (u 1 ) -1 , u 2 , (u 3 ) -1 , (u 4 ) -1 , u 5 , . . . , (u n-1 ) (-1) n-2 , (u n ) (-1) n-1 .

Denoting by Y s the i s -th cluster variable of the s-th seed (which is the one obtained from the initial one by applying the mutations corresponding to the s first elements of µ D n ), we have ( 218)

YW D n = YW Y s s = 1, . . . , n 2 .
It is thus a n 2 -web in n variables which carries the abelian relation associated to the following dilogarithmic identity, which holds true identically according to the main result of [Chap]:

R D n n 2 i=1 R(Y i ) = n(n-1) π 2 6 .
7.3.1.1 Numerology of the YW D n 's. By direct computations, one obtains that the ranks of YW D n for n = 4, . . . , 8 are as follows: 2. The virtual and polylogarithmic ranks of YW D n are given by

ρ • (YW D 4 ) = 12 , 6 , 1 ρ(YW D 4 ) = 19 polrk • YW D 4 = 16 , 1 rk YW D 4 = 17 ρ • (YW D 5 ) = 20 ,
ρ • YW D n = n(n -1) , n(n -1)/2 , 1 and polrk • YW D n = n 2 , 1 .
Thus ρ YW D n = 3n(n -1)/2 + 1 and polrk YW D n = n 2 + 1.

3. One has rk YW D n = polrk YW D n = n 2 + 1 hence the following decomposition:

(219) A YW D n = LogAR YW D n ⊕ R D n .
We have verified that this conjecture is satisfied for n ranging from 4 to 8. If our conjecture is true, this would imply that the YW D n 's do not form a series of AMP webs, which would be a little disappointing, especially considering that the associated Dynkin diagrams are simply laced.

We now turn to the study of the X-cluster webs of type D.

7.3.1.2 Numerology of the XW D n 's. We have seen that XW D n is a d X D n -web in n variables, with d X D n = n(n -1)(n 2 + 4n -6)/6. By direct computations, one obtains that the ranks of XW D n for n = 4, . . . , 8 are as follows (where we write W D n instead of XW D n to save space): (48,42,32,17,[START_REF] Arkani-Hamed | Grassmannian geometry of scattering amplitudes[END_REF] polrk (125,115,95,60,5) polrk (The ranks polrk w (W D n for w ≥ 4 and rk(W D n are not given for n from 5 to 8 because we have been unable to compute them. For n = 5 already, the calculations were too huge to be carried out with the (yet powerful) machine we had at our disposal).

ρ • W D 4 =
• W D 4 = 88, 47, 2 rk(W D 4 = 137 ρ • W D 5 =
Even if the table of ranks above is somehow incomplete, it is not too difficult to extrapolate from it what might be (most of) the ranks of XW D n for n arbitrary.

Indeed, the values above satisfy the following relations:

ρ 1 XW D n = d X D n -n ρ σ XW D n = ρ σ-1 XW D n - n -2 + σ σ for σ = 2, 3, 4 , polrk 1 XW D n = 2 d X D n -|(D n ) ≥-1 |= 2 d X D n -n 2 (220) polrk 3 XW D n = 2
n -1 3 and polrk w XW D n = 0 for any weight w ≥ 4 .

And we conjecture that this is the case in full generality:

Conjecture XW D n . Let n be an integer bigger than or equal to 4.

The ramification of XW D n is polylogarithmic and its variety of common leaves coincides

with the corresponding cluster arrangement: one has Σ c XW D n = Arr D n .

2. The relations in (220) are satisfied;

3. One has polrk XW D n = rk XW D n < ρ XW D n hence this web is not AMP but all its ARs are polylogarithmic, of weight 1,2 or 3.

Should it be satisfied, this conjecture does not tell us everything about the webs XW D n 's, even for their very basic invariants. Indeed, the sequences corresponding to the fifth virtual ranks and the second polylogarithmic ranks of these webs start as follows ρ 5 X D • = (1, 5, 24, 56, . . .) and polrk 2 X D • = (47, 149, 344, 671, . . .)

and both are quite mysterious. Even with the help of the OEIS, we haven't been able to guess a closed formula of its n-th term in function of n.

Note also that it would be a bit desapointing (at least for the author of theses lines) should these webs not be AMP. Indeed, one would have expected a uniform behavior, similar to the corresponding webs in Dynkin type A, for cluster webs attached to simply laced Dynkin diagrams.

If it turns out that this would have been too naive and that the X D n 's are not AMP, these webs are nevertheless quite interesting since they carry trilogarithmic ARs. It would be interesting to have a better understanding of such ARs for n arbitrary.

7.3.2 Some remarks about XW D 4 and XW D 5 . The fact that cluster webs carry dilogarithmic ARs must be considered as well established by now. What is more interesting and less well understood is the polylogarithmic ARs of higher weights that such webs could carry.

The X-cluster webs of type D are interesting in this respect since, as suggests the explicit polylogarithmics ranks of the cases n = 4, . . . , 7 given at the begining of §7.3.1.2, it could happen that each XW D n carries many trilogarithmic abelian relations.

In the next two paragraphs, we make a few preleminary remarks in this regard in case D 4 and D 5 respectively. We only touch upon these questions superficially. They definitely deserve to be studied more in depth. Actually, the web XW ′ D 4 as well as the fact that it carries a trilogarithmic identity, was known already: it is the web W GGSVV considered in [GSVV] and discussed above in §2.2.5.2.

Viewed the properties it satisfies (carrying the two polylogarithmic ARs of higher rank and being AMP), XW ′ D 4 appears as being more interesting than the complete X-cluster web XW D 4 itself and for that reason, it is interesting to understand it better.

It turns out that XW ′ D 4 can be constructed from the complete XW D 4 independently of any consideration about abelian relations. Indeed, let R be the cyclic (of order 3) symmetry of D 4 and denote (125,115,95,60,5) and polrk • XW D 5 = 235, 149, 8 thus ρ XW D 5 = 400 and polrk XW D 5 = 392. We haven't been able to determine rk XW D 5 (the computations were too heavy) so we do not know if this web is AMP, has only polylogarithmic ARs, or whether something else happens.

The space of trilogarithmic ARs of XW D 5 has dimension 8 and admits a basis (β i ) 8 i=1 which can be explicitly constructed. In particular, β 1 and β 2 can be chosen such that they form a basis of the trilog ARs of a 40-subweb of XW This shows that XW 12 D 5 has AMP rank. Moreover, it can be verified that this web has intrinsic dimension equal to four hence it is likely equivalent to a pull-back of the 40-subweb XW ′ D 4 considered in the previous paragraph.

More generally, it can be verified that the union of the supports of the height β i 's is that of a strictly proper 100-subweb of XW D 5 , denoted by XW ′ D 5 , and such that (95,85,65,35,4) 

ρ • XW ′ D 5 =

⋆

To finish our discussion about cluster webs in type D, let us say that they remain still quite mysterious and that many elementary questions still arise about them. As an example, one can mention the secondary X-cluster webs of this kind, namely the UXW D n 's. According to Theorem 5.5, UXW D 4 is equivalent to Kummer's tetralogarithmic web hence carries tetralogarithmic ARs. It could be the case that this web is the first of a whole series of webs enjoying this interesting property. This question is wide open. Actually, nothing is known about UXW D n for n ≥ 4. For instance, having (even conjectural) statements about its numerology (e.g. closed formulas for its ranks) would already be interesting.

About the Y-cluster webs of bi-Dynkin type.

A central topic in this memoir is constructing new AMP webs from cluster algebras. A relevant notion in this respect is that of cluster period, since to each period of a cluster algebra is associated a dilogarithmic AR of the associated web. And as the examples considered above show, numerous webs of this kind are AMP, with only polylogarithmic ARs, of weight 1 or 2.

In this subsection, we examine in more detail the Y-cluster webs associated with pairs of Dynkin diagrams. While it appears that not all of these webs are AMP, many of them are which leads us to formulate several conjectures about them.

7.4.1 Notations. We introduce/recall quickly some notations we will use in the lines below:

-∆ and ∆ ′ are Dynkin diagrams, of rank n and n ′ respectively; -To simplify the discussion, we will assume that ∆ and ∆ ′ are such that the type of the former is smaller than that of the latter diagram (with respect to the lexicographical order) and that n ≤ n ′ when both ∆ and ∆ ′ have the same type;

h and h ′ stand respectively for the Coxeter numbers127 of ∆ and ∆ ′ ;

-∆ ⊠ ∆ ′ (resp. ∆ ∆ ′ ) denotes the 'triangle product' (resp. the 'square product') of the alternating Dynkin quivers ∆ and ∆ ′ (as defined in [START_REF] Keller | The periodicity conjecture for pairs of Dynkin diagrams[END_REF]§3.3], see also §3.3.1.4 above);

-We use the simpler notation µ ∆,∆ ′ for the period i hal f ∆,∆ ′ defined in Remark 3.19; -YW ∆,∆ ′ denotes the cluster web associated to the period µ ∆,∆ ′ ; -YW ∆,∆ ′ is the cluster web associated to the period i hal f ∆,∆ ′ defined in Remark 3.19; d ∆,∆ ′ stands for the degree of YW ∆,∆ ′ ; -F ∆,∆ ′ denotes the set of F-polynomials of YW ∆,∆ ′ (cf. (90) for a definition); -Arr ∆,∆ ′ is the arrangement of hypersurfaces in the initial torus cut out by F ∆,∆ ′ .

to save space, for 'rrr ′ denoting 'ρ ′ , 'polrk ′ of 'rk ′ , we will sometimes denote them by rrr(∆, ∆ ′ ) (or rrr • (∆, ∆ ′ )) instead of rrr YW ∆,∆ ′ .

-For U, U ′ ∈ {A, B, C, D, E, F, G}, an object associated to a pair (∆, ∆ ′ ) will be said of type UU ′ if the Dynkin diagrams ∆ and ∆ ′ are of type U and U ′ respectively.

We recall that it has been conjectured (cf. Conjecture 4.12) that one has d ∆,∆ ′ = nn ′ (h + h ′ )/2 for any pair (∆, ∆ ′ ). This has been established for any ∆ ′ when ∆ = A 1 (see Corollary 4.9) and in the case when both ∆ and ∆ ′ are of type A (see Corollary 4.11).

Since the case when one of the two considered Dynkin diagrams is A 1 (or equivalently, has rank 1) has been extensively discussed in preceding sections, we assume from now on that both ∆ and ∆ ′ have rank bigger than 1: one has

n = rk ∆ ≥ 2 and n ′ = rk ∆ ′ ≥ 2 .
7.4.2 Some conjectural statements. Given the two following facts:

1. the Y-cluster webs YW A n 's all are AMP with only logarithmic and (one) dilogarithmic ARs (as established in §6.2);

2. the Y-cluster webs of bi-Dynkin type AA (hence in particular the one in point 1.) can be described in a uniform manner by means of projective geometry (more precisely, in terms of forgetful maps on moduli spaces of projective configurations of points, cf. §4.2.5), it is natural to wonder whether the YW A m ,A n 's are AMP or not, and by a straightforward generalization, to consider the same question for pairs with ∆, ∆ ′ of arbitrary types.

The explicit study on numerous cases that we have done (see below for some examples) leads us to the conclusion that the answer is different according to the bi-type UU ′ of (∆, ∆ ′ ), but is independent of the ranks n, n ′ for each fixed bi-type (possibly modulo a finite number of exceptions).

To provide a framework for the discussion to come, it is useful to consider the following series of statements which make sense mathematically for each Dynkin pair (∆, ∆ ′ ) as above:

Statements YW ∆,∆ ′ . 1. Degree . YW ∆,∆ ′ is a d ∆,∆ ′ -web in nn ′ -variables with d ∆,∆ ′ = d Y ∆,∆ ′ = 1 2 nn ′ h + h ′ . 2. F-polynomials . The set of F-polynomials F ∆,∆ ′ has cardinality d ∆,∆ ′ -nn ′ .
Moreover, for any cluster variable x element of YW ∆,∆ ′ , the set of irreducible factors of the non-monomial part of 1 + x is included in F ∆,∆ ′ .

3. Ramification . For any cluster first integral x of YW ∆,∆ ′ , one has B x = {0, -1, ∞} and consequently, this web has polylogarithmic ramification. Moreover, the variety of common leaves Σ c YW ∆,∆ ′ coincides with the corresponding cluster arrangement: one has

Σ c YW ∆,∆ ′ = Arr ∆,∆ ′ .

Virtual rank(s) .

The virtual ranks of YW ∆,∆ ′ are given by

ρ • YW ∆,∆ ′ = d ∆,∆ ′ -nn ′ , nn ′ , 1 hence ρ YW ∆,∆ ′ = d ∆,∆ ′ + 1 .

Polylogarithmic rank(s) .

Regarding the polylogarithmic ranks of YW ∆,∆ ′ , one has

polrk • YW ∆,∆ ′ = d ∆,∆ ′ , 1 therefore polrk YW ∆,∆ ′ = d ∆,∆ ′ + 1 . 6. Dilogarithmic AR . The space DilogAR YW ∆,∆ ′ is 1-dimensional, spanned by R ∆,∆ ′ .
7. Rank and basis of ARs . One has

polrk YW ∆,∆ ′ = rk YW ∆,∆ ′ = ρ YW ∆,∆ ′ = d ∆,∆ ′ + 1
hence YW ∆,∆ ′ is AMP and the following decomposition in direct sum holds true:

(222) A YW ∆,∆ ′ = LogAR YW ∆,∆ ′ ⊕ R ∆,∆ ′ .
7.4.3 When one of the Dynkin diagrams is exceptional. By considering several examples, we first are going to show that the preceding statements are not all satisfied in full generality. It even seems to be the rule when one of the Dynkin diagrams is of exceptional type : this is the case that we are going to discuss now.

If one of the Dynkin diagrams is of exceptional type, then necessarily ∆ ′ is of type E, F or G (since we assume ∆ ≤ ∆ ′ ). We have looked at the corresponding webs when ∆ has rank 2.

Here are the results of some of our computations:

• The case when ∆ ′ = G 2 and ∆ is A 2 or B 2 have already be considered above, see §3.3.2.3.3 and §3.3.2.3.4 respectively. These webs are not AMP. The same occurs when ∆ = G 2 as well since ρ • (G 2 , G 2 ) = (20, 14, 4) and polrk • (G 2 , G 2 ) = (24, 1).

• As for YW A 2 ,F 4 , it is a 60-web in 8 variables such that ρ • = (52, 24, 1) and polrk • = (60, 1).

• For the case when (∆, ∆ ′ ) = (A2, E 6 ): YW A 2 ,E 6 is a 90-web in 12 variables with ρ • A 2 , E 6 = 78, 12, 1 and polrk • A 2 , E 6 = (90, 1). It follows that this web is AMP.

• The web YW A 2 ,E 7 is a 147-web in 14 variables such that ρ • (A 2 , E 7 ) = (133, 42, 1).

Even if they are not many and incomplete (the computations to determine polrk • (A 2 , E 6 ) or to investigate the case when ∆ ′ = E 8 were too heavy), the values above strongly suggest that some of the Statements YW ∆,∆ ′ do not hold true when ∆ ′ is exceptional and distinct from E 6 . In particular, these webs do not seem to be AMP. If true, this conjecture would tell us in particular that many of the series of Y-cluster webs of bi-Dynkin types are AMP.

If we believe that the previous Conjecture indeed holds true, we must confess that we don't have any insight of any conceptual reason explaining why it is the case when the Dynkin diagrams are in the list (223), and why this (seemingly) does not happen for most of the other pairs. For instance, we have no idea why the YW D n 's (case (A 1 , D n )) might all be not AMP whereas it may be the case for the YW A 2 ,D n 's.129 This is unexpected and seems rather mysterious in our view.

We think that the cluster webs of bi-Dynkin types are very interesting webs and that there is still a lot to understand about them. We discuss supplementary questions regarding them in the next subsection.

7.4.5 Complementary questions. We have seen that, in some cases, the 'Statements YW ∆,∆ ′ ' are not satisfied. But a closer look shows that this only concerns some of them, and not all. This observation led us to state the following Conjecture 7.7. For any pair of Dynkin diagrams (∆, ∆ ′ ):

• The three first Statements YW ∆,∆ ′ are satisifed.

• One has ρ 1 YW ∆,∆ ′ ) = d ∆,∆ ′ -nn ′ and polrk 1 YW ∆,∆ ′ ) = d ∆,∆ ′ .
The most important points in the previous conjecture are the fact that the ramification of the web is only polylogarithmic and that F ∆,∆ ′ is of cardinality d ∆,∆ ′ . For instance, the equality polrk 1 YW ∆,∆ ′ ) = d ∆,∆ ′ would follow quite easily from this. Since the degree d ∆,∆ ′ of the web is conjecturally equal to the length nn ′ (h + h ′ )/2 of the period used to construct YW ∆,∆ ′ , one can ask if the same statement holds true more generally Question 7.8. Let µ be an irreducible cluster period of length k such that the associated Pcluster web W µ = W x µ (s) | s = 1, . . . , k has degree k. 130 Has F(W µ ) cardinality k and does it contain the set of irreducible factors of 1 + x for any cluster first integral x of W µ ?

The first of the 'Statements YW ∆,∆ ′ ' which is not satisfied in all the cases we have considered is the formula ρ 2 (∆, ∆) = nn ′ which does not always hold true, for instance for pairs (A 2 , ∆ ′ ) with ∆ ′ of exceptional type. It would be interesting to have a general formula for the second virtual rank in any bi-type:

Problem. Find a closed formula for ρ 2 (∆, ∆) in terms of the two involved Dynkin diagrams.

To finish our discussion of the Y-webs of bi-Dynkin types, we list below some properties that a web YW ∆,∆ ′ may or may not satisfy, which may be added to the seven Statements YW ∆,∆ ′ . They are direct generalizations of some properties already considered before about the Y-cluster webs YW ∆ associated to one Dynkin type (which can equally be seen as those of bi-Dynkin type (A 1 , ∆)). We start by stating them in a row and comment on them right afterwards:

8. Logarithmic ARs . The logarithmic abelian relations LogAR i (t) for (i, t) ∈ I + ∆,∆ ′ form a basis of LogAR YW ∆,∆ ′ and consequently, one has polrk 1 (YW ∆,∆ ′ ) = d ∆,∆ ′ . 9. Monodromy of R ∆,∆ ′ . By monodromy, the dilogarithmic AR R ∆,∆ ′ generates the whole space of polylogarithmic abelian relations which is LogAR YW

∆,∆ ′ ⊕ R ∆,∆ ′ .
10. Differentiation of R ∆,∆ ′ . By differentiation, R ∆,∆ ′ generates the whole space of polylogarithmic abelian relations of YW ∆,∆ ′ .

11. Accessibility of R ∆,∆ ′ . The dilogarithmic identity (R ∆,∆ ′ ) is accessible from (R A 2 ).

12. Non linearizability . The web YW ∆,∆ ′ is not linearizable.

We do not have defined yet what the notations LogAR i (t)'s and I + ∆,∆ ′ of 8. refer to, but these are just the straightforward generalizations of those of §6.2.3.1 to the bi-Dynkin cases. Similarly, the ninth and tenth points just above are the direct generalization to pairs of Dynkin diagrams of the material discussed before in the case of a single diagram (cf. §6.2.3.2 regarding 10. for instance). Notice that stating 9. in a precise way would require beforehand to know what is the topology ( at least the fundamental group) of the complement of the set of common leaves of YW ∆,∆ ′ in the initial torus T nn ′ . According to the third of the Statements YW ∆,∆ ′ , it is conjectured that this complement coincides with that of the cluster arrangement Arr ∆,∆ ′ . These arrangements of hypersurfaces appear as rather interesting (at least from this point of view) and would deserve to be studied more systematically.

The accessibility of R ∆,∆ ′ from the 5-terms relation is a natural questions stated at the end of the fifth section of [KY] (see also §3.3.2.5 above). In this paper, the authors prove accessibility in finite type (i.e. when ∆ = A 1 ) and also in case (A 3 , A 3 ) which is treated as an example.

Finally, as for the twelfth point above, it is a very natural question from the point of view of webgeometry to wonder about the linearizability of cluster webs YW ∆,∆ ′ . We have proved that these webs are not linearizable when ∆ = A 1 (see Proposition 4.13), it is very natural to conjecture that it is the case in full generality. Using the fact that a necessary condition for a web to be linearizable is to be compatible with a projective connection (cf. [Pi4] for more details), we have verified this conjecture for many pairs (∆, ∆ ′ ).

Questions, problems and perspectives

We believe that one of the main interests of the material and the results presented in the seven previous sections is the important number of questions and perspective they lead to.

Many questions and conjectures have already be stated before. We come back to some of them below. But we also discuss several new things. Some are precise questions rigorously stated, others just vague discussions about general ideas which may (or may not) be fruitful. The unique general structure to be found in this section is that we have more or less tried to discuss different things according to their order of appearance in the preceding sections: first we discuss webs, then polylogarithms/iterated integrals and their functional equations, to eventually focus on questions related to cluster algebras.

In web geometry.

8.1.1 Characterisation of virtual ranks of AMP webs. A classical approach to study the properties of a projective curve C ⊂ P n in algebraic geometry is to try to relate its invariants to those of a general hyperplane section Γ = C ∩ H. In this regard, the property for the curve to be ACM is particularly interesting since in this case several of its numerical invariants can be recovered from those of Γ. This leads in particular to characterize the hyperplane section Γ coming from an ACM curve C, for instance in terms of its Hilbert function h Γ . The problem of characterizing and if possible of describing the Hilbert functions of general hyperplane sections of ACM curves is mentioned in [?, p. 94-95] and has been touched in several papers. This problem about about algebraic curves has a straightforward generalization to webs:

Problem: Characterize and describe the possible sequences of virtual ranks of AMP webs.

Since AMP webs which are not algebraizable exist (the Xor Y-cluster webs in type A n for n ≥ 2 for instance), this problem is a strict generalization of the corresponding problem for projective curves and all the more so since it covers the case of non irreducible curves as well, a case left aside most of the time by algebraic geometers. 131The problem above is easily answered for planar webs but we believe it is a very difficult one in full generality. Even the case of webs in three variables seems completely out of reach at the time of writing. Even a partial answer would be interesting since it could give a way to discriminate non-linearizable AMP webs just by looking at their virtual ranks. The first questions in this direction which comes to our mind is the specific following one: Question 8.1. Given n ≥ 3, does the sequence of virtual ranks ρ • YW A n = n(n + 1)/2 , n , 1 coincide with that of a projective curve of degree n(n + 3)/2 in P n ?

We believe that the answer is negative for any n ≥ 3. Knowing if it is indeed the case when n = 3 would already be interesting.

8.1.2 Ranks of webs defined on configuration spaces Given two positive integers n and m such that m + n > 2, recall the web in mn variables W Conf m+n+2 (P m ) introduced in §1.2.7.2 which by definition is the web on the moduli space of projective configurations Conf m+n+2 (P m ) defined by the m+n+2 n-1 n+3 4 rational first integrals π I,J (cf. ( 3)) for all pairs (I, J) in P(m, n). For m = 1, one recovers the web W M 0,n+3 studied in [Per] where the author determines its virtual ranks, and shows that the total virtual rank coincides with the standard rank of this web which therefore is AMP. Considering this, a natural question is to compute the virtual ranks and the standard rank of W Conf m+n+2 (P m ) when m ≥ 2.

More precisely, for σ ≥ 1, let ℓ σ (m, n) stands for the dimension of the vector space spanned by the powers of order σ of the differentials of the first integrals π I,J 's at a generic point ζ ∈ ζ ∈ Conf m+n+2 (P m ). The question which seems quite natural at this point is the following: Question 8.2. What is the value of ℓ σ (m, n) for m, n, σ ∈ N * in general? Does it exist a closed formula for this quantity in terms of these three integers? When σ = 1, it is easy to get that ℓ 1 (m, n) = mn for every m, n ≥ 1 but the computation of ℓ σ (m, n) for σ > 1 seems to be quite more difficult in general. This is a problem of geometric and combinatorial nature and we believe that being able to give a formula for ℓ σ (m, n) would be meaningful regarding the (local or even global) geometry of the moduli space Conf m+n+2 (P n ) on which the web W Conf m+n+2 (P m ) naturally lives.

A preliminary exploration relying on brute-force computations leads us to conjecture that the following formulas hold true:

• Case σ = 2 with m, n ≥ 1 arbitrary: ℓ 2 (m, n) = mn(mn + 1) 2 ;

• Case m = 2, with σ ≥ 3 and n ≥ 1 arbitrary:

ℓ 3 (2, n) = n(n + 1)(7n + 5) 6 , ℓ 4 (2, n) = n(n + 1)(n + 2)(11n + 9) 24 , ℓ ν (2, n) = d 2,n for ν ≥ 5 • Case m = 3, σ = 2, 3 and m ≥ 1 arbitrary: (224) ℓ 3 (3, n) = n(23n 2 + 27n + 10) 6 .
Although it would be interesting to know whether these formulas are indeed correct, these are not satisfying in the form above since at the exception of the formula for ℓ 2 (m, n), the symmetry between m and n132 is not apparent in any of them. It would be more satisfying to have a disposal (even conjectural) formula for ℓ σ (m, n) which be symmetric in m and n.

Even more interesting but less clear at this point, is the possibility to have geometric or/and combinatorial interpretations for the quantities ℓ σ (m, n)'s. For instance, formula (224) for ℓ 3 (3, n) has been conjectured after considering the first corresponding values for n = 1, 2, 3, 4, which are • Let S 2 be the stratum of Conf 7 (P 2 ) formed by configurations of seven points similar to the one in the picture of the middle of Figure 21. It has dimension 3 and one verifies that W S 2 = W Conf 7 (P 2 ) | S 2 is a 18-web in three variables, with ρ • W S 2 = (15, 12, 8, 3) hence with total virtual rank equal to 38. Considering only harmonic hyperlogarithmic ARs133 for this web, we have constructed 26 (resp. 9) linearly independent such ARs of weight 1 (resp. of weight 2). Thus rk(W S 2 ) ≥ 35. On the other hand, using the criterion of §1.5.2, we have obtained that rk(W S 2 ) = ρ(W S 2 ) = 38 hence this web is AMP. It would be interesting to know more about the 3 missing ARs which may not be of hyperlogarithmic type (however, see our Conjecture 1.15 above regarding them).

• Finally, let S 3 be the stratum of dimension 3 formed by configurations of the same type than the one in the picture on the right of Figure 21. Then W S 3 = W Conf 7 (P 2 ) | S 3 is a 15-web in 3 variables, with ρ • = (12, 9, 5) and polrk • = (21, 5). Consequently, it is AMP with only polylogarithmic ARs (of weight 2 at most). Since it shares all these numerical properties with W Conf 6 (P 1 ) = W M 0,6 , one can wonder whether these two webs are equivalent or not, which is not clear a priori.

8.1.4 Resonance webs associated to arrangements. One of the main features of the notions of virtual ranks and of being AMP is that they are flexible concepts which adapt to many different kinds of webs, but also robust, since they remain relevant in most situations.

In [Per], the author explains how to associate a web defined by rational maps to any arrangement by hyperplanes

A ⊂ P n with complement U A . If Σ ⊂ H 1 (M A , Z) is a subspace of dimension k ≥ 2 which is totally isotropic for the cup-product H 1 (U A , Z) ∧ H 1 (U A , Z) → H 2 (U A , Z)
and maximal for the inclusion among isotropic subspaces, there exists a rational map f Σ :

P n P 1 and a subset σ Σ ⊂ P 1 of cardinality k + 1 such that f -1 Σ (σ Σ ) ⊂ A and Σ = ( f Σ ) * H 1 (P 1 \ σ Σ , Z) . Given Σ, the map f Σ is unique (up to post-composition by projective automorphisms).
The number of such maximal isotropic subspaces being finite, one defines the resonance web W(A) associated to A as the web defined by these f Σ 's:

W(A) = W f Σ : P n P 1 Σ ⊂ H 1 (M A , Z) of dimension ≥ 2,
totally ∧-isotropic and maximal .

