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ABSTRACT
Verification of real-time application schedulability is usually per-
formed using a very abstract representation of the system which
poorly supports inter-task dependencies. This paper presents the
use of model-checking techniques to check the schedulability on a
detailed model of a multi-core operating system. The operating sys-
tem as a whole is modeled by a High-level Petri net reproducing the
control flow and using the same variables as those of the implemen-
tation. Each task of the application is represented by a Stopwatch
Petri Net whose transitions carry Best-Case Execution Time and
Worst-Case Execution Time [𝐵𝐶𝐸𝑇,𝑊𝐶𝐸𝑇 ] firing intervals and
make service calls to the OS. Preemption is supported by means of
stopwatches. Verification is performed using observers and allows
to determine the schedulability of the multi-core application, or,
using parameters on the firing intervals, allows determining under
which temporal conditions the application is schedulable.

CCS CONCEPTS
• Software and its engineering→ Formal software verifica-
tion; • Computer systems organization → Real-time oper-
ating systems; • Theory of computation → Verification by
model checking.
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1 INTRODUCTION
Embedded systems have become ubiquitous in our daily lives in
several areas. Due to their evolution, these systems have to use in-
creasingly complex hardware architectures to achieve the required
performance. Besides, multi-core chips have become more pop-
ular as applications require high-performance computing (HPC).
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Embedded systems must implement all the desired functionalities,
execute the assigned tasks, and validate not only functional but
also temporal accuracy. In [28], a definition of real-time systems
(RTS) is given considering the computations’ correctness plus the
time-limited response. It is, therefore, necessary to perform a sys-
tem verification in order to increase the level of confidence and
prevent unexpected behavior.

The increase in the software-based functions has led to the adop-
tion of Real-Time Operating Systems (RTOS), which provides an
interface between hardware and software. The RTOS is a platform
that implements all the required functionalities and is responsible
for the management of hardware resources and the scheduling of
application processes. This evolution is formalized; for example,
ARINC 653 [3] and AUTOSAR [4] standards propose implementa-
tion rules for real-time operating systems intended for the avionics
and automotive industries.

The structure of the RTS is thus composed of three parts: soft-
ware, hardware, and a real-time operating system (RTOS). The
software architecture of RTS consists of a set of tasks that interact,
usually through message exchange or synchronization mechanisms.
The hardware part of the RTS is composed of processors, memo-
ries, input/output devices and other components. The hardware
architecture is often classified according to the number of proces-
sors and cores. The RTOS manages the hardware resources and
provides a scheduler, responsible for the order of execution of tasks
on the processors in order to guarantee time determinism. In the
following, we present some related work on the formal verification
of operating systems and real-time systems, the use of High-level
Petri nets in modeling, our contribution and the paper outline.

1.1 Formal methods for operating systems
verification

A variety of formal approaches exist and have been used in several
research studies, especially for the verification of operating systems.

In [18] Huang et al. present work on the verification of com-
pliance of an operating system with automotive standards using
different formal approaches. An OSEK/VDX compliant operating
system is modeled at code-level using CSP and then verified in the
model-checker PAT. The verification does not contain all the OS-
EK/VDX specifications; they proved the specifications concerning
only task scheduling and resource management. In addition, the
absence of deadlock is guaranteed in the operating system code.

[17, 20] present verification of operating systems with theorem
prover. [17] is a verification project of the L4 compatible Fiasco mi-
crokernel. The verification of the C++ sources of Fiasco is performed
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by the general-purpose theorem prover PVS. Their approach han-
dles type-correctness and safety proof. In [20], the functional cor-
rection of the seL4 microkernel is proved using the theorem prover
Isabelle/HOL. A complete verification process is performed inde-
pendently of the application, from the high-level specification of the
kernel behavior to its safe execution. Their proof, however, is lim-
ited to the validation of assumptions about the proper functioning
of the hardware and compiler. It does not cover application-specific
properties or the interaction of applications with the operating
system.

[13] shows an approach that converts the kernel source code of
the RTOS Trampoline to a formal model in PROMELA, themodeling
language of SPIN. The objective of this work is to verify the safety
properties and the exactness of the kernel model. Using model-
checking, they were able to identify some possible safety violation
scenarios.

[30] proposes a complete model of the RTOS Trampoline in
its mono-core version using extended and timed automata with
UPPAAL tool. This model includes all the functions and services of
the OS. By performing reachability analysis on the states on the OS
according to an application model, infeasible paths are eliminated,
and the model is pruned accordingly. From the pruned model, a
source code configured for the application can be produced. [7]
proposes to check the conformity of the model, whether it is pruned
or not, by means of observers using the properties that need to be
checked to show conformity to the OSEK/VDX standard.

1.2 Real-time systems Verification
The time verification of Real-time systems consists in proving that
the system will always be able to react according to its time con-
straints. Timing validation is, therefore, a decision process that con-
cerns task scheduling sequences. It can be done using simulation,
model checking, and feasibility tests such as processor utilization
and response time analyses [26]. However, exhaustive testing is
not possible in real-time context.This motivates the use of formal
verification methods using such models as timed automata (TA)
[1] and timed Petri nets (TPN) [9], among others. There are thus
many scheduling studies based on a representation by these formal
models [8, 11, 15, 31].

Among them, [31] focuses on modeling multi-tasking applica-
tions to verify the worst time execution of the tasks using timed
automata. The modelled applications considered non-preemptive
tasks and interrupt service routines.G. Behrmann et al. propose in
[8] a timed automata model called Priced Timed Automata (PTA).
Its semantics is defined by associating to each transition and lo-
cation a non-negative real-valued cost. Their analysis consists in
seeking optimal offline scheduling with minimal cost.

Based on the Trampoline formal model of [30], Boukir K. et al.
[11] adapt it for global scheduling. They integrate the model of the
G-EDF implementation using the same formalism of extended and
timed automata. The conformity of the scheduler implementation
is then checked for a set of properties using synthetic application
models. These models generate all possible scheduler excitation
scenarios. However, the halting of the elapse of time in case of
preemption is not modeled.

Indeed, for timed automata (TA) [1] and timed Petri nets (TPN),
time elapses at the same speed for all components of the system.
Hence they cannot abstract preemptive scheduling policies where
the execution of a task can be suspended at some point and later
resumed at the same point. Several extensions of these models have
been proposed to express the suspension and resumption of actions
by adding the stopwatch notion [12, 21]. These models belong to
the class of TPN extended with stopwatches (SwPN) [10].

