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Second-gradient continua are defined as those continua whose internal virtual work functionals depend on the first and second-gradient of the virtual displacement. These functionals can be represented either in Lagrangian (referential) or Eulerian (spatial) description thus defining respectively the Piola-Lagrange as well as the Cauchy-Euler stress and double-stress. In this paper, we deduce the Piola transformation formulae, i.e., those relationships between all Lagrangian and Eulerian fields relevant for the formulation of the Principle of Virtual Work. In particular, we derive the Piola transformations of stress and double-stress as well as the Piola transformations for external virtual work functionals compatible with second-gradient internal work functionals. The latter transformations contain in fact the Piola transformations of the contact surface and line forces as well as the contact surface double-forces.

Introduction

The equations of motion for three-dimensional continua are naturally deduced from the Principle of Virtual Work by using the so-called Lagrangian description. The chosen space of configurations consists of the set of admissible placements, which are functions that map the position of a material particle in the reference configuration into its position in the current configuration. The reference configuration is the domain of the considered scalar, vector and tensor fields in Lagrangian description. In some applications of continuum mechanics, as for instance in fluid mechanics, it is more useful to consider fields defined on the current configuration. Also when dealing with deformable solids, externally applied forces are described more naturally as vector fields defined in the current configurations of the bodies to which they are applied. It is thus of the greatest importance to to be able to use the so-called Eulerian description too. Obviously, Lagrangian and Eulerian descriptions must be fully equivalent. Indeed, Gabrio Piola established in his fundamental works [START_REF]The complete works of Gabrio Piola: Volume I: Commented English translation[END_REF][START_REF] Dell'isola | The complete works of Gabrio Piola: Volume II: Commented English translation[END_REF] the formulas determining the relationships between Eulerian and Lagrangian descriptions. The obtained Piola transformations allow for the deduction of the equations the internal, external and inertial virtual work functionals should not change their value whether they are expressed in Lagrangian or in Eulerian form. In other words, the Piola transformation can be obtained by regarding the placement as a change of variables in the integral expression of 35 the involved virtual work functionals.

Piola transformations in classical first gradient theory are well known and widely used. Similar transformations applicable for second-gradient continua are not a trivial generalization. In this paper, we determine the Pi-40 ola transformations of stress and double-stress introduced in the Lagrangian configuration into their Eulerian counterparts. Moreover, we give the transformation formulae of the compatible Eulerian external virtual work functionals, which determine the relationships between the Eulerian and Lagrangian external line forces, surface forces and surface double-forces. We surprisingly find that Eulerian double-forces not only contribute to the expression of Lagrangian double-forces but also to Lagrangian line and surface forces. It has to be explicitly remarked that, to our knowledge, in the literature on second-gradient continua one can find either formulations in Eulerian description [START_REF] Toupin | Elastic materials with couple-stresses[END_REF][START_REF] Germain | La méthodes des puissances virtuelles en mécanique des milieux continus -1ère Partie, Théorie du second gradient[END_REF][START_REF] Germain | The method of virtual power in the mechanics of continuous media, I: Second-gradient theory[END_REF][START_REF] Smelser | La théorie du second gradient et la capillarité[END_REF][START_REF] Casal | Relation entre l'équation de l'énergie et l'équation du mouvement en théorie de Korteweg de la capillarité[END_REF] or in Lagrangian description [START_REF] Auffray | Analytical continuum mechanics à la Hamilton-Piola least action principle for second gradient continua and capillary fluids[END_REF][START_REF] Seppecher | Microscopic interpretation of strain-gradient and generalized continuum models[END_REF][START_REF] Giorgio | A study about the impact of the topological arrangement of fibers on fiber-reinforced composites: Some guidelines aiming at the development of new ultra-stiff and ultra-soft metamaterials[END_REF][START_REF] Giorgio | Lattice shells composed of two families of curved Kirchhoff rods: an archetypal example, topology optimization of a cycloidal metamaterial[END_REF][START_REF] Giorgio | In-depth gaze at the astonishing mechanical behavior of bone: A review for designing bio-inspired hierarchical metamaterials[END_REF][START_REF] Scerrato | Bio-inspired design of a 280 porous resorbable scaffold for bone reconstruction: A preliminary study[END_REF][START_REF] Placidi | A review on 2D models for the description of pantographic fabrics[END_REF][START_REF] Placidi | A strain gradient variational approach to damage: a comparison with damage gradient models and numerical results[END_REF][START_REF] Turco | Equilibrium paths of Hencky pantographic beams in a three-point bending problem[END_REF], but the relation between them seems not to be available. For instance generalization to N -th gradient continua [START_REF] Dell'isola | How contact interactions may depend on the shape of Cauchy cuts in Nth gradient con-295 tinua: approach "à la D'Alembert[END_REF][START_REF] Dell'isola | Least action and virtual work principles for the formulation of generalized continuum models[END_REF] needs only the Lagrangian description. Situations are similar when homogenization methods are used to obtain the deformation energy of materials belonging to the class of higher gradient continua, see among others [START_REF] Barchiesi | Large inplane elastic deformations of bi-pantographic fabrics: asymptotic homogenization and experimental validation[END_REF][START_REF] Barchiesi | Twodimensional continua capable of large elastic extension in two independent directions: Asymptotic homogenization, numerical simulations and experimental evidence[END_REF][START_REF] Dell'isola | Large deformations of planar extensible beams and pantographic lattices: heuristic homogenization, experimental and numerical examples of equilibrium[END_REF][START_REF] Alibert | Truss modular beams with deformation energy depending on higher displacment gradient[END_REF].