Some classical questions about arrangements concern the relations between the combinatorial properties of A and the algebraic and geometric properties of its complement U A . It is then natural to ask the following general questions when interested in web geometry:

Question 8.4. Let A be an arrangement of hyperplanes in P n .

1. How much can be told about the web-theoretic invariants of W(A) (virtual, polylogarithmic, standard rank(s), (polylogarithmic) ARs, etc.) from the combinatorics of A ?

2. Are there criterions on A ensuring that W(A) is AMP and/or with only polylogarithmic abelian relations?

Give examples of arrangements

A such that W(A) be AMP.

Of course, one does not expect nice or interesting answers to the previous question for any arrangement. An exception may concern the polylogarithmic ranks of a resonance web W(A): we believe that it only depends on the combinatorics of A.

In [Per], Pereira first states several general results about the ARs of any resonance web then he applies them to the web associated to an arrangement A n = A 0,n+3 in P n (see §6. 1. Describe the irreducible components Σ of the first resonance variety R 1 (A(G)) and the corresponding rational maps f Σ . In particular, give a formula for the degree of W(A(G)).

Does the set of common leaves of W(A(G)) coincide with A(G)?

3. What is/are the (standard, virtual, hyperlogarithmic) rank(s) of W(A(G))?

Give a basis of the space of abelian relations A W(A(G))

. Is any AR of this web polylogarithmic?

5. Describe (i.e. monodromy, decomposition in irreducible factors, construction of these by extension, etc) the local system formed by the ARs of W(A(G)) on the complement of its set of common leaves.

All the Coxeter arrangements can be made explicit. For instance, here are defining equations in the cases I(p) and Dynkin types A, B and D (see [START_REF] Coxeter | The product of the generators of a finite group generated by reflections[END_REF]):

I(p) : 0 = 0≤i≤p-1
x -ω i y = x py p with ω = exp 2iπ/p

A n : 0 = 1≤i< j≤n (x i -x j ) B n : 0 = 1≤i< j≤n (x i -x j )(x i + x j ) 1≤k≤n x k D n : 0 = 1≤i< j≤n (x i -x j )(x i + x j ) .
For the others types, explicit defining equations are also available in the literature. 136 There are effective methods to compute the resonance variety of any explicitly given arrangement, thus R 1 (A(G)) can be computed in all cases and consequently, the resonance web W(A(G)) can be made explicit for any G. 137 Together with the algorithmic methods to determine basic invariants of webs considered in §1.5, this opens a way to tackle the series of questions above by brute force computations.

In the recent paper [START_REF] Cohen | Chen ranks and resonance[END_REF]§6], the authors give descriptions of the resonance varieties of Coxeter arrangements for Dynkin types B and D. It follows that the associated resonance web has degree 16 n 3 + 9 n 3 + n 2 and 5 n 3 + 9 n 4 in types B n and D n respectively. It should not be very difficult to make these webs explicit and study them, at least for n small enough. Comparing the degrees of these webs with those of the corresponding X-cluster webs, it appears that the Coxeter resonance webs and the X-cluster webs do not coincide for Dynkin types B and D, in contrast with what does occur in type A.

Given a Coxeter group G, it acts as birational symmetries of W(A(G)). Thus resonance webs associated to Coxeter arrangements admit many symmetries and one may think that this is the reason why they may carry many (poly-or hyperlogarithmic) ARs138 . But one should not think that the interest of the notion of 'resonance web' introduced by Pereira only concerns very symmetrical arrangements. A striking example (with many symmetries though) is given by the 'non-Fano arrangement' [START_REF] Pereira | Resonance webs of hyperplane arrangements. In 'Arrangements of hyper-planesSapporo 2009[END_REF]Example 5.4]: it is the arrangement NF of 7 lines in P 2 pictured below: (Observe that NF is precisely the set of common leaves of the web obtained by taking the restriction of W Conf 7 (P 2 ) to the stratum S(SK), see §2.2.3.1.2). The resonance variety R 1 (NF) has been computed in [START_REF] Cohen | Characteristic varieties of arrangements[END_REF]Example 4.4]: it has nine irreducible components, all of dimension 2. The pencils of curves corresponding to the associated rational fibrations P 2 \ NF → P 1 \ {0, 1, ∞} are easily described relatively to the six points represented by the black dots in Figure 22: there are six pencils of lines, formed by the line passing through one of the six points, and three pencils of conics, one for each subset of four points in general position among the six. We deduce that the resonance web W(NF) coincides with Spence-Kummer web.

Question 8.6. In addition to Abel's 5-terms relations and Spence-Kummer identity, is there other classical polylogarithmic AFE whose associated web is equivalent to the resonance web of an arrangement? More specifically, what about the case of Kummer's identity K 4 ? Is the tetralogarithmic web W K 4 equivalent to the resonance web of an arrangement of lines in P 2 ? ⋆ To end this section, we mention that most of the material above generalises to complements of arrangements of hypersurfaces on a smooth (projective, or even just compact) manifold but the situation in general is richer than in the case of arrangement by hyperplanes. For more details, we refer to [Dim] and [DPS] and the references therein.

Say that X is a smooth projective variety and let A be the union of a finite number of irreducible hypersurfaces with complement U = X \ A. Then in addition to the first resonance variety R 1 (U) there is the (first) characteristic variety V 1 (U) which (as a set) is formed by the characters ρ ∈ Hom(π 1 (U), C * ) = H 1 (U, C * ) such that H 1 (U, C ρ ) > 0, where C ρ stands for the local system on U with monodromy ρ. One can thus attach two webs to U: its 'resonance web W R 1 (U) ' with one foliation defined by a holomorphic first integral for each irreducible component of R 1 (U) of dimension greater than 1 and its 'characteristic web W V 1 (U) ', which is defined by holomorphic fibrations as well. In general, the latter is a subweb of the former and both coincide under the condition that U is 1-formal, a condition automatically satisfied when U is the complement of an arrangement by hyperplanes, as proved by Brieskorn.

It would be interesting to know whether there exist quasi-projective varieties U as above such that one of the two webs W R 1 (U) or W V 1 (U) is AMP but is not (equivalent to) a resonance web associated to a hyperplane arrangement. We confess not having any idea regarding this.

Another interesting question, but to which specialists should be able to answer easily, is whether classical algebraic webs associated to a projective curve are related to resonance or characteristic webs. More precisely, let C ⊂ P n be a smooth (to simplify) projective curve defining an algebraic web W C on Pn . The singular locus Σ(W C ) of this web is a hypersurface containing the dual variety C ∨ of C (see [START_REF] Nakai | Topology of complex webs of codimension one and geometry of projective spa--ce curves[END_REF]§2.2]). Is W C related to a resonance or characteristic web constructed from the complement of C ∨ or of Σ(W C ) in Pn ?

8.2 About polylogarithms and the functional equations they verify.

Here we first discuss a question which came to our mind when elaborating the material of Section §2. Then the possibility that some famous polylogarithmic identities be of cluster type is discussed. Finally, we consider functional equations of multivariable polylogarithms and show that many aspects of the theory developed in the first two sections of this text can be generalized to webs of codimension higher than 1. 8.2.1 Iterated integrals, Schur functors and monodromy. When looking for webs carrying many abelian relations (such as AMP webs), the ones with hyperlogarithmic components are particularly interesting, for two distinct reasons. The first is that hyperlogarithms being multivalued, one can construct many other ARs of the same kind by analytic continuation along loops contained outside the singular set of the considered web. The second is that for any weight w ≥ 1, the symmetric group S w acts naturally on the space of weight w hyperlogarithmic ARs of a given web (cf. Lemma 1.10) which can be used to get several new hyperlogarithmic ARs from a given one (an illustration of this is given by Theorem 2.5, especially its second part). The theory of representations of symmetric group actions on tensor products is by now a well established theory (notions of young symmetrizers, Spetch modules), as well as the study of the monodromy of single-variable hyperlogarithms. The problem of better understanding the hyperlogarithmic ARs of webs leads to wonder how these two things are related. Before considering this multivariable situation, a preliminary but already interesting case is the one-dimensional case about which we say a few words below.

Let S = {s 1 , . . . , s n } be a set of n pairwise distinct points in C with n ≥ 2 (the classical polylogarithmic case corresponding to n = 2). We set S ⋆ = {s 1 , . . . , s n , ∞} ⊂ P 1 and choose ζ ∈ C \ S , an arbitrary fixed base-point (what follows is independent of the choice of ζ). To the affine curve P 1 \ S ⋆ is attached the vector space of S -logarithmic 1-forms V = H 0 P 1 , Ω P 1 (log S ⋆ ) , a basis of which is given by the set of d log(zs i ) = dz/(zs i )'s for i = 1, . . . , n. For any weight w ≥ 1 and any partition λ of w, let V λ be the image of V by the Schur functor S λ . 139 Since each V λ is an irreducible S w -representation, we deduce that (225)

V ⊗w = λ⊢w V λ
is the decomposition of the w-th tensor power of V in irreducible S w -modules (it can be called the Schur or the Weyl decomposition of V ⊗w (cf. p. 76 in [FH]). For any partition λ, we denote by c λ (resp. ι λ ) the projection V ⊗w ։ V λ (resp. the injection V λ ֒→ V ⊗w ) induced by this decomposition.

We now use the terminology and the notations introduced in §1.4 concerning iterated integrals.

To a weight w symbol ω ∈ V ⊗w , is associated the hyperlogarithm

L ω,ζ = II w S ,ζ (ω) ∈ H w ζ , which is a well-defined germ of holomorphic function at ζ. If C γ stands for the analytic continuation along a loop γ in C \ S , centered at ζ, we have that C γ L ω,ζ -L ω,ζ ∈ ⊕ w ′ <w H w ′ ζ (see (19)). Then considering the image of this by the symbol S = (II w S ,ζ ) -1 : H • ζ → V ⊗• , one gets a C-linear map ρ w (γ) = ρ w S ,ζ (γ) : V ⊗w -→ ⊕ w<w V ⊗ w , ω -→ S • (C γ -Id • II w S ,ζ ( 
ω) . Since ρ(γ) only depends on the homotopy class of γ as a ζ-based loop in C \ S , one obtains a map

ρ w = ρ w S ,ζ : π 1 C \ S , ζ -→ End C V ⊗w , ⊕ w<w V ⊗ w
which encodes the monodromy of S -hyperlogarithms of weight w and has been described by several authors (for modern references, see [START_REF] Hoang Ngoc | Shuffle algebra and polylogarithms[END_REF]Thm. 3] in the polylogarithmic case (n = 2) and the sixth section of [START_REF] Brown | Single-valued hyperlogarithms and unipotent differential equations[END_REF] for the general case n ≥ 2).

The question we are interested in is that of describing the decomposition of ρ relatively to the Schur decompositions (225) of V ⊗k at the source, and the decomposition of the many blocks V ⊗ w at the target. In order to be more precise, we fix some loops γ i in C \ S , centered at ζ, with index 1 with respect to s i and index 0 with respect to any s j with j i, such that π 1 (C \ S , ζ) is the free group generated by the ζ-based homotopy classes [γ 1 ], . . . , [γ n ].

Question 8.7. For any i ∈ {1, . . . , n}, describe the decomposition of ρ relatively to the Schur decompositions (225) of V ⊗w at the source, and of the many blocks V ⊗ w at the target.

More precisely, for w < w and any partitions λ ⊢ w and λ ⊢ w, describe the C-linear map

ρ w, w λ, λ (i) = c λ • ρ w (γ i ) • ι λ : V λ -→ V λ .
As far we know, this question has not be considered before despite its natural and elementary character.

8.2.2 Cluster nature of classical polylogarithmic identities. The fact that there are links between the theory of dilogarithmic identities and that of cluster algebras is by now well-known. But the fact that some (classical or not) AFEs satisfied by polylogarithms of higher weight (3 and 4 for now) can also be realized using the cluster machinery may indicate that the 'polylogarithmic cluster picture' may be bigger and more general than the dilogarithmic case alone.

We have proved that Spence-Kummer trilogarithmic identity (SK) and Kummer's tetralogarithmic one (K 4 ) are of cluster type. A natural (but clearly naive) consequence is to wonder about the next classical case: Questions 8.8. Is Kummer's pentalogarithmic identity (K 5 ) of cluster type? More precisely and in more invariant terms, is Kummer's pentalogarithmic 29-web W K 5 equivalent to a cluster web?

Of course the same question can be asked about any polylogarithmic AFE but it does not make sense in full generality since one can obtain AFEs of great complexity and in particular not of cluster type from any given AFE. Thus in order to consider cases for which an answer might be interesting, one has to focus on polylogarithmic AFEs which are irreducible, or more generally of special interest (being aware that the meaning of 'special interest' is quite unprecise here).

Among the polylogarithmic identities which surely deserve to be considered, stands trilogarithmic identity (G 22 ) which, according to Goncharov who discovered it, might play the same role for the trilogarithm as Abel's relation for the dilogarithm (e.g. see [START_REF] Gangl | Functional equations of polylogarithms[END_REF]p. 199] or [START_REF] Zagier | The dilogarithm function[END_REF]p. 61]). Question 8.9. Is Goncharov's 22-web W G 22 equivalent to a cluster web?

This question is all the more interesting that Goncharov has given a geometric interpretation of the arguments appearing in the functional equation (G 22 ) by means of the 3-dimensional stratum Σ(G 22 ) of degenerate configurations of 7 points in P 2 (see Figure 9). The whole configuration space Conf 7 (P 2 ) naturally identifies itself (birationally) with the cluster X-manifold of type A 2 ⊠ A 3 (see §8.4.1.2 and [Vol1] or [Wen] for more details). Since the latter quiver is mutation equivalent to E 6 , it is of finite type hence the set of associated X-cluster variables is finite. Hence one may wonder about the possibility of describing Goncharov's web as a subweb of the restriction of the whole cluster cluster web XW A 2 ⊠A 3 to Goncharov's stratum, which might be a way to answer the preceding question by the affirmative.

However, some computations of ours lead us to the conclusion that Σ(G 22 ) does not embed (even birationally) into the cluster X-manifold of type A 2 ⊠A 3 . To explain this we use some material and notations from [Wen] to which we refer for more details. Given a certain plabic graph P 0 , one can construct an explicit birational map η P 0 : Conf 7 (P 2 ) -→ X A 2 ⊠A 3 . Actually, the construction gives us the expression of this map in the birational coordinates system x t 0 on the target given by a certain X-seed S t 0 = (x t 0 , Q t 0 ) for some vertex t 0 of T = T 6 . We choose S t 0 as initial seed, we set η t 0 and for any t ∈ T, we denote by η t : Conf 7 (P 2 )

T t the composition x t • η t 0 where T t stands for the X-cluster torus attached to the seed S t . Then we have verified that:

for most of the seeds S t , the generic point of Goncharov's stratum is an indeterminacy point of η t ; and when it is not the case, Σ(G 22 ) is contracted by η t onto a subvariety of T t of dimension 2.

These two possibilities prevent us from finding an avatar of Goncharov's stratum in the cluster variety X A 2 ⊠A 3 and suggest that, although it is naturally defined on the configuration space Conf 7 (P 2 ) which is birational to X A 2 ⊠A 3 in a nice way via η t 0 , Goncharov's web W G 22 might not be of cluster type.

8.2.3

Webs associated to multivariable polylogarithms. Here, we only give a few examples and sketch the main features of a possible theory of webs of codimension bigger than 1. Some of the notions and tools considered in this text for webs of codimension 1 can be generalized (rather straightforwardly to be honest) to these webs of high codimension. In particular, the idea that such a web has AMP can make sense. We show that this is an interesting notion by giving some examples of such webs which are AMP, some of them being webs naturally associated to functional identities satisfied by polylogarithms of several variables.

Classical polylogarithms admit multivariable generalizations. A 'multiple polylogarithm' of m ≥ 1 variables is defined as the sum of a series of the type

Li n (z 1 , . . . , z m ) = 1≤k 1 <k 2 <•••<k m z k 1 1 • • • z k m m k n 1 1 • • • k n m m
for some m-tuple n = (n 1 , . . . , n m ) ∈ (N >0 ) m . Such a series converges in the unit polydisk (i.e. when |z i |< 1 for all i) and defines a multiple polylogarithm (of weigth

|n|= n 1 + • • • + n m )
which satisfies multivariable generalizations of the properties enjoyed by classical polylogarithms: Li n 1 ,...,n m admits an iterated integral representation (see [Go4,§2]), hence extends to C m as a multivalued holomorphic functions with unipotent monodromy (cf. [Zh]). What is interesting for us is that multiple polylogarithms also satisfy some kind of 'abelian functional equations'. For instance, the weight 2 multiple logarithm Li 1,1 satisfies the following identity:

L 11 Li 1,1 (x, y) = Li 2 1 -x 1 -1/y -Li 2 1 1 -1/y -Li 2 (xy) .
The theory of functional equations satisfied by multiple polylogarithms is still largely unexplored but many (if not all) of these are of the following form (see [START_REF] Gangl | Functional equations for multiple polylogarithms[END_REF])

⋆ d i=1 c i Li n i u i (x) = P(x)
5-web in the variables x, y and let us consider another copy B a,b of it, but in the variables a and b. Then clearly W R 2 can be obtained from these two copies of Bol's web: in some sense (which can easily be made precise), it is the intersection of the two pull-backs π * x,y B x,y and π * a,b B a,b :

W R 2 = π * x,y B x,y ∩ π * a,b B a,b .
Clearly, by pull-back under π x,y and π a,b , the spaces of classical ARs A(B x,y ) and A B a,b respectively embed into A W R 2 and are obviously in direct sum in this space. This direct sum together with the AR associated to (R 2 ) span a linear subspace of dimension 13 in A(W R 2 ).

On the other hand, by direct computations, one gets

ρ • W R 2 = (6, 5, 2) hence ρ W R 2 = 13 ,
from which it follows that the 2-codimensional web W R 2 is AMP with polylogarithmic ARs.

Actually, the previous construction just seems to be the second step of a whole series. Intersecting 3 copies of Bol's web in C 6 with coordinates x, y, a, b, u, v, one obtains the following 3-codimensional 5-web

3B = W (x, a, u) , (y, b, v) , (xy, ab, uv) , x 1 -y 1 -xy , a 1 -b 1 -ab , u 1 -v 1 -uv , y 1 -x 1 -xy , b 1 -a 1 -ab , v 1 -u 1 -uv
which can be verified to be such that ρ • 3B = (9, 9, 3). Up to some pull-backs by obvious projections, the three 6-dimensional spaces of ARs A(B x,y ), A(B a,b ) and A(B u,v ) embed and are in direct sum in A(3B). On the other hand, B ∩3 carries one AR of type (R 2 ) for each unordered pair of elements of {(x, y), (a, b), (u, v)} and the three corresponding ARs are linearly independent modulo A(B x,y )⊕A(B a,b )⊕A (B u,v ). This implies that the space of polylogarithmic ARs of 3B has dimension 18 + 3 = 21 at least. Since this is equal to ρ 3B = 9 + 9 + 3, one deduces that 3B is AMP with only polylogarithmic ARs (of weight 1 or 2).

The construction above generalises in a straightforward way: for any k ≥ 1 one can define the web kB which is a 5-web of codimension k on C 2k , which can be obtained by intersecting k distinct and independent copies of Bol's web. Then one can ask the Question 8.10. Is kB AMP with only polylogarithmic ARs (of weight 1 or 2) for any k ≥ 1?

Since this is indeed the case for k = 1, 2, 3, we believe that the answer is 'yes' for any k.

⋆

The same constructions and questions seem to be relevant for other polylogarithmic webs as well, such as the Newman's dilogarithmic 6-web W N 6 of Spence-Kummer trilogarithmic web W SK . For instance, intersecting two copies of the latter, each in two variables which are independant relatively to those involved in the other copy, one can construct the 'double intersection' 2W SK which is a 9-web of codimension 2 on C 4 . One verifies that ρ (14,17,16,10,6,4,2). So the total virtual rank of this web is finite. By means of formal computations performed with the help of a computer algebra system, we have verified that 2W SK is AMP to the 13th order. Considering the approach described in §1.5.2, this implies that 2W SK is AMP.

• 2W SK =
Question 8.11. Give an explicit basis of A 2W SK .

What is potentially interesting is that this construction, which was suggested to us when considering the multivariable dilogarithmic identity R 2 , seems to apply to non-polylogarithmic webs as well, such as the web W xy = W(x, y, x + y, xy, xy). This 5-web is known to be exceptional despite the fact that it carries only rational abelian relations, see [START_REF] Pirio | Sur les tissus plans de rang maximal et le problème de Chern[END_REF]. Its 'double'

2W xy = W (x, a) , (y, b) , (x + y, a + b) , (x -y, a -b) , (xy, ab)
is such that ρ • (2W xy ) = (6, 5, 2) and therefore ρ(2W xy ) = 13. From the two copies W xy and W ab used to construct 2W xy one gets two subspaces of dimension 6 in direct sum in A(2W xy ) which span a subspace of dimension 12. There is another AR, namely the one corresponding to the following elementary polynomial identity in the four variables x, y, a and b:

-2 xa -2 yb + (x + y)(a + b) + (x -y)(a -b) = 0 .
It follows that, as W xy , its double 2W xy is AMP with only rational ARs.

⋆

The fact that the same quite simple construction applies to webs of different natures (polylogarithmic and rational) and gives interesting webs of codimension > 1 suggests that it could be relevant for other type of webs as well. Since our main interest lies in webs with many ARs, a natural class of webs to consider is that of algebraic webs. Let W C be an algebraic web associated to a projective curve C ⊂ P n . For any k ≥ 1, the definition of kW C is straighforward.

Questions 8.12. Let k be bigger than 1.

1. Give a geometric description of kW C in terms of C.

2. Describe the ARs of W C .

Can kW C be AMP? If yes, characterize the curves for which it is the case.

Answering the first question should be easy, but it could be much less so for the last two.

The general constructions and consideration as well as the examples considered above, show that it may be the case that an interesting and richer than expected theory of webs of higher codimension does exist, provided that one relaxes the strong general position assumption which is classically assumed. We think that this research focus is promising and deserves further study.

About cluster variables and cluster webs

Cluster webs are the central objects discussed in this text. However, despite its length, we are very far from having exhausted their study. Below, we list many questions left open which are interesting according to us.

8.3.1 A-cluster webs and cluster webs with frozen variables. Let ∆ be a Dynkin diagram. We know that both cluster webs AW ∆ and YW ∆ have the same degree (that is, are formed by the same number of foliations). But in all the cases we have considered, we have noticed that these two cluster webs share the same virtual ranks: i.e. both sequences ρ • AW ∆ and ρ • YW ∆ coincide.

This phenomenon seems also to hold true for webs associated to pairs of Dynkin diagrams. Given such a pair (∆, ∆ ′ ), the associated T -cluster web (which is obviously the A-cluster avatar of the Y-cluster web of bi-Dynkin type (∆, ∆ ′ )) seems to have the same ρ • -sequence than YW ∆,∆ ′ . It would be interesting to know whether this holds true in general and to have an explanation of why if it is the case.

On the other hand, again in all cases we considered, the A-cluster versions of the Y-cluster webs of (bi-)Dynkin type have rather low logarithmic ranks and even trivial weight 2 hyperlogarithmic ranks. As an example, we can consider the case of Dynkin type A 3 . We have ρ • AW A 3 = ρ • YW A 3 = (6, 3, 1) and we know that polrk • YW A 3 = (9, 1). We have verified that AW A 3 has rank 6, with a subspace of logarithmic ARs of dimension 5 plus one extra AR, which is rational. Extrapolating to the case of an arbitrary Dynkin diagram, one can expect the A-cluster webs in finite type to have only rather elementary ARs (rational and logarithmic) and to be far from being of AMP rank. Despite this, it would be interesting to understand better the ARs of such webs since it would give us informations about how the A-cluster variables are related.

⋆

The notion of frozen variable, which is important regarding the theory of cluster algebras, has not been consider in the whole text. Allowing some variables to be frozen allows to get a more general class of cluster webs, and the fact that some of them could be AMP and/or carry interesting (polylogarithmic?) ARs must not be excluded.

As an example, let us consider the X-cluster web associated to the subgroup N ⊂ SL 4 (C) of unipotent upper triangular matrices. In [GLS, §2.2] the authors give an explicit seed for a structure of A-cluster algebra on C[N]. It is a cluster algebra of finite type A 3 in six variables, among which the last three are frozen. By straightforward computations, we obtained that there are 29 X-variables associated to this cluster algebra, which give rise to a 29-web in six variables, denoted here by XW N . It can be verified that:

-the ramification of XW N is 0, -1, ∞; -one has ρ • (XW N ) = (23, 11, 5), polrk • (XW N ) = (32, 6) and rk(XW N ) = 38.
Hence one has rk(XW N ) = ρ(XW N ) -1 so this web can be said of 'almost' AMP rank, which is a rather non-trivial property although not as pretty as being AMP.

This example naturally suggests the following Questions 8.13. Let XW A be the X-web associated to a finite type cluster algebra A with frozen variables. Then:

1. is its ramification polylogarithmic (that is, included in {0, -1, ∞})?

2. can XW A be of AMP rank?

3. of which nature can its abelian relations be? 8.3.2 Some questions about Y-cluster webs and webs associated to cluster periods. A substantial part of the present text is devoted to the study of cluster webs. We have obtained several results about them, but we are far from having exhausted their study. Below we ask several questions about them. Some are rather precise, others much more vague and should better be described as indications to possibly relevant directions of research for future works. • all the ranks (virtual, polylogarithmic, the standard) of W at ξ all coincide with those at the generic point ζ.

An interesting candidate for such a base point ξ is a special point considered in [Miz]. Let F ∆ be the birational map defined in the last paragraph of §3.3.1.4.1: it is of order m ∆ = 2(h+2)/gcd(h, 2), the iterate (F ∆ ) •(m ∆ /2) acts as a permutation of the coordinates and the Y-cluster web of type Y can be defined as the web whose first integrals are the components of the iterates (F ∆ ) •s for s = 0, . . . , (m ∆ /2) -1.

A natural choice for a base point at which one could study YW ∆ could be a fixed point for F ∆ . Since the quiver Q(∆, ℓ) coincides with ∆ when ∆ is simply laced and ℓ = 2, we deduce precisely from Proposition 3.6 on [Miz] that there exists a unique point ξ ∆ ∈ (R >0 ) n such that F ∆ (ξ ∆ ) = ξ ∆ .

Question 8.14. For ∆ simply laced, does YW ∆ satisfy the three conditions in (226) at ξ ∆ ? Is it possible to give closed (combinatorial) formulae for the differential at this point of the cluster first integrals of this web?

Actually, Mizuno proves that for any ∆ and any level ℓ ≥ 2, the finite order birational map F Q(∆,ℓ) associated to the quiver Q(∆, ℓ) admits a unique fixed point ξ Q(∆,ℓ) with positive coordinates. In all the concrete Y-systems of bi-Dynkin type ∆ ⊠ ∆ ′ we have considered, we have verified that the same holds true. 

u i ) n i=1 → (u ǫ(i) i ) n i=1
where ǫ(i) = 1 (resp. -1) if i is a sink (resp. a source) in ∆, we have verified for n small enough (n ≤ 9 say) that

• there exists an algebraic integer χ n (which is quadratic for n odd, cubic when n is even) such that the n coordinates of ξA n all belong to Q >0 + χ n Q >0 ;

• one has ξD n ∈ (N >0 ) n .

