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Periodic Solutions in Periodic delayed Gause-type two Prey-Predator Pairs linked by Competition

We consider systems of periodic delayed Gause-type two Prey-Predator Pairs linked by Competition. By using Gaines and Mawhin's continuation theorem of coincidence degree theory, a set of reasonable sufficient conditions is derived for the existence of periodic solutions to the four species system.
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Introduction

In mathematical biology, interacting species populations exhibit various interesting dynamics under different biological or environmental considerations. Recently, the authors [see 1, 3, 4, 5 and the references cited in these papers] studied population models of one, two, or three species incorporating both the seasonality of the changing environment and the effects of time delays. They established the existence of oscillating behaviors in the population densities. In [START_REF] Sikder | Persistence of a Generalised Gause-Type Two Prey-Two Predator Pair Linked by Competition[END_REF][START_REF] Sikder | Multiple cyclic sets connecting saddle points and limit cycles of a four species system and its uniform persistence[END_REF], we studied the following generalized autonomous Gause-type two predators and two prey systems without any time delays and/or seasonality effects

x ′ i = x i g i (x i ) -x j q i (x i ) -y i p(x i )

y ′ i = y i [-b i + h i (x i )], (1.1) 
where x i (0), y i (0) ≥ 0; and for i = 1, j = 2 and for i = 2, j = 1. We obtained various patterns of the flow near the boundary of the phase space of the interacting four species system (1.1) via the existence of different types of heteroclinc cycles. In (1.1), x i and y i are the prey and the predator populations, respectively. Predators y i are always x i -prey specific and the prey x i are in competition. g i (x i ) is the specific growth rate of x i ; p i (x i ) is the per capita consumption rate of y i ; q i (x i ) denotes the rate of loss of x i by x j due to competition; h i (x i ) represents the rate of conversation of x i to the biomass of predator y i and b i is the mortality rate of y i .

In this paper we consider the following general nonlinear nonautonomous delayed Gause-type two predator-prey pairs linked by competition:

x ′ i (t) = x i (t) [g i (t, x i (t)) -x j (t)q i (x i (t)) -y i (t)p(x i (t))] y ′ i (t) = y i (t) (-b i + h i -γ 0 -γ x i (t + θ)dη i (θ) , (1.2) 
where x i (0), y i (0) ≥ 0; and for i = 1, j = 2 and for i = 2, j = 1. Our purpose is to establish the existence of at least one positive ω-periodic solution of system (1.2), by using the continuation theorem of coincidence degree theory of Gaines and Mawhin [START_REF] Gaines | Coincidence Degree and Nonlinear Differential Equations[END_REF]. We consider the following hypotheses on the functions g i , p i q i and h i of system (1.2).

(H1)

g i (t, x i ) ∈ C 1 ([0, +∞) × R, R) , g i (t + ω, x) = g i (t, x) for (t, x) ∈ R × [0, +∞),
where ω is a nonnegative constant. There are some constant K i such that

g i (t, x) ≤ K i , where (t, x) ∈ R × [0, +∞). Moreover, ω 0 g i (t, x i )dt > 0, for i = 1, 2.
(H2) q i ∈ C 1 ([0, +∞), R) , and q i (x i ) > 0 for x i ≥ 0, for i = 1, 2.

(H3) p i ∈ C 1 ([0, +∞), R) , and p i (x i ) > 0 for x i ≥ 0, for i = 1, 2.

(H4) h i (x) ∈ C 1 ([0, +∞), R) , and h ′ i (x i ) > 0 for x i ≥ 0. Moreover, h i (0) = 0 and there exists x i0 > 0 such that h(x i0 ) = b i , for i = 1, 2.

(H5) γ, and γ o are constants. η i is a nondecreasing function satisfying η i (-γ + 0 )-

η i (-γ + 0 ) = 1, for i = 1, 2.
For the interpretations of the functions and the hypotheses, see Refs. [12,13]). We need to state the followings for the result Lemma (1.1), below. Let X, Y be real Banach spaces, let L : Dom L ⊂ X → Y be a linear mapping, and let N → Y be a continuous mapping. The mapping L is a Fredholm mapping if (i) Ker (L) has a finite dimension, (ii) Im (L) is closed and has a finite codimension.