Lagrangian Kinematics

The physical space is modeled as a three-dimensional Euclidean vector space E 3 with the inner product denoted by ⟨•, •⟩ E 3 . We assume the reference configuration of the considered body B to be a subset Ω ⊂ E 3 , which is sufficiently regular to perform all the required calculations, see Figure 1 for a particular example of such a configuration. The topological boundary of Ω is denoted by ∂Ω. The boundary ∂Ω is the union of a finite number of twodimensional orientable surfaces with boundary, called faces of Ω. The faces are oriented in accordance with their corresponding outward-pointing unit normal fields N . Each of the faces' boundary curves are assumed to have a piecewise continuous tangent T as well as an outward-pointing unit normal B that is tangent to the face. The union of all boundary curves is denoted by ∂∂Ω. Remark that each curve constituting the boundaries of the faces, which are called edges of Ω, must be regarded as part of the boundary of both intersecting faces. Hence, considering Figure 1, the outward-pointing unit normal B to ∂∂Ω takes two values on the edge curve Γ. These are denoted by B + and B -depending on whether they are tangent to the face Σ + or Σ -, respectively. Edges of Ω are assumed to concur in a finite number of wedges together with a finite number of other edges. See [START_REF] Dell'isola | How contact interactions may depend on the shape of Cauchy cuts in Nth gradient con-295 tinua: approach "à la D'Alembert[END_REF] for more details about the differential-geometric assumptions accepted here.

The motion of the body B is defined as the mapping Π : Ω × R → E 3 , (X, t) → x = Π(X, t), which is a differentiable parametrization of suitably regular placement maps Π t = Π(•, t) : Ω → E 3 , which are assumed to be one to one. At some fixed time instant t, the image ω = Π t (Ω) ⊂ E 3 is called the current configuration of the body B and represents the spatial points occupied by the body B in its deformed state. We use the upper-case X ∈ Ω and the lower-case x ∈ ω to denote points in the reference and current configuration, respectively. Although working in E 3 , clever choices of representation allow for a precise classification of the appearing objects. For that reason, we use an arbitrary skew basis (G 1 , G 2 , G 3 ) to represent the referential points as linear combination X = X A G A . Note that we apply Einstein's summation convention, which implies summation over upper and lower indices that appear twice in a term. Evaluation of the inner product for all combinations of these base vectors yields the components of the associated bilinear form, which are referred to as referential metric components G AB = ⟨G A , G B ⟩ E 3 . The points in the current configuration are represented with respect to an alternative basis (g 1 , g 2 , g 3 ), which induces the current metric components g ij = ⟨g i , g j ⟩ E 3 . Henceforth, we refer to these two bases as referential and current basis and follow the convention to use upper-and lower-case letters also for the appearing indices. Hence, the placement map Π t is represented in such a way that

x = x i g i = Π t (X) = Π i t (X)g i . (1) 
The components of the first gradient F = ∇Π t and the second gradient F = ∇F = ∇(∇Π t ) of the placement map are then given as

F i A := (∇Π t ) i A = ∂Π i t ∂X A , F i AB := (∇F ) i AB = ∂ 2 Π i t ∂X A ∂X B , (2) 
both of which are functions of (X, t).