It is these few facts that prompted us to ask question 2.(a) in the series of three above. 2. In case ν is the Y-period of bi-Dynkin type (∆, ∆ ′ ) and when it can be done, find an explicit writing of (R ∆,∆ ′ ) as a linear combination of Abel's relations, if possible in an uniform manner with respect to the pair of Dynkin diagrams considered.

In [KY], the authors conjecture that the answer to 1. when the cluster period is of bi-Dynkin type. As for 2., an answer has been given only for the pairs (A n , A 1 ) with n ≥ 2 (cf. the proof of Théorème 4.1 in [Sou]).

The fact that cluster periods give rise to dilogarithmic identities is now well-understood. On the other hand, nothing is really known with regard to a possible reciprocal:

Question 8.17. Let W a cluster web carrying a non-trivial dilogarithmic identity. Is it necessarily the one associated to a cluster period ν such that W ν is a subweb of W?

Another related but distinct question concerns the construction of the dilogarithmic identity (R ν ) when ν is a given cluster period from the logarithmic ARs of W ν . In §5.1.1, we have explained how to construct (R A 2 ) from five logarithmic ARs of YW A 2 , considered both in functional and differential form. One can wonder whether a similar approach is possible in full generality:

Questions 8.18. Let ν be a cluster period.

1. Can a basis of LogAR(W ν ) be described in a uniform way (with respect to ν)?

2. Can the computations in (143) be generalized in order to get an effective construction of (R ν ) from the (or some) logarithmic ARs of W ν ?

An affirmative answer to the second question would give a constructive proof of Nakanishi's theorem (Theorem 3.16 above) using only elementary notions.

8.3.2.3 Arrangements, resonance and webs. In §6.3, we proved that the complement noted there X A n of the braid arrangement in C n is isomorphic to that of the cluster arrangement Arr A n of type A n . It follows that, despite this arrangement is cut out by polynomial equations of degree > 1 (for most of them), its complement U A n has the same topology as X A n , hence is well-understood (for instance, this gives for free that U A n is 1-formal, which is not clear at first sight). In particular, 8.3.2.4 About the characterization of Y-cluster webs. An interesting combinatorial invariant attached to a web W is the rank function r W which is the integer-valued function defined on the set of subwebs of W by r W (W ′ ) = rk(W ′ ) for any W ′ ⊂ W.

According to Bol [START_REF] Bol | Über ein bemerkenswertes Fünfgewebe in der Ebene[END_REF] (see also [START_REF] Robert | Poincaré maps and Bols theorem[END_REF] for a more recent document), Bol's web B can be characterized (up to local equivalence) as the unique planar 5-web with at least nine of its 3subwebs being hexagonal (which is equivalent for them to have rank equal to 1). This implies in particular that this web is characterized by r B . We recall that the Y-cluster webs of type A n share for any n ≥ 2 similar properties to those of Bol's web (which corresponds to the case of A 2 ): AMP rank, all the ARs are logarithmic except the dilogarithmic one (R A n ). For this reason, the question arises about the extension of the characterization of Bol's web by its rank function to any Y-cluster web, not necessarily of type A but more generally, of any given Dynkin type ∆:

Question 8.21. Is YW ∆ characterized (up to local equivalence) by its rank function r YW ∆ ?

One expects the answer to be affirmative, at least for ∆ of type A, but we do not have any serious argument on which to base this intuition. It should be possible to handle the A 3 case by direct calculations.

8.3.2.5 Webs associated to generalized cluster algebras. Cluster algebras have been generalized by Chekov and Shapiro in [CS] where they introduce the notion of 'generalized cluster algebra' (GCA for short). The definition of such an algebra is similar to that of a cluster algebra in many ways: it is generated (as an algebra) by cluster variables, which come in 'generalized clusters'. These are obtained from an initial 'generalized seed' by means of 'generalized mutations' which are generalizations of classical cluster mutations by means of formulas involving 'exchange polynomials'. These polynomials can be of arbitrary positive degree in the case of GCA's, contrarily to the case of classical cluster algebras which corresponds to the one when all the exchange polynomials are of degree 1 (and actually coincide with P = 1 + x).

What is interesting with regard to the geometry of webs is that Nakanishi has shown in [START_REF] Nakanishi | Quantum generalized cluster algebras and quantum dilogarithms of higher degrees[END_REF] (see also [START_REF] Nakanishi | Rogers dilogarithms of higher degree and generalized cluster algebras[END_REF]) that the notion of period generalizes in the realm of GCA and more interestingly for our purpose, that to each such 'generalized period' is associated an AFE satisfied by what Nakanishi calls a 'generalized (Rogers) dilogarithm', which can be seen as a weight 2 iterated integral 142 (see [START_REF] Nakanishi | Rogers dilogarithms of higher degree and generalized cluster algebras[END_REF], in particular §3 and Theorem 4.5 therein). If one is interested by constructing webs with AMP rank, it is natural to look at webs defined by the generalized cluster variables appearing as arguments of the generalized dilogarithms involved in Nakanishi's AFE associated to a generalized cluster period in a GCA.

In order to deal with an explicit example, let us be a bit more precise and explicit about some basic notions of the theory of GCAs. By definition, a generalized seed is a tuple Σ = (a, x, B, δ, z) where: (a, x, B) is a seed in the classical sense; δ = (δ 1 , . . . , δ n ) ∈ N n where δ i specifies the degree of the ith exchange polynomial P i whose coefficients are encoded by z = (z i,s ), which then is a collection of scalars for i = 1, . . . , n and s = 0, . . . , δ i , with z i,0 = z i,δ i = 1 for any i = 1, . . . , n, related to the P i 's according to the relation P i (x) = δ i s=0 z i,s x s for each i = 1, . . . , n.

142 Let P be a non-constant polynomial whith no real root distinct from -1. The generalized dilogarithm associated to such a polynomial by Nakanishi is the function L P defined by requiring that the identity L P x δ /P(x) = 1 2

x 0 Log P(u) /u -Log(u)/P(u) du holds true for any x > 0. When P(x) = 1+ x, one has L 1+x (y) = R(y/(1y)) = R(y) for every y ∈]0, 1[, where R and R are respectively the cluster and the Rogers dilogarithm of §2.2.2.1.

The associated generalized mutations are birational transformations given by explicit formulas involving the degree δ i and the coefficients of the P i . For instance, let Σ ′ = (a ′ , x ′ , B ′ , δ ′ , z ′ ) = µ k (Σ) be the mutation in the k-th direction of a generalized seed Σ = (a, x, B, δ, z). Then the generalized Aand X-cluster variables are given by the following formulas, where the b kl 's stand for the coefficients of the exchange matrix B and where we have set âk = n ℓ=1 a b ℓk k :

a ′ j = a j if j k and a ′ k = 1 a k         n ℓ=1 a [-b ℓk ] + ℓ         δ k P k âk if j = k x ′ j = x j -1 if j = k and x ′ j = x j x [b k j ] + k δ k P k (x k ) -b ki if j k
(these formulas should be compared to the classical mutation formulae (83), which are the ones when all the P k 's coincide with the standard exchange polynomial P(x) = 1 + x).

We are going to consider the following example in rank 2, taken from [START_REF] Nakanishi | Structure of seeds in generalized cluster algebras[END_REF]2C&3A] (see also [START_REF] Nakanishi | Rogers dilogarithms of higher degree and generalized cluster algebras[END_REF]§6.2]), which is the one when the initial exchange matrix is B and the corresponding exchange polynomials P 1 and P 2 are

B = B A 2 = 0 -1 1 0 and P 1 (x) = 1 + sx + x 2 , P 2 (x) = 1 + x ,
where s stands for a fixed parameter. One can verify that there is only a finite number of Aand X-cluster variables and that they all can be computed explicitly (see Table 1 of [START_REF] Nakanishi | Structure of seeds in generalized cluster algebras[END_REF]). For instance, up to inversion f ↔ 1/ f , the set of these generalized A-cluster variables for this GCA is the following:

a 1 , a 2 , sa 2 + a 2 2 + 1 a 1 , 1 + a 1 a 2 , sa 2 + a 2 2 + a 1 + 1 a 1 a 2 , s a 1 a 2 + s a 2 + a 1 2 + a 2 2 + 2 a 1 + 1 a 1 a 2 2
and there are similar, but a bit more involved, formulas for the associated X-cluster variables.

The webs defined by the A-cluster variables or the X-cluster variables are equivalent143 hence it is easier to deal with the former since they have simpler expressions. By definition, the generalized A-cluster web associated to the chosen initial generalized seed, which we denote by Σ(s), is the one admitting as first integrals these six generalized cluster variables

AW Σ(s) = W a 1 , a 2 , sa 2 + a 2 2 + 1 a 1 , 1 + a 1 a 2 , sa 2 + a 2 2 + a 1 + 1 a 1 a 2 , α a 1 a 2 + s a 2 + a 1 2 + a 2 2 + 2 a 1 + 1 a 1 a 2 2 .
By direct computations, we have been able to establish the following facts:

• the web AW Σ(s) has maximal rank 10 if and only if s ∈ {±2 , 0}. In this case, this web is equivalent to the X-cluster web of type B 2 .

• the web AW Σ(s) has rank 9 if s {±2 , 0}, with polylogarithmic rank equal to (6, 2).

Considering the invariants of the webs AW Σ(s) and comparing them with those of the family of webs W N 6,λ , λ ∈ C discussed in §2.2.2.3.1 (see ( 57) and ( 59) there), leads us to think that these two families may be isomorphic (we believe that this is rather easy to verify). If this were true, it would be satisfying to have at disposal a general algebraic framework in which classical functional equations such as (N 6 , λ) of page 81 can be understood.

Questions A interesting candidate for possibly answering to the third question by the affirmative in the case when ∆ = G 2 is given in [START_REF] Nakanishi | Rogers dilogarithms of higher degree and generalized cluster algebras[END_REF]§6.3]. The corresponding 2-dimensional family of generalized cluster 8-webs associated to the identities (6.15) in loc. cit. is quite interesting and deserves further study (in our opinion).

8.4 Polylogarithmic AFEs of higher weight and cluster webs.

The fact that the theory of cluster algebras gives rise to many dilogarithmic identities (thanks to the work of many authors, culminating in Nakanishi's [START_REF] Nakanishi | Periodicities in cluster algebras and dilogarithm identities[END_REF], cf. also Theorem 3.16 above) is by now common knowledge. What is less well known, even by many specialists in these fields, is that one can get interesting AFEs satisfied by polylogarithms of weight higher than 2 from cluster algebras. For the moment, there are only a few examples of this (already discussed above in this text above, see §2.2.5.2 and also Theorem 5.5) and it is our opinion that this really deserves to be investigated further.

In this subsection, we discuss some points suggested by the few already known results about this as well as possible paths to construct new higher weight polylogarithmic identities from cluster algebras.

One of the main results of this text shows that many of the classical functional equations of polylogarithms (of low order) can be produced whithin the same framework, namely as cluster webs (for the dilogarithm) or as the restrictions of the latter to the secondary cluster manifolds of the corresponding cluster algebras. A natural question is then to ask if one can produce some functional equations for higher order polylogarithm using the same recipe. This leads first to the question of understanding better the secondary cluster manifold of the cluster algebras associated to quivers 8.4.1 About the image of the cluster map p : A → X in type A. We think that our result that the secondary cluster web of type A 3 is equivalent to Spence-Kummer web hence carries trilogarithmic ARs is quite nice but we have to admit that we are not aware of any satisfying (conceptual) reason explaining it. We really believe that there is something to understand here.

In this perspective, a first step certainly consists in understanding better the secondary cluster variety U A 3 which lies inside the cluster manifold X A 3 . Since the latter identifies naturally with M 0,6 which has been intensively studied by algebraic geometers, one can expect to better understand U A 3 by considering the corresponding surface in M 0,6 .

8.4.1.1

To explain what is to come, it is necessary to recall some (well-known) facts about the geometry of the moduli spaces M 0,n+3 's. For any n ≥ 1, this moduli space admits a nice (for instance smooth and proper) compactification M 0,n+3 constructed by Deligne, Knudsen and Mumford (hence called by their names) obtained by adding to M 0,n+3 boundary strata isomorphic to the product M 0,n 1 +3 ו • •×M 0,n s +3 for some tuples (n i ) s i=1 ∈ N s such that s i=1 n i ≤ n. The study of the compactifications M 0,n+3 has been the source of a huge number of works. In particular, there was a conjecture by Fulton about the cone Eff k (M 0,n+3 ) of effective algebraic cycles of codimension k of M 0,n+3 : is it generated by boundary cycles? This has been proved to be false for divisors (k = 1) first in the case when n = 3 in [Ver] where the author proved that a certain irreducible divisor in M 0,6 is effective but is not in the positive cone generated by boundary divisors. This divisor, denoted by D KV (where KV is for 'Keel-Vermeire') can be described geometrically as follows (cf. [CT]): given a fixed Spence-Kummer configuration C SK ⊂ P 2 (cf. §2.2.3.1.2), D KV coincides with the image of the rational map P 2 M 0,6 associating to a generic point p ∈ P 2 the image of C SK by the linear projection P 2 P 1 from p. Of course, by taking the image of D KV under the natural action of S 6 (by permuting the points), one gets other divisors that will be called and denoted the same (a bit abusively). X A 3 be the birational identification associated to the zig-zag triangulation T 0 of the hexagon P 6 above (see also §4.2.1). One verifies that the strict transform of U A 3 by x T 0 is a surface hence gives rise to a divisor in M 0,6 (after taking Zariski closure).

Proposition 8.23. The closure of (x T 0 ) -1 (U A 3 ) in M 0,6 is a Keel-Vermeire divisor.

Proof. We are going to compare the pull-backs of both divisors in the statement under the natural map ϕ : C 6 M 0,6 , (z i ) 6 i=1 → [z 1 , . . . , z 6 ]. Let X 1 , X 2 and X 3 be the pull-backs under x T 0 • ϕ : C 6 X A 3 of the X-cluster variables of the A 3 -cluster associated to the zig-zag triangulation T 0 of the hexagon (Fig. 23). One has

X 1 = r(z 1 , z 2 , z 3 , z 6 )
X 2 = r(z 6 , z 1 , z 3 , z 4 ) and X 3 = r(z 6 , z 3 , z 4 , z 5 ) (where r stands for Fock-Goncharov's cluster cross-ratio ( 121)). On the other hand, the exchange matrix associated to T 0 is

B A 3 =           0 1 0 -1 0 -1 0 1 0           Question 8.25.
What is U 0 m,n as a subvariety of Conf m+n+2 (P m )? Can it be defined geometrically (as for the case of U 0 1,3 = (x T 0 ) -1 (U A 3 ) ⊂ Conf 6 (P 1 ) = M 0,6 which can be constructed using Spence-Kummer configuration C SK as explained above)?

The geometry of configurations spaces Conf m+n+2 (P m ) is a rich subject. In particular, projective duality allows to consider the classical 'Gale transform' G m,n : Conf m+n+2 (P m ) → Conf m+n+2 (P n ) which has been the subject of many (classical or more recent) investigations (see [EP]).

Questions 8.26. 1. How are U 0 m,n and U 0 n,m related with respect to the Gale transform? 2. When m = n, is U 0 m,m formed of G m,m -fixed configurations (cf. [START_REF] Eisenbud | The projective geometry of the Gale transform[END_REF]Coro. 8.4])?

Some compactifications of the configuration space Conf m+n+2 (P m ) have been constructed as well, the most well-known being Kapranov's compactification in terms of Chow quotients (see [KT]), denoted here by Conf m+n+2 (P m ). 144 When m is 1, it coincides with Deligne-Knudsen-Mumford compactification M 0,n+3 . In view of Proposition 8.23, a natural question is the following:

Question 8.27. Does the closure of U 0 m,n in Conf m+n+2 (P m ) belong to the cone of effective cycles generated by the boundary cycles145 of the corresponding dimension?

Of course, we expect the answer to this question to be negative. More generally, one can wonder to which extend the formalism of cluster algebras can give interesting informations about the algebraic geometry of classical moduli spaces such as the M 0,n+3 's or the more general configuration spaces Conf m+n+2 (P m )'s.

8.4.1.3

To finish this subsection, let us say a few words about the polylogarithmic ARs of the secondary cluster webs UW A m ,A n . First, such a web is defined only when A m ⊠ A n is of finite type. If one requires that m ≤ n, this does occur if and only if (m, n) is of the form (1, n) with n ≥ 2, or (2, n) with n = 2, 3, 4 (the square product A 2 ⊠ A n is mutation equivalent to D 4 , E 6 and E 8 for n = 2, 3, 4 respectively). Moreover, in order that UW A m ,A n differs from XW A m ,A n , one has to assume in addition that m + 1 and n + 1 are not prime, which needs (m, n) to be in the following list

(1, n) with n ≥ 2 odd or (m, n) = (2, 2) .

For (A m , A n ) = (A 1 , A 3 ), the corresponding web carries trilogarithmic ARs since it is equivalent to Spence-Kummer web. Since A 2 ⊠ A 2 is mutation equivalent to D 4 , one gets that UW A 2 ,A 2 is isomorphic to Kummer's web W K(4) hence carries three tetralogarithmic ARs.

Considering these two examples, one might think that for any odd n ≥ 2, UW A n carries polylogarithmic ARs of weight at least 3, which would be very interesting in order to produce (possibly new) polylogarithmic functional identities. However, this is too naive as the consideration of the case when n = 5 shows. Indeed, contrarily to what happens for A 1 ⊠ A 3 or A 2 ⊠ A 3 both XW In particular, one has polrk UW A 5 = 176 ≤ rk UW A 5 ≤ 211 < 225 = ρ UW A 5 and polrk 3 UW A 5 = 0 hence UW A 5 is not AMP and above all, does not carry any polylogarithmic AR of weight higher than 2.

8.4.2 About the notion of cluster subvariety. The most interesting cluster webs we have obtained so far are those obtained by restriction along the secondary cluster manifolds. In some cases, this allows to get polylogarithmic ARs of weight ≥ 3. The reason behind this phenomenon when it occurs is very unclear so far and is, from our point of view at least, one of the most interesting things to be understood regarding the interplays between cluster algebras and polylogarithms.

8.4.2.1 Our experimentations with many concrete examples of webs have shown us that one can get new interesting webs by taking the restriction of a Dynkin-type cluster web XW ∆ along a subvariety V of X ∆ which can be the secondary cluster manifold U ∆ or by identifying all the variables associated to the sources or/and to the sinks of the bipartite quiver ∆.147 It would be interesting to have at disposal a richer class of 'cluster subvarieties' V along which taking the restriction of (X-or Y-)cluster webs would give rise to new webs, in less variables, but possibly carrying new interesting ARS. More explicitly, given a X-initial seed S 0 = (x, Q) (of rank n ≥ 2), we are looking for a way to associate to each vertex t of T n , an irreducible affine subvariety V t ⊂ XT t , in such a way that the associations t V t be compatible with mutations, in the sense that the following condition would hold true:

(I)
for any edge t k t ′ in T n , the corresponding mutation µ k is defined at the generic point of V t and µ k (V t ) = V t ′ .

As far as we know, a general theory of such cluster subvarieties has not be studied yet. For the time being, we are aware of only two specific classes of such varieties:

• as explained by Fock and Goncharov in [FG3] (cf. Corollary 2.8 and Lemma 2.10 therein), there exists an 'exact sequence of cluster varieties' A p -→ X λ -→ H X → 1 where λ stands for a canonical fibration of the X-cluster variety over a certain torus H X . In particular, the dimension of H X is equal to the corank of p and the secondary cluster variety U = Im(p) coincides with the fiber of λ over 1. In the case when H X has positive dimension (which corresponds to the case when the rank of any exchange matrix of the cluster algebra is not maximal), this torus parametrizes a family of cluster subarieties λ -1 (t) ⊂ X, t ∈ H X . These subarieties actually are the symplectic leaves of X for its canonical cluster Poisson structure and can be seen as symplectic deformations of U = λ -1 (1).

For any Dynkin diagram ∆ and for Z standing either for X or for Y here, one gets by restriction a family of webs (ZW ∆ )| λ=t for t ∈ H X which is a deformation of UZW ∆ = ZW ∆ | λ=1 . Since some webs UZW ∆ carry interesting polylogarithmic ARs (cf. Theorem 5.5), it is interesting to look at their deformations (ZW ∆ )| λ=t : these webs could be related to interesting functional identities as well148 hence deserve to be studied further.

• Another notion which might be interesting for the purpose of constructing interesting cluster subvarieties is that of 'On-Shell subvarieties' which originated in the theory of scattering amplitudes of high energy physics and has been related to grassmannian varieties and the cluster algebras associated to them (see [BFGW] for example). It would be interesting to understand better these 'On-Shell subvarieties' and to see if new interesting webs can be obtained from them.

8.4.2.2

Considering the examples of §8.4.1.3, it appears that the cases when the secondary cluster web carries new polylogarithmic ARs (of weight bigger than 2) seem to be in correspondance with those when some of the foliations of the initial cluster web induce the same foliation after restriction to the secondary cluster manifold. These two conditions are not of the same nature (the first is web-theoretic, the second purely geometric), still it would be interesting to better understand how they are related. We formalise this geometric condition in a more general context as follows: let V = { V t } t∈T n be a cluster subvariety of a X-cluster variety X as sketched in the previous paragraph and W a X-cluster web (for instance W might be XW ∆ or YW ∆ when ∆ and ∆ ′ stand for Dynkin diagrams). One defines the restriction of W along V, denoted by VW, as the web whose first integrals are the restriction on V of the cluster variables belonging to W.

The geometric property we are interested in is the following:

(II) one has deg VW < deg W , that is there exist distinct cluster first integrals x and x ′ of W such that dx ∧ dx ′ = 0 in restriction along V.

8.4.2.3 Now let ∆ be a Dynkin diagram of rank n ≥ 3. The fact that U ∆ is a proper subvariety of X ∆ is equivalent to the fact that the standard cluster Poisson structure of the latter cluster variety is degenerated. Moreover in this case, the secondary cluster manifold U ∆ is a symplectif leaf.

We dont know if it is the case yet, but the fact that U ∆ is a symplectic manifold may play a role into the existence of supplementary polylogarithmic ARs carried by UW ∆ . For this reason, we consider the following property for a cluster subvariety V = { V t } t∈T n :

(III)

V is a proper symplectic subvariety of X ∆ .

Let V ∆ be the class of cluster subvarieties V = { V t } t∈T n (as defined above) satisfying conditions (I), (II) and (III). Elements therein may give rise to interesting cluster webs.

Questions 8.28. 1. Is V ∆ empty? When it is not, what are (at least some of) its elements?

2. For V in V ∆ , study the associated web VW (ranks, ARs, etc). Are there new examples (in addition of those of Theorem 5.5) of such webs carrying polylogarithmic ARs of weight ≥ 3?

To be honest, we have no idea whether one may get examples of cluster webs carrying new interesting polylogarithmic ARs that way. Even worse, we do not know in which way the conditions (I), (II) and (III) could be related to this when it happens. All of this seems very obscure for now, we hope that this will become conceptually clearer one day.

8.4.3 Plabic webs of type A m ⊠ A n . When considering secondary cluster webs, the case of bi-Dynkin type (A m , A n ) is interesting since U A m ⊠A n is a proper (symplectic) cluster subvariety of X A m ⊠A n for many pairs (m, n) (namely, as soon as m + 1 and n + 1 are not relatively prime). On the other hand, agreeing that m ≤ n, the cluster algebra with initial quiver A m ⊠ A n has finite type only when m = 1 or m = 2 and n = 2, 3, 4. In our quest of new cluster webs which are interesting since they may carry polylogarithmic ARs, it appears natural to consider the restrictions to U A m ⊠A n of webs defined by finite families Σ m,n of X-cluster variables, even if the whole set of these variables is infinite. Then arises the problem of choosing/constructing finite subsets Σ m,n of Xvar A m ⊠ A n in a relevant and/or natural way. We describe such a construction below, essentially taken from [START_REF] Paulos | Cluster algebras and the positive Grassmannian[END_REF]§2.2].

A way to construct such a finite family of cluster variables for each type A m × A n relies on the description of some clusters for the corresponding cluster algebra in terms of certain planar bipartite graphs embedded in a disk, the so-called 'plabic graphs' introduced by Postinov in his seminal unpublished text [Post] (graphs which are essentially equivalent to the 'special minimal bipartite graph' used in [Wen]). The set of such graphs (of the corresponding bi-type, namely (m + 1, m + n + 2) is finite and given any two graphs in this family, one can be obtained from the other by a series of 'plabic moves'.

To each plabic graph P is associated a X-cluster seed (x P , Q P ) (where x P stands for a mn-tuple of cluster variables) and a plabic move giving a plabic graph from another is interpreted as a mutation in terms of the corresponding clusters. Hence considering all the X-cluster variables associated to the 'plabic seeds' (which are those associated to plabic graphs), one ends with a finite family of X-cluster variable which are first integrals of the (X-)cluster plabic web of type A m ⊠ A n , denoted by XW plabic A m ⊠A n . When m = 1, the plabic web of type A 1 ⊠ A n actually coincides with XW A n hence has already be considered before. But as soon m, n ≥ 2, one gets new cluster webs despite the fact that the cluster algebra of type A m ⊠ A n is of infinite type, about which natural questions can be asked.

Questions 8.29.

1. For m, n both bigger than or equal to 2, study the plabic web XW plabic A m ⊠A n (degree, virtual and polylogarithmic ranks, ARs, etc). 8.5 Toric deformation of X-cluster varieties from the point of view of webs

Clusters varieties are interesting objects from the perspective of mirror symmetry, as Fock and Goncharov have conjectured that the Aand the X-cluster varieties (for a given cluster algebra) are mirror of each other. Motivated by this conjecture149 , several authors have considered the problem of constructing toric deformations of a given cluster variety. More precisely, given say a X-cluster variety X with Fock-Goncharov's special completion X (see [START_REF] Fock | Cluster Poisson varieties at infinity[END_REF] and also §8.8.3), the problem is about building a family X → A n over an affine space such that the fiber X t over a generic t ∈ A n be isomorphic to X, with the central (possibly singular) fiber X 0 toric and satisfying also some other conditions.

In case X = X ∆ is a cluster variety of finite type associated to a Dynkin diagram ∆, each generic fiber X t carries its own model of the cluster web XW ∆ , denoted by XW ∆,t . We obtain a family of isomorphic webs parametrized by a Zariski-open subset of A n .

Questions 8.30.

1. What about the degeneration when t goes at the origin of the XW ∆,t 's: does this degeneration exist as a web? 2. In case this degeneration indeed exists, what are its properties as a web (ranks, ARs, etc)?

What does this degeneration tell us about the original web XW ∆ ?

As an explicit example that can be found in the literature, we mention the case when ∆ = A 2 considered in [BFMN]: in thise case, we have a deformation of X A 2 of dimension 2, and from [BFMN, Figure 1], we get that in some affine coordinates (X 1 , X 2 ), one has

XW ∆,t = W X 1 , X 2 , t 1 + X 1 X 2 , 1 + t 2 X 2 X 1 , t 1 + X 1 + t 1 t 2 X 2 X 1 X 2
for t = (t 1 , t 2 ) ∈ A 2 generic. From this explicit expression, we deduce that the degeneration at the origin 0 ∈ A 2 exists and that it is the 'logarithmic' 3-web XW A 2 ,0 = W X 1 , X 2 , X 1 /X 2 .