1.3 High-level Petri nets
For the lack of a data structure, Petri nets are not suitable for mod-
eling systems where data have an effect on the system’s behavior.
High-level Petri nets [16] have been proposed for modeling scien-
tific problems with complex structures allowing to describe both
system data and control. The term High-level Petri net is then used
for many Petri nets [19] such as Predicate/Transition Nets, colored
Petri nets, or hierarchical Petri nets. However, the common point is
that they allow to manipulate different types of expressions that use
state variables. Input arcs are labeled with boolean expressions spec-
ifying conditions (guards or gates) that can also be associated with
transitions. Arc annotations are expressions that can be associated
with output arc. They can be viewed as computing systems that
operate on shared data. Parametric High-level Petri nets is a formal-
ism for modeling and verifying preemptive real-time systems with
parameters. It benefits from the Roméomodel-checker. There is also
the formalism of the parametric stopwatch automatons available
in the IMITATOR model-checker. In [24], Roméo and IMITATOR
provide the same conclusions on an aerial video tracking system
by THALES, and Roméo had performed better than IMITATOR
in terms of time and memory consumption. In [29], IMITATOR
could output the exact answer to an industrial challenge by Thales
with uncertain periods. A test of the practical efficiency on the
IMITATOR benchmarks library is given in [2].

1.4 Contribution and outline
Our contribution consists of an approach that aims to verify the
schedulability of a real-time system using model checking. We
use High-Level Petri Nets with stopwatches for modeling both
the multi-core RTOS and the real-time application. The RTOS is
an OSEK and AUTOSAR compliant RTOS called Trampoline [6].
OSEK-OS provides a preemptive, non-preemptive and task group
scheduling; a task group is a set of task that are non preemptable
by each other but can be preemptable by higher priority tasks in
the application. We then rely on model checking to check schedula-
bility and provide an accurate analysis of worst-case response time
computation for dependent preemptive tasks in multi-core systems.
The analytical approach applied to the fixed priority algorithm is
most often based on response time computation. However, these re-
sponse time analysis methods considered an unrealistic critical time
when tasks are dependent [23], leading to an inherent pessimism.
When considering dependent tasks, it is then necessary to take the
BCET and the WCET and possible interactions between the tasks.
Moreover we parametrize task timing characteristics in order to
synthesize the values of these characteristics that guarantee the
system’s schedulability. The whole process is integrated into the
Roméo tool, available under a free license [25].
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The rest of this paper is organized as follows. Section 2 presents
the background and the work positioning. Section 3 gives the defi-
nition of High-Level Stopwatch Petri Nets that are used in Section 4
for the formal model of the RTOS and the multi-core application.
Section 5 presents our approach for conducting verification of the
schedulability or by using parameters to determine under which
temporal conditions the application is schedulable. We apply the
approach to a case study in Section 6. Finally, Section 7 concludes
this paper.

2 BACKGROUND
The operating system chosen here is the RTOS Trampoline. Tram-
poline is a preemptive real-time operating system designed for
the automotive industry, which is compliant with OSEK/VDX and
AUTOSAR standards. Therefore the multi-core version of Trampo-
line implements fixed priority partitioned scheduling. This type of
scheduling consists of statically allocating a set of tasks to a proces-
sor. This subset assigned to a particular processor is not allowed
to migrate to another; it is scheduled according to mono-processor
scheduling.

In its OSEK/VDX version, this type of operating system man-
ages several types of objects: tasks, interrupt service routines (ISR),
resources, that are used to implement critical sections using the
IPCP protocol a variant of PCP [27], or alarms, that are used to
implement periodic tasks, to name only the main ones.

In the AUTOSAR version, other objects are added such as sched-
ule tables or OS Applications. Partitioning of tasks on the cores
is done using OS Applications. An OS Application gathers several
objects (tasks, ISR, alarms, resources, ...) in a logical entity and
is statically assigned to a core. In addition to resources that do
not work for the implementation of critical sections between code
running on different cores, an AUTOSAR OS also has spinlocks.

An application running on this kind of OS is statically configured.
That is to say that all the application objects handled by the OS
are known at compile time and that there is no dynamic allocation
of objects. Furthermore, to control the memory allocated to the
stack of a task, recursion is discouraged. These features facilitate
the formal modeling of such a system. The static configuration
of an application is carried out by means of a description in a
dedicated language. For OSEK/VDX the OIL language is used. For
AUTOSAR, it has been replaced by arXML. A compiler transforms
this description into C data structures and code.

Trampoline has retained, in addition to arXML, the possibility
to describe the application in OIL in order to preserve readability.
Since the Trampoline arXML/OIL compiler is easily extensible, the
data structures manipulated by the model are also generated. This
limits the risk of modeling errors.

The source code is just over 20,000 lines long and includes 180
functions for the target-independent part.

Concurrent access to data structures internal to the operating
system is prevented by the use of a spinlock for most service calls
and for interrupt routines built into the OS. The exception is the
OS startup service, which can run in parallel on multiple cores but
only changes the data structures specific to the core on which it is
running.

3 HIGH LEVEL STOPWATCH PETRI NETS
Notations. The sets N, Q≥0 and R≥0 are respectively the sets

of natural, non-negative rational and non-negative real numbers.
An interval 𝐼 of R≥0 is a Q-interval iff its left endpoint ↑𝐼 belongs
to Q≥0 and its right endpoint 𝐼 ↓ belongs to Q≥0 ∪ {∞}. We denote
by I(Q≥0) the set of Q-intervals of R≥0.

𝐵𝐴 stands for the set of mappings from 𝐴 to 𝐵. If 𝐴 is finite and
|𝐴| = 𝑛, an element of 𝐵𝐴 is also a vector in 𝐵𝑛 . The usual operators
+,−, < and = are used on vectors of 𝐴𝑛 with 𝐴 = N,Q,R and are
the point-wise extensions of their counterparts in 𝐴.

3.1 Informal presentation
High-level Petri nets. A Petri net, also known as a place/transi-

tion (PT) net, is one of several mathematical modeling languages
for the description of distributed concurrent systems. A place can
contain any number of tokens. A marking 𝑀 of a Petri Net is a
vector representing the number of tokens of each place. A transition
is enabled (it may fire) in𝑀 if there are enough tokens in its input
places for the consumptions to be possible. Firing a transition t in
a marking𝑀 consumes one token from each of its input places s,
and produces one token in each of its output places 𝑠 .

High-level Petri nets have been proposed for modeling scientific
problems with complex structures and manipulate different types
of expressions made up by variables and written in terms of a
predefined syntax.

In this paper we consider that precondition (guard) and post-
condition (update) over a set of variables (𝑋 ) are associated with
transitions. A transition is enabled (it may fire) if there are enough
tokens in its input places and if the guard is true. When the transi-
tion fires the corresponding updates are executed modifying the
values of the variables. The variables take their values in a finite
state (such as bounded integer or enumerate type...), guards are
boolean expressions over 𝑋 and updates can be described as a se-
quence of imperative code expressed in a programming language
but whose execution is atomic from the transition firing point of
view.

Stopwatch Petri Nets. Time Petri nets (TPN) extend Petri nets
with temporal intervals associated with transitions, specifying fir-
ing delay ranges for the transitions. Assuming transition 𝑡 became
last enabled at time 𝑑 and the end points of its firing interval are 𝛼
and 𝛽 , then 𝑡 cannot fire earlier than 𝑑 + 𝛼 and must fire no later
than 𝑑 + 𝛽 unless disabled by firing of another transition. Firing a
transition takes no time.