In order to check whether the current configuration minimizes a certain functional, the placement map Π t can be embedded in a variational family of mappings Πt : R × Ω → E 3 , (ε, X) → x = Πt (ε, X), such that Π t (X) = Πt (0, X). The variation of the placement map is then defined as

δΠ t (X) := ∂ Πi t ∂ε (0, X)g i =: δΠ i (X, t)g i (3) 
inducing a virtual displacement field

δΠ : Ω × R → E 3 , (X, t) → δΠ i (X, t)g i , (4) 
which geometrically can be seen as a time-dependent vector field along the placement Π t . Note that we use the notational convention to denote Lagrangian fields, which are defined on Ω, with uppercase letters. Geometrically similar fields are the velocity and acceleration fields defined as

V (X, t) := ∂Π i ∂t (X, t)g i , A(X, t) := ∂ 2 Π i ∂t 2 (X, t)g i . ( 5 
)
Since the variation of the placement map induces a change in the first and the second-gradient, by the symmetry of the second derivatives, one readily sees the relations

δF i A = ∂ ∂ε ∂ Πi t ∂X A ε=0 = ∂δΠ i ∂X A , δF i AB = ∂ ∂ε ∂ 2 Πi t ∂X A ∂X B ε=0 = ∂ 2 δΠ i ∂X A ∂X B . (6)

Virtual Work Principle in Lagrangian Form

The basic assumption in a variational formulation of continuum mechanics as founded by d'Alembert and Lagrange consists in postulating that the motion of every continuum can be characterized by suitably choosing the constitutive equations for the three linear continuous virtual work functionals δW int Ω , δW ext Ω , δW dyn Ω and by assuming that, at every instant of time t, the virtual work identity

δW tot Ω (δΠ) := (δW int Ω + δW ext Ω + δW dyn Ω )(δΠ) = 0 (7)
holds for every virtual displacement field δΠ. The functional δW int Ω captures the virtual work expended in the internal interactions among parts of the considered body Ω on every virtual deformation process. The functional δW ext Ω allows for the calculation of the virtual work expended in the interactions of the body with its external world. Finally, δW dyn Ω gives the inertial virtual work expended on virtual displacements.

For second-gradient continua, the internal virtual work of Ω can always be represented as the integral of a volume density in the form1 

δW int Ω (δΠ) = - Ω P A i δF i A + P AB i δF i AB , (8) 
where P A i and P AB i are the components being work dual to the first and second gradient of the virtual displacement. We call them the Piola-Lagrange stress P and Piola-Lagrange double-stress P.

Let ρ 0 = ρ 0 (X) be the reference density of the continuum with mass m = Ω ρ 0 . We incorporate inertial effects by postulating the following virtual work contribution

δW dyn Ω (δΠ) = - Ω ρ 0 g ij A j δΠ i , (9) 
where A j are the components of the acceleration. The external virtual work functional specifies the interactions between the considered continuum and its external world. Postulating the Principle of Virtual Work [START_REF] Casal | Relation entre l'équation de l'énergie et l'équation du mouvement en théorie de Korteweg de la capillarité[END_REF] implies that the class of possible external virtual work functionals for a continuum is limited once its internal and inertial virtual work functionals are specified. This class is called the set of compatible external virtual work functionals. To be more specific, if one assumes an external virtual work contribution that cannot be balanced either 110 by the internal or the inertial virtual work contributions, the Principle of Virtual Work tells us that these contributions must vanish. As external virtual work functionals include boundary interactions concentrated on ∂Ω, the determination of their compatibility requires a process of 115 integration by parts.

The internal virtual work [START_REF] Auffray | Analytical continuum mechanics à la Hamilton-Piola least action principle for second gradient continua and capillary fluids[END_REF] is in fact a representation of a second-order distribution in the form of (A.5). As proven in Appendix A, the internal virtual work functional can also be represented as

δW int Ω (δΠ) = Ω ∂ P A i ∂X A δΠ i - ∂Ω P A i N A δΠ i + ∂Ω M ∥ C L ∂ ∂X C P AB i N B M ∥ L A δΠ i - ∂Ω P AB i N A N B ∂δΠ i ∂X C N C - ∂∂Ω P AB i B A N B δΠ i , (10) 
where M ∥ denotes the projector to the tangent spaces of ∂Ω and