If this explicitly answers the first of the questions above, it is not clear how the quite elementary degeneration XW A 2 ,0 could tell us anything about the original dilogarithmic web XW A 2 .

It would be interesting to work out other cases explicitly in order to get other examples of degenerations XW ∆,0 (under the assumption that these latter exist), hoping that these will be interesting.

In connection with quantization and categorification of cluster algebras

There are interesting links between cluster algebras, quantification and category theory, which have given rise to a rich literature. For instance, quantization of cluster varieties is considered in [START_REF] Fock | Cluster ensembles, quantization and the dilogarithm[END_REF] and categorification of cluster algebra is one of the main tools used in [START_REF] Keller | The periodicity conjecture for pairs of Dynkin diagrams[END_REF] to prove the periodicity property of Y-systems of bi-Dynkin type.

An interesting point is that many cluster dilogarithmic identities can be quantized as well and that in some cases, such quantized identities admit an interpretation within a certain categorification of the underlying cluster algebra. For a geometer primarily interested on webs, this suggests many questions on possible generalizations of key notions of web geometry (the notion of web itself, but also those of abelian relation, of rank, etc.) to other mathematical frameworks. In return, considering some well-known results on the quantum/categorical side, one can wonder about possible extensions of classical web geometry to webs formed by infinitely many foliations.

Our main references for the material discussed in this subsection are [START_REF] Fock | Cluster ensembles, quantization and the dilogarithm[END_REF], [START_REF] Keller | On cluster theory and quantum dilogarithm identities[END_REF] and [KN]. More specific references are also given below.

8.6.1 The quantum pentagon identity. The most famous dilogarithmic identity is the 'pentagon identity', namely Abel's five terms identity (R A 2 ). Quantum versions of it have been considered in many papers, from different points of view. Among many other references, we refer to [FK], [START_REF] Volkov | Pentagon identity revisited[END_REF], [START_REF] Fock | Cluster ensembles, quantization and the dilogarithm[END_REF], [KN] for the material discussed in this paragraph.

There are (at least) two quantum versions of the dilogarithm and correspondingly two different quantum versions of the pentagon identity (cf. [START_REF] Fock | The quantum dilogarithm and representations of quantum cluster varieties[END_REF]§1.3] or [KN] and the references therein):

1. the first 'quantum dilogarithm' is a formal series with coefficients in Q(q) where q is a complex parameter known as the 'quantum parameter'. There exist slightly different versions of it and correspondingly several essentially equivalent quantum pentagon identities. These are multiplicative identities between formal series in two non-commutative variables;

2. there is also a 'non-compact quantum dilogarithm' defined only for quantum parameters q of modulus 1, by means of a planar integral along an infinite contour. The corresponding quantum pentagon identity is equivalent to the fact that a certain operator acting on a Hilbert space is periodic, of period 5.

The second version, of analytic and geometric nature, is more in the spirit of classical quantum mechanics than the former which has a more formal and algebraic nature. How both are related is not quite clear to us but according the abstract of [Fa], the first quantum pentagon identity can be derived from the non-compact one, which suggests that the latter may be the most fundamental of both. Despite this, we will leave aside all the non-compact side of the theory to focus on the other one, which is more algebraic, easier to deal with and more easily connected with the theory of cluster algebras.

As mentioned above, there are several versions of the (compact) quantum dilogarithm and it is a bit tedious to specify how they are all connected. To simplify our exposition, we will allow ourselves to be not very rigorous at several places.

The most popular version of a (compact) quantum dilogarithm is the function

Ψ q (x) = +∞ n=0
q n 2 x n qq -1 q 2q -2 • • • q nq -n which, as a series of x ∈ C, converges for any q such that |q|< 1. Its name is justified by its asymptotic behavior: assuming in addition that |x|< 1, as q → 1 -one has:

(229)

Ψ q (x) ∼ exp -Li 2 (-x) Log(q 2 ) .

Now let Y 1 , Y 2 be two quasi-commuting variables such that Y 1 Y 2 = q 2 Y 2 Y 1 . Then setting

U 1 = Y 1 , U 2 = Y 2 (1 + qY 1 ) , U 3 = 1 + qY 2 + Y 1 Y 2 -1 Y 1 , U 4 = q(1 + qY 2 ) -1 Y 2 Y 1 and U 5 = Y 2 ,
the following quantum multiplicative identity holds true:

(230)

Ψ q U 5 -1 Ψ q U 4 -1 Ψ q U 3 -1 Ψ q U 2 Ψ q U 1 = 1 .
This relation is called the 'quantum pentagon identity' (in 'universal form' according to the terminology of [KN]) which can be seen as a non-commutative deformation of the classical 5-terms dilogarithmic identity. Indeed, then thanks to (229), one obtains that up to some factor depending only on q, the asymptotic development of the logarithm of the LHS of ( 230) is given formally by (231) Li 2 y 2 + Li 2 y 1 y 2 1 + y 2 + Li 2 y 1 1 + y 2 + y 1 y 2 -Li 2 y 2 1 + y 1 -Li 2 (y 1 )

where y 1 , y 2 are the classical limits of Y 1 and Y 2 hence are standard (commuting) variables. We arguments of the bilogarithm in the expression above are precisely the X-cluster variables of type A 2 hence a naive guess would be that ( 231) is identically zero since it is formally obtained from taking the asymptotic of the logarithm of the LHS of (230). Actually, this is not the case but (for some reasons investigated in [KN]), it becomes so if you replace the classical bilogarithm Li 2 by the cluster dilogarithm R(x) = (1/2)

x 0 log(1 + u)/ulog(u)/(1 + u) du since the one has (R A 2 ) R y 2 +R y 1 y 2 1 + y 2 +R y 1 1 + y 2 + y 1 y 2 -R y 2 (1+y 1 ) -R y 1 ≡ 0 .

The formal derivation sketched just above of the classical pentagon identity (R A 2 ) from ( 231) actually can be mathematically justified (but this is not trivial, cf. the appendix of [KN]) which justifies the name 'quantum pentagon equation' for ( 231) which hence appears as a non-commutative deformation of the classical pentagon identity.

The arguments u i = lim q→1 U i (for i = 1, . . . , 5) of the cluster dilogarithm R in (R A 2 ) are the cluster first integrals of the cluster web XW A 2 on the initial cluster torus T 0 = Spec C y ±1 1 , y ±1 2 . These are the classical limits of the five arguments U i of Ψ q in (230). They are elements of the non-commutative 'initial cluster torus qT 0 '150 on which lives qXW A 2 , the 'quantum X-cluster web of type A 2 ', which is nothing but the collection of the U i 's appearing in (230) (in the reverse order):

qXW A 2 = W Y 1 , Y 2 (1 + qY 1 ) , 1 + qY 2 + Y 1 Y 2 -1 Y 1 , q(1 + qY 2 ) -1 Y 2 Y 1 , Y 2 .
One would like to see this collection of five quantum cluster first integrals as a quantum deformation of its classical limit which is the usual cluster 5-web of type A 2 :

XW A 2 = lim q→1 -qXW A 2 .
At this point, an interesting although perhaps very naive attempt would be to investigate whether some of the web-theoretic remarkable properties of XW A 2 can be quantized, in the sense that given a property P 1 of this 5-web, there exists a property P q satisfied by qXW A 2 say for q such that |q|< 1, in such a way that P 1 be the limit of P q (in some sense to be made precise/rigorous).

Here is a non-exhaustive list of questions that may be asked about qXW A 2 in this regards.

Questions 8.31.

1. In addition to (R A 2 ), the 5-web XW A 2 carries 9 linearly independent logarithmic ARs (each of which can be chosen with only three terms). Does any one of these admit a non-commutative deformation for the corresponding 3-subweb of qXW A 2 ? For a concrete example, let us take the logarithmic abelian relation Log (1 + y 2 )/y 2 + Log y 1 y 2 /(1 + y 2 ) -Log(y 1 ) = 0 of the the 3-subweb W(u 5 , u 4 , u 1 ). In multiplicative form, it can be written (1 + u 5 )/u 5 • u 4 • (u 1 ) -1 = 1, a rational identity which can be seen as the classical limit (when q → 1 -) of the quantum relation U -1 5 (1 + U 5 ) • U 4 • (U 1 ) -1 = q which holds true in the corresponding algebra O(qT 0 ) of non-commutative functions. We do believe that, similarly, any logarithmic AR of XW A 2 can be quantized in an elementary way so that the answer to the question above is 'yes'.

2. The importance of (R A 2 ) among the ARs of XW A 2 is that all the other logarithmic ARs of this web can be derived from it (by action of the monodromy or by derivation, see 6.2.3.2).

If the logarithmic ARs of XW A 2 can all be quantized, can these quantizations be derived from (230), and if so, in which manner?

3. Can not only the ARs of XW A 2 , but the 'notion of AR' itself be quantized in a relevant way?

The most naive attempt for a notion of 'quantum abelian relation' would be to consider 5tuples (Φ i ) 5 i=1 ∈ C(q)[[z]] 5 satisfying the following relation in O(qT 0 ): ( 232)

Φ 5 U 5 Φ 4 U 4 Φ 3 U 3 Φ 2 U 2 Φ 1 U 1 = 1 .
Can the space A qXW A 2 of such 5-tuples be endowed with some (possibly non-commuta -tive) algebraic structure which would make it appear as a natural quantization of the space of abelian relations A XW A 2 of XW A 2 ?

4. Since O(qT 0 ) is not commutative, the order of the terms Φ i (U i )'s in (232) is important. Taking another order gives another notion of 'quantum ARs' which may or may not be relevant. Such alternative notions of 'quantum ARs' would deserve to be investigated as well. For example: is there (Φ i ) 5 i=1 as above satisfying Φ 5 U 5 Φ 4 U 2 Φ 3 U 3 Φ 4 U 2 Φ 1 U 1 = 1 from which (R A 2 ) can be derived in the classical limit? 8.6.2 Quantized cluster dilogarithmic identities and quantized cluster webs I. An interesting aspect of what has just been exposed above is that many things actually generalize to any X-cluster web associated to a cluster period. This follows from results due to Reineke [Re] for the Y-periods associated to (simply-laced) Dynkin diagrams and has been extended to (bisimply-laced) bi-Dynkin Y-cluster periods by Keller in [START_REF] Keller | On cluster theory and quantum dilogarithm identities[END_REF]. The case of a general cluster period discussed below is due to Kashaev and Nakanishi [KN] (see also [Nag]).

We use the notation of §3.3.2.2 above. Let ν = (ν 1 , . . . , ν L ) be a X-cluster period of length L of a cluster algebra with initial seed (y, B) with y = (y i ) n i=1 and B = (b i j ) n i, j=1 a skew-symmetric initial exchange matrix. Denote by x ℓ = x ℓ (ν) the corresponding cluster variables and ǫ ℓ ∈ {±1} the associated tropical signs (with ℓ = 1, . . . , L). Then according to Nakanishi's theorem [START_REF] Nakanishi | Periodicities in cluster algebras and dilogarithm identities[END_REF], the following identity holds true identically:

R ν L ℓ=1 ǫ ℓ R x ℓ ǫ ℓ = 0 .
The initial X-cluster torus T 0 = Spec C[u ±1 ] can be deformed into the quantum torus qT 0 associated to non-commutative variables Y i 's which are quantum deformations of the y i 's satisfying the quasi-commuting relations Y i Y j = q 2b ji Y j Y i . The cluster period ν and the corresponding cluster variables x ℓ (for ℓ = 1, . . . , L) can be quantized in a canonical way and give rise to a quantum cluster period with associated L-tuple of quantum cluster variables (X ℓ ) L ℓ=1 (see [START_REF] Kashaev | Classical and quantum dilogarithm identities[END_REF]Prop. 3.4]) such that the following quantum dilogarithmic identity holds true (according to [START_REF] Kashaev | Classical and quantum dilogarithm identities[END_REF]Cor. 3.7]):

qR ν Ψ q X L ǫ L ǫ L • • • Ψ q X 2 ǫ 2 ǫ 2 Ψ q X 1 ǫ 1 ǫ 1 = 1 .
Each classical cluster variable x ℓ is obtained from X ℓ by taking the limit q → 1 and by using more sophisticated arguments (cf. Appendix A in [KN]) one proves that R ν can be derived from the quantum identity qR ν in the classical limit.

As in the A 2 -case, discussed above, one defines the quantum cluster web associated to ν as the set of X ℓ 's ordered according their order of appearance in qR ν :

qW ν = W X L , X L-1 , . . . , , X 2 , X 1 .

(Rigorously, the quantum cluster web qW ν is the ordered L-tuple (X L , . . . , X 1 ). The 'W' appearing in the LHS is superfluous but is here to emphasize that our purpose is to deal with this ordered tuple of quantum cluster variables as if it was a usual web).

Clearly, one has W ν = W x L-l | l = 0, . . . , L-1 = lim q→1 -qW ν in a straightforward way hence one can see qW ν as a quantum deformation of the cluster web W ν hence, similarly to what we did in the preceding paragraph in the A 2 -case, several interesting web-theoretic questions can be asked about the former quantum web:

Questions 8.32.

1. In addition to (R ν ), can the other polylogarithmic ARs of W ν be obtained as limits from certain quantum identities which could be seen as quantum ARs for qW ν ? And what about the other ARs of W ν , not of polylogarithmic type? Do they admit natural or even canonical 'quantum deformations'? 2. Does it exist a relevant notion of 'quantum AR' for qW ν ? What about the most immediate one coming to mind, namely the one of L-tuple

(Φ ℓ ) L ℓ=1 ∈ C(q)[[z]] L , such that Φ L X L • • • Φ 1 X 1 = 1 ?
3. If the answer to the previous questions is affirmative, does the space A qW ν of quantum ARs carry a natural (possibly non-commutative) algebraic structure which would make it appear as a natural quantization of the space of abelian relations A W ν of W ν ?

4. If 4. can be answered in a meaningful way, can the notion of 'quantum rank' be defined? If so, what about the notion of being AMP? Does the expression 'quantum cluster web with AMP rank' make sense?

At this point, one can look for generalizations of the previous questions for cluster webs of other kinds. Below, we discuss two interesting concrete examples: the first is the X-cluster web XW B 2 equivalent to Newman's 6-web. Next we consider the case of the secondary cluster web UW A 3 which is a cluster model of Spence-Kummer 9-web.

8.6.3 Quantized cluster dilogarithmic identities and quantized cluster webs II. The first examples beyond the skew-symmetric case to be considered regarding the questions stated in the previous paragraph certainly are those associated with cluster algebras of finite type B 2 or G 2 .

Both can be investigated quite explicitly but to save space, we will only discuss the B 2 case.

8.6.3.1 About the quantum cluster web of type B 2 . From [FG3, §3.3], we know that the Dynkin cases A 2 , B 2 and G 2 correspond to the initial exchange matrix 0 -1 c 0 with c = 1, 2 and c = 3 respectively and that the corresponding classical and quantum cluster mutations correspond respectively to the following classical and quantum recursion formulas (with m ∈ Z):

x m-1 x m+1 =        (1 + x m ) (1 + x m ) c and X m-1 X m+1 =        1 + q c X m 1 + qX m 1 + q 3 X m • • • 1 + q 2c-1 X m ,
where the first line concerns the case when m is even and the second the case when m is odd.

The case of A 2 (i.e. when c = 1) has been considered above, here we deal with the one when c = 2 (case B 2 ) which is even more interesting in what regards quantization (of the webs and of their ARs) since if XW B 2 has maximal rank, not all its ARs are polylogarithmic.

From the proof of [FG3, Lemma 3.9], we deduce the following expression for the quantum cluster web of type B 2 :

qXW B 2 = W X 1 , X -1 2 1 + q -1 X 1 1 + q -3 X 1 , X -1 1 1 + q 2 X 2 , X 4 , X 5 , X 2 (233)
with X 4 = X -1 2 X -2 1 X 1 + q(1 + q 6 X 2 X 1 + q 3 1 + q 2 X 2 and a similar formula for X 5 . Setting 'x i = lim q→1 X i ' for i = 1, 2 for the two dequantized variables, one verifies that lim q→1 qXW B 2 = W x 1 ,

(1

+ x 1 ) 2 x 2 , 1 + x 2 x 1 , (1 + x 1 + x 2 ) 2 x 2 1 x 2 , ( 1 
+ x 1 ) 2 + x 2 x 1 x 2 , x 2 = XW B 2 .
We recover precisely the 6-web studied in §5.1.2 where an explicit basis of its space of abelian relations is given.

Contrarily to the case of the dilogarithmic identity in the skew-symmetric case, there is no general result about quantum versions of dilog identities associated to cluster periods when the initial exchange matrix is just assumed to be skew-symmetrizable. A conceptual proof that the quantum identities hold in the skew-symmetric case can be given in the realm of additive categorification of cluster algebras (cf. [START_REF] Keller | On cluster theory and quantum dilogarithm identities[END_REF] or below for more details). At the time writing, there is no general theory of categorification for skew-symmetrizable cluster algebras but one might expect that most of the properties obtained via categorical methods in the skew-symmetric case actually also holds true for a skew-symmetrizable cluster algebra, under the assumption that it admits a suitable categorification. From [De], it follows that the cluster algebras of finite type all admit a categorification hence one expects 151 that the Y-cluster identity (R ∆ ) admits a quantum deformation (qR ∆ ) for any Dynkin diagram ∆.

As far as we know, even if it is very likely the case, this has not been worked out in general yet when ∆ is multiply-laced (type B, C, G 2 and F 4 ). The single such cases considered in the literature we are aware of are the ones of rank 2 (namely B 2 and G 2 ): the corresponding quantum identities (qR B 2 ) and (qR G 2 ) indeed hold true, cf. [Ku] and Proposition 6.1 of [KY]. 152 Considering the above and §5.1.2, some of the Questions 8.32 can be generalized to XW B 2 in a quite explicit form:

Questions 8.33.

1. The web XW B 2 carries two linearly independant polylogarithmic ARs of weight 2: the standard dilogarithmic one (R B 2 ), but also the 'symmetric' one (S B 2 ). Since the former admits a quantum deformation (namely qR B 2 ), what about the latter? 151 The author of these lines, at least. 152 Note however that no proof is given that that these two quantum indentities hold true. According to the authors, these have been checked by explicit computations which are not given in [KY]. We also note that the arguments of the quantum dilogarithm appearing in equation ( 13) of this paper (wich corresponds to the B 2 case) do not formally correspond to the quantum cluster variables X i we use in (233) to define qXW B 2 . However, we claim that there is a quantum deformation of (R B 2 ), denoted by (qR B 2 ), such that the arguments of the quantum dilogarithms appearing in it are precisely the elements of qXW B 2 . Details are left to the reader.

In the same vein, one can ask the same question for (R B 2 ) -(S B 2 ) which is equivalent to Newman's identity (N 6 ) involving the sole bilogarithm Li 2 ): it would be interesting to know whether this classical identity admits a quantum deformation or not.

2. Does each of the non-polylogarithmic ARs of XW B 2 , namely the rational one (144) or the abelian relation (A 2 ) (involving the function A(u) = Arctan( √ u) admit a non-commutative deformation as a quantum AR for qXW B 2 ?

It would be very nice and interesting if the questions above (or at least some of them) could be answered by the affirmative. We believe that this is the case. However, we must confess that we have no conceptual argument to offer in support of this possibly too naive guess.

Finally, considering the explicit results in §5.1.3, we mention that very similar questions to those above can be asked for the G 2 case as well.

8.6.3.2 A quantum deformation of Spence-Kummer web? What we want to discuss briefly here can be summarized by the following questions:

(234) Does the secondary cluster web UW A 3 admit a quantum deformation and if so, what about its ARs and in particular its two linearly independent trilogarithmic ones? Do these identities admit quantum non-commutative deformations (possibly in multiplicative form)?

Affirmative answers would be very interesting. But there are several obstacles which can be identified before answering the questions above. Here is a list of the main ones:

1. By definition, UW A 3 is the web given by the restriction of the X-cluster web XW A 3 along the secondary cluster manifold U A 3 ⊂ X A 3 . In view of generalizing this to the quantum setting, the first step would be to define the 'quantum deformation qXW A 3 ' of the full X-cluster web of type A 3 . If the sets of classical or quantum X-cluster variables are in bijection (a canonical bijection being induced by taking the classical limit q → 1), there is a difficulty in order to define qXW A 3 since, as it follows from the considerations in the two previous paragraphs, the notion of 'non-ordered web' does not make really sense in a non-commutative world. Having a relevant definition of qXW A 3 would require to have an ordering of the quantum cluster variables and since the classical version XW A 3 is not associated to a cluster period, we do not see from where such an ordering might come.

2. Another problem that arises, independently of the one that has just been evoked, is that of defining the (or a) 'quantum version qU A 3 ' of the secondary cluster manifold U A 3 ⊂ X A 3 . Since U A 3 is the image of p = p A 3 : A A 3 → X A 3 , a naive attempt would be to try to have a quantum version of this map to define qU A 3 similarly. This question has been investigated in full generality by several authors (e.g. see Appendix 2.7 of [START_REF] Fock | The quantum dilogarithm and representations of quantum cluster varieties[END_REF] or [GL]) from the work of which it follows that the notion of 'cluster ensemble' (A, X, p) can be generalized to the quantum setting if and only if when the initial exchange matrix has full rank, which is equivalent to U not being proper (hence coinciding with X), which is precisely not the case under scrutiny. The fact that the quantum version of the A-cluster variety A A 3 does not exist (and consequently, neither does a quantum version of p A 3 ) does not allow to treat the question of quantifying U A 3 via a similar approach to that of the classical case.

However, the general theory tells us that U A 3 is a symplectic leaf of the cluster Poisson variety X A 3 : the restriction along U A 3 of the cluster Poisson bracket {•, •} of X A 3 (briefly discussed in §3.2.1.4) is nondegenerate hence gives rise to a symplectic 2-form ω U on U A 3 . Hence the pair U A 3 , ω U is a holomorphic symplectic variety and as such, admits a canonical quantization. Nevertheless making this quantization explicit and relating it to some 'quantum cluster like variables' does not seem obvious and would probably require some extra work.

3. Finally, the existence of a quantum deformation of (SK) (cf. §2.2.3.1) would in particular imply that a 'quantum trilogarithm' does exist. This is still unknown at the time of writing although it is a very appealing question that has certainly already caught the attention of specialists of the subject.

The existence of these three obstacles and the fact that they are of distinct natures might be the sign that the questions (234) cannot be answered by the affirmative. It would be interesting to know more about this.

8.6.4 Categorification of cluster algebras and quantum dilogarithmic identities. Our main reference for what is discussed in this paragraph is [START_REF] Keller | On cluster theory and quantum dilogarithm identities[END_REF] to which we refer for more background and details. In particular, below we will not work exactly with Ψ q but with

E = Ψ q 1/2 ,
where q 1/2 stands for an arbitrary (but fixed) square root of q.

Let ∆ stand for the bipartite quiver associated to a simply-laced Dynkin diagram. Then building on some work by Kontsevich and Soibelman, Reineke gave in [Re] a conceptual proof and a categorical interpretation of the quantum dilogarithmic identity, denoted by (E ∆ ), associated to the cluster Y-period of type ∆. We review this very briefly below and state several questions all this suggests.

The main conceptual point here is the fact that cluster algebras can be categorified, at least in many cases, e.g. in the skew-symmetric case. If Q stands for a quiver defining a (skew-symmetric) cluster algebra, there is a category C Q within which most of the 'cluster notions' of the cluster algebra associated to Q can be interpreted conceptually. The construction of C Q , if now wellknown by people familiar with this circle of ideas, is sophisticated as such hence will not be reviewed here (for more on this, see Keller's nice introductive papers [START_REF] Keller | Cluster algebras, quiver representations and triangulated categories[END_REF], [START_REF] Keller | Cluster algebras and cluster categories[END_REF] or [START_REF] Keller | On cluster theory and quantum dilogarithm identities[END_REF]). We will just say that in the simplest cases (such as Q of Dynkin type ADE with base field k = C), it is constructed algebraically from the category mod(kQ) of k-finite dimensional modules over the path algebra kQ.

The cluster category satisfies several interesting properties (it is a triangulated 2-Calabi-Yau category, etc.) and in particular offers a setting in which the quantum cluster identities can be understood conceptually. 153 A supplementary ingredient needed to achieve this is the notion of 'stability condition' (also termed a 'central charge' by physicits) which is a complex valuedmap Z : K 0 mod(kQ) → C defined on the Grothendick group K 0 mod(kQ) satisfying several properties similar to those satisfied by the classical notion of stability of algebraic geometry.

We assume that Q is of Dynkin type ADE from now on. Denote this Dynkin type by ∆, set n as the rank of the latter and let β be the antisymmetric form defined by the initial exchange matrix associated to Q, namely β(e i , e j ) = #{ arrows i → j in Q } -#{ arrows j → i in Q } for any i, j = 1, . . . , n. If (e i ) n i=1 stands for the standard Z-basis of Z n (i.e. e i = (δ j i ) n j=1 for any i) one sets X e i = X i for i = 1, . . . , n and one defines the complete quantum affine space A Q as the following non-commutative Q q 1/2 -algebra of formal series in the X i 's:

(235)

A Q = Q q 1/2 y α , α ∈ N n y α y β = q 1 2 β(α,β) y α+β .

Then assuming that Z is a stability function of discrete type, one defines the refined DT-invariant154 

E Q,Z ∈ A Q
as a certain ordered product of the elements of A Q of the form E X dimM where M ranges among the (finite) set of Z-stable elements of mod(kQ) (with dimM ∈ N n standing for the corresponding dimension vector for each such module M). What justifies the use of the term 'invariant' here is the following theorem due to Reineke [Re] (see also Theorem 1.6 in [START_REF] Keller | On cluster theory and quantum dilogarithm identities[END_REF]):

Theorem 8.34. The DT-invariant E Q,Z does not depend on the discrete stability condition Z.

Then using this theorem, it is possible to give a more conceptual proof of a quantum dilogarithmic identity equivalent to the quantum identity (qR ∆ ) of §8.6.2 associated to i ∆ , the cluster Y-period of Dynkin type ∆ (which corresponds to the period (108) specialized when ∆ ′ = A 1 and where ∆ is the Dynkin type of Q). Indeed, one can prove (see after [START_REF] Keller | On cluster theory and quantum dilogarithm identities[END_REF]Corollary 1.7]) that there exist two discrete stability conditions Z 1 and Z 2 such that the stable objects for Z 1 , enumerated in some specific way, are precisely modules S i 1 , . . . , S i n whose images in C Q are the objects associated to the initial (quantum) cluster variables X i 1 , . . . , X i n for a certain ordering (i 1 , . . . , i n ) of {1, . . . , n};

the Z 2 -stable modules correspond to the indecomposable representations, with associated dimension vectors α 1 , . . . , α N ∈ N n . From Reineke's theorem, it follows that both refined DT-invariants E Q,Z 1 and E Q,Z 2 coincide, which in explicit form can be written as the following quantum dilogarithmic identity

E ∆ E(X i 1 ) • • • E(X i n ) = E X α 1 • • • E X α N ,
an identity which is equivalent to (qR ∆ ) as mentioned above (see also [START_REF] Kashaev | Classical and quantum dilogarithm identities[END_REF]§3.5]).

The interpretation of E ∆ as an equality between two quantities attached to C ∆ is very interesting and suggests whether something similar happens for any other AR of the Y-cluster web of type ∆, under the assumption that this AR admits a deformation quantization. Since there are many logarithmic ARs which can be constructed from (R ∆ ) (see §6.2.3.2) and because we believe that any AR of this type admits a quantum deformation, it seems to us that the following question makes sense and is relevant:

where P ±n is an element of Z >0 [x 1 , x 2 ] with constant term equal to 1 for any non negative n.