Stopwatch Petri nets (SwPN), extend TPN by adding the notion
of stopwatch: a stopwatch is associated with each transition. The
time derivative of the stopwatch of a transition is in the set of rate
{0, 1} and is given by a function from Markings.

Hence the time associated with a transition can be suspended
and later resumed at the same point. Moreover, transition with a 0
time derivative can not fired.
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3.2 Definition and semantics of High Level
Stopwatch Petri Nets

The semantics of High Level Stopwatch Petri Nets is formally de-
fined in RTNS The semantics of Colored Time Petri Nets is formally
defined in ICESS

We consider a Petri Nets model which encompasses both stop-
watches and High-level and colored functionalities. We now give
the informal definition by example.

Definition 3.1 (High level Stopwatch Petri Net (HSwPN)). A High
level Stopwatch Petri Net (HSwPN) is a tupleN = (𝑃,𝑇 , •., .•,𝑚0, 𝑔𝑢𝑎𝑟𝑑,𝑢𝑝𝑑𝑎𝑡𝑒, 𝐼 , ¤𝑣)
where

• 𝑃 is a finite non-empty set of places,
• 𝑇 is a finite set of transitions such that 𝑇 ∩ 𝑃 = ∅,
• 𝑋 is a finite set of variables taking their value in the finite
set X (such as bounded integer),

• •. : 𝑇 → N𝑃 is the backward incidence mapping,
• .• : 𝑇 → N𝑃 is the forward incidence mapping,
• 𝑔𝑢𝑎𝑟𝑑 : 𝑇 × X𝑋 → {𝑡𝑟𝑢𝑒, 𝑓 𝑎𝑙𝑠𝑒} is the guard function,
• 𝑢𝑝𝑑𝑎𝑡𝑒 : 𝑇 × X𝑋 → X𝑋 is the update function,
• (𝑚0, 𝑥0) ∈ N𝑃×X𝑋 → is the initial values𝑚0 of the marking
and 𝑥0 of the variables,

• 𝐼 : 𝑇 → I(Q≥0) is the static firing interval function,
• ¤𝑣 : 𝑇 × N𝑃 × X𝑋 → {0, 1} is the time derivative function

Definition 3.2 (High level Colored Time Petri Net). AHigh level Col-
ored Time Petri Net (HCTPN) is a tupleN = (𝑃,𝑇 , 𝑋,𝐶, , , (𝑚0, 𝑥0), 𝑔𝑢𝑎𝑟𝑑,𝑢𝑝𝑑𝑎𝑡𝑒, 𝐼 )
where

• 𝑃 is a finite non-empty set of places,
• 𝑇 is a finite set of transitions such that 𝑇 ∩ 𝑃 = ∅,
• 𝑋 is a finite set of variables taking their value in the finite
set X (such as bounded integer),

• 𝐶 is a finite set of colors and 𝐶𝑎𝑛𝑦 = 𝐶 ∪ {𝑎𝑛𝑦},
• : 𝑃 ×𝑇 → N𝐶𝑎𝑛𝑦 is the backward incidence mapping,
• : 𝑃 ×𝑇 → N𝐶𝑎𝑛𝑦 is the forward incidence mapping,
• 𝑔𝑢𝑎𝑟𝑑 : 𝑇 × X𝑋 → {𝑡𝑟𝑢𝑒, 𝑓 𝑎𝑙𝑠𝑒} is the guard function,
• 𝑢𝑝𝑑𝑎𝑡𝑒 : 𝑇 × X𝑋 → X𝑋 is the update function,
• (𝑚0, 𝑥0) ∈ N𝑃×X𝑋 → is the initial values𝑚0 of the marking
and 𝑥0 of the variables,

• 𝐼 : 𝑇 → I(Q≥0) is the static firing interval function,

Discrete behaviour. For a marking𝑚 ∈ N𝑃 ,𝑚(𝑝) represents a
number of tokens in place 𝑝 . A valuation of the set of variables 𝑋 is
noted 𝑥 ∈ X𝑋 . (𝑚, 𝑥) is a discrete state of HSwPN.

A transition 𝑡 ∈ 𝑇 is said to be enabled by a given marking
𝑚 ∈ N𝑃 and a valuation 𝑥 ∈ X𝑋 if𝑚 ≥ •𝑡 and 𝑔𝑢𝑎𝑟𝑑 (𝑡, 𝑥) = 𝑡𝑟𝑢𝑒 .
We denote by en(𝑚, 𝑥) the set of transitions that are enabled by
(𝑚, 𝑥): en(𝑚, 𝑥) = {𝑡 ∈ 𝑇 | 𝑚 ≥ •𝑡 and 𝑔𝑢𝑎𝑟𝑑 (𝑡, 𝑥) = 𝑡𝑟𝑢𝑒}.

Firing an enabled transition 𝑡 from (𝑚, 𝑥) leads to a newmarking
𝑚′ =𝑚 − •𝑡 + 𝑡• and a new valuation 𝑥 ′ = 𝑢𝑝𝑑𝑎𝑡𝑒 (𝑡, 𝑥). We denote
by newen((𝑚, 𝑥), 𝑡) the set of transitions that are newly enabled
by the firing of 𝑡 from (𝑚, 𝑡): newen((𝑚, 𝑥), 𝑡) =

{
𝑡 ′ ∈ en(𝑚 − •𝑡 +

𝑡•, 𝑢𝑝𝑑𝑎𝑡𝑒 (𝑡, 𝑥)) | 𝑡 ′ ∉ en(𝑚 − •𝑡, 𝑥) or 𝑡 = 𝑡 ′
}

Time behaviour. For any 𝑡 ∈ 𝑇 , 𝑣 (𝑡) is the valuation of the stop-
watch associated with 𝑡 . i.e. it is the time elapsed since the transition
𝑡 has been newly enabled while the rate of 𝑡 is equal to 1. 0̄ is the
initial valuation with ∀𝑡 ∈ 𝑇, 0̄(𝑡) = 0.

𝑇𝑎𝑠𝑘1

T1
[10, 10]

𝑅𝑒𝑎𝑑𝑦1

C1
[4, 6]

𝑇𝑎𝑠𝑘2

𝑐𝑝𝑡 < 10
T2
[15, 15]
𝑐𝑝𝑡 = 𝑐𝑝𝑡 + 1

𝑅𝑒𝑎𝑑𝑦2

C2
[1, 3]

¤𝑣 = 1 ¤𝑣 = 1

¤𝑣 = 𝑖𝑠𝑅𝑢𝑛𝑛𝑖𝑛𝑔 (𝑡𝑎𝑠𝑘1) ¤𝑣 = 𝑖𝑠𝑅𝑢𝑛𝑛𝑖𝑛𝑔 (𝑡𝑎𝑠𝑘2)

typedef enum {task1 ,task2} id;

int cpt = 0;

int isRunning(id task) {

if (task==task1) {

if ((m(Ready2 )==1) && (cpt >2)) return 0; else return 1;

} else if (task==task2) {

if ((m(Ready1 )==1) && (cpt <3)) return 0; else return 1;

}

}

Figure 1: HSwPN model of two tasks scheduling with a
counter

For a discrete state (𝑚, 𝑥), ¤𝑣 (𝑡, (𝑚, 𝑥) ∈ {0, 1} is the time deriv-
ative function of the stopwatch associated with 𝑡 for this discrete
state.