P A i = P A i - ∂P AB i ∂X B . (11) 
Since the inertial virtual work is provided only by a volume integral, the representation [START_REF] Giorgio | A study about the impact of the topological arrangement of fibers on fiber-reinforced composites: Some guidelines aiming at the development of new ultra-stiff and ultra-soft metamaterials[END_REF] together with the virtual work principle [START_REF] Casal | Relation entre l'équation de l'énergie et l'équation du mouvement en théorie de Korteweg de la capillarité[END_REF] implies that the external virtual work functionals must be of the form

δW ext Ω (δΠ) = Ω F Ω i δΠ i + ∂Ω F ∂Ω i δΠ i + ∂Ω D ∂Ω i ∂δΠ i ∂X C N C + ∂∂Ω F ∂∂Ω i δΠ i . (12) 
In this expression, the co-vector fields F Ω , F ∂Ω and F ∂∂Ω are dual to virtual displacements and are, due to their integration domain, forces per unit reference volume, surface and line, respectively. Moreover, an additional surface 120 density field D ∂Ω appears, which, following the nomenclature used by Germain [START_REF] Germain | La méthodes des puissances virtuelles en mécanique des milieux continus -1ère Partie, Théorie du second gradient[END_REF][START_REF] Germain | The method of virtual power in the mechanics of continuous media, I: Second-gradient theory[END_REF], is called surface density of double-forces. These contributions are dual to the normal derivative of the virtual displacement. Using ( 9) -( 12) in [START_REF] Casal | Relation entre l'équation de l'énergie et l'équation du mouvement en théorie de Korteweg de la capillarité[END_REF], for an unconstrained continuum, the Principle of Virtual Work implies the equations of motion given by the partial differential equations

∂ ∂X A P A i - ∂P AB i ∂X B + F Ω i = ρ 0 g ij A j in Ω . (13) 
Additionally, also the boundary conditions follow from the virtual work principle. These are on the faces

F ∂Ω i = P A i N A -M ∥ C L ∂ ∂X C P AB i N B M ∥ L A D ∂Ω i = P AB i N A N B on ∂Ω (14) 
and on the edges

F ∂∂Ω i = P AB i B A N B + + P AB i B A N B -on ∂∂Ω . (15)
Recalling (A.12) from Appendix A, the symbols () ± de-125 note the limits on the curves constituting ∂∂Ω from the faces ± of the quantities in the brackets.

Virtual Work Principle in Eulerian Form

From the Lagrangian point of view considered so far, all scalar, vector and tensor valued functions depend on referential points X and time t. Since the placement Π t : Ω → ω is invertible, we can use also the Eulerian description, where the spatial points x = Π t (X) are regarded to be the independent variable. The inverse function π t = Π -1 t : ω → Ω is written with lower case letters, as it will be done henceforth for every map with ω as its domain. Moreover, we introduce the inverse map π :

ω × R → Ω × R defined as (x, t) → (X, t) = π(x, t) := (π t (x), t) = (Π -1 t (x), t) . ( 16 
)
This change of parameterization induces the spatial virtual displacement δx, the spatial velocity v and the spatial acceleration a, all of which are defined via their Lagrangian counterpart as

δx := δΠ • π , v := V • π , a := A • π . (17) 
According to our terminology, [START_REF] Dell'isola | How contact interactions may depend on the shape of Cauchy cuts in Nth gradient con-295 tinua: approach "à la D'Alembert[END_REF] are the Piola transformations of the virtual displacement, velocity and acceleration. The components of the first and second-gradient of the spatial virtual displacement are abbreviated as

δd i j := ∂δx i ∂x j , δd i jk := ∂δx i ∂x j ∂x k . ( 18 
)
Lagrangian and Eulerian formulations describe the same physical phenomena. For this reason, the value of the virtual work expressions should not be affected by a change of variables. Therefore

δW int ω (δx) := δW int Ω (δΠ) , δW ext ω (δx) := δW ext Ω (δΠ) , δW dyn ω (δx) := δW dyn Ω (δΠ) . (19) 
Consequently, the virtual work equality holds also in the Eulerian description:

δW tot ω (δx) := (δW int ω + δW ext ω + δW dyn ω )(δx) = 0 . ( 20 
)
Since after a simple change of variables, the internal virtual work integral expression is still a representation of a second-order distribution, it can be written in the form

δW int ω (δx) = - ω c j i δd i j + c jk i δd i jk , (21) 
where c j i and c jk i are the components of the work conjugates to the first and second gradient of the spatial virtual 130 displacement. We call them the Cauchy-Euler stress c and the Cauchy-Euler double-stress c.