Instead of (E K 2 ), we are going to work with the following identity

E ′ K 2 • • • E(3,
2) E(2, 1) E(1, 0) E(0, 1) -1 E(1, 0) -1 E(0, 1) E(1, 2) E(2, 3) • • • = E(X (2,2) )E(X (1,1) ) 2

which is equivalent to (E K 2 ) (see equation (A.6) in [GMN]).

From ( 238), it comes that relatively to the variables x 1 , x 2 (1) the tropical signs of the x m 's are all negative; the c-vector of x n+3 (resp. of x -n ) is (-n, -n -1) (resp. (-n, -n + 1)) for any n ≥ 0.155 . Accordingly, the LHS of the quantum dilogarithmic identity just above can be seen as the version written in tropical form of the expression in universal form obtained by taking the product of the E(x m )'s for m increasing from -∞ to +∞.

On the other hand, since X (2,2) = X (1,1) • X (1,1) (as it is easy to check), the RHS of E ′ K 2 can be seen as a quantum dilogarithmic function of the single quantum expression X (1,1) . Hence, under the assumption that Volkov's shuffle method applies to infinite product as well, the version in universal form to E ′ K 2 would be written as 1) .

E univ K 2 • • • E(X -2 ) E(X -1 ) E(X 1 ) E(X 2 ) E(X 3 ) E(X 4 ) E(X 5 ) • • • = E X (1,
for some quantum dilogarithmic function E(z) of z ∈ A K 2 , namely a finite product of powers of terms of the form E(ϕ(z)) for some rational functions ϕ ∈ Q(q 1/2 )(z). Since the arguments of E in the LHS of E univ K 2 all admit natural limits when q 1/2 → 1 contrarily to those in E K 2 or E ′ K 2 , it is much easier to investigate the possible classical limit of the former identity than it is the case for the last two. As a preliminary step, let us discuss what could be the dequantization of the 'quantum web attached to E univ K 2 ', denoted by qW univ K 2 . By definition, the latter is the infinite quantum web whose first integrals are the cluster variables X m for m ∈ Z and X (1,1) (suitably ordered). Accordingly, it is natural to require for its dequantization 'W univ K 2 = lim q 1/2 →1 qW univ K 2 ' that it must have all the cluster variables x m = lim q 1/2 →1 X m among its first integrals. At the opposite, since X (1,1) is not a cluster variable, what might be its dequantization x (1,1) = lim q 1/2 →1 X (1,1) is not straightforward. Drawing inspiration from [GMN, Appendix A], it is interesting to consider new (analytic) variables a and b such that x 0 = cosh 2 (b)/sinh 2 (a) and x 1 = cosh 2 (a + b)/sinh 2 (a). Hence for any m ∈ Z, the quantity x m admits the following nice closed expression in terms of a and b x m = cosh 2 (am + b) sinh 2 (a)

and considering the argumentation between (A.5) and (A.6) in [GMN, Appendix A], one deduces that in the coordinates a, b, one has x (1,1) = e -2a . Hence (239) W cosh 2 (am + b) sinh 2 (a) , e -2a m ∈ Z is an analytic model of W univ K 2 . Trying to express a in terms of x 1 and x 2 , one obtains that 2a = Log ξ where ξ stands for a root of z 2 -τz + 1 where

τ = τ K 2 = 1 + 2x 1 + 2x 2 + x 2 1 + x 2 2
x 1 x 2 .

Thus ξ = (τ ± √ τ 2 -4)/2 from which it follows that, seen as a function of x 1 , x 2 , τ can be taken as a first integral of the foliation corresponding to the one defined by e -2a in the coordinates a, b. This gives us that W univ K 2 is the following web with positive Laurent polynomials as first integrals:

W univ K 2 = W x m , τ K 2 m ∈ Z .
As already mentioned above, for any cluster period ν, the classical dilogarithmic identity (R ν ) can be recovered from its quantum version (qR ν ) (cf. Appendix A of [KN]) 156 . Hence it is natural to wonder about the possible existence of a semiclassical limit for E univ K 2 . when q 1/2 → 1. In case the answer to Question 8.37. 1 is affirmative, it is very natural to ask the following ones: Question 8.38.

1. Does it exist a functional identity with an infinite number of dilogarithmic terms which can be obtained from E K 2 in the semiclassical limit? 2. If yes, does it look like the identity which can be derived formally in a straightforward way from E K 2 , namely

(240) m∈Z R x m = R( τ K 2 )
where R stands for a dilogarithmic function? If it is indeed the case, what is R precisely and does the LHS of (240) converge as a function of x 1 , x 2 on some domain of C 2 ?

3. The definition of W univ K 2 given above in terms of the X-cluster variables (of the cluster algebra determined by K 2 ) plus the extra first integral τ K 2 might be generalized to the case of any rank 2 cluster algebra as follows: let B be an initial exchange matrix whose antidiagonal coefficients are b and -c for any two given positive integers b and c. Denoting by x B m the associated X-cluster variables, 157 one can ask the following: are there coefficients n m ∈ Z and an at most countable set I indexing positive Laurent polynomials τ i b,c ∈ Z x ±1 1 , x ±1 2 156 Actually, [KN, Appendix A] is not about the identities (R ν ) and (qR ν ) we are dealing with here (which are said to be 'in universal form' by Kashaev and Nakanishi), but concerns other versions of them, namely dilogarithmic identities said in 'in local form'. We believe that the analysis in [KN, Appendix A] can be adapted to the identities in universal form as well but a confirmation of that would be welcome. 157 The x B m 's satisfy the following relations: Moreover, when B is skew-symmetric (i.e. when b = c hence the initial quiver is the b-th Kronecker quiver K b ), one expects that the coefficients n m 's can all be taken equal to 1.

Several preliminary computations lead us to think that the answers to the first two questions are affirmative. In terms of the first integrals of the analytic model ( 239) of W univ K 2 , the conjectural identity (240) can be written Identities involving countably many dilogarithmic terms already appeared in the literature, in form very similar to the one just above, but involving the classical Rogers' dilogarithm R instead of R: for instance see 'Bridgeman orthospectrum identity' (65) discussed in Remark 2.10. Another striking example is the infinite identity given in Theorem 2.1 of the recent preprint [START_REF] Bridgeman | Dilogarithm identities for solutions to Pells equation in terms of conti--nued fraction convergents[END_REF] which looks like a one variable version of the conjectural identity (242).

⋆

The material discussed above (some part of which is still conjectural) suggests a possible interesting generalization of many notions, concepts and results of classical web geometry to webs formed with an infinite (countable) number of foliations. We brievly discuss this below.

Let I be an infinite countable set of indices. Assume that u = (u i ) i∈I is a set of holomorphic functions at the origin of C n (for some fixed n ≥ 2), defining a 'web' W u = W u i | i ∈ I ' (in the sense that du i ∧ du j 0 for any i, j ∈ I with i j). By definition, an AR for this web is a family (F i ) i∈I of holomorphic germs such that the infinite sum i∈I F i (U i ) converges absolutely on a sufficiently small open neighbourhood of the origin and defines an element of O(C n , 0) which actually is identically equal to a constant. Working only with formal series, one can also consider the notion of formal abelian relation.

As in the classical case, the space A W u of ARs naturally carries a vector space structure. As a subspace, it contains the space of 'finite ARs', denoted by A f W u , which is the subpsace spanned by the family A W ′ 's for all finite subwebs W ′ of W u . This subspace (and consequently A W u can have infinite dimension as easily shown by considering the case of W univ K 2 : to each relation ( 236) is associated the logarithmic abelian relation Log(x m-1 ) -2 Log(1 + x m ) + Log(x m+1 ) = 0 , from which it follows that dim A f W univ K 2 = ∞.

158 Initially, this question was asked with the additional assumption that I is a singleton (as conjectured in the case when b = c = 2). It is after attending the seminar talk 'Wild quantum dilogarithm identities' by M. Reineke that we became aware that when the exchange matrix B is of wild type, we are more likely to expect that the infinite sum m∈Z n m R x B m is equal to a sum of countably many dilogarithmic terms of the form R i b,c τ i b,c as in ( 241).

An element of A W u \A f W u is an 'infinite AR'. One defines the '∞-rank' ρ ∞ W u of W u as the (possibly infinite) dimension of the quotient vector space A ∞ W u = A W u /A f W u . Assuming that an identity (240) indeed holds true, one expects that the corresponding dilogarithmic AR does not belong to A f W univ K 2 which would implies that ρ ∞ W univ K 2 is positive.

Questions 8.39. 1. For classical (i.e. finite) webs, both notions of analytic and formal abelian relation actually coincide. Does the same hold true for infinite webs as well? 2. Is the ∞-rank of W univ K 2 finite? Can a set of infinite ARs inducing a basis of A ∞ W univ K 2 be explicited? And if it is the case, describe such a set.

Same questions as those just above for the web defined by the first integrals x B

m (m ∈ Z) and τ b,c appearing in (241), under the assumption that such an identity indeed holds true.

Does it exist infinite webs carrying infinite polylogaritmic ARs of weight w ≥ 3?

We are not aware of any trilogarithmic identity with infinitely many terms, hence we believe that the answer to the fourth question above might well be negative. This constrasts with the case of infinite dilogarithmic identities, that we do know to exist thanks to the work of Bridgeman for instance.

It is interesting to notice that infinite logarithmic identities also appear within the same context as 'Bridgeman orthospectrum identity': among many examples, one can mention 'Basmajian identity' or the 'generalized McShane-Mirzakhani identity', both for finite area hyperbolic surfaces with geodesic boundary (see [BT]). It would be interesting to consider such identities as ARs for infinite webs on certain moduli spaces of hyperbolic surfaces defined by first integrals corresponding to geometric quantities.

As seen above, when a finite web carries a dilogarithmic AR, many other logarithmic ARs can be obtained from the latter (by monodoromy or derivation, see §6.2.3.2). One can wonder whether such a phenomenon also occurs for the infinite geometric webs just mentioned. More explicitly, we wonder about the possibility to deduce in some way Basmajian or McShane-Mirzakhani type logarithmic identities from dilogarithmic ones such as Bridgeman or Luo-Tan identities. 8.7 Cluster algebras of finite type and moduli spaces of configurations.

An interesting feature of finite type cluster algebras of type A is that many things can be interpreted geometrically in terms of projective configurations of points on P 1 : for any n ≥ 1, the cluster variety X A n identifies itself with M 0,n+3 , up to this identification, the cluster variables identify themselves with some cross-ratios of 4 points among the n + 3, etc. (see §4.2.1). These identifications allow to use geometric arguments which proved to be crucial in several places in this text, in particular to establish Theorem 6.1 which is one of the most important results of this memoir.

In order to investigate further the (X-or Y-)cluster webs of Dynkin type distinct from A, it would be very valuable to have similar geometric interpretations for the corresponding X-cluster variety and cluster variables.

Question 8.40. For any Dynkin diagram ∆, is there a natural identification between the cluster variety X ∆ and a moduli space of certain projective 'configurations of type ∆'?

As it is stated, this question is quite vague. A first step for answering it would be to make the term 'natural' more precise and to define the notion of 'configurations of type ∆' rigorously.

In some recent preprints [AHHLT] and [AHHL], Arkani-Hamed and his coworkers have introduced some positive spaces which they call 'Cluster configuration spaces of finite type'. If these spaces are certainly interesting (see the next subsection for instance), they do not provide the geometric interpretation we are looking for. Indeed, for each Dynkin diagram ∆, the Cluster configuration space M ∆ of [AHHL] is defined as a 'smooth affine algebraic variety with a stratification in bijection with the faces of the Chapoton-Fomin-Zelevinsky generalized associahedron' by means of explicit affine equations in coordinates. But no interpretation of any kind of the points of M ∆ in terms of geometric configurations appears in the paper hence we do not understand why the word 'configuration' is used in the name given to these spaces.

Roughly, what we are looking for for the cluster variety X ∆ and the associated cluster variables for any ∆ is a similar geometric/projective description to the one in type A n in terms of M 0,n+3 and of cross-ratios. As far as we know, apart from this case, nothing has been published along this line yet. On our part, we have rather precise ideas about how this question might be answered. This is the subject of an ongoing project [START_REF] Pirio | Cluster varieties of finite type and moduli spaces of polygons[END_REF] that we hope to see completed one day.

Cluster webs of higher codimension.

In type A n , the geometric interpretations of the X-cluster variables as cross-ratios on M 0,n+3 tells interesting things about their anatomy. In particular, they all are pull-backs of the cluster variables in type A n-1 under one of the n + 3 forgetful maps (243) ϕ i : M 0,n+3 → M 0,n+2 for i = 1, . . . , n + 3 the i-th of which is given by forgetting the i-th point of the configuration. This remark naturally leads to think that the (n + 3)-web by curves admitting the forgetful maps f i as first integrals is at least as important as the standard 1-codimensional cluster web XW A n . This curvilinear webs will be denoted XW (1) A n = W ϕ 1 , . . . , ϕ n , the superscript with 1 between parentheses indicating that its leaves are of dimension 1. Notice that when n = 2, one gets nothing new since XW (1)

A 2 coincides with XW A 2 .

8.8.1 Actually, the webs XW (1) A n have already been considered by several authors and they appear as very similar to and as interesting as XW A 2 : these webs have been considered first in [Bu] where Burau proves that there are projective models for which the leaves are lines (when n is odd) or conics (n even). These webs were studied from the point of view of their (n -1)-abelian relations and of their (n -1)-ranks more recently, by Damiano in [Da]. He claimed that he had proved that each web of this family is of maximal (n -1)-rank, with all its (n -1)-ARs of logarithmic type, except one which can be said of hyperlogarithmic nature and is constructed by integrating the invariant volume form on the grassmannian Gr + 2 (R n+2 ) (of oriented 2-planes in R n+2 ) along the fibers of the action of the Cartan subgroup of GL(R n+2 ). Some of the results of [Da] are wrong and the proofs of some others are flawed but we believe that each web XW (1)

A n
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 12 Polylogarithms and their functional equations. Polylogarithms are special functions which generalize the classical logarithm, this from several perspectives. For any integer n ≥ 1, one defines the 'n-th (or weight n) polylogarithm' Li n by means of the following series Li n (z) any z in the unit disk D = { ζ ∈ C | |ζ|< 1 }.

  Theorem 0.4. For any non-zero tuple c = (c i ) d i=1 ∈ C d , the following assertions are equivalent: 1. a functional equation of the form d i=1 c i Li n (u i ) = P <n holds true; 2. the symbolic identity d i=1 c i • u * i 0 n-2 (01 -10) = 0 is satisfied; 3. the sum d i=1 c i L ζ i n (u i ) vanishes identically on a neighbourhood of ζ ; 4. for any k = 0, . . . , n -2, one has d i=1 c i L ζ i n,k (u i ) ≡ 0 on a neighbourhood of ζ.

  1.1.2 Webs. A global d-web W on a manifold M is the data of germs of d-webs W m for any point m of M or for any m in a dense open subset of M.

Figure 2 :

 2 Figure 2: A planar 3-web formed by three pencils of lines.

Figure 5 :

 5 Figure 5: A generic hyperplane H 0 intersects C in d = deg C distinct points.

  8. Finally, given a global web W defined on a domain U ⊂ C n , we will write ρ ⋆ (W) for ρ ⋆ (W| U ′ ) where U ′ ⊂ U denotes the dense open subset of points where (wGP) is satisfied. Example 1. (1). For a germ of d-web W on (C 2 , 0), one has ρ σ (W) = max 0, (d -1 -σ) for any σ ≥ 1, therefore ρ(W) = (d -1)(d -2)/2 is independent of W. Thus, in this case, one cannot get from the previously introduced invariants ρ • (W) and ρ(W) anything else than the classical Bol's bound rk(W) ≤ ρ(W) = (d -1)(d -2)/2 on the rank.

ζn

  is the (germ of) iterated integral at ζ which is the image of the symbol 1 n 0 n-2 (0 ∧ 1) by the map II n ζ . It is not difficult to get an explicit closed formula for L ζ n in terms of the classical polylogarithms (with coefficients being classical polylogarithms evaluated at ζ). To simplify our formulas, we will work on the open domain Ω = C \ ] -∞, 0] ∪ [1, +∞[ , with the principal determinations of the standard (poly)logarithmic functions on it. Let us start with the simplest case, namely when ζ = 0. For any z ∈ Ω, we denote by γ z 0 : [0, 1] → C a smooth path from 0 to z with derivative 0 at 0 and such that γ z 0 (t) ∈ Ω for any t ∈]0, 1]. Then, for any n

ζn

  has valuation n + 1 at ζ has an easy but interesting consequence regarding the functional equations of type (45) satisfied by the classical polylogarithm Li n . Proposition 2.8. Let (E) : d i=1 c i Li n (u i ) = P <n be a non-trivial polylogarithmic FE in several variables. If the u i 's appearing in it define d distinct foliations then necessarily d ≥ n + 3.

  60, -15, 1) δ 5 = (840, -252, 27, -1) δ 6 = (15120, -5040, 672, -42, 1) δ 7 = (332640, -118800, 18000, -1440, 60, -1) δ 8 = (8648640, -3243240, 534600, -49500, 2700, -81, 1) δ 9 = (259459200, -100900800, 17657640, -1801800, 115500, -4620, 105, -1) .

  54) is equivalent to the fact that 'the (2n -2)-th order jets at ζ of the holomorphic polylogarithmic functions L ζ n-k,k for k = 0, . . . , n -2 are linearly dependent'.

Figure 6 :

 6 Figure 6: Spence-Kummer configuration C SK ∈ Conf 6 (P 2 ).

Figure 7 :

 7 Figure 7: An element of S(SK).

Figure 8 :

 8 Figure 8: A generic element of Σ(SK) (the seventh point added to C SK is pictured in red).

  , b, c)] and then he proves that G 22 = g(a, b, c) + g(c, a, b) + g(b, c, a) +abc is a functional equation for the trilogarithm, i.e. one has L 3 (G 22 ) = 0 identically in a, b, c.

Figure 9 :

 9 Figure 9: A generic element of Goncharov's stratum Σ(G 22 ) ⊂ Conf 7 (P 2 ).

  3.1.1.1 Skew-symmetrizable matrices, quivers and mutations. Let B = (b i j ) n i, j=1 be a square n × n matrix with integers coefficients b i j . It is skew-symmetrizable if there exists a diagonal matrix D = diag(d 1 , . . . , d n ) with diagonal entries d i ∈ Z >0 such that DB = (d i b i j ) n i, j=1 be skewsymmetric. In this case, such a matrix D is a skew-symmetrizer of B.

Figure

  Figure 11: Dynkin diagrams

Figure 12 :

 12 Figure 12: Dynkin quivers ∆ for ∆ of classical type (of rank l even).

  [a, b] ⊂ [1, n], the sum α [a,b] = a≤k≤b α k is a positive root and conversely, any positive root is written in this way. For any sub-interval as above, one denotes by F[a, b] the F-polynomial associated to α [a,b] ∈ (A n ) >0 . Then, according to Example 2.15 of [FZ1], writing x S = s∈S x s for any S ⊂ [1, n], one has F[a, b] = Ω⊂[a,b]

Figure 14 :

 14 Figure 14: The square product A 4 D 4 .

  3.3.1.5.1 The cluster web YW A 3 . The bipartite Dynkin diagram of type A 3 is the following:

  3.3.1.5.5 The web YW A 2 D 4 . The square product quiver A 2 D 4 is from which it is easy to construct the associated exchange matrix B A 2 D 4 hence the birational map F A 2 D 4 : C 8 C 8 which can be verified of order h(A 2 ) + h(D 4 ) = 3 + (2 × 4 -2) = 9. One verifies that the web BBW A 2 D 4 coincides with YW A 2 D 4 . It is a 36-web in 8 variables and by direct computations, one obtains that ρ • (YW A 2 D 4 ) = (28, 8, 1) and polrk • (YW A 2 D 4 ) = (36, 1) .

  [a X ]. Is there a closed formula for the number d X ∆ foliations appearing effectively in XW ∆ ? -[b Y ]. Is the majoration (118) an equality? -[c X ]. Are there closed formulae for ρ • (XW ∆ ), IIrk • (XW ∆ ) and rk(XW ∆ ) ? -[d X ]. Is the web XW ∆ AMP ? -[e X ]. Is there a (combinatorial?) description of the space of iterated integral ARs IIA(XW ∆ )?

  below.

Figure 18 :

 18 Figure 18: On the left, the tagged triangulation T 0 of P • n whose all edges are radii. The cut is the dotted line in blue. On the right, the associated ice quiver Q T 0 (its frozen vertices are boxed, the non frozen ones are circled). The i-th vertex is associated to the radius from i to the puncture • and the boxed(=frozen) one labeled by i(i + 1) corresponds to the arc between i and i + 1 on the boundary ∂P • n (with 1n standing for n(n + 1)). The unfrozen part of Q T 0 is the anticlockwise oriented n-cycle.

  2 and in §5.3 of [S-B1] (for the cases B n and C n respectively). Then arguing as in the paragraph just above Corollary 4.8, one deduces that the first point of Conjecture 3.26 holds true as well for any finite type cluster algebra of Dynkin type B or C. ⋆ This finishes the (partially sketched) proof of Proposition 4.1. 4.2.4 Degrees of cluster webs in finite type. From above, we deduce the following Corollary 4.9. Let ∆ be any Dynkin diagram (of rank n ≥ 2).

  m,n of (a, b, c, d) modulo (m + n + 2)Z hence the following set is well-defined: (134) Y m,n = a, b, c, d m,n (a, b, c, d) ∈ Z 4 satisfies (133) . Now, given a, b, c, d m,n ∈ Y m,n , one defines a rational map by setting (135) Π [a,b,c,d] m,n = π ] a,b [ ∪ ] c,d [,(a,b,c,d) : Conf m+n+2 (P n ) P 1 , where we use the notation (3) (with I =]a, b[∪]c, d[, J = (a, b, c, d) in the case under scrutiny and where the x s 's are labeled cyclically modulo m+n+2): it obviously only depends on a, b, c, d m,n hence formula (135) makes sense. With this notation Volkov's formula (131), can be paraphrazed by saying that the pull-back on Conf m+n+2 (P n ) of the foliation induced by Y i, j (t) on X A m ⊠A n coincides with the one admitting Π [A,B,C,D] m,n as first integral, where A, B, C, D are given by the formulas in (132). Conversely, given τ = [a, b, c, d] m,n ∈ Y m,n , setting i τ = ba, j τ = cb and t τ = -ac, one has i τ + j τ + t τ = -2a mod 2(m + n + 2) which thus is even and one obtains a triplet (i τ , j τ , t τ ) ∈ {1, . . . , } × {1, . . . , m} × Z/(2(m + n + 2)Z) which, first, only depends on τ and not on the choice of the representative (a, b, c, d) ∈ Z 4 ; and, second, is such that

  m,n ,[a, b, c, d] m,n ∈ Y m,n , the maps Π[a,b,c,d] m,n and Π [a ′ ,b ′ ,c ′ ,d ′ ] m,n define the same foliations on Conf m+n+2 (P m ) if and only if the two sets of intervals{ ]a, b[ m,n , ]c, d[ m,n } and {]a ′ , b ′ [ m,n , ]c ′ , d ′ [ m,n } coincide,where the notation I m,n means that we are considering the image of I in Z/(m + n + 2)Z (for any I ⊂ Z). So there are only two possibilities: either (1) ]a, b[ m,n =]a ′ , b ′ [ m,n and ]c, d[ m,n =]c ′ , d ′ [ m,n or (2) ]a, b[ m,n =]c ′ , d ′ [ m,n and ]c, d[ m,n =]a ′ , b ′ [ m,n . Since both 4-tuples (a, b, c, d) and (a ′ , b ′ , c ′ , d ′ ) satisfy (

Figure 19 :

 19 Figure 19: The root system of type G 2

Figure 20 :

 20 Figure 20: The zig-zag Z n for n even (on the left) and n odd (on the right)

  ,b] associated to the root α [a,b] = s α s of the root system of type A n coincides with F m evaluated on the m-tuple u [a,b] = (u a , u a+1 , . . . , u b ): as elements of Z[u 1 , . . . , u n ], one has (180) F [a,b] = F m u [a,b] . Proof. For (a, b) ∈ N 2 with 1 ≤ a ≤ b, let Ω [a,b] be the set of totally disconnected subsets of |a, b| : elements of Ω [a,b

  for the map defined byσ ℓ = ℓ for ℓ = 1, . . . , 4 ; σ 3 + 2k = n + 1k for k = 1, . . . , K ; and σ 4 + 2k ′ = 4 + k ′ for k ′ = 1, . . . , K ′ .

  YW C n = YW Y s s = 1, . . . , n(n + 1) .Finally, one verifies that a right skew-symmetrizer for B C n is given by the diagonal matrix whose diagonal coefficients form the n-tuple d C n = (1, . . . , 1, 2) whose coefficients are denoted simply by d 1 , . . . , d n (with no reference to C n ) in the lines below (d i = 1 for i = 1, . . . , n -1 and d n = 2).

  Then one states the following version in type C of the 'Conjecture YW B n ' stated above:Conjecture YW C n . Let n be an integer bigger than or equal to 3.1. The first five points of Conjecture YW B n hold true if one replaces B n by C n everywhere.2. The rational AR . The following rational α] = 1 is identically satisfied. The associated AR of YW C n is not of polylogarithmic type.3. Rank and basis of ARs . One has

  10 , 1 ρ(YW D 5 ) = 31 polrk • YW D 5 = 25 , 1 rk YW D 5 = 26 ρ • (YW D 6 ) = 30 , 15 , 1 ρ(YW D 6 ) = 46 polrk • YW D 6 = 36 , 1 rk YW D 6 = 37 ρ • (YW D 7 ) = 42 , 21 , 1 ρ(YW D 7 ) = 64 polrk • YW D 7 = 49 , 1 rk YW B 7 = 50 ρ • (YW D 8 ) = 56 , 28 , 1 ρ(YW D 8 ) = 102 polrk • YW D 8 = 64 , 1 rk YW D 8 = 65 .From these values, one can extrapolate the values of the ranks for n arbitrary and state the Conjecture YW D n . Let n be an integer bigger than or equal to 4.1. The ramification of YW D n is polylogarithmic and the variety of common leaves Σ c YW D n coincides with the corresponding cluster arrangement: one has Σ c YW D n = Arr D n .

  • W D 5 = 235, 149, 8, . . . ρ • W D 6 = (264, 249, 214, 144, 24) polrk • W D 6 = 504, 344, 20, . . . ρ • W D 7 = (490, 469, 413, 287, 56) polrk • W D 7 = 945, 671, 40, . . . ρ • W D 8 = (832, 804, 720, 510, 104) polrk • W D 8 = 1616, 1175, 70, . . .

  D 5 , denoted by XW 12 D 5 such that ρ • XW 12 D 5 = (36, 30, 20, 8, 1) ρ XW 12 D 5 = 95 polrk • XW 12 D 5 = (64, 29, 2) .

Figure 21 :

 21 Figure 21: three types of degenerate configurations of seven points on P 2 .

Figure 22 :

 22 Figure 22: The non-Fano arrangement (see also Figure 6 above).

Questions 8 .