A state of the net N is a tuple ((𝑚, 𝑥), 𝑣) in N𝑃 × X𝑋 × R≥0𝑇 ,
where:𝑚 is a marking, 𝑥 is a variable valuation and 𝑣 is a valuation
of the stopwatches.

3.3 Example of HSwPN
This example is the modeling of the preemptive scheduling of two
tasks. The first task 𝑡𝑎𝑠𝑘1 is a periodic task. The second task 𝑡𝑎𝑠𝑘2
is also periodic but is executed only 10 times. For the first two
executions of the task 𝑡𝑎𝑠𝑘2, the priority of 𝑡𝑎𝑠𝑘1 is higher than
that of 𝑡𝑎𝑠𝑘2 after which it becomes the opposite.

The model given in Figure 1 is a HSwPN with a single variable
𝑐𝑝𝑡 . The initial value of 𝑐𝑝𝑡 is zero.

Only the transition𝑇2 has a guard and an update that manipulate
the variable 𝑐𝑝𝑡 . Hence the transition𝑇2 is enabled if there is a token
in its input place 𝑡𝑎𝑠𝑘2 and if 𝑐𝑝𝑡 < 10 modeling the fact that the
task 𝑡𝑎𝑠𝑘2 is executed only 10 times. The update that increment the
value of 𝑐𝑝𝑡 is executed each time the transition 𝑇2 is fired.

The scheduling is captured by the derivative function of the
stopwatches associated with 𝐶1 and 𝐶2 whose values are given by
a function called isRunning shown in Figure 1.

In the sequel a marking is written by the vector 𝑚 = (𝑡𝑎𝑠𝑘1,
𝑡𝑎𝑠𝑘2, 𝑅𝑒𝑎𝑑𝑦1, 𝑅𝑒𝑎𝑑𝑦2). The initial marking (1, 1, 0, 0) enables the
transitions 𝑇1 and 𝑇2. The valuations of the stopwatches are given
by the vector 𝑣 = (𝑇1,𝑇2,𝐶1,𝐶1). The initial valuation is (0, 0, 0, 0).

We note a state
[
𝑚

𝑐𝑝𝑡

𝑣

]
and the initial state is 𝑞0 =

[ (1, 1, 0, 0)
0

(0, 0, 0, 0)

]
Assume that the execution times of the two tasks 𝑡𝑎𝑠𝑘1 and 𝑡𝑎𝑠𝑘2

are respectively 5.3 and 2.4. It means that the transitions𝐶1 and𝐶2
fire when their stopwatches reach these values. Let us develop the
corresponding run:

𝑞0 =

[ (1, 1, 0, 0)
0

(0, 0, 0, 0)

]
10−→

[ (1, 1, 0, 0)
0

(10, 10, 0, 0)

]
𝑇1−−→ 𝑞1 =

[ (1, 1, 1, 0)
0

(0, 10, 0, 0)

]
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In 𝑞1, we have ¤𝑣 (𝐶1) = 1 then

𝑞1
5−→ 𝑞2 =

[ (1, 1, 1, 0)
0

(5, 15, 5, 0)

]
𝑇2−−→ 𝑞3 =

[ (1, 1, 1, 1)
1

(5, 0, 5, 0)

]
In 𝑞3, we have ¤𝑣 (𝐶1) = 0 and ¤𝑣 (𝐶2) = 1 meaning that the task 1

is preempted by the task 2. Then 𝑣 (𝐶1) will keep its value 5 until
the firing of 𝐶2 that will change ¤𝑣 (𝐶1).

𝑞3
2.4−−→ 𝑞4 =

[ (1, 1, 1, 1)
1

(7.4, 2.4, 5, 2.4)

]
𝐶2−−→ 𝑞5 =

[ (1, 1, 1, 0)
1

(7.4, 2.4, 5, 0)

]
In 𝑞5, we have ¤𝑣 (𝐶1) = 1 hence

𝑞5
0.3−−→ 𝑞6 =

[ (1, 1, 1, 0)
1

(7.7, 2.7, 5.3, 0)

]
𝐶1−−→ 𝑞7 =

[ (1, 1, 0, 0)
1

(7.7, 2.7, 0, 0)

]
For the sake of conciseness, we do not detail the following run

from 𝑞7
𝑞7

2.3−−→
𝑇1−−→ 4−→

𝐶1−−→ 6−→
𝑇1−−→

𝑇2−−→ 1−→
𝐶2−−→ 6−→

𝐶1−−→ 3−→
𝑇1−−→ 5−→

𝑇2−−→ 𝑞13

It leads to a state 𝑞13 that have exactly the same marking and
the same value of stopwatches than 𝑞3 but with 𝑐𝑝𝑡 = 3.

𝑞13 =

[ (1, 1, 1, 1)
3

(5, 0, 5, 0)

]
then we have ¤𝑣 (𝐶1) = 1 and ¤𝑣 (𝐶2) = 0 meaning

that the task 𝑡𝑎𝑠𝑘1 is not preempted by the task 𝑡𝑎𝑠𝑘2. Hence we

have : 𝑞13
0.3−−→ 𝑞14 =

[ (1, 1, 1, 1)
3

(5.3, 0.3, 5.3, 0)

]
𝐶1−−→ 𝑞15 =

[ (1, 1, 0, 1)
3

(5.3, 0.3, 0, 0)

]
Atomicity . An update can be described as a sequence of imper-

ative code expressed in a programming language such as C. This
code is evaluated sequentially w.r.t. the semantics of the C language
however its execution is considered as atomic from the HSwPN
point of view.

Hence, if 𝑥 and 𝑥 ′ are respectively the values of the variables
before and after the execution of the code of an update of a transition
𝑡 from 𝑥 , the firing of 𝑡 leads atomically to 𝑥 ′ = 𝑢𝑝𝑑𝑎𝑡𝑒 (𝑡, 𝑥).

4 SYSTEM MODELING
Previous work has focused on synthesizing a specialized OS for
a given application [30] and on the verification of the specialized
OS [7]. These works, where the modeling had been done using a
network of timed automaton, served as a basis for the multi-core
model. Here, a modeling using HSwPN was preferred because it is
better adapted to the parallelism found in a multi-core system.

We assume that the operating system functions run in zero time.
Therefore, only the operating system’s functional properties and the
application’s functional and non-functional properties are verified.
The choice of HSwPN is justified because, in the model of the

𝑓

[0, 0]
g=1

end_g==1
[0, 0]

end_g=0

𝑒𝑛𝑑_𝑓

[0, 0]

𝑔

𝑒𝑛𝑑_𝑔

Figure 2: Function call mechanism.

application, the execution time of the tasks is taken into account in
order to be able to check the temporal properties of the application
as well as the scheduling of the tasks.