The inertial virtual work is expected to be of the form

δW dyn ω (δx) = - ω ρg ij a j δx i , (22) 
where ρ = ρ(x, t) denotes the current mass density of the continuum resulting in the current inertial force density

f dyn,ω i = -ρg ij a j .
135

To characterize the compatible external virtual work functional, the same integration by parts procedure can be applied as in the Lagrangian formulation. Defining

cj i = c j i - ∂c jk i ∂x k , (23) 
in Appendix A it is proven that the Eulerian internal virtual work functional has the following representation:

δW int ω (δx) = ω ∂c j i ∂x j δx i - ∂ω cj i n j δx i + ∂ω m ∥ c l ∂ ∂x c c jk i n k m ∥ l j δx i - ∂ω c jk i n j n k ∂δx i ∂x c n c - ∂∂ω c jk i b j n k δx i . (24) 
Note that n and b denote the outward-pointing unit normals to the faces ∂ω and edges ∂∂ω of the current configuration and m ∥ the projector to the tangent spaces of ∂ω. Consequently, the compatible external virtual work functionals must be of the form

δW ext ω (δx) = ω f ω i δx i + ∂ω f ∂ω i δx i + ∂ω d ∂ω i ∂δx i ∂x c n c + ∂∂ω f ∂∂ω i δx i , (25) 
where the co-vector fields f ω , f ∂ω and f ∂∂ω are forces per unit current volume, surface and line, respectively. Also in the Eulerian framework, there appears a surface density of double-forces d ∂ω i , which is a density per unit current surface and which is dual to the normal gradient with respect 140 to the current normal vector.

The Principle of Virtual Work then implies for an unconstrained continuum the governing equations of motion ∂ ∂x j c j i -

∂c jk i ∂x k + f ω i = ρg ij a j in ω , (26) 
together with the boundary conditions on the faces

f ∂ω i = cj i n j -m ∥ c l ∂ ∂x c c jk i n k m ∥ l j d ∂ω i = c jk i n j n k on ∂ω (27) 
and on the edges

f ∂∂ω i = c jk i b j n k + + c jk i b j n k -on ∂∂ω . (28) 

Piola Transformations of Mass Density, Stress and Double-Stress

In the previous section, we have introduced as Eulerian dual quantities the Cauchy-Euler stresses together with the current inertial force, the current external forces and current double-forces. The Piola transformation problem raises the following question: "Which are the relationships between the Lagrangian and Eulerian stresses and double-stresses, inertial forces as well as external forces and double-forces such that the identities ( 19) are satisfied?".

We present in this section the Piola transformation between the referential and current mass density as well as the Piola transformations between the Piola-Lagrange and the Cauchy-Euler stresses and double-stresses.

Let Φ be a time-dependent Lagrangian field with domain Ω that is related to the corresponding Eulerian field ϕ with domain ω by Φ(X, t) = ϕ(Π t (X), t). Recalling (2), the chain rule implies that the gradients of the Lagrangian and Eulerian fields are connected by

∂Φ ∂X A (X, t) = ∂ϕ ∂x j (Π t (X), t)F j A (X, t) . ( 29 
)
Since this relation can also be written as

∂Φ ∂X A (π(x, t)) = ∂ϕ ∂x j (x, t)F j A (π(x, t)) , (30) 
we will drop the arguments in what follows. The indication of the arguments may be complemented by the reader. Using this convention together with (2), we obtain, by taking once more the gradient of (29), the expression

∂ 2 Φ ∂X A ∂X B = ∂ 2 ϕ ∂x j ∂x k F j A F k B + ∂ϕ ∂x j F j AB . (31) 
Consequently, the gradients of the Lagrangian and Eulerian virtual displacement fields are related by

δF i A = δd i j F j A , δF i AB = δd i jk F j A F k B + δd i j F j AB . (32) 
In a similar way, the time derivative of the Lagrangian field Φ together with (5) leads to

∂Φ ∂t (X, t) = ∂ϕ ∂x j (Π t (X), t)V j (X, t) + ∂ϕ ∂t (Π t (X), t) (33)
As done in (30), by using V j (π(x, t)) = v j (x, t), this relation can be written in spatial coordinates as

∂Φ ∂t (π(x, t)) = ∂ϕ ∂x j (x, t)v j (x, t) + ∂ϕ ∂t (x, t) , (34) 
which then serves as definition of the material time derivative d dt ϕ(x, t) := ∂ϕ ∂x j (x, t)v j (x, t)

+ ∂ϕ ∂t (x, t) . ( 35 
)
This is why the spatial acceleration field a can be expressed as the material time derivative of the spatial velocity field, which in formulas reads as

a i (x, t) = A i (π(x, t)) = ∂V i ∂t (π(x, t)) = d dt v i (x, t) . ( 36 
)
To obtain the transformation formulae between referential and spatial fields, we will take the Lagrangian virtual work expressions ( 8) and ( 9) and change the integration variable from the referential coordinates X to the spatial 160 coordinates x resulting in an integral expression defined on the domain ω.