 8 15. Let Q stand for a Dynkin diagram of the form Q(∆, ℓ) or ∆ ⊠ ∆ ′ (where ∆, ∆ ′ are Dynkin diagrams of rank n and n ′ respectively, ℓ ≥ 2 being a level).1. For Q = ∆ ⊠ ∆ ′ , is it true that there exists a unique point ξ Q ∈ (R >0 ) nn ′ fixed by F Q ? 2. If yes: (a)is it possible to give a closed formula for ξ Q ? (b) what about the analogue for YW Q (= YW ∆⊠∆ ′ ) of Question 8.14? Some computations when ∆ ′ = A 1 and with ∆ of type A or D give explicit formulas for n = rk(∆) small enough. In particular if ξ∆ stands for the fixed point E(ξ ∆ ) of the conjugation of F ∆ by the involution E : (

Figure 23 :

 23 Figure 23: The zig-zag triangulation T 0 of the hexagon. Let x T 0 : M 0,6X A 3 be the birational identification associated to the zig-zag triangulation T 0 of the hexagon P 6 above (see also §4.2.1). One verifies that the strict transform of U A 3 by x T 0 is a surface hence gives rise to a divisor in M 0,6 (after taking Zariski closure).

  A 5 and UW A 5 have the same number of foliations. 146 Direct computations give us ρ • UW A 5 = 66, 60, 50, 35, 14 polrk • UW A 5 = 121, 55 and rk UW A 5 ≤ 211 .

2.

  When gcd(m + 1, n + 1) ≥ 2, same questions for UW plabic A m ⊠A n , the restriction of XW plabic A m ⊠A n along U A m ⊠A n . Does any of these 'secondary plabic cluster webs' carry new polylogarithmic identities of weight strictly bigger than 2?

  a quantum identity of the form E univ K 2 above hold true? If yes, for which dilogarithmic right hand side E precisely? 2. If the answer to 1. is affirmative, is the corresponding identity E univ K 2 equivalent (by means of formal and/or algebraic operations, possibly in infinite number) to E K 2 ?

  x B m-1 x B m+1 = (1 + x B m ) b for m odd and x B m-1 x B m+1 = (1 + x B m ) c if m is even.and dilogarithmic functions R i b,c (for i ∈ I) such that the infinite dilogarithmic relation below holds true?

  am + b) sinh 2 (a) = R e -2a

Table 1 :

 1 Table 1 just below, have AMP rank. Examples of polylogarithmic identities giving rise to AMP webs.

	Polylogarithmic identity	Weight Reference
	Abel's identity (Ab)	2	§2.2.2.2
	Newman's identity (N 6 )	2	§2.2.2.3
	Mantel's identity (M)	2	§2.2.2.4
	Maier's identity (M 8 )	2	§2.2.2.6
	Spence-Kummer's identity (SK)	3	§2.2.3.1
	Goncharov's identity (G 22 )	3	§2.2.3.3
	Gangl's identity (Gan 21 )	3	§2.2.3.4
	Tetralogarithmic identity (GGSVV)	4	§2.2.5.2

Table 2 :

 2 Some polylogarithmic identities of cluster type.

	Polylogarithmic identity	Weight n Cluster web Reference(s)
	Abel's identity (Ab)	2	XW A 2	§5.1.1
	Newman's identity (N 6 )	2	XW B 2	§5.1.2
	Spence-Kummer's identity (SK)	3	UW A 3	§5.2, (97)
	Kummer's identity (K 4 )	4	UW D 4	§5.2, (98)

identity and Kummer's tetralogarithmic identity. The corresponding cluster webs associated to each of these identities are given in the table below:

  T, Théorème 1.1]), rather that of 'non-algebraizable web with AMP rank'.The webs W M 0,n+3 are of this kind (see Example 2.3. just above), as well as numerous examples of webs we are going to consider in the sequel, such as Goncharov's trilogarithmic web discussed in §2.2.3.3 or the Y-webs of type A n we will study further on in Section 6.2, among many others. This shows that this class of webs is non-empty and contains webs which, like many examples of planar exceptional webs, are related with functional equations of polylogarithms.

⋆

According to us, the determination of webs with AMP rank is what corresponds, in dimension n ≥ 3, to the problem of determining the exceptional planar webs, which is the main open question in planar(=2-dimensional) web geometry, 1.3.6 ACM curves and AMP webs. Considering the notions introduced above for algebraic webs is particularly interesting since it induces a connection with some projective curves of particular interest.

  this equality holding in the double tensor productH YW A 3 ⊗ H YW A 3 . Using the formulas (23) it is not difficult to express each term Ω ζ i ⊗ Ω ζ ′i as a linear combination of the η i ⊗ η j 's for i, j = 1, . . . , 9. These tensors forming a basis of H YW A 3

  hence all these inequalities actually are equalities. In particular, we get that YW A 3 is AMP, with only logarithmic ARs, plus the extra polylogarithmic AR of weight 2 corresponding to the tensorial identity (25).

	1.4.4.3 The web W Conf 6 (P 2 ) is AMP. We consider the web defined in §1.2.7.2 above in the
	particular case when m = n = 2.		
	The web W Conf 6 (P 2 ) is a 30-web in four variables and from explicit computations, one gets that
	ρ • W Conf 6 (P 2 ) = 26, 20, 11	and	polrk • W Conf 6 (P 2 ) = 46, 11
	which implies that polrk W Conf 6 (P 2 ) = rk W Conf 6 (P 2 ) = ρ W Conf 6 (P 2 ) = 57 hence in particular
	that W Conf 6 (P 2 ) is AMP as well, with only polylogarithmic ARs (with ramification loci {0, 1, ∞}), of weight 1 or 2 at most.
		⋆	
	Considering that the webs W M 0,n+3 (for any n ≥ 2) and W Conf 6 (P 2 ) are AMP may suggest that being AMP is a property common to all webs W Conf m+n+2 (P m ) (for any m, n ≥ 1 such that m + n > 4). This is not the case. For instance, let us look at the web W Conf 7 (P 2 ) (case m = 2 and n = 3): it is a 105-web of intrinsic dimension 6, such that ρ • W Conf 7 (P 2 ) = (99, 84, 53). One can verify 27 that rk W Conf 7 (P 2 ) = 232 and polrk • W Conf 7 (P 2 ) = (182, 50). We thus have
	232 = polrk W Conf 7 (P 2 ) = rk W Conf 7 (P 2 ) < ρ W Conf 7 (P 2 ) = 236
	hence although it only carries polylogarithmic ARs of weight 1 or 2, W Conf 7 (P 2 ) is not AMP.

  288, 105, . . . . Spence-Kummer's trilogarithmic one W SK and Kummer's web W K 4 are of cluster type (see Theorem 5.5 below), it is natural to ask whether the same holds true for W K 5 .

	Because Bol's web B,

Table 5 :

 5 Coxeter numbers and dual Coxeter numbers of Dynkin diagrams 3.3.1.3 Some classical examples of Y-systems associated to Dynkin diagrams. In this paragraph, we use the following notations: for a given Dynkin diagram ∆, we denote by n its rank, h its Coxeter number, ȟ the dual one (see Table 5 below); C = C(∆) = (c i j ) n i j=1 stands for the associated Cartan matrix and we set A

		1	2n	2n	2n -2 12 18 30 12	6
	h ∨	n + 1 2n -1 n + 1 2n -2 12 18 30	9	4

Table 6 :

 6 Periodicity and dilogarithmic identities for Y-systems of Dynkin types

  T , this for any tagged triangulation T of P • n . Hence for T ∈ T • n and any edge t ∈ T , one defines an element of K by setting

	(128)	x T t = τ→t P τ t→τ P τ

  If two cluster variables x T t and x T ′ t ′ define the same foliation, then the same holds true for xT t and xT ′ t ′ hence their differentials d xT t and d xT ′ t ′ are colinear (over C(v 1 , . . . , v n )), thus both necessarily share the same type. On the other hand, one verifies by direct explicit computations that the differentials of the eleven explicit rational expressions of four variables in (130) are pairwise non colinear. This gives us the following version in type D n of Corollary 4.4:

	Corollary 4.8. for T ∈ T • n and t ∈ T . Thus, up to inversion (i.e. modulo x ↔ x -1 1. Up to pull-back on M D n , the X-cluster variables of type D n are the x T t 's
									in [S-B1]):
		Type (i, j) :	P i, j P i, j					
	(130)	Type (i, j, k) :	P i, j P k,• P i,• P j,k	,	P i,k P j,• P j,k P i,•	,	P i,k P j,• P i, j P k,•	;
		Type (i, j, k) ′ :	P i, j P k,• P k,• ⊲⊳ P i,k P j,k	,	P i,k P j,• P j,• ⊲⊳ P i, j P j,k	,	P j,k P i,• P i,• ⊲⊳ P i,k P i, j	;
		Type (i, j, k, l) :	P i, j P k,l P i,l P j,k	,	P i, j P kl P i,l P j,k	,	P i, j P kl P i,l P j,k	,	P i, j P k,l P i,l P j,k
	These expressions can also be seen as formulas for xT t (up to inversion) since the latter is obtained by specializing x T t at λ = 1. Since we have explicit expressions (126) for the components P i, j ,
	P i, j , P i,• and P i,• ⊲⊳ from which the xT t 's are built, we deduce the
	Lemma 4.7. The type τ(x T t ) coincides with the set of indices s ∈ {1, . . . , n} such that ∂ xT

t /∂v s 0.

Proof. It suffices to verify that for any of the eleven expressions in (130), its partial derivative with respect to v s is not trivial if and only if s appears in the corresponding type.

Table 8 :

 8 Number of positive roots in root systems and degrees of Y-cluster webs of Dynkin type.

	1) 36 63 120 24 6

  the space of weight two dilogarithmic ARs of YW B 3 is spanned by (R B 3 ) whereas the one in case B 2 is of dimension 2, spanned by (R B 2 ) and (S B 2 ) (cf. §5.1.2 above).7.1.3.2 YW B 4 . The Y-cluster web of type B 4 is a 20-web in four variables which shares some properties of both YW B 2 and YW B 3 .By direct explicit computations, one obtains that the following assertions hold true:• The union of common leaves of YW B 4 coincides exactly with the cluster arrangement Arr B 4 (i.e. one has Σ c (YW B 4 ) = Arr B 4 ) thus this web has 'polylogarithmic ramification';

	• The usual, virtual or polylogarithmic rank(s) of this web are given by	
	ρ • YW B 4 = 16, 10, 2	ρ YW B 4 = 28		
	polrk • YW B 4 = 20, 2	polrk YW B 4 = 22	and	rk YW B 4 = 23 ;

  1. Ramification . The ramification of YW B n is polylogarithmic and the variety of common leaves Σ c (YW B n ) coincides with the corresponding cluster arrangement: one hasΣ c YW B n = Arr B n .2. Virtual rank(s) . The virtual ranks of YW B n are given byρ • YW B n = n 2 , n(n + 1)/2 , 2 and ρ YW B n = n -1 3n + 4 /2 + 4 .Whether n is even or odd, the web YW B n admits an antisymmetric dilogarithmic AR which corresponds to the functional identity (R B n ). n is odd, this AR is a basis of DilogAR YW B n which is 1-dimensional. When n is even, YW B n carries another (symmetric) dilogarithmic AR corresponding to the functional equation (S B n ). In this case, the two ARs (R B n ) and (S B n ) form a basis of the space of dilogarithmic ARs of YW B n . Thus, one has

	3. Polylogarithmic rank(s) . Regarding the polylogarithmic ranks of YW B n , one has polrk • YW B n = n(n + 1) , β n with β n =        1 for n odd 2 for n even	,
	therefore polrk YW B n = n(n + 1) + β n .	
	4. Dilogarithmic AR(s) . If	

  7.3.2.1 Some remarks about the trilogarithmic ARs of XW D 4 . It would be interesting to know more about the two (linearly independant) trilogarithmic ARs of XW D 4 . We introduce two trilogarithmic cluster symbols 124 by setting

	T 1 = 001 -010	and	T 2 = 001 -100 .
	By explicit computations, one can prove that		
	1. for i = 1, 2, there exists one AR of XW D 4 , uniquely determined up to sign, whose non-
	trivial components all are trilogarithmic with symbol ±T i ;
	2. these two trilogarithmic ARs are irreducible but not complete. They share the same support
	which is a certain 40-subweb of XW D 4 , that we will denote by XW ′ D 4 ;
	3. one has ρ • XW ′ D 4 = (36, 30, 20, 8, 1, 0) and polrk • XW ′ D 4 = (64, 29, 2) thus ρ XW ′ D 4 = polrk XW ′ D 4 = 95, hence XW ′ D 4 is AMP with only polylogarithmic ARs (of weight ≤ 3).

  by YW R D 4 the subweb of YW D 4 whose first integrals are the Y[α]'s for α ∈ (D 4 ) ≥-1 invariant by R. There are 4 such roots 125 hence YW R D 4 is a 4-web and it can be verified that About XW D 5 . This web is a 130-web in 5 variables, such that ρ • XW D 5 =

	(221)	XW ′ D 4 = XW D 4 \ YW D 4 ⊔ YW R D 4 .
	However, this description of XW ′ D 4 does not tell much and several natural questions do arise:
	Questions 7.5. choices of cluster variables? 126 1. Is there a way to generate XW ′ D 4 by means of certain mutations and/or
	2. Is it possible to deduce from the description (221) of XW ′ D 4 that this web carries triloga-
	rithmic ARs?	
	3. Does this generalizes to XW D n for any higher n ?
	7.3.2.2	

  The case when ∆ ′ = E 6 is interesting since the seven Statements YW A 2 ,E 6 are satisfied. It would be interesting to deal with the case (A 3 , E 6 ) to know if the same holds true. If yes, one might think that this is still the case for any web YW A n ,E 6 .Anyway, since the case when one of the involved Dynkin diagrams is exceptional seems to be problematic in what concerns the validity of the preceding statements, we will leave this case aside from now on. 7.4.4 Both ∆ and ∆ ′ are of classical type. We are considering here the case when ∆ and ∆ ′ are of type A, D, C or D. In §3.3.2.3.2, we considered the case of YW B 2 ,B 2 and saw that if it is AMP, it admits two ARs not of polylogarithmic type and is such that ρ 2 YW B 2 ,B 2 = 6 > 4 = nn ′ . The situation is even worse with YW B 2 ,B 3 which is not AMP.128 These two examples might let us think that when both ∆ and ∆ ′ are multi-laced, then things are not as nice as they could be if the Statements YW ∆,∆ ′ were satisfied.Letting this case aside too, we then focus on the one when at most one of the two Dynkin diagrams is simply-laced. More explicitly, we consider the following bi-Dynkin types:(223)AA , AB , AC , AD , BD , CD and DD .We have considered many cases of this kind, in particular the following: (A n , A n ′ ) for n, n ′ ≤ 4, (A n , B/C n ′ ) with n ≤ 4 and n ′ ≤ 3, (A n , D n ′ ) and (B/C n , D n ′ ) with n ≤ 3 and n ′ = 4 and (n, n ′ ) = (2, 5) in the last two cases, and also (D 4 , D 4 ). In all these cases, we have verified that the seven Statements YW ∆,∆ ′ are satisfied. This leads us to state the Conjecture YW ∆,∆

′ 

. If both ∆ and ∆ ′ are of classical type with at least one of them simply-laced (i.e. we are in one of the cases listed in (223)), then all the 'Statements YW ∆,∆ ′ ' are satisfied.

  3.5.2 above) related to the braid arrangement B n+2 in P n+2 (for any n ≥ 2).134 After identifying the web associated to A n with W M 0,n+3 , he computes its virtual ranks then proves that its rank is AMP (cf. Example 1.(4) above for precise statements). In view to find other examples of webs enjoying this property, one can remark that the braid arrangements form just one class of an interesting class of arrangements, the Coxeter arrangements.

A Coxeter group G is a finite subgroup of GL n (R) generated by reflections and the associated Coxeter arrangement A(G) is the complexification of the real projective arrangement in P(R n ) whose affine cone is the union of the reflecting hyperplanes in R n of the reflections elements of G (cf. §6.2 in

[OT]

).
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The (finite) Coxeter groups were classified by Coxeter in terms of Coxeter-Dynkin diagrams: there are three countable families of increasing rank corresponding to the Dynkin types A, B and D, the family of dihedral groups I(p) with p ≥ 2 (in dimension 2) and six exceptional examples, four of Lie type E 6 , E 7 , E 8 , F 4 , and two others, denoted by H 3 and H 4 .

Question 8.5. Let G ⊂ GL n (R) be a finite Coxeter group. Assume that n ≥ 2.

  8.3.2.1 Y-cluster webs at a special point. Let ∆ be a Dynkin diagram of rank n ≥ 2 and Coxeter number h. Denote by W the associated Xor Y-cluster web. In this text, we gave formulas (which are conjectural in many cases) for the virtual, polylogarithmic or standard rank(s) for the germ of W at a generic point ζ of (C * ) n . It is natural to try to be more precise by exhibiting such a generic point explicitely. By this, we mean an explicit point ξ ∈ C n such that

	(226)

• all the cluster variables of W are defined at ξ (i.e. ξ is a regular point of W);

• if x, x stand for two of them which are distinct, then (dx ∧ d x)(ξ) 0 (in other terms: the foliations of W satisfy condition (wGP) at ξ);

  8.3.2.2 About the dilogarithmic ARs of cluster webs. The dilogarithmic identities associated to cluster periods have not yet revealed all their secrets. From[KY], we know that for any Dynkin diagram, the Y-cluster dilogarithmic identity (R ∆ ) is accessible from Abel's relation (R A 2 ). To what extent does this generalize? More precisely: Questions 8.16. Let ν be a cluster period.

1. Is the dilogarithmic identity (R ν ) accessible from (Ab)?

  8.22. 1. Are the two families of webs W N 6,λ , λ ∈ C and AW Σ(s) , s ∈ C equivalent? If yes, find explicit equivalences between corresponding webs of each of these two families.2. That the A 2 -exchange matrix B = B A 2 gives rise to a deformation of the cluster web of type B 2 is a bit surprising. Is there a conceptual explanation of this? 3. Does this generalize to all classical rank 2 cluster webs XW ∆ ? For ∆ = A 2 or G 2 , does it exists an analytic deformation XW ∆,λ of XW ∆,0 = XW ∆ such that all the polylogarithmic ARs of the latter web deform as well into hyperlogarithmic ARs for XW ∆,λ ?

By definition, for any d, n such that

≤ n < d, π(d, n) is defined as the maximum of the genera of degree d non-degenerate irreducible projective curve in P n . Castelnuovo gave an explicit formula for this quantity.2 For webs of maximal rank, the properties of being non-algebraizable and non-linearlizable are equivalent (this follows from the converse to Abel's addition theorem, see[START_REF] Pereira | An invitation to web geometry[END_REF] Chap. 4]).

This follows from a classical theorem due to Bertini, see Theorem 37 in[Schin] or Theorem 3.4.6 page 108 in[J].

By definition, the dual hypersurface C * of the curve C ⊂ P n is the closure of the set of hyperplanes of P n which are tangent to C at one of its regular points.

Note that if I is just a set, J has to be ordered in order to define π I,J as a rational function. But if one is only interested in the associated foliation, the ordering of the elements of J does not matter hence can be forgotten.

It should be noted that Conf M (P n ) may very well be empty, depending on whether the matroid M is 'realizable' in the complex projective space P n or not.

That is, if Conf M (P n ) is not included in the indeterminacy locus of π I,J .

Explicitly, these four base-points are [0, 0, 1], [1, 1, 1], [1, 0, 0] and [0, 1, 0] hence Σ(B) is cut out by xyz(xy)(xz)(yz) = 0 in homogeneous coordinates: it is the arrangement of hyperplanes of type A 2 , cf.[Per].

Everything can be verified quite easily and this is left to the reader.

Beware that in several places in[Per] (for instance in equation (2) in §2.1), ' max ′ has been used instead of ' min ′ .

We have chosen to use this abbreviation since it also makes sense in French ('rang Aussi Maximal que Possible').

Note that requiring that π(d, n) be positive implies that d is sufficiently big.

Here R denotes the space of homogeneous polynomials in n + 1 variables and I C stands for the saturated ideal of C.

The postulation index of a projective curve C is s = s(C) = min{ k ∈ Z | h 0 (I C (k)) > 0 } where I C stands for the sheaf of ideals defining C. The results of[GP, §2] concern smooth ACM space curves. The only thing missing in it regarding the determination of such curves is a description of a geometric construction of the general smooth ACM curve C ⊂ P 3 of degree d when d is small, namely when d ≤ s(s -1) (see the last sentence page 46 of[GP]).

More rigorously, B i depends on the pair (W, u i ) thus it would have been more accurate to call it the 'u i -branch locus' of W. Keeping this in mind, we will commit the abuse of not mentioning u i explicitly in what follows.

Note that γ ′ (ζ) is a real tangent vector whereas T y F u 1 is a complex vector space; to make sense of the formula γ ′ (ζ) ∈ T y F u 1 , both involved objects have to be considered as included in the real tangent space to P n at y.

That is, such that ϕ(Z) be of codimension at least 2 in the target projective space.

This follows easily from the fact that we are considering iterated integrals on spaces of dimension 1.

Think of the symbol ν 0 = du/u in case x = 0 and ζ = ∂/∂z 1 when z 1 stands for the real part of the variable z ∈ C: for any smooth path γ emanating from the origin with tangent vector ζ at this point, the weight 1 integral γ ν 0 is divergent, precisely because the integrand has a logarithmic singularity at the origin.

These integrability conditions can be explicited but there is no point to do it here.

This name comes from the fact that the ramification locus { 0 , -1 , 1 , ∞ } is formed by four points in 'harmonic division' on the projective line.

Any reader interested in these routines and who would like to use them to study webs is invited to contact the author.

This can be verified using the approach described in §1.5.2 below.

We attribute this method to Abel since it was first formalized in a general setting by him in[START_REF] Abel | Méthode générale pour trouver des fonctions d'une seule quantité variable lorsqu'une propriété de ces fonctions est exprimée par une équation entre deux variables[END_REF], but it was of course already known by many of his predecessors. For instance Pfaff already used this method in a systematic way to solve several functional equations in his Programma inaugurale presented on the occasion of his election as professor of mathematics at the University of Helmstedt in 1788 (see[Dho]).

Rigorously speaking,[START_REF] Abel | Méthode générale pour trouver des fonctions d'une seule quantité variable lorsqu'une propriété de ces fonctions est exprimée par une équation entre deux variables[END_REF] Abel only considers FEs involving one unkonwn function. The remark that the very same method applies to solve FEs involving several unknown functions is due to Pexider[Pex].

Pantazi's note 

This means that, the fibers of S (1) W , which are vector-subspaces of J s+1 (E), all have the same dimension.

For regular analytic differential systems, formal integrability implies holomorphic integrability. It is a well-known consequence of the classical 'method of majorants'.

A partial version of this statement is due to Thomsen together withBlaschke (1927) and is considered as marking the birth of the study of webs for themselves (see the Appendix of[START_REF] Pereira | An invitation to web geometry[END_REF] for a brief overview of web geometry from a historical perspective).

Note also that the arguments presented by Poincaré, if they were very interesting, were not very rigorous and complete.

Albeit it has been independently obtained by others scholars of that time such as G. de St.-Vincent or I. Newton, this development in series was first published by N. Mercator in his Logarithmotechnia (1668).

The definition of the logarithms of negative integers and next of non-zero complex numbers gave rise to a wellknown controversy between famous mathematicians of the 18th century such as G.W. Leibniz, J. Bernoulli, L. Euler, solved by the latter in a paper written in 1749. The complete explanation of the multivalued nature of the logarithm of a complex argument by means of complex integration and use of the integral representation (29), was first encountered by C.F. Gauss (see its 1811 letter to Bessel.)

 39 This opinion has been explicitely formulated by J. Pfaff who writes 'indoles logarithmorum hac aequatione fundamentali continetur' in his 1788 inaugural essay (refered in footnote 28

page 50)40 This contrasts with (29) (30) (31), which are only intelligible by using more sophisticated

mathematical concepts.41 The dilogarithm, in the form of the integral z 0 Log(1u)du/u, is nowadays commonly attributed to Euler but was already considered at the end of the 17th century, apparently by Leibniz in some letters to the Bernoulli's in the first place. The dilogarithm explicitly appears in (Sectio Prima, Caput VI, Exemplum II of) Euler's book Institutionum calculi integralis (1768) but was considered and studied a few years before by J. Landen in his paper A new method of computing the sums of certain series (1759).

The content of Spence's essay on polylogarithms, in particular in what concerns the functional equations they satisfy, is discussed with many details in the recent historical paper[Cra] .

See also[START_REF] Dupont | A dilogarithmic formula for the CheegerChernSimons class[END_REF] §1.4], p. 580 in[GZ] or [Zag5,II.1.A].

The notation D is the one used by Bloch in[START_REF] Bloch | Applications of the dilogarithm function in algebraic K-theory and algebraic geometry[END_REF], where the role of this function in relation with K-theory appears for the first time. It seems that this function has also been considered by D. Wigner about the same time, hence its name (but we haven't been able to find any paper by Wigner regarding this). Actually, an equivalent form of the function D was considered long before Bloch and Wigner, by Lobachevsky[Lob] and latter by Schläfli[Schlä] and Coxeter[START_REF] Coxeter | The functions of Schläfli and Lobatschefsky[END_REF][START_REF] Coxeter | On Schläflis generalization of Napiers pentagramma mirificum[END_REF].

For the logarithm case (i.e. when n = 1), this is a folkloric result but we are not aware of any place where a formal proof is given in this case.

This was true when we were writing these lines. Since then, the case of dilogarithmic EFAs with rational function in an arbitrary number of variables as arguments has been essentially settled by R. de Jeu in Describing all multivariable functional equations of dilogarithms(preprint arXiv: 2007.11014).

Note that when n is odd, R n = Im thus the real logarithmic term -(-1) n n! (Log |z|) n-1 Log |1z | does not play any role hence can be suppressed in the definition of Ł n , as it is the case in[START_REF] Wojtkowiak | Functional equations of iterated integrals with regular singularities[END_REF].

As mentioned byGoncharov in [Go4, §5], there is also a modification due to A. Levin of Zagier's n-th polylogarithm L n which enjoys the property of admiting a global integral representation, over the whole complex projective space P n-1 , of an explicit real logarithmic differential form.

By this, we mean that v is a regular point for all the u i 's and that the 2-form du i ∧ du i ′ does not vanish at v as soon as the rational functions u i and u i ′ define two distinct foliations on V.

See[START_REF] Zickert | Polylogarithms, Bloch complexes, and quiver mutations[END_REF] §6] and also footnote 51 above for some comments.

Our formula for Π n does not exactly coincide with formula (5.20) in[DGR] on the grounds of our convention for the symbol which is opposite to the one used in loc. cit., see Remark 1.9.2 above.

Namely: "Bol's web is the unique hexagonal planar web which is not linearizable".

To any planar web W = (F 1 , . . . , F 5 ) defined on a complex surface S is invariantly attached the map T W : S → M 0,5 associating to s ∈ S the configuration ([T s F 1 ], . . . , [T s F 5 ]) ∈ M 0,5 obtained from the tangent directions [T s F i ] ∈ P(T s S ) ≃ P 1 of the foliations of W at this point. Then except when T W is tangentially degenerate everywhere, T * W (B) is a model of Bol's web on S which is canonically attached to the considered web W.

This nice functional equation is nowadays attributed to Newman but an equivalent identity was actually obtained by Kummer more than fifty years before (see formula (13) p. 86 of[START_REF] Kummer | Über die Transcendenten, welche aus wiederholten Integrationen rationaler Formeln entstehen[END_REF] and compare with (N 6 )).

An explicit basis of the space of abelian relations of W N 6 can also be obtained from the one of XW B 2 given in §5.1.2 (see especially the decomposition in direct sum (150) therein).

The identity (M 8 ) holds true for (x, y, z) in a certain open subset of C 3 . Replacing R by Lewin's dilogarithm L 2 (see (47)) in it, one obtains a real functional relation which is identically satisfied for any x, y, z ∈ R.