HSwPN allows to associate to each transition a set of imperative
expressions whose syntax is close to that of the C language. So,
all Trampoline operating system functions are modeled by a com-
bination of a Petri net and of imperative expressions. Therefore,
the Petri net and imperative expressions are an integral part of the
complete model. The foundation of the modeling is built on the
following bases:

• The structure of the Petri net describes the control flow of
the operating system.

• The variables used in the model are the operating system
control variables.

• The code of the imperative expressions associated with the
Petri net transitions faithfully reflects the control flow of the
operating system. control variables.

• The actions and conditions on these variables associatedwith
each Petri net transition are the same actions and conditions
as those of the operating system program.

In order to ensure that the operating system code respects the
atomicity of the model, we impose the following rule: The code
associated with a transition corresponds to uninterruptible operating
system code, which guarantees atomicity.

Thus, variables and operating system code are embedded in
the formal model and all variables are bounded because they are
either integers or enumerated types. As in [30], we thus obtain the
following property:
Property 5.1: Our complete model (OS+application) contains all
(and only all) the paths that could be traversed by the system
composed of the operating system program and of the application
program during its execution.

4.1 RTOS model
The entire RTOS code is modeled by a HSwPN whose transitions
carry guards corresponding to conditional expressions and which
update the RTOS variables. The firing time intervals are all set to
[0, 0] and, therefore, time does not elapse within the OS model.
Without changing the semantics of HSwPN, it is possible to update
the number of tokens in a place without explicitly drawing an arc
between a transition and a place. This feature is used to lighten
the design of the model. The model is thus drawn in the form of
Petri subnets which appear independent but which, in reality, form
only one. Each C function in the RTOS code is modeled as a Petri
subnet. A function call is made by dropping a token in the initial
place of the Petri subnet modeling the function and then waiting
via a guard for the final place to receive a token. This indicates
that the function has completed its execution. When this happens,
the final place of the called function is emptied. This mechanism is
shown in Figure 2.
The passing of arguments and returning of results are done us-
ing arrays of global variables indexed by the number of the core
on which the function call is made. Conditional instructions are
modeled by guarded transitions whose guards are complementary.
Figure 3 shows an example from the modeling of the function
tpl_terminate with two successive conditional instructions.
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tpl_kern_var[core_id].running.activate_count > 0
[0, 0]

!(tpl_kern_var[core_id].running.activate_count > 0)
[0, 0]

tpl_kern_var[core_id].running_id < EXTENDED_TASK_COUNT
[0, 0]

!(tpl_kern_var[core_id].running_id < EXTENDED_TASK_COUNT)
[0, 0]

Figure 3: Conditional instruction modeling. Updates have been omitted so as to avoid burdening the figure.

The multi-core implementation of Trampoline uses a global lock
that prevents concurrent execution of OS code by the cores. This
lock is acquired when calling a service of the OS and is usually
implemented by a spinlock. In the model, a boolean variable is
used to represent this lock. This variable serves as a guard on the
transitions modeling the service call. The transition is fireable if it
is false, and it is set to true when the transition is fired.

4.2 Application model
An application model in the form of HSwPNs is built manually from
its source code and its OIL description. From the OIL description
the attributes of the objects (tasks, resources, alarms, spinlocks,
...) are extracted: priorities, periods, core on which a task runs,
... and constitute part of the model variables. The source code of
each task gives the control flow and service calls of the OS, such as
ActivateTask(...) or TerminateTask(), interspersedwith execution
times. The latter are given in the form of an interval [𝐵𝐶𝐸𝑇,𝑊𝐶𝐸𝑇 ].
As presented in section 3, the fact that a task runs in the model is
controlled by the OS model by means of the derivative function
of the stopwatches associated with the transitions representing
the execution of the tasks between services calls. When the task
𝑡𝑎𝑠𝑘𝑖 is scheduled, and the OS is not running, then the function
𝑖𝑠𝑅𝑢𝑛𝑛𝑖𝑛𝑔(𝑡𝑎𝑠𝑘𝑖 ) returns 1, allowing the time to elapse; otherwise,
it returns 0 and blocks the elapse of time.
Figure 4 shows a modeling example of a multi-core application.
This simple application consists of 3 tasks whose priorities are such
that 𝑃𝑟𝑖𝑜 (𝑡𝑎𝑠𝑘1) < 𝑃𝑟𝑖𝑜 (𝑡𝑎𝑠𝑘3) < 𝑃𝑟𝑖𝑜 (𝑡𝑎𝑠𝑘2). 𝑡𝑎𝑠𝑘1 runs on core
0 while the other two tasks run on core 1. The IsReady(𝑡𝑎𝑠𝑘𝑖 ) guards
on Act𝑡𝑎𝑠𝑘𝑖 transitions are controlled by the OS model and allow
the task’s model to become ready for execution. The upstream
places of the Act𝑡𝑎𝑠𝑘𝑖 transitions are not strictly speaking part
of the corresponding task model. After a task is completed (the
𝑇𝑒𝑟𝑚𝑖𝑛𝑎𝑡𝑒𝑇𝑎𝑠𝑘 () update is performed on the transition), the token
returns to the initial place, waiting for a new activation.
In this application, 𝑡𝑎𝑠𝑘1 and 𝑡𝑎𝑠𝑘3 are activated at operating sys-
tem startup. After a time in the range [𝐵𝐶𝐸𝑇11,𝑊𝐶𝐸𝑇11], 𝑡𝑎𝑠𝑘1
activates 𝑡𝑎𝑠𝑘2. The latter having a priority higher than 𝑡𝑎𝑠𝑘3 and
if the firing date is such that the Run31 transition has not yet been
fired, a preemption occurs on core 1, 𝐼𝑠𝑅𝑢𝑛𝑛𝑖𝑛𝑔(𝑡𝑎𝑠𝑘3) becomes 0,
and the elapse of time for the Run31 transition is blocked.

5 FORMAL VERIFICATION
According to the modeling rules, we obtained an entire HSwPN
model containing the model of the RTOS and the application. We

form a verification chain that includes the steps shown in the Fig-
ure 5. We use the Roméo model checker.

5.1 Model checking of HSwPN with Roméo
Reachability and most other properties of interest are undecidable
for HSwPN, even when bounded [10]. However, efficient semi-
algorithms allow state-space explorations that terminate in most of
the practical purposes. The tool Roméo [22] implements these semi-
algorithms by encoding firing domains with the Parma Polyhedra
Library [5]. In particular Roméo allows the model checking of non
nested TCTL properties over HSwPN. Moreover Roméo allows to
use parameters in the time interval. In this case the values of the
parameters that guarantee the property to be true are synthesized.