Transforming the right hand side of ( 8), by the change of variables given by π t (x), whose Jacobian determinant is equal to J -1 (π(x, t)) = det(F (π(x, t))) -1 , we get with the above introduced abuse of notation

δW int Ω (δΠ) = - ω J -1 P A i δF i A + P AB i δF i AB ( 37 
)
The integration domain ω makes it clear that all capitalized Lagrangian fields must be composed with π. Next, we insert the relations (32) and compare the outcome with the Eulerian virtual work expression [START_REF] Dell'isola | Large deformations of planar extensible beams and pantographic lattices: heuristic homogenization, experimental and numerical examples of equilibrium[END_REF] in the following way

δW int Ω (δΠ) = - ω J -1 P A i δd i j F j A - ω J -1 P AB i (δd i jk F j A F k B + δd i j F j AB ) = - ω J -1 P A i F j A + P AB i F j AB δd i j - ω J -1 P AB i F j A F k B δd i jk = - ω c j i δd i j + c jk i δd i jk = δW int ω (δx) . (38) 
Comparison of the last and second last line leads to the Piola transformation of stress and double-stress

c j i = J -1 P A i F j A + P AB i F j AB , c jk i = J -1 P AB i F j A F k B , (39) 
which can be written in a more synthetic way as

2 c = J -1 P • F t + P : F t , c = J -1 P : (F t ⊗F t ) . (40) 
Note that with our notation, either the left hand sides have to be composed with Π or the right hand sides with π. The reader will remark that, by simply assuming P = 0, we get

165 the Piola transformation formula c = (J -1 P • F t ) • π for first gradient continua.
Transforming in the same way as before the Lagrangian inertial virtual work expression, we get

δW dyn Ω (δΠ) = - ω ρ 0 g ij A j δΠ i J -1 . (41) 
Using the definition of the spatial virtual displacement and acceleration from [START_REF] Dell'isola | How contact interactions may depend on the shape of Cauchy cuts in Nth gradient con-295 tinua: approach "à la D'Alembert[END_REF], we can further manipulate the expression to

δW dyn Ω (δΠ) = - ω ρ 0 J -1 g ij a j δx i = - ω ρg ij a j δx i = δW dyn ω (δx) , (42) 
where we recognize in the last step the relation between referential and current mass density. This Piola transformation of the density expressed in Lagrangian coordinates is generally referred to as referential equation of continuity and reads as

ρ 0 (X) = J(X, t)ρ(Π(X, t), t) . (43) 
The spatial equation of continuity

d dt ρ(x, t) + ρ(x, t) ∂v i ∂x i = 0 (44) 
follows immediately by carrying out the following computations. First, take the time derivative of (43), then insert the identity ∂J/∂t = J∂v i /∂x i and, last, express the result in spatial coordinates with the spatial velocity field and utilize the material time derivative (35).

Piola Transformations of external forces and double-forces

The final relations left to show are the Piola transformations of the forces and double-forces appearing in the Lagrangian and Eulerian external virtual work functionals [START_REF] Giorgio | In-depth gaze at the astonishing mechanical behavior of bone: A review for designing bio-inspired hierarchical metamaterials[END_REF] and (25). We proceed in a similar way as just done for the stresses and double-stresses. However, some further unexpected difficulties arise. Carrying out the change of variable given by the inverse of the placement, the Eulerian normal derivative to ∂ω of the virtual displacement does not transform into the Lagrangian normal derivative to ∂Ω. As a consequence, the Eulerian virtual work functional of double-forces, once transformed into Lagrangian coordinates followed by a Lagrangian surface integration by parts, is composed of three virtual work functionals: a first one to be identified with the Lagrangian virtual work functional of double-forces, a second one contributing to Lagrangian surface forces and the last one contributing to Lagrangian edge forces.