This generalization of Rogers' multivariable dilogarithmic identity has been obtained independently almost at the same time by Wechsung and Wojtkowiak, see the eighth and tenth chapters of[START_REF] Lewin | Structural properties of polylogarithms[END_REF] respectively. See also the seventh chapter of this book for an intermediary version, between Rogers' and Zagier's one, due to Ray.

We believe that this conjecture has to be attributed to Goncharov but we have not be able to locate a precise statement of it in the existing literature. Any information on this subject would be of interest to the author.
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ζ 2 /x 5 ). There is probably a typographical error here.

Namely, given any of the 17 elements appearing in (74) when n = 2, there exists another one which is its inverse.

The first question regarding that is to know whether or not the functional equation L 4 (Gan(3)) = 0 is accessible from the inversion relation. It seems to us that this is not an easy question to answer.

For the notions of k-abelian relation and k-rank of a web of codimension c ≥ 1 (with k ≤ c), see[START_REF] Griffiths | On Abel's differential equations[END_REF] and[START_REF] Hénaut | Formes différentielles abéliennes, bornes de Castelnuovo et géométrie des tis--sus[END_REF].

To get a glimpse of the vivacity of the subject these days, the reader can also consult the 'Cluster algebras portal'.

Since we will not actually use this construction in this text, we only describe it in a simple case and refer to[FST] for the general construction.

In most of the cases we will deal with, we will order the cluster variables from the less to the more complex one, being aware that the notion of 'complexity' we are considering here is subjective and not rigorously defined mathematically.

It is well-known (and easy to verify) that the complete exchange graph EΓ A 2 associated to B A 2 is a pentagon as well.

Here Q sf (u) stands for the universal semifield of 'substraction free' rational functions in n indeterminates u 1 , . . . , u n with coefficients in the field of rational numbers Q. We recall that a rational function F ∈ Q(u) is 'substraction free' if it can be writtenF = P/Q with P, Q ∈ Q >0 [u].For instance, G = (x 2x + y + 1)/(x 2x + 1) belongs to Q sf (x, y) since it can also be written G = (y(1 + x) + x 3 + 1)/(x 3 + 1) as a rational function.

A classical example of a matrix mutation equivalent to B ∆ is the matrixB(∆) = (b i j ) n i, j=1 ∈ M n (Z) defined as follows: if C = C ∆ = (c i j ) n i, j=1is the Cartan matrix associated to ∆, then for all i, j = 1, . . . , n one has b ii = 0 and b i j = ǫ i j c i j when i j, with ǫ i j = 1 if i > j, and ǫ i j = -1 otherwise

For the reason why we use (x -1 1 , x 2 , x -13 ) instead of (x 1 , x 2 , x 3 ) for the initial cluster, see Remark 3.8 above.

See §3.3.2.2 for some formulas in the more general case of the dilogarithmic identity associated to a cluster period.

The permutation σ is given by k → n + 1k in type A n , is the transposition exchanging 1 and 2 in case D n with n odd, is the product of transposistions (16)(25) for E 6 and is trivial otherwise, see[START_REF] Inoue | Periodicities of T--systems and Y-systems[END_REF] §3.3].

Remark that the 3-web defined by the first integrals appearing in (103) has intrinsic dimension 2 hence this identity is the pull-back (under the map (a 1 , a 2 , a 3 ) → (a 2 , a 1 a 3 ) to be explicit) of a functional relation in two variables.

Beware that the notation we use differ slightly from the one used in[START_REF] Nakanishi | Periodicities in cluster algebras and dilogarithm identities[END_REF] §6.5].

One defines the notion of positive X-cluster variable similarly, by replacing 'negative' by positive. Then the 'signcoherence' mentioned in §3.2.1.2.1 can be stated as the fact that any X-cluster variable is either negative or positive.

Note that only the fact that (i D 6 * D 6 ) 2 = ( j D 6 * D 6 ) 30 is a cluster period is established in[GP]. That it is already the case for the concatenation of only 15 copies of j D 6 * D 6 could be seen as a half-periodicity property. It would be interesting to know whether something similar (that is, a certain half-periodicity property) holds true for any Zamolodchikov periodic quiver or not. As far as we are aware of, this is not known.

See[KY] for more details and for some references.

Cf. the proof of Lemma 6.2 in[KY], where it is said that the accessibility of (the quantum version) of the Y-cluster dilogarithmic identity (R D 4 ) can be proven easily. It would be more satisfying to have an explicit proof of this.

Regarding this matter, for a glimpse of the general context, statements, proofs and references, we refer to[BCN].

We recall that S ϕ is defined as the image by ϕ of the jacobian divisor J ϕ of this rational map. It is an algebraic subset of the target projective space, of codimension at least 2.

I.e. such that their images by the map z → exp(2 √ -1π z/(n + 3)) appear clockwise on the unit circle in C.

This elementary argument is taken from the proof of the 'Theorem on 1 + X variables' of[PSSV, Appendix B]. For the cluster variables of the bipartite belt of a cluster algebra of finite type, a more precise result can be deduced from formula (2.18) of[START_REF] Fomin | Y-systems and generalized associahedra[END_REF].

On has B 2 ≃ C 2 but B ∨ n = C n is not isomorphic with B n as a root system as soon as n ≥ 3.

This follows from the classical formula for the Coxeter number h = h(∆) = 2|∆ + |/n, see[START_REF] Humphreys | Reflection groups and Coxeter groups[END_REF] §3.18].

The A-cluster webs AW ∆ are far less interesting in what concerns their rank and ARs hence are left aside.

This is well-known. See §6.3 further where we explicit x t in a particular case.

Actually, by 'arc' one has to understand 'isotopy class with fixed extremities of arc' in P • n .

We recall that Q T 0 is the unfrozen component of the quiver Q T 0 in Figure18: it is the n-cycle quiver.

This is well illustrated in Example 11 : with the notation used there, one verifies easily that n i=1 x i = λ.

I.e. one has X ℓ = x i A 2 (ℓ) for ℓ = 1, . . . , 5.

Strictly speaking, the authors in[KY] consider the quantum versions of the classical functional identities we are talking about here. But it is our interpretation that their claims can also be applied to the classical dilogarithmic identities.

We wonder whether this strange fact does not come from a possible confusion we made at some point: here it could be the case that we actually have worked with B 3 instead of C 3 and vice versa (cf. the warning page 114).

The 6-web W ′ SK is the subweb of W SK denoted by W 369 in[START_REF] Pirio | Abelian functional equations, planar web geometry and polylogarithms[END_REF].

By projective duality, this is equivalent to finding a projective equivalence between two configurations of 6 pairwise distinct points on P 2 .

More precisely, one has [i, j |k, l] = r i, j,k,l + 1 where [i, j |k, l] stands for the cross-ratio defined in [Bro2, §2.1] and r i, j,k,l the one in (123).

Disregarding the constant is useful and standard when considering abelian relations.

Actually, the monomial denominators of the formulas (2.14) and (2.18) in[START_REF] Fomin | Y-systems and generalized associahedra[END_REF] are more involved than those appearing in (167) but this is because they concern the general (i.e. possibly multi-laced) case. For a simply laced Dynkin diagram such as A n , these formulas simplify and can be written as in (167).

Actually, all the expressions in (189) only depend on x • = π n (x) = (x 1 , . . . , x m , x m * , x m+2 , . . . , x n ).

Actually, it is not difficult to get an explicit closed formula for J U n but we will not elaborate on this since it is not needed for our purpose.

In (201) as everywhere else, we use the following convention: we set F [p,q] = 1 for any p, q ∈ N such that p > q.

Remark that viewed the orientation of the last arrow in the Dynkin diagram (from the (n -1)-th vertex to the last one), the short root among the n principal ones α 1 , . . . , α n is α n and therefore its opposite -α n is short as well.

We recall that for a, b, c ∈ {0, 1}, the notation abc stands for ω a ⊗ ω b ⊗ ω c with ω 0 = dz/z and ω 1 = dz/(1 + z).

These R-invariant roots are the one with coordinates (0, ±1, 0, 0), (1, 1, 1, 1) and (1, 2, 1, 1) relatively to the standard choice of the positive roots of the root system of type D 4 .

Considering that D 4 is mutation equivalent to A 2 ⊠ A 2 , what is discussed §8.4.3 further might be used to answer.

The Coxeter numbers of Dynkin diagrams are given in Table5above.

One has ρ • (B 2 , B 3 ) = (24, 9, 1), polrk • (B 2 , B 3 ) = (30, 1) and rk • (B 2 , B 3 ) = 32 < 34 = ρ • (B 2 , B 3 ).

These two statements are conjectural in full generality when we write this (see Conjecture YW Dn in §7.3.1 in case (A 1 , D n )) but we checked them for n ≤ 8 in bi-type (A 1 , D n ) and for n = 5, 6 in type (A 2 , D n ).

The assumption that the degree of W µ coincides with the length of µ might be unnecessary, cf. Conjecture 3.18.

Algebraic geometers studying these questions often (if not always) assume that the general hyperplane section Γ they are considering is formed by points satisfying what we call the 'Strong general position assumption'. As a rule, the corresponding condition is not satisfied by the cluster webs we are mainly dealing with in this paper.

Since both webs W Conf m+n+2 (P m ) and W Conf m+n+2 (P n ) are equivalent in a natural way (thanks to projective duality), one gets immediatly that ℓ σ (m, n) = ℓ σ (n, m) for any m, n, σ ≥ 1.

That is, ARs whose components are iterated integrals with ramifications at the four points 0, -1, 1 and ∞ (these are four points on P 1 in harmonic division, hence the name 'harmonic hyperlogarithms').

See[START_REF] Pereira | Resonance webs of hyperplane arrangements. In 'Arrangements of hyper-planesSapporo 2009[END_REF] §4] for some detaills about how both arrangements A n and B n+2 are related.

This terminology is not standard. In[OT], A(G) stands for the real arrangement in R n formed by the reflecting hyperplanes of the reflections of G.

For instance, see[START_REF] Iwasaki | Polynomial invariants and harmonic functions related to exceptional regular polytopes[END_REF] Table 3] for the cases H 3 , H 4 , F 4 and[Me] for the three exceptional types.

Here we implicitly assume that G acts on R n with n ≥ 3, otherwise the web W(A(G)) would not be defined. In particular, there is no resonance web associated to the family of dihedral groups I(p).

This is what we believe. For now, this has been proven to be true only in type A.

More concretely, for each partition λ ⊢ w, V λ is the image in V ⊗w of the Young symmetrizer c λ ∈ End V ⊗w .

The definition is a direct generalization of the one given for webs of codimension 1.

When finishing the writing of this memoir, has been released the preprint[Mon] in which a functional identity in two variables very similar to (R 2 ) appears, in relation with a particular case of a more general theory. It would be interesting to figure out whether interesting general consequences in web geometry can be deduced from the results of[Mon].

This is similar to what occurs in the classical case, cf. Remark 5.1. We believe that this is a general fact which holds true for all finite type generalized cluster algebras of rank 2.

Several other compactifications of Conf m+n+2 (P m ) have been constructed recently, some of them only in special cases. The geometry of each and how these compactifications are related are interesting subjects which have been little studied so far for m ≥ 2. As interesting recent references on this, we mention[ST] and[GRou].

By definition, a boundary cycle is a cycle in Conf m+n+2 (P m ) obtained by intersecting some boundary divisors.

We have verified that this occurs for A 7 as well: both XW A 7 and UW A 7 are formed by 210 foliations.

Note that in the case of D 4 , these two examples actually coincide.

By considering some specific cases, we already have verified that it is indeed the case.

We refer to[GHKK] for more background as well as results about this conjecture.

The 'quantum torus qT 0 ' does not exists per se as a geometric entity. What does exist however, is its putative ring of regular functions O(qT 0 ) which is the algebra over the field C(q), of non-commutative polynomials in Y 1 , Y 2 and their inverses, subject to the relations Y 1 Y 2 = q 2 Y 2 Y 1 .

See for instance the table p. 124 of[START_REF] Keller | Cluster algebras, quiver representations and triangulated categories[END_REF] which indicates some correspondances between the categorical and the classical settings of cluster algebras.

Here 'DT' stands for 'Donaldson-Thomas', the two authors who first considered this invariant (for the bounded derived category of coherent sheaves on a CY 3-fold).

Note that if (x -1 1 , x 2 ) is a cluster (the one associated to the seed S 1 ), it is not the case for (x 1 , x 2 ). Hence the notions of tropical signs and of c-vector considered here for the x m 's do not correspond stricto sensu to the standard notions, but are very slight modified versions of these.
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Figure 16: the Zig-zag triangulation T 0 of the (n + 3)-gon P n+3 . and one sets b i j = 1 (resp. b i j = -1) if j follows (resp. precedes) i when circulating clockwise along the boundary of τ i j . Then B T = (b i j ) n i, j=1 is a skew-symmetric matrix, the exchange matrix associated to T .

.

Figure 17: the zig-zag triangulation and the associated exchange matrix in case n = 4.

The key result in order to relate the material considered above (of combinatorial and/or geometric nature) to the world of cluster algebras is the following one (which is well-known):

Lemma 4.2. Assume that T, T ′ ∈ T n+3 are related by the flip with respect to their k-th edge, for some k. Then, as rational functions of the x T i 's for i = 1, . . . , n, the x T ′ j 's are given by means of the X-cluster mutation formulas (83), relatively to the exchange matrix B T .

Then, since B T 0 coincides with the exchange matrix associated to the bipartite quiver Q A n for any n ≥ 2 (as it is easy to verify), one obtains the following fundamental result:

Theorem 4.3. The map associating (x T , B T ) to T ∈ T n+3 is a X-cluster pattern of type A n .

Actually, many interesting things come along with this result since it provides some geometric and combinatorial interpretations of the objects attached to the cluster algebra A A n :

• the set T n+3 of triangulations of P n+3 identifies with the set of clusters of A A n ;

• the 'triangulation graph T n+3 ' corresponds to the exchange graph Γ A n ;

6 Cluster webs of type A.

In this section, we study the Xand Y-cluster webs in type A, again regarding their ARs and their rank(s). For the X-cluster webs of type A, everything is known thanks to the results in [Per]. We first briefly review them, before focusing on the main objects we are going to study in this section, namely the webs YW A n . In what follows, n will stand for a fixed integer bigger than or equal to 2.

6.1 The X-cluster web of type A n .

The cluster web XW A n is a web in n variables, of degree d X

A n . We have seen above that, up to pull-back under a map (125), this web can (and will) be identified to the web W M 0,n+3 on the moduli space M 0,n+3 defined by all the forgetful maps M 0,n+3 → M 0,4 ≃ P 1 \ {0, 1, ∞}. Thus d X

A n = n+3 4 and according to the results of [START_REF] Pereira | Resonance webs of hyperplane arrangements. In 'Arrangements of hyper-planesSapporo 2009[END_REF]§4.2] recalled above in §1.4.4.1, the following assertions hold true:

; in particular ρ ν (XW A n ) = 0 for ν > 3;

(ii). polrk

; thus polrk w XW A n = 0 for w ≥ 3;

(iii). XW A n has AMP rank; moreover, all its ARs are polyogarithmic, of weight 1 or 2;

We are going to use these results, in particular the point (ii), to study the Y-cluster web YW A n , thanks to the fact that it is a subweb of XW A n 6.2 The Y-cluster web of type A n .

Our goal in this subsection is to prove the following result:

Theorem 6.1. For any n ≥ 2, the six following assertions hold true:

web in n variables with d Y

A n = n(n + 3)/2;

, 1 ; thus polrk w YW A n = 0 for any weight w ≥ 3;

4. YW A n is AMP; moreover, all its ARs are logarithmic, except the dilogarithmic one R A n ;

5. The abelian relation R A n is complete and accessible from Abel's five terms identity R A 2 ;

6. The web YW A n is non linearizable.

Proof. That d Y

A n = n(n+3)/2 has been established above (see Corollary 4.9). The second and third assertions are proved below, cf. (161). That YW A n is AMP follows immediately. The fifth point is a consequence of one of the main results of [Sou] (namely Théorème 4.1 therein) combined with the explicit description of the pull-back of YW A n on M 0,n+3 under the map (125) for the zig-zag triangulation T 0 (see also the third point of Corollary 4.4). Finally, the sixth point has been proved before in §4.2.6.

Cluster webs of other Dynkin types

The rather satisfying results obtained concerning cluster webs in type A so far naturally lead to consider the cases of other Dynkin types.

In this section, we discuss the cluster webs in type B, C and D (mainly their Y-versions, but we say a few words about their X-versions as well). These webs does not seem to be as nice as the corresponding ones in type A (not AMP in general) but still seem interesting regarding their Abelian relations and their rank. We do not have well proved results concerning them but several precise conjectural statements which are interesting according to us.

After that we turn to the case of bi-Dynkin type cluster webs. We do not have any conclusive results concerning them, but only a fairly precise conjecture that has been verified in a large number of the particular cases we have considered. If true, this conjecture would give us several families of AMP cluster webs.

Cluster webs of type B.

Below, we first introduce some notation specific to the B n case for n ≥ 2 arbitrary, then discuss the dilogarithmic identity (R B n ) in §7.1.2, before dealing with the web YW B n . By way of illustration, we first treat the case of YW B 3 (the B 2 case has been considered before in §5.1.2) before discussing the rank and the ARs when the rank is arbitrary.

In what follows, n stands for an integer bigger than 1. 

Some notations in type

n-1

The corresponding exchange matrix is :

The set of sources (resp. of sinks) in B n is formed by the integers in {1, . . . , n} with opposite (resp. the same) parity to the one of n. As initial (X-)seed, we take S 0 = v 0 , B n where v 0 stands for the n-tuple of variables ( 203)

The complete dilogarithmic AR of YW B 3 associated to R B n will be denoted in the same way.

Before discussing the other ARS of this web for n arbitrary, it will be enlightening to first consider some explicit examples.

7.1.3 The webs YW B n for n small (n ≤ 4). Since the Y-cluster web of type B 2 coincides with the corresponding X-cluster web XW B 2 which has been studied above in §5.1.2, we refer the reader to this subsection for a detailed description of its main features.

7.1.3.1 YW B 3 . We can give YW B 3 in explicit form: as an ordered web, one has

By direct explicit computations, one obtains that the following assertions hold true:

• The union of common leaves of this web coincides exactly with the cluster arrangement Arr B 3 and its associated ramification loci all are included in B (hence YW B 3 has 'polylogarithmic ramification' according to the terminology introduced in Definition 1.8);

• One has ρ • YW B 3 = 9, 6, 2 hence its virtual rank is ρ YW B 3 = 17;

• polrk • YW B 3 = 12, 1 hence polrk YW B 3 = 13. In particular, R B 3 is the unique weight 2 polylogarithmic AR of YW B 3 (up to multiplication by a non zero scalar);

• This web has rank rk YW B 3 = 14;

• If A stands for the function defined by A(u) = Arctan( √ u) for any u > 0, then the following functional relation holds true indentically on the positive orthant:

Lemma 7.3. The AFE A B n holds true if and only if the y kn 's defined above satisfy the following algebraic relation:

(-1) ⌊ν/2⌋ •σ ν y = 0 .

Actually, this is the algebraic identity A alg B n that we have verified to hold true for many values of n (n ≤ 12) and not strictly speaking A B n which is a bit more delicate to manipulate.

To finish, let us remark that although it is not formally 'polylogarithmic', it follows from (213) that A B n is indeed of the type predicted by Conjecture 1.15. Actually, the situation is even better since by pull-back under the algebraic (actually monomial) map η, we obtain the AR

Log y kn -i -Log y kn +i = -iπ . which is the most logarithmic. Since this is very similar to what holds true in the G 2 -case (see Remark 5.4), one can wonder whether this is a general phenomenon or not and ask the Question 7.4. Let W be a X-cluster web (that is, a web defined by X-cluster variables as first integrals). Does it exist a rational (or even a monomial) dominant map χ (a priori with non trivial ramifications) such that all the ARs of χ * W be polylogarithmic? 7.1.6 About the numerology of XW B n . We now say a few words about the X-cluster webs of type B. After looking at the invariants of the webs XW B n for n ≤ 6 (computed by direct methods), we guess what the ranks for n arbitrary might be. Our approach here is by entering the series of numbers we have obtained for n ≤ 6 into the OEIS in order to see what comes up. Needless to say (but we write it anyway), this subsection is mainly exploratory and our formulas below for n ≥ 2 arbitrary are conjectural.

In what follows, n stands for an integer bigger than 1. According to Corollary 4.9, the X-cluster web of type B n is a d X B n -web in n variables with d X B n = n(n + 1)(n 2 + 2)/6. Here are the ranks (virtual, polylogarithmic, etc) that we have been able to compute for n = 2, . . . , 8: (19,16,12,7,[START_REF] Arkani-Hamed | Grassmannian geometry of scattering amplitudes[END_REF] polrk First, one observes that the following relations are satisfied for n = 2, . . . , 8:

Considering these relations and injecting the explicit values above into the OEIS, one can extrapolate most of the ranks of XW B n for n arbitrary and state the following conjecture (where any 10, 52, 149, 324 respectively. This string of four integers matches only one of the sequences of the OEIS, namely the sequence A092966. The n-th term of this sequence has a geometric interpretation (as the number of interior balls in a truncated tetrahedral arrangement) as well as a combinatorial one (as the number 4-element subsets of {-n, . . . , 0, . . . , n} having sum n + 1). It would be interesting to relate one or both of these interpretations for A092966(n) to the geometric one corresponding to the very definition of ℓ 3 (3, n).

⋆

Regarding web geometry, the determinations of the polylogarithmic ranks (with ramification locus {0, 1, ∞}) and of the actual (standard) ranks of the webs W Conf n+m+2 (P m ) is certainly as interesting as the one of their virtual ranks discussed above.

In [Per], Pereira has proved that the webs W Conf n+3 (P 1 ) (case m = 1 with n ≥ 2 arbitrary) all are AMP, by computing explicitly their polylogarithmic ranks and total virtual ranks and comparing theses quantities. This suggests immediately the following series of questions:

Questions 8.3. Assume that both m and n are bigger than 1.

1. For w ≥ 3 fixed, are there pairs (m, n) such that W Conf m+n+2 (P m ) carries polylogarithmic ARs of weight w? If yes, determine the set of such pairs and the corresponding ARs.

2. Are there pairs (m, n) such that W Conf m+n+2 (P m ) carries non polylogarithmic ARs? If yes, determine the set of such pairs and the ARs of this kind.

Compute the polylogarithmic ranks and the rank of

4. Give a basis of the space of ARs of W Conf m+n+2 (P m ) .

5. Determine the pairs (m, n) such that W Conf m+n+2 (P m ) is AMP.

In §1.4.4.3, we have seen that if W Conf 6 (P 2 ) is AMP with only polylogarithmic ARs (of weight 1 or 2), this is not the case for W Conf 7 (P 2 ) which is even not AMP. This suggests that there is a priori no uniform answer to 5. and that even conjecturing what might be the set of pairs (m, n) such that W Conf m+n+2 (P m ) is AMP is non trivial.

8.1.3 Webs on strata of degenerate configurations. The fact that several interesting webs (such as Spence-Kummer's 9-web W SK or Goncharov's 22-web W G 22 , which both are trilogarithmic) are obtained as restrictions of some 'configurational webs' on some strata, is a strong motivation to undertake more systematically the study of the webs obtained in this way.

Via direct computations, we have already looked at the case of seven points in the projective plane and have found several other interesting webs in addition to Spence-Kummer's W SK and Goncharov one W G 22 . Below, we discuss the cases of three examples associated to the degenerate configurations of seven points in the projective plane pictured just below:

• Let S 1 be the 4-dimensional substratum of Conf 7 (P 2 ) formed by configurations of seven points similar to the one in the picture on the left of Figure 21. (31,25,15) and polrk • W S 1 = (56, 16), and consequently, is AMP with only polylogarithmic ARs (of weight at most 2). In this regard, it is similar to the cluster dilogarithmic webs associated to Y-systems.

where the c i 's are (rational) constants, the n i are tuples of multi-weight of the same total weight |n i |= w ∈ N >0 , the u i 's rational functions of x ∈ C m (with values in C m i for each i, where m i stands for the length of n i ) and where P is a rational expression of (possibly multiple) polylogarithms of weights < w evaluated on rational functions as well. To the 'AFE' (⋆), one can associate the generalized 'web' W ⋆ of degree d on C r , possibly of mixed codimensions, defined by the rational first integrals u i : C m C m i for i = 1, . . . , d:

Note that the term 'web' is used in a very general and imprecise sense and that for this reason, one cannot expect to generalize for such a web the whole theory of webs presented for those of codimension 1 in the first section of this memoir. For instance, if one can always define a finite invariant ρ σ (W) for any σ ≥ 1 to such a web W 140 , it is quite possible that the total sum ρ(W) = σ≥1 ρ σ (W) be infinite (this already happens with (L 11 )).

However, when ρ(W) < +∞ holds true, the question of whether or not W is AMP makes sense and is relevant. An example of such a case is provided by a 5-web of codimension 2 in four variables which can be associated to a nice polylogarithmic functional equation of weight 2 found in Rogers' paper [Rog]. Setting

stands for the original dilogarithm considered by Rogers (see §2.2.2.1), the following functional identity

holds true for all x, y, a, b in some open domain of R 4 (that needs not to be made explicit here). 141 To this functional identity we associate the web W R 2 = W(u 1 , . . . , u 5 ) where the u i 's stand for the following five C 2 -valued rational functions of (x, y, a, b) ∈ C 4 :

The notion of abelian relation makes sense for this web of codimension 2: an AR for W R 2 identifies itself with a non-trivial solution of the following functional equation in four variables

where the unknown F i (•, •) 5 i=1 is a 5-tuple of (germs of) holomorphic functions in two variables. One can easily construct several ARs for W R 2 by considering the two linear projections π x,y : (x, y, a, b) → (x, y) and π a,b : (x, y, a, b) → (a, b). Let B x,y = W x, y, xy, x 1-y 1-xy , y 1-x 1-xy be Bol's one can deduce from this an explicit description of the resonance variety R 1 (U A n ) then realize that the resonance web of U A n coincides with the whole X-cluster web XW A n .

The nice properties enjoyed by the complement of the cluster arrangement in type A prompt to study more systematically the complement of the set of common leaves of cluster webs with AMP rank or carrying interesting ARs.

As a first example, we consider UW A 3 which is equivalent to Spence-Kummer web according to Theorem 5.5. Its set of common leaves Σ c (UW A 3 ) in P 2 is the union of seven hypersurfaces: the line at infinity and the closure of the affine hypersurfaces cut out by the six following 'Fpolynomials'

We set

). Since Spence-Kummer web is equivalent to the resonance web of the non-Fano arrangement NF, the following question naturally arises: Question 8.19. Is the complement of cluster hypersurfaces U UW A 3 linearizable ? More precisely, does it exist a birational map Ψ : P 2 u P 2 inducing an isomorphism from U UW A 3 onto the complement of an arrangment of lines

Of course, we expect that the answer is affirmative and that one can take NF for A UW A 3 .

If the cluster complement U ∆ is linearizable when ∆ is of type A, this is not clear for other Dynkin types and it would be interesting to understand better these complements topologically.

Questions 8.20. Let ∆ be a Dynkin diagram, not of type A.

Does the sets of common leaves of the web YW ∆ coincide with the cluster arrangement

Arr ∆ ? Same question for XW ∆ .