Schedulability observer. A classical method for schedulability
analysis is to rely on the use of observers [14], allowing to reduce
the verification problem to a simpler model-checking problem such
as a simple reachability property. It is then necessary that every
trace that contradicts the schedulability property can be detected
by the observer but also that the observer is innocuous, meaning
that it cannot interfere with the system under observation.
To analyze the schedulability of tasks, we use the classical observer
represented in yellow in Figure 6 linked to each task model. The
delay 𝐷𝑖 represents the deadline of the task. The firing of transi-
tion 𝑜𝑘𝑖 means that the task terminates before its deadline. The
firing of transition 𝑑𝑒𝑎𝑑𝑙𝑖𝑛𝑒𝑖 means 𝑡𝑎𝑠𝑘𝑖 does not respect its dead-
line. Hence the task meets its deadline iff for all state of the state
space, there is no token in place𝑂𝑏𝑠𝑖 . The place𝑂𝑏𝑠𝑖 is emptied by
transition 𝑒𝑚𝑝𝑡𝑦𝑖 to avoid the accumulation of tokens. The schedu-
lability property is then written for this observer by the in CTL
logic formula 𝐴𝐺 (𝑂𝑏𝑠𝑖 < 1).

Parameters synthesis. We can replace any interval bound (such
as an offset, the BCET or the WCET of a task) of the HSwPN model
by parameters. Given a property 𝜑 , checking 𝜑 with Roméo will
synthesize the set of values of the parameters such that𝜑 is true. For
example, by parametrizing the WCET of a task 𝑡𝑎𝑠𝑘𝑖 and by using
the previous observer, checking 𝐴𝐺 (𝑂𝑏𝑠𝑖 < 1) will synthesize all
the values of the WCET such that 𝑡𝑎𝑠𝑘𝑖 respects its deadline.

Response time of a task. To automatically compute the response
time of a task 𝑡𝑎𝑠𝑘𝑖 , we just replace 𝐷𝑖 with a parameter 𝑑𝑖 in its
observer. Then the verification of the property 𝐴𝐺 (𝑂𝑏𝑠𝑖 < 1) will
synthesize all the values of 𝑑𝑖 such that the task terminates before
𝑎 time units i.e. the time between the job activation and the end of
its execution. The smaller value of 𝑑𝑖 is the response time of 𝑡𝑎𝑠𝑘𝑖 .
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TASK(t1) {

...// [BCET11 ,WCET11]

ActivateTask(t2);
...// [BCET12 ,WCET12]

TerminateTask(t1);
}

TASK(t2) {

...// [BCET2 ,WCET2]

TerminateTask(t2);
}

TASK(t3) {

...// [BCET3 ,WCET3]

TerminateTask(t3);
}

𝑇𝑎𝑠𝑘1

Run11
[𝐵𝐶𝐸𝑇 11,𝑊𝐶𝐸𝑇 11]

Run12
[0, 0]

ActivateTask(𝑡𝑎𝑠𝑘2)

Run13
[𝐵𝐶𝐸𝑇 12,𝑊𝐶𝐸𝑇 12]

Run14
[0, 0]

TerminateTask(𝑡𝑎𝑠𝑘1)

IsReady(𝑡𝑎𝑠𝑘1)
Act𝑡𝑎𝑠𝑘1
[0, 0] to 𝑡𝑎𝑠𝑘1 observer

to 𝑡𝑎𝑠𝑘1 observer

¤𝑣 = 𝐼𝑠𝑅𝑢𝑛𝑛𝑖𝑛𝑔 (𝑡𝑎𝑠𝑘1)

¤𝑣 = 𝐼𝑠𝑅𝑢𝑛𝑛𝑖𝑛𝑔 (𝑡𝑎𝑠𝑘1)

¤𝑣 = 𝐼𝑠𝑅𝑢𝑛𝑛𝑖𝑛𝑔 (𝑡𝑎𝑠𝑘1)

¤𝑣 = 𝐼𝑠𝑅𝑢𝑛𝑛𝑖𝑛𝑔 (𝑡𝑎𝑠𝑘1)

𝑇𝑎𝑠𝑘2

Run21
[𝐵𝐶𝐸𝑇 2,𝑊𝐶𝐸𝑇 2]

Run22
[0, 0]

TerminateTask(𝑡𝑎𝑠𝑘2)

¤𝑣 = 𝐼𝑠𝑅𝑢𝑛𝑛𝑖𝑛𝑔 (𝑡𝑎𝑠𝑘2)

¤𝑣 = 𝐼𝑠𝑅𝑢𝑛𝑛𝑖𝑛𝑔 (𝑡𝑎𝑠𝑘2)

IsReady(𝑡𝑎𝑠𝑘2)
Act𝑡𝑎𝑠𝑘2
[0, 0] to 𝑡𝑎𝑠𝑘2 observer

to 𝑡𝑎𝑠𝑘2 observer

𝑇𝑎𝑠𝑘3

Run31
[𝐵𝐶𝐸𝑇 3,𝑊𝐶𝐸𝑇 3]

Run32
[0, 0]

TerminateTask(𝑡𝑎𝑠𝑘3)

¤𝑣 = 𝐼𝑠𝑅𝑢𝑛𝑛𝑖𝑛𝑔 (𝑡𝑎𝑠𝑘3)

¤𝑣 = 𝐼𝑠𝑅𝑢𝑛𝑛𝑖𝑛𝑔 (𝑡𝑎𝑠𝑘3)

IsReady(𝑡𝑎𝑠𝑘3)
Act𝑡𝑎𝑠𝑘3
[0, 0] to 𝑡𝑎𝑠𝑘3 observer

to 𝑡𝑎𝑠𝑘3 observer

Figure 4: Application model: activation of a higher priority task 𝑃𝑟𝑖𝑜 (𝑡𝑎𝑠𝑘1) < 𝑃𝑟𝑖𝑜 (𝑡𝑎𝑠𝑘3) < 𝑃𝑟𝑖𝑜 (𝑡𝑎𝑠𝑘2); 𝑡𝑎𝑠𝑘1 running on core 0; 𝑡𝑎𝑠𝑘2,
𝑡𝑎𝑠𝑘3 running on core 1.

Complete system model

RTOS Model

Application Model
Model-checker

Properties

Observer models

Proof of
correctness

Unsatisfied
property

Figure 5: Verification approach.

𝑇𝑎𝑠𝑘𝑖

Run𝑖1
[𝐵𝐶𝐸𝑇𝑖 ,𝑊𝐶𝐸𝑇𝑖 ]

Run𝑖2
[0, 0]

TerminateTask(𝑡𝑎𝑠𝑘𝑖 )

𝑖𝑛𝑖

IsReady(𝑡𝑎𝑠𝑘𝑖 )
[0, 0]

𝑑𝑒𝑎𝑑𝑙𝑖𝑛𝑒𝑖
[𝐷𝑖 , 𝐷𝑖 ]

𝑜𝑘𝑖
[0, 0]

𝑜𝑢𝑡𝑖

𝑂𝑏𝑠𝑖

𝑒𝑚𝑝𝑡𝑦𝑖
[0, 0]

¤𝑣 = 𝐼𝑠𝑅𝑢𝑛𝑛𝑖𝑛𝑔 (𝑡𝑎𝑠𝑘𝑖 )

¤𝑣 = 𝐼𝑠𝑅𝑢𝑛𝑛𝑖𝑛𝑔 (𝑡𝑎𝑠𝑘𝑖 )

Figure 6: Observer model (in yellow) linked to a task model.