Using the inverse of the right Cauchy-Green strain C -1 with the components

(C -1 ) AB = (F -1 ) A i g ij (F -1 ) B j , (45) 
as well as

K A = M ∥ A C (C -1 ) CB N B = (F -1 ) A i g ij (F -1 ) B j -∥F -T • N ∥ 2 G AB N B , (46) 
we get after long but straightforward calculations the following transformation formulae for the external forces:

F Ω i = Jf ω i , F ∂Ω i = ∥JF -T • N ∥f ∂ω i -M ∥ B A ∂ ∂X B (Jd ∂ω i K A ) , F ∂∂Ω i = ∥F • T ∥f ∂∂ω i + J(C -1 ) AB B A N B d ∂ω i + + J(C -1 ) AB B A N B d ∂ω i -. (47) 
Using definition (A.3), we can write the Piola transformations of the external forces in direct notation as

F Ω = Jf ω , F ∂Ω = ∥JF -T • N ∥f ∂ω -div ∂Ω ∥ Jd ∂ω ⊗ K , (48) 
F ∂∂Ω = ∥F • T ∥f ∂∂ω + J(B • C -1 • N )d ∂ω + + J(B • C -1 • N )d ∂ω -. (49) 
Finally, the Piola transformation of the surface doubleforce, once in index notation and once in direct notation, reads as

D ∂Ω i = J∥F -T • N ∥ 2 d ∂ω i , D ∂Ω = J∥F -T • N ∥ 2 d ∂ω . ( 50 
)
Appendix A. Equivalent form for second-order distributions

Let us consider a regular manifold V embedded in an ndimensional Euclidean vector space E n and the idempotent projectors m ∥ and m ⊥ on its tangent and normal spaces. When V has co-dimension one, and if n denotes its unit normal vector, we have

m ⊥ γ α = n γ n α , m ∥ γ α = δ γ α -n γ n α . (A.1)
Given a vector field w defined in the neighborhood of V, the divergence theorem for Riemannian submanifolds with boundaries is stated as

V m ∥ γ α ∂ ∂x γ m ∥ α β w β = ∂V m ∥ α β w β m ∥ γ α b γ = ∂V w β b β , (A.2)
where ∂V denotes the boundary of V and where the unit vector b is tangent to V and normal to ∂V. Defining div V ∥ by setting for all smooth fields ϕ

div V ∥ (ϕ) α := m ∥ γ α ∂ ∂x γ (ϕ) , (A.3)
the divergence theorem reads as

V div V ∥ (m ∥ • w) = ∂V w • b . (A.4)
In accordance with the theory of distribution, both the virtual work expression in Lagrangian and Eulerian description can be considered as distributions D represented in the form

D(ϕ) = v s α ∂ϕ ∂y α + s αβ ∂ 2 ϕ ∂y α ∂y β , (A.5)
where the derivatives of the test functions ϕ are taken with respect to the coordinates y α of a 3-dimensional Euclidean space. Note that the index i appearing in both ( 8) and ( 21) does not play any role in the present considerations and is therefore omitted. Since the order of a distribution can be defined as the sum of the highest order derivative of the test function and the co-dimension of the integration domain in the domain of the test functions, D is a second-order distribution. The symbol v denotes the generic integration domain which satisfies the same continuity requirements as discussed in Section 2 for the reference configuration Ω. The faces of the subset v are denoted by ∂v and come along with the outward-pointing unit normal field n. The symbol ∂∂v denotes the edges on which the outward-pointing unit normals b to the boundaries ∂∂v are defined. Moreover, these normals are in the tangent planes to the faces constituting ∂v.

Using the product rule in the second integrand of (A.5), we can write

D(ϕ) = v s α - ∂s αβ ∂y β ∂ϕ ∂y α + v ∂ ∂y β s αβ ∂ϕ ∂y α .
With the abbreviation sα = s α -∂s αβ /∂y β and applying the product rule for the first integrand, we end up with

D(ϕ) = v ∂ ∂y α (s α ϕ) - v ∂s α ∂y α ϕ + v ∂ ∂y β s αβ ∂ϕ ∂y α .
Using the divergence theorem for the first and the third term and introducing the zeroth-and first-order distributions

D 0 v (ϕ) = - v ∂s α ∂y α ϕ , D 0 ∂v (ϕ) = ∂v sα n α ϕ , (A.6)
the distribution (A.5) can be written in the form

D(ϕ) = D 0 v (ϕ) + D 0 ∂v (ϕ) + ∂v s αβ ∂ϕ ∂y α n β . (A.7)
The last term here, is the only expression in which still derivatives of ϕ appear. Therefore, we will manipulate this term further by using the projectors (A.1) for the faces ∂v The distribution D I ∂v is a second-order transverse distribution involving the normal derivative of the test function (∂ϕ/∂y γ )n γ and cannot be reduced any further.