2. What can be said about the combinatorics of Arr ∆ and about the topology of the complement U ∆ ?

3. In particular, what are the irreducible components of the first resonance (resp. characteristic

4. Can the pair (Arr ∆ , U ∆ ) be linearized? That is: does it exist Φ : P n P n inducing by restriction an isomorphism from U ∆ onto the complement of a hyperplane arrangement? 5. How are related the cluster webs XW ∆ and YW ∆ on the one hand, and the resonance and characteristic webs W R 1 (U ∆ ) and W V 1 (U ∆ ) on the other hand?

A cluster algebra of bi-Dynkin type (∆, ∆ ′ ) is not of finite type in general but even if it is one can formulate similar questions as those just above for YW ∆,∆ ′ . The interested readers, if any, will elaborate on this by themselves... from which it comes immediately that the pull-back of U A 3 under x T 0 • ϕ is cut out by X 1 = X 3 or equivalently (but more explicitly) by

where we use the notation (i j) = z iz j for any i, j = 1, . . . , 6.

From [START_REF] Castravet | Hypertrees, projections, and moduli of stable rational curves[END_REF]Remark 9.2], (227) can be seen as an equation of the strict transform of D KV by ϕ in C 6 (modulo a permutation of the z i 's). The proposition follows.

One verifies easily that the cluster map p : A A n → X A n has rank n for n even and rank n -1 when it is odd. Consequently, the secondary cluster variety U A n is a hypersurface in the latter case. Given the preceding proposition about the case when n = 3, it is natural to try to understand better the corresponding irreducible divisor of M 0,n+3 .

Questions 8.24. Assume that n is odd. What is the closure of (x T 0 ) -1 (U A n ) in M 0,n+3 ? Can this divisor be described geometrically? Is it one of the 'hypertree divisors' defined in [CT]? If not, does it belong to the subcone of Eff 1 (M 0,n+3 ) spanned by boundary and hypertree divisors?

In addition of this algebraic geometry perspective, the secondary cluster manifold U A n can also be considered from other points of view, such as Poisson geometry as we explain quickly below.

For n odd, in the initial X-cluster seed (u i ) n i=1 , A n , the secondary manifold

.

There is a more intrinsic 'Poisson-theoretic' view on this equation: since the rank of B A n is n -1, the cluster manifold X A n is not symplectic but only Poisson. The field of Casimir rational functions is generated by one element µ, which can be taken as the RHS of (228) (see the proof of Lemma 5.13 in [GSV]). One verifies that the pull-back (x T 0 ) * µ = µ• x T 0 : M 0,n+3 → C coincides up to sign with the classical multiratio denoted by M n+3 in [KSc] which has been considered by several authors, in relation with classical projective geometry or integrable discrete systems. In particular, the relation M 6 = -1 (which corresponds to (228) in the case when n = 3) is related to Menelaus theorem and a geometric interpretation of M 8 = 1 (that we believe to correspond to (228) for n = 4) is given in [KSc] to which we refer for details and references.

8.4.1.2 It turns out that the questions above can be generalized to the bi-Dynkin type (A m , A n ).

The corresponding X-cluster variety can be interpreted as the moduli space Conf m+n+2 (P m ) of projective classes of configurations of m + n + 2 points in P m . As explained in [Wen] to which we refer for definitions and details, given any 'minimal bipartite graph' Γ, one can construct a birational map x Γ : Conf m+n+2 (P m ) X A m ⊠A n which corresponds to a X-cluster associated to a quiver Q Γ of type A m ⊠ A n constructed from Γ (when m = 1, one has A n ≃ A 1 ⊠ A n and these maps specialize into the maps x T associated to triangulations of the (n + 3)-gon described in §4.2.1).

The map p : A

X A m ⊠A n be the birational identification associated to the special minimal bipartite graph Γ 0 considered in [START_REF] Weng | Donaldson-Thomas Transformation of Grassmannian[END_REF]§2.2] But what would be the most interesting in this regard, would be to investigate similar questions for webs associated to multiply-laced Dynkin diagrams, since in many cases, these webs carry not only one, but two linearly independent polylogarithmic ARs of weight 2. To simplify the exposition, we only deal with the B 2 case below.

If a quantum deformation of (R B 2 ) is known to hold true (see §8.6.3.1 above), it is not known whether this identity (cf. equation ( 14) in [KY]) corresponds to the equality of two refined DTinvariants, for two distinct discrete stability functions. The main fact used in the simply-laced case to argue in this way and then prove the quantum identity E ∆ is the categorification C ∆ of the underlying cluster algebra of type ∆. Thanks to [De], we know that the cluster algebra of type B 2 admits a categorification C B 2 as well although it is not of skew-symmetric (but only skew-symmetrizable) type. It is then not unreasonable to expect that most of the things satisfied by categorifications C ∆ with ∆ simply laced also hold true, possibly under slight modifications, in the B 2 case as well.

Considering the distinct kinds of ARs of XW B 2 , one can ask the following questions which look even more interesting than the corresponding one stated just above about the simply-laced case:

Questions 8.36.

1. Assuming that a given AR of YW B 2 admits a deformation quantization, can the corresponding 'quantum AR' be understood within the categorification C B 2 ? 2. In particular, does the 'symmetric dilogarithmic identity' of YW B 2 (namely, the AR associated to identity (S B 2 ) page 179) admit a quantum deformation and if so, can this quantum identity be interpreted in categorical terms within the associated cluster category?

Until here in this subsection, we have discussed several questions about 'quantum cluster webs' inspired from classical notions of web geometry. In the next paragraph, we will discuss briefly how, conversely, some results holding true in the non-commutative quantum world lead us to speculate about a possible relevant generalization of the notion of webs, namely webs made up of an infinite countable number of foliations and carrying non-trivial dilogarithmic ARs.

8.6.5 Quantum dilogarithmic identities with an infinite number of terms. A very interesting upshot of [Re] is that, at least in some situations, Theorem 8.34 holds true for not necessarily discrete stability functions hence leads to identities with an infinite number of terms satisfied by the quantum dilogarithm E. The case of the general Kronecker quiver K m with m ≥ 1 arbitrary is treated in [Re, §6.1] (see also [Moz]). Another class of examples (namely, the n-cycle quivers) is considered in the preprint [All]. Here, to make the exposition as short as possible, we will only consider the case of the second Kronecker quiver K 2 as discussed in [START_REF] Keller | On cluster theory and quantum dilogarithm identities[END_REF]§1.8].

The second Kronecker quiver and its associated exchange matrix are

The associated cluster algebra is of infinite type, whose clusters are the pairs (x m , x m+1 ) for m ∈ Z where the x m 's are constructed inductively from the initial cluster (x 1 , x 2 ) by means of the recurrence (236)

Let X α , for α ∈ Z 2 , be the elements appearing in the definition (235) of the associated quantum affine space A K 2 . In particular, one has X (a,b) = q ab X a 1 X b 2 for any (a, b) ∈ Z 2 . For a first stability condition Z 1 , the corresponding E K 2 ,Z 1 is equal to E(X 1 )E(X 2 ). But for another non discrete stability condition Z 2 , the corresponding DT-invariant is given by an infinite (countable) product of terms. The equality between these two DT-invariants can be made entirely explicit: setting E(α) = E(X α ) for any α ∈ Z 2 , the corresponding quantum dilogarithmic identity is

and one is interested by what might be a possible classical counterpart to this quantum identity with countably many terms.

In the case when m = 1, the quiver K 1 is the one associated to the Dynkin diagram A 2 and the identity (E K 1 ) coincides with the first discovered form of a quantum dilogarithmic pentagon identity, namely E(X 1 )E(X 2 ) = E(X 2 )E(q -1 X 1 X 2 )E(X 1 ) which is equivalent to (qR A 2 ). In the terminology of [KN], the former identity is said to be in 'tropical form' whereas the second is in 'universal form'. If the classical pentagon identity can be recovered from (E K 1 ) (cf. [START_REF] Faddeev | Quantum dilogarithm[END_REF]§2]), identities in universal form are much more suitable to get the corresponding dilogarithmic identities in the classical limit. Indeed, for any cluster period ν (of a skew-symmetric cluster algebra), the arguments of the cluster dilogarithm R in (R ν ) are the straightforward limits when q 1/2 → 1 of the quantum arguments of E q = Ψ q 1/2 appearing in (E ν ) = (qR ν ), the quantum identity in universal form associated to ν.

In [START_REF] Kashaev | Classical and quantum dilogarithm identities[END_REF]§3.5], the authors describe Volkov's so-called 'shuffle method' which allows to deduce the quantum identity in universal form from the one in tropical form. A priori, it only applies to (quantum) dilogarithmic identities associated to (finite) cluster periods, but we believe that it could be adapted to handle the case of an identity with infinitely many terms such as E K 2 . The quantum versions of the recurrence relations (236) are the following non-commutative ones

and are precisely the X-quantum variables associated to K 2 (up to inversion). Indeed, from (237), one deduces inductively a rational expression for X m in terms of X 1 and X 2 for all m, and setting

it can be verified that S q 1/2 m+1 is the quantum X-seed obtained from S q 1/2 m by the quantum X-mutation µ q ε m of [START_REF] Fock | The quantum dilogarithm and representations of quantum cluster varieties[END_REF]§3], with ε m = 1 when m is even and ε m = 2 when it is odd. When q 1/2 goes to 1, the X m 's converge to the quantities x m satisfying (236) which are the classical X-cluster variables defined by the initial seed S 0 = (x 1 , x 2 /(1

1 , x 2 ), B K 2 and any x m is a positive Laurent polynomial in the variables x 1 , x 2 . Actually, closed formulas have been obtained for each x m . In particular, for any n ≥ 0, one has ( 238)

indeed has maximal (n -1)-rank. 159 The material evoked in the previous paragraph is quite interesting and if one believes (as the author of these lines) that for any Dynkin type ∆, the X-cluster varieties/variables can be 'geometrized' (see §8.7), one expects to be able to factorize the cluster variables by maps X ∆ → X ∆ ′ of geometric nature, for some Dynkin diagrams ∆ ′ of rank one less than that of ∆. As explained above, we do not currently have the results that would allow us to approach this geometrically. However, it turns out that one can bypass this lack of geometric understanding of the cluster varieties in arbitrary type precisely relying on the cluster formalism. This is what we are going to explain now. We will be rather allusive, claiming a lot without giving proofs, postponing a rigorous treatment to a possible future publication.

8.8.2

Let n be bigger than or equal to 2. We set ∆ = A n in what follows, but being aware that everything below can be adapted to the case when ∆ is any other Dynkin diagram of rank n. We set I = {1, . . . , n}. We recall that ∆ stands for the bipartite quiver associated to ∆ and we denote by ǫ : I → { ±1 } the map associating -1 (resp. 1) to labels associated to sources (resp. sinks) in ∆. The initial seed we work with is S init = (u, ∆) with u = (u ǫ(i) i ) i∈I (see Remark 3.8 for the reason of that choice of the initial cluster). The forgetful maps (243) on M 0,n+3 correspond on the cluster side to rational dominant maps X A n X A n-1 or, up to the classical dual correspondance spaces ↔ algebras of functions, to cluster subalgebras of type A n-1 . A simple way to construct such a cluster subalgebra is as follows: we first consider a X-seed S t = (x t , Q t ) of the initial A n -cluster algebra with x t = (x t i ) n i=1 , and choose an element k ∈ I = {1, . . . , n}. We set

and for any quiver Q ′ whose vertices are labeled by elements of I (such as Q t ), we denote by Q ′ k the (possibly non connected) one obtained by removing from Q ′ its k-th vertex and all the edges adjacent to it. Considering the variable x t k and the k-th vertex of the quiver Q t as frozen, we perform all possible mutations from the seed S t under this restriction. We get a cluster pattern

The images by the projection π k of all the clusters obtained from S t in this way form a X-cluster pattern which coincides with the one associated with the initial seed π k (S t ) = (x t k, Q t k). Given any X-variables x t ′ i of this cluster pattern with i k, it does not depend on x t k when seen as a rational function in the x t i 's hence

is a subweb of XW ∆ , of intrinsic dimension n -1: the map π t k whose components are precisely the cluster variables x t ′ i appearing in the definition of XW t k has rank n -1 at the generic point hence X t k = π t k(X ∆ ) is an irreducible algebraic variety of dimension n -1. We get a rational map from X ∆ onto X t k, again denoted by π t k. These maps have to be seen as cluster analogues of the maps (243). For instance, in type A, some of these maps (the most interesting ones), are nothing else than the forgetful maps, but described in an alternative way. Of course, π t k : X ∆ X t k admits 159 We think that Damiano's proof of the maximality of the (n -1)-rank of XW (1) An is correct only when n is even. We know for sure that Damiano's proof is wrong for n = 3 for instance, but we have a proof that the 2-rank of XW (1) A 3 is maximal indeed. All this is the subject of a work in progress.

an elementary model in the x t i 's: in these coordinates, it is given by the projection π k : (x t i ) i∈I → (x t i ) i∈I k . Regarding the subwebs XW t k and the associated maps π t k, there are two natural questions: when are two of them actually the same? And: what kind of cluster web is it? This can be answered by noticing that for each initial data (k, t) with k ∈ I and t in XΓ ∆ (the X-exchange graph in type ∆), the cluster pattern Σ t k meets the even bipartite belt of the whole cluster algebra of type ∆. Recall (cf. §3.3.1.4.1) that these X-clusters are those obtained from the initial one by successive application of the compositions of mutations µ

where for any integer ℓ and any i ∈ I, Y α(ℓ,i) stands for the Y-cluster variables of Theorem 1.4 of [START_REF] Fomin | Y-systems and generalized associahedra[END_REF] associated to the root α(ℓ, i) ∈ ∆ ≥-1 .

Assume that h = h(∆) is even (when h is odd, then ∆ = A 2m for some m ≥ 1 and this case, albeit slightly more subtle, can be treated similarly). Then µ •|• has order κ = (h + 2)/2 (modulo a permutation) hence any α ∈ ∆ ≥-1 can be written α = α(ℓ, i) for a unique pair (ℓ, i) with ℓ ∈ {0, . . . , κ -1} and i ∈ I. We denote by XW ∆,α the subweb obtained by the construction described above when starting from the cluster S α = (Y α(ℓ,1) , . . . , Y α(ℓ,n) ), ∆ with the i-th coordinate (the one corresponding to α) frozen. Then clearly a simple model for the rational associated map in the initial coordinates u i is given by ( 244)

As for the (n -1)-dimensional target space of π α , one verifies easily that the following holds true: if i labels one of the (2 or 3) extremities of ∆ then ∆ ı is still a Dynkin diagram; otherwise, ∆ ı admits two sub-Dynkin diagrams of ∆ as connected components, denoted by ∆ ′ ı and ∆ ′′ ı . Accordingly, it is natural to see π α as a map from X ∆ onto X α = X ∆ ı in the former case, and onto the product X α = X ∆ ′ ı × X ∆ ′′ ı in the latter case. We thus have given a nice construction of certain subwebs of XW ∆ which have intrinsic dimension n -1 and are maximal for the inclusion (as it can be verified). It is natural to ask if this construction gives all the subwebs satisfying the last two properties: Question 8.41. Let W be a subweb of XW ∆ of intrinsic dimension n -1 which is also maximal for the inclusion. Does it necessarily coincide with one of the XW ∆,α 's?

The answer is obvious (and affirmative) in rank 2. The same holds true for the two examples in rank 3 considered below (namely A 3 and B 3 ). We believe that the answer is affirmative in full generality.

8.8.3

There is a nice geometric/topological way to understand the maps F α all together. We now discuss this quickly without giving any justifications. For details/explanations/proofs, the reader can consult [START_REF] Fock | Cluster Poisson varieties at infinity[END_REF] as well as [AHHL].

The positive part X ∆ (R >0 ) can be identified with the interior of a convex polytope of dimension n, the cluster associahedron of type ∆, denoted by P ∆ . This polytope has been constructed combinatorically in [START_REF] Fomin | Y-systems and generalized associahedra[END_REF]§3] (see also [FR]), where it is proved that the facets (the faces of codimension 1) of P ∆ are naturally in bijection with ∆ ≥-1 . For α ∈ ∆ ≥-1 , we denote by P α the facet of P ∆ associated to it. Then for each such root α, the positive part X α (R >0 ) of the image of ( 245)

(which, by the way, is a positive map according to ( 244)) identifies itself with the facet P α of ∆. Let p α : P ∆ → P α be (the restriction to P ∆ of the euclidean projection onto P α . Then the linear web W( p α | α ∈ ∆ ≥-1 gives a combinatorial model on the ∆-associahedron of the web W( π α | α ∈ ∆ ≥-1 on X ∆ defined by all the π α 's.

An interesting question is whether one can recover the poset of faces of the associahedron P ∆ from the web XW ∆ . Given a web W of intrinsic dimension n, let C 1 (W) be the set of its subwebs with intrinsic dimension n -1 and which are maximal (with respect to inclusion), define C 2 (W) as the union of C 1 (W ′ )'s for W ′ in C 1 (W), etc. We define a notion of adjacency between two elements W 1 , W 2 ∈ C ≥1 (W) = ∪ c≥1 C c (W) by requiring inclusion if the intrinsic dimensions of these two webs differ and otherwise by the fact that C 1 (W 1 ) and C 1 (W 2 ) have (at least) an element in common. Several interesting questions can be asked relatively to these notions:

Questions 8.42.

1. Can the poset of faces of P ∆ be reconstructed from the set C ≥1 XW ∆ together with the notion of 'adjacency' defined above? 2. In particular, can (and if yes, how) the X-clusters be obtained from XW ∆ alone? 3. More generally, what informations about P ∆ is it possible to reconstruct from XW ∆ ? 4. Does C ≥1 XW ∆ together with the notion of 'adjacency' characterize this web? More precisely, let W be a d X ∆ -web in n variables such that (C ≥1 W , ad jacency) is isomorphic to the corresponding combinatorial object for XW ∆ (possibly up to relabelling the foliations). Is then W necessarily equivalent to XW ∆ ?

Of course, C 1 (W) is trivial when n = 2 hence these questions do not make sense in this case. Note that answering to Question 8.41 is a first step for doing the same for the first of the four questions just above. Since the answer to the former question is affirmative when ∆ is A 3 or B 3 (see below), we believe that the one to the latter is affirmative too for any Dynkin diagram ∆.

8.8.4 The reader will have noticed that we have not yet given any definition of a web of codimension 1 on X ∆ . A first definition could be to consider the one admitting the face maps (245) for all α ∈ ∆ ≥-1 as first integrals, but this is actually not the right one, as it will be clear from case A 3 that we consider below.

Let us then treat the case when ∆ = A 3 . Since h(A 3 ) = 4 is even, one can construct the nine face maps π α easily by following the recipe described above. The birational map corresponding to the composition of mutations µ •|• is

.

We set

Consequently, the three face maps of type A 1 × A 1 are

and for the six ones of type A 2 , one can take

We can then consider two curvilinear webs, the 9-web defined by considering all the face maps π α , or the 6-web by disregarding the face maps of non-irreducible type A 1 × A 1 . Of course, the second option is the right one in order to recover the web noted by XW (1) A 3 above. But the fact that the 9-web W π α | α ∈ (A 3 ) ≥-1 is not the right one to be considered is really obvious from a web-theoretical point of view, if we notice that it does not satisfy the natural general position assumption usually required for curvilinear webs: if D α stands for the tangent distribution of dimension 1 defined by dπ α = 0 for any α, there exist 3-tuples (α, β, γ) of pairwise distinct elements of (A 3 ) ≥-1 such that D α , D β and D γ are not in direct sum at the generic point of C 3 .

As for webs of codimension 1, for any σ ≥ 0, one can define the σ-th virtual rank for (n -1)-ARs of a curvilinear web W in n variables, denoted by ρ σ (n-1) (W). 160 The fact that the foliations of W π α | α ∈ (A 3 ) ≥-1 are not in general position has the unfortunate consequence that ρ σ

(2) (W π α | α ∈ (A 3 ) ≥-1 = 7 for any σ ≥ 5. Hence its total virtual 2-rank

is infinite hence it makes no sense to ask whether it is of AMP rank or not.

The situation is quite the opposite for the web

M 0,6 up to the identification X A 3 ≃ M 0,6 . By direct computations, one

in accordance with Proposition 2.4 of [Da]. It can be proved that this bound actually is an equality hence the web XW (1) A 3 is AMP. 161 The preceding example indicates that in order to get an interesting web from the face maps π α , one has to only consider those associated to the irreducible facets, that is the P α 's which are not 160 Stating a precise definition for ρ σ (n-1) (W) is left as an exercise to the reader. 161 This would follow from some results of [Da] but some of the statements in it are wrong, in particular in the case of XW (1) A 3 . This web has maximal 2-rank but this has to be established following another approach than that of [Da].

a product of two associahedra of positive dimension. These are the facets associated to the roots α(k, i) for some k ∈ Z where i labels an extremal node of the Dynkin diagram. Thus, for any Dynkin diagram, the curvilinear cluster web which it is relevant to consider is the following one:

) for i labelling an extremal node of ∆ .

8.8.5

We now consider another explicit example: B 3 . Looking at the B 3 -associahedron, which is called the 3-dimensional cyclohedron and is pictured in [START_REF] Chapoton | Polytopal realizations of generalized associa--hedra[END_REF]Fig. 3], it comes that XW (1) B 3 is a 8-web, defined by four face maps of type A 2 , and four others of type B 2 .

To simplify the notation, it is more convenient to label the face maps via the roots of the dual root system C 3 : we set p α ∨ = π α for any α ∈ ∆ ≥-1 with ∆ = B 3 here. Moreover, the components of the π α in (244) can have quite complicate analytic expressions and for some almost-positive roots α ∨ ∈ ∆ ∨ , it is more useful to consider instead a variant p α ∨ = (X[α ′ ], X[α ′′ ]) which defines the same foliation by rational curves but whose components X[α ′ ] and X[α ′′ ] are X-variables which are formally simpler than the Y-variables appearing in (244). Below, α 1 , α 2 and α 3 stand for the standard simple positive roots in ∆ ∨ (= the root system of type C 3 ).

The four B 2 -face maps are the ones associated to the roots α 1 , -α 1 , α 1 + α 2 and α 2 + α 3 of ∆ ∨ . It can be verified that the following cluster maps are first integrals for the corresponding foliations:

As for the four A 2 -face maps, these are the ones associated to the roots α 3 , -α 3 , 2α 2 + α 3 and α 1 + 2α 2 + α 3 and the following cluster maps are first integrals for the corresponding foliations:

By direct computations, we have obtained that

Furthermore, by direct computations again, it can be verified that the space of fifth-order jets of 2-ARs of XW (1) B 3 is indeed of dimension 35. But some obstructions appear at the next two orders. Starting from order 8, the dimensions of the spaces of higher order jets of ARs stabilize and all are equal to 21, which therefore is the 2-rank of XW (1) B 3 . Consequently, this web is not 2-AMP contrarily to XW (1)

A 3 which is. The case n = 2 is quite specific. First, the three webs YW B 2 , XW B 2 and XW (1) B 2 coincide hence the latter is AMP. But this has to be seen as an exceptional phenomenon resulting from the isomorphism B 2 ≃ C 2 . Being both of type B and of type C, XW B 2 inherits from each type a supplementary non-polylogarithmic AR (namely A B 2 for type B 2 , J C 2 for type C 2 ) which both contribute to make its rank maximal. For this reason, the B 2 -case appears as exceptional and and not considering it as the first member of the family of XW (1) B n 's is more natural. We assume n ≥ 3. In §7.1.4 and §7.1.6, we have verified for n small and conjectured for n arbitray that the standard (i.e. 1-codimensional) cluster web of type B n is not AMP. Considering this, the fact that XW (1) B 3 and possibly all the XW (1) B n 's for n ≥ 3 are not AMP appears as predictable. However, even if not AMP, these curvilinear webs are interesting. And one can ask about them the same questions we asked about the webs YW B n and XW B n : Questions 8.43. 1. Describe a basis of the spaces of (n -1)-abelian relations of XW (1)

B n . 2. In particular, does this web carry (n -1)-ARs which are of polylogarithmic type or of another type, say of that of the AR (A B n ) of YW B n ? 8.8.6 We end our discussion about the webs XW (1) ∆ by a last question related to a nice geometric result of Burau in the case when ∆ is of type A.

For any ∆, since the components of the face maps π α appearing as first integrals of XW (1) ∆ can be taken as elements of a same cluster, each foliation F π α is birationally equivalent to the family of lines passing through a point in P n . Consequently, the leaves of XW (1) ∆ are rational curves. In [Bu], for any n ≥ 2, Burau gave the construction of a projective variety in which the (n+3)-web XW (1) M 0,n+3 is realized by rational curves of degree 1 or 2, depending on the parity of n:

Proposition 8.44. We set δ A n = 1 when n is odd, and δ A n = 2 when it is even.

1. There exists a projective variety V n of dimension n which

• carries a (n+3)-web by rational curves of degree δ A n which is isomorphic to XW (1) M 0,n+3 ; • is not covered by (rational) curves of degree less than δ A n . 162

Consequently, XW (1)

A n can be linearized when n is odd, and is equivalent to a web by conics (as leaves) when n is even.

Burau actually gave a construction of the variety V n by means of an explicit linear system: let p 1 , . . . , p n+2 be n + 2 points in general position in P n and denote by L A n the linear system |(n + 1)Hi (n -1)p i | when n is even, and |((n + 1)/2)Hi ((n -1)/2)p i | when n is odd (where 162 Of course, this condition is empty when n is odd since δ An = 1 in this case, which is as minimal as it can be.

H stands for the classe of a hyperplane in Pic(P n )). Then the associated rational map ϕ L An is generically 1-1 onto its image V n = ϕ L An (P n ) which therefore has dimension n in both cases. 163 Let C be either a generic line passing through one of the p j 's or a rational normal curve of degree n passing through all of them. Then it can be verified that ϕ L An (C) has degree δ A n . Since the (n + 3)-web on P n formed by the curves of this kind is a model of XW (1) M 0,n+3 , it follows that the same holds for its push-forward by ϕ L An , which is a web by rational curves of degree δ A n on V n .

The cases when n = 2 and n = 3 in the previous description correspond to classical and very wellknown varieties and webs: V 2 is the smooth quintic Del Pezzo surface in P 5 and the corresponding web on it is the one formed by the five pencils of conics included in it (it is a nice geometric model of Bol's web); and V 3 is the famous Segre cubic primal 164 in P 4 and the associated 6-web is the one formed by the lines contained in it.

These results leads to wonder about the case of the curvilinear webs XW (1) ∆ for ∆ arbitrary:

Questions 8.45. Let ∆ be a Dynkin diagram of rank n ≥ 2, not of type A.

1. Is XW (1) ∆ linearizable? If yes, how? If not, what is the smallest integer δ ∆ ≥ 2 such that it can be realized as a web by rational curves of degree δ ∆ ? 2. Is there a projective variety V ∆ of dimension n carrying a web by rational curves of degree δ ∆ equivalent to XW (1) ∆ but which is not covered by rational curves of degree less than δ ∆ ?

Answers to these questions are not known when ∆ is not of type A, even in the simplest case when ∆ has rank 2. The case of B 2 should be the first to be considered and already seems to be interesting. 163 In addition to Burau's paper [Bu], another classical reference where the linear system L An and the variety V n are discussed is the treatise [Roo] by Room. For some recent references, see the papers [START_REF] Kumar | Invariant vector bundles of rank 2 on hyperelliptic curves[END_REF][START_REF] Kumar | Linear systems and quotients of projective space[END_REF] by Kumar. 164 It is a cubic hypersurface in P 4 first considered by C. Segre, who proved that it can be characterized by the fact of having exactly 10 double points, which is the maximal possible number (see [Dol]).