5.2 Scheduling analysis of tasks using Roméo
Let us consider the system of the figure 4 with the characteristics
of Table 1. The tasks meet their deadlines if the execution time of
the first part of 𝑡𝑎𝑠𝑘1 is its WCET (i.e.𝑊𝐶𝐸𝑇11 = 11) as we can see
in Figure 7. In this case, 𝑡𝑎𝑠𝑘2 starts its execution whereas the first
job of 𝑡𝑎𝑠𝑘3 is terminated. But we now ask for the whole execution
time interval of 𝑡𝑎𝑠𝑘1.
We first construct the entire HSwPN model containing the model of
the RTOS (section 4) and the application model given Figure 4 with
the timing values of Table 1.We add one observer per task, as shown
in the figure 6. Then we use Roméo to check that the place𝑂𝑏𝑠𝑖 are
never marked by a token. The property:𝐴𝐺 (𝑂𝑏𝑠1 < 1 𝑎𝑛𝑑 𝑂𝑏𝑠2 < 1
𝑎𝑛𝑑 𝑂𝑏𝑠3 < 1) is not satisfied, and a counter-example execution
trace is generated, proving that 𝑡𝑎𝑠𝑘3 canmiss its deadline. Indeed, if
the execution time of 𝑡𝑎𝑠𝑘1 is its BCET, 𝑡𝑎𝑠𝑘3, running on core 1 does
not have the time to finish before its deadline as shown in Figure 8.
The task 𝑡𝑎𝑠𝑘1 activates 𝑡𝑎𝑠𝑘2 at time 8, since 𝑡𝑎𝑠𝑘2 has a higher
priority, 𝑡𝑎𝑠𝑘3 running on the same core as 𝑡𝑎𝑠𝑘2 is preempted. Then
𝑡𝑎𝑠𝑘2 terminates its execution at time 16, the deadline of 𝑡𝑎𝑠𝑘3. The
tasks set is, therefore, not schedulable under the partitioned fixed
priority scheduling policy and the worst temporal behavior of the
system happens with the BCET of 𝑡𝑎𝑠𝑘1.
To synthesize the 𝑡𝑎𝑠𝑘1 execution time interval that allows the tasks
system to meet their deadlines and then to be schedulable, we set
the first execution part (𝑅𝑢𝑛11) in the parametric interval [𝑎,𝑏] and
we bound 𝑏 by 11. The result of Roméo synthesis is (10 < 𝑎 ≤
11) ∧ (10 < 𝑏 ≤ 11) ∧ (𝑎 ≤ 𝑏) then the execution time of 𝑡𝑎𝑠𝑘1
must be in the interval ]10, 11].
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We have run a full analysis of the application with the RTOS, per-
formed in the first time using no parameters to verify schedulability
and in the second time with parameter synthesis to found the execu-
tion time interval of 𝑡𝑎𝑠𝑘1. The computing time and used memory
for this analysis are shown in the table 2.

Table 1: Tasks set characteristics.

𝐴𝑖 𝐷𝑖 𝑇𝑖 𝐶𝑖 : [bcet,wcet] HSwPN Transition
𝑡𝑎𝑠𝑘1 0 32 32 [8,11] Run11

+ [2,2] Run12
𝑡𝑎𝑠𝑘2 0 32 32 [8,8] Run21
𝑡𝑎𝑠𝑘3 0 16 16 [10,10] Run31

𝜏1

𝜏2

𝜏3

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32

31 (job1) 31 (job2)

21 (job1)

11 (job1) 12
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Figure 7: Schedule of tasks set with the WCET1. The symbols
↑ and ↓ indicate activation and completion of tasks, respectively.

Table 2: Case-study: computing time and memory used.

𝐴𝐺 (𝑂𝑏𝑠1 < 1 𝑎𝑛𝑑 𝑂𝑏𝑠2 < 1 𝑎𝑛𝑑 𝑂𝑏𝑠3 < 1)
Parameters no yes

Model checker result false (10 < 𝑎) ∧ (𝑏 ≤ 11) ∧ (𝑎 ≤ 𝑏)
Memory used 55.1MB 99.5MB

Computing time 4.8s 17.3s

6 AD-HOC SCHEDULING SYSTEM
The multi-core version of Trampoline implements fixed priority
partitioned scheduling. However, new scheduling policies can be
implemented within the RTOS, and their behavior can be formally
verified using model checking. In this section, we present an imple-
mentation of an ad-hoc scheduler within the multi-core version of
Trampoline. First, we construct the application model, and then we
provide the scheduling specifications to be ensured. The application
consists of 4 tasks: 𝑡𝑎𝑠𝑘1, 𝑡𝑎𝑠𝑘2, 𝑡𝑎𝑠𝑘3 and 𝑡𝑎𝑠𝑘4.

Ad-hoc scheduler implementation . The scheduling policy is as
follow:

• 𝑡𝑎𝑠𝑘1 and 𝑡𝑎𝑠𝑘4 are assigned to run on core 0;
• 𝑡𝑎𝑠𝑘2 and 𝑡𝑎𝑠𝑘3 are assigned to run on core 1;
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Figure 8: Schedule of tasks set with the BCET1. The symbols
↑ and ↓ indicate activation and completion of tasks, respectively.
Here job 1 of 𝜏3 misses its deadline as indicated by the dashed red
circle.

• 𝑃𝑟𝑖𝑜 (𝑡𝑎𝑠𝑘1) < 𝑃𝑟𝑖𝑜 (𝑡𝑎𝑠𝑘4);
• When 𝑡𝑎𝑠𝑘4 runs on core 0, 𝑃𝑟𝑖𝑜 (𝑡𝑎𝑠𝑘2) < 𝑃𝑟𝑖𝑜 (𝑡𝑎𝑠𝑘3) oth-
erwise 𝑃𝑟𝑖𝑜 (𝑡𝑎𝑠𝑘3) < 𝑃𝑟𝑖𝑜 (𝑡𝑎𝑠𝑘2).