Due to the idempotence of the projector m ∥ and by applying once more the product rule, we can manipulate the first term in the last line of (A.8) in the following way Note, to obtain D 0 ∂∂v , the divergence theorem (A.2) has been applied leading to a line integral along the edges of v. We used here a notational convention in the expression of the integral. As depicted in Figure 1, we observe that an edge γ is the intersection of two subsurfaces σ + and σ -, say. Hence, γ is traversed twice: once with the surface normal n -, edge normal b -and the limit (s -) αβ approached from the surface σ -, as well as once with the corresponding n + , b + and (s + ) αβ . Consequently, if we denote each of the edge curves by γ i for i = 1, . . . , n e , then the integral expression of the first equality in (A.11) reads as 3 This equivalence can be applied to the Lagrangian internal virtual work functional [START_REF] Auffray | Analytical continuum mechanics à la Hamilton-Piola least action principle for second gradient continua and capillary fluids[END_REF], when carrying out the -P A i , s αβ → -P AB i , sα → -P A i , ϕ → δΠ i , y α → X A , v → Ω, b → B and n → N with the corresponding projector m ∥ → M ∥ . Remark the now appearing implicit summation over the index i, which has no influence on the derivations presented above. As a consequence of (A.13), the Lagrangian internal virtual work functional can then also be represented by [START_REF] Giorgio | A study about the impact of the topological arrangement of fibers on fiber-reinforced composites: Some guidelines aiming at the development of new ultra-stiff and ultra-soft metamaterials[END_REF]. The following replacements are required in (A.6), (A.9) and (A.11) to obtain for the Eulerian internal virtual work functional the representation (24): s α → -c j i , s αβ → -c jk i , sα → -c j i , ϕ → δx i , y α → x j as well as v → ω.

Figure 1 :

 1 Figure 1: Reference and current configuration of a body with a piecewise continuous boundary surface and piecewise continuous boundary curves.

∂v s αβ ∂ϕ ∂y α n β = ∂v s αβ ∂ϕ ∂y γ n β δ γ α = ∂v s αβ ∂ϕ

  ∂y γ n β m ∥ γ α + m ⊥ γ α = ∂v s αβ ∂ϕ ∂y γ n β m ∥ γ α + D I ∂v (ϕ) , (A.8)where we have introduced the distributionD I ∂v (ϕ) = ∂v s αβ n α n β ∂ϕ ∂y γ n γ .(A.9)

  γ s αβ n β m ∥ λ α ϕ = D 0 ∂∂v (ϕ) + D0 ∂v (ϕ) .(A.10)In the last step, we have introduced the second-and firstorder distributionsD 0 ∂∂v (ϕ) = ∂∂v s αβ n β b α ϕ ,

s

  αβ n β b α + + s αβ n β b α -ϕ . (A.12)In conclusion, from the point of view of the theory of distributions, the second-order distribution D(ϕ) from (A.5) can equivalently be represented asD = D 0 v + (D 0 ∂v + D0 ∂v ) + D I ∂v + D 0 ∂∂v . (A.13) 

Without fixing a particular constitutive law for P and P, the sign of the virtual work expression is irrelevant.

Note the non-standard operators required for the higher order tensors. Using the vectors a, b ∈ E

, the co-vectors α, β ∈ (E * ) 3 and the third order tensor A ∈ ⊗ 1 2 E 3 , these operators can be defined by the equalities (α ⊗ a)⊗(β ⊗ b) = (α ⊗ β) ⊗ (a ⊗ b) and α • A : (a ⊗ b) = (a ⊗ b) : A t • α. The remaining operators are standard and can be recovered by comparing (40) with (39).

following replacements in (A.6), (A.9) and (A.11): s α → 3 It is also common to introduce b± = t×n ± as the vector product between tangent vector to the curve γ and the surface normal n, see[START_REF] Toupin | Elastic materials with couple-stresses[END_REF][START_REF] Germain | The method of virtual power in the mechanics of continuous media, I: Second-gradient theory[END_REF] 24]. In that case b -= -band the sign changes in the second term of (A.12).
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