The activation and termination of 𝑡𝑎𝑠𝑘1 and 𝑡𝑎𝑠𝑘4 on core 0 lead to
rescheduling 𝑡𝑎𝑠𝑘2 and 𝑡𝑎𝑠𝑘3 on core 1.
When the scheduler is called for core 0, it is based on the job cur-
rently running on that core, 𝑡𝑎𝑠𝑘1 or 𝑡𝑎𝑠𝑘4, it calculates the priority
of jobs, 𝑡𝑎𝑠𝑘2 or 𝑡𝑎𝑠𝑘3 for core 1. It then decides whether a context
switch is required on a core and have to be achieved. For example,
𝑡𝑎𝑠𝑘2 continues to run on core 1 until it is preempted by 𝑡𝑎𝑠𝑘3
because 𝑡𝑎𝑠𝑘4 is activated on core 0. The priority of 𝑡𝑎𝑠𝑘2 and 𝑡𝑎𝑠𝑘3
are recalculated such that: 𝑃𝑟𝑖𝑜 (𝑡𝑎𝑠𝑘2) < 𝑃𝑟𝑖𝑜 (𝑡𝑎𝑠𝑘3). 𝑡𝑎𝑠𝑘3 starts
thus running on core 1 until it is preempted when 𝑡𝑎𝑠𝑘4 terminates
on core 0.
We now apply the modeling rules of section 4.2, the verification
chain shown in the figure 5 of section 5. We use the Roméo model
checker to analyze the system.

Response time analysis. Let us consider this ad-hoc scheduling
system with the characteristics of Table 3. The application model is
constructed according to the modeling rules (section 4.2). Our task
model is the one shown in Figure 6 linked with the observer. To ana-
lyze the response time of 𝑡𝑎𝑠𝑘𝑖 , we just replace 𝐷𝑖 with a parameter
𝑑𝑖 in its observer (section 5.1). Roméo synthesizes the values of the
parameter 𝑑𝑖 and the response time of tasks 𝑅𝑖 is the smallest value
of 𝑑𝑖 . Table 4 provides the results obtained by Roméomodel checker
with time computing and memory use. We instantiate the 𝐷𝑖 with
their values (see the deadline values in Table 3) in the observers
and we verify the property (𝐴𝐺𝑂𝑏𝑠𝑖 < 1). Roméo replies that the
property is not satisfied and automatically generates a timed trace
as counter example represented by the chronogram in Figure 10.
In this case, 𝑅3 > 𝐷3, and 𝑡𝑎𝑠𝑘3 is preempted twice by 𝑡𝑎𝑠𝑘2. The
𝑡𝑎𝑠𝑘3 misses its deadline when its execution time is the WCET (i.e.
𝑊𝐶𝐸𝑇3 = 6).

Task parameters synthesis. We replace the interval bound [BCET,
WCET] of the model 𝑡𝑎𝑠𝑘3, respectively 𝑡𝑎𝑠𝑘4, by the parametric
interval [3,𝑏], respectively [𝑎,𝑎] (Table 4). We bound the parameters
𝑎 and𝑏 in the interval [3, 6].We use the non-parameterized observer
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and we instantiate the 𝐷𝑖 . Checking the property 𝐴𝐺 (𝑂𝑏𝑠3 < 1
𝑎𝑛𝑑 𝑂𝑏𝑠4 < 1) with Roméowill synthesize the tasks execution time
interval such that the tasks meet their deadlines. We obtain two
results with Roméo synthesis:

• (3 ≤ 𝑎 ≤ 6) ∧ (3 ≤ 𝑏 < 5);
• (3 ≤ 𝑎 ≤ 6) ∧ (3 ≤ 𝑏 ≤ 6) ∧ 𝑎 − 𝑏 > −1.

To verify these results, we use the simulator of Roméo tool that
allows to run timed traces (i.e. chronograms). The first result is
verified with the chronogram of Figure 9 with the execution time
of the 𝑡𝑎𝑠𝑘3 and 𝑡𝑎𝑠𝑘4 in the interval [3, 3] (i.e. 𝐵𝐶𝐸𝑇3 = 3). In this
case, 𝑡𝑎𝑠𝑘2 terminates its execution, whereas the first job of 𝑡𝑎𝑠𝑘3
is terminated. Assuming that 𝑎 and 𝑏 are bounded in the parameter
constraints in the interval [3,6]. The second result provides a rela-
tionship between 𝑎 and 𝑏 in this interval such that 𝑎 > 𝑏 − 1.This
property is satisfied with 𝑎 = 𝑏 = 5.5. We thus set the intervals
of 𝑡𝑎𝑠𝑘3 and 𝑡𝑎𝑠𝑘4 models in [5.5,5.5]; the extracted timed trace is
presented in the Figure 11. The tasks set is, therefore, schedulable.

Table 3: Tasks set characteristics.

𝐴𝑖 𝐷𝑖 𝑇𝑖 𝐶𝑖 : [bcet,wcet] HSwPN Transition
𝑡𝑎𝑠𝑘1 0 10 10 [4,4] Run11
𝑡𝑎𝑠𝑘2 1 20 20 [5,5] Run21
𝑡𝑎𝑠𝑘3 0 10 10 [3,6] [3,𝑏] Run31
𝑡𝑎𝑠𝑘4 2 20 20 [3,3] [𝑎,𝑎] Run41

Table 4: Response time computation using the parametric
observer.

Response time 𝐴𝐺 (𝑂𝑏𝑠𝑖 < 1) Memory Computing time
𝑡𝑎𝑠𝑘1 𝑅1 = 7, (𝑑1 > 7) 273.4MB 81.7s
𝑡𝑎𝑠𝑘2 𝑅2 = 8, (𝑑2 > 8) 254.8MB 72.2s
𝑡𝑎𝑠𝑘3 𝑅3 = 11, (𝑑3 > 11) 332.1MB 88.0s
𝑡𝑎𝑠𝑘4 𝑅4 = 3, (𝑑4 > 3) 260.6MB 70.6s
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Figure 9: Schedule of tasks set with the BCET3. The symbols ↑
and ↓ indicate activation and completion of tasks, respectively.
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Figure 10: Schedule of tasks set with the WCET3. The symbols
↑ and ↓ indicate activation and completion of tasks, respectively.
Here job 1 of 𝜏3 misses its deadline as indicated by the dashed red
circle.
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Figure 11: Schedule of tasks set with Roméo. The symbols ↑
and ↓ indicate activation and completion of tasks, respectively.

7 CONCLUSION AND FUTUREWORKS
In this paper we have briefly presented the model of Trampoline
operating system which is OSEK/VDX and AUTOSAR compatible.
This model is done by using High level Stopwatch Petri Net formal-
ism and is very detailed and very close to the implementation. We
also presented in more detail the principle of modeling an appli-
cation which, thanks to the capabilities of stopwatches, includes
the possibility to block the elapse of time on the transitions of the
application model and, thus, to model the preemption. A complete
model can be used to check the schedulability of an application and
task response times. It also allows, in its parameterized version, to
calculate the execution times required to guarantee schedulability
or response times. The support of this type of model is implemented
in the Roméo tool and two case studies were presented as examples.
The current approach considers a global lock that prevents this
concurrent execution. Modeling the parallel execution of the kernel
by the different cores can be done using colors (one color corre-
sponding to one core) and the formalism of High level Stopwatch
Petri Net already includes colors. However, Roméo does not support
colors yet and it will be necessary to extend it to do this work. In
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the next step, we aim to model the multi-core version that allows
parallel execution of the kernel code on different cores and verify
its alignment to the AUTOSAR standard. We will also evaluate the
approach’s scalability and how effectively it can be used for a bigger
and more complicated system.
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