If L is a Fredholm mapping, its index is zero if its index,

Ind (L) = dimKer L -codimIm L = 0.
While L is a Fredholm mapping, there exists two linear continuous projectors P : X → X, Q : Y → Y such that the following sequence is exact:

X P -→ dom L L -→ Y Q -→ Y which means that, Im P = Ker L and Ker Q = Im L = Im (I -Q).
The restriction L p of L to domL ∩ Ker P is one-to-one and onto map to ImL, so that its inverse K p : Im → dom L ∩ Ker P is well defined. If Ω is an open bounded subset of X, the mapping N is L-compact on Ω if QN ( Ω) is bounded and K p (I -Q)N : Ω → X is compact. Since Im Q is isomorphic to Ker L, there exists isomorphism J : Im Q → Ker L. In our result, we will use the following continuation theorem Lemma 1.1 Let Ω ⊂ X be an open bounded set and L be a Fredholm mapping of index zero. Let N be L-compact on Ω. Assume (a) for each λ ∈ (0, 1), every solution

x of Lx = λN x is such that x / ∈ ∂Ω, (b) for each x ∈ ∂Ω ∩ Ker L, QN x ̸ = 0, (c) the Brouwer degree deg[JQN, Ω ∩ Ker L, 0] ̸ = 0.
Then the operator equation Lx = N x has at least one solution in dom L ∩ Ω.

Main Result

The following is our result regarding the existence of a positive ω-periodic solution using Lemma (1.1). Theorem 2.1 Suppose that (H1)-(H5) hold. Then the system (1.2) has a positive ω-periodic solution.

Proof: Let u i (t) = ln[x i (t)] and v i (t) = ln[y i (t)]. Then the system (1.2) becomes u ′ i (t) = g i (t, e u i (t) ) -e u j (t) q i (e u i (t) ) -e v i (t) p i (e u i (t) ) v ′ i (t) = -b i + h i -γ 0 -γ e u i (t+θ) dη i (θ) (2.1)
where j = 2 when i = 1 and j = 1 when i = 2.

Now if system (2.1) has one ω-periodic solution (u ⋆ 1 (t), u ⋆ 2 (t), v ⋆ 1 (t), v ⋆ 2 (t)), then (x ⋆ 1 (t), x ⋆ 2 (t), y ⋆ 1 (t), y ⋆ 2 (t)) = (exp[u ⋆ 1 (t)], exp[u ⋆ 2 (t)], exp[v ⋆ 1 (t)], exp[v ⋆ 2 (t)])
is a positive ω-periodic solution of system (1.2). In order to apply Lemma (1.1) to system (2.1), we take for

X = Y = {(u 1 (t), u 2 (t), v 1 (t), v 2 (t)) T ∈ C(R, R 4 ) : u i (t + ω) = u i (t) and v i (t + ω) = v i (t), for i = 1, 2}
and denote

∥(u 1 (t), u 2 (t), v 1 (t), v 2 (t)) T ∥ = 2 i=1 max t∈[0,ω] |u i (t)| + 2 i=1 max t∈[0,ω] |v i (t)|.
Then X and Y are Banach spaces with the norm ∥•∥.

Set, for (u

1 (t), u 2 (t), v 1 (t), v 2 (t)) T ∈ X, L(u 1 (t), u 2 (t), v 1 (t), v 2 (t)) T = (u ′ 1 (t), u ′ 2 (t), v ′ 1 (t), v ′ 2 (t)) T ; (2.2) and N : X → X, N       u 1 (t) u 2 (t) v 1 (t) v 2 (t)       =         g 1 (t, e u 1 (t)
) -e u 2 (t) q 1 (e u 1 (t) ) -e v 1 (t) p 1 (e u 1 (t) ) g 2 (t, e u 2 (t) ) -e u 1 (t) q 2 (e u 2 (t) ) -e v 2 (t) p 2 (e u 2 (t) )

-b 1 + h 1 -γ 0 -γ e u 1 (t+θ) dη 1 (θ) -b 2 + h 2 -γ 0 -γ e u 2 (t+θ) dη 2 (θ)        
We define the two continuous projectors as

P       u 1 (t) u 2 (t) v 1 (t) v 2 (t)       = Q       u 1 (t) u 2 (t) v 1 (t) v 2 (t)       =       1 ω ω 0 u 1 (t)dt 1 ω ω 0 u 2 (t)dt 1 ω ω 0 v 1 (t)dt 1 ω ω 0 v 2 (t)dt       Here, dom L = {(u 1 , u 2 , v 1 , v 2 ) T ∈ X : (u 1 , u 2 , v 1 , v 2 ) ∈ C 1 (R, R 4 )} Ker L = {(u 1 , u 2 , v 1 , v 2 ) T ∈ X : (u 1 , u 2 , v 1 , v 2 ) T = (c 1 , c 2 , c 3 , c 4 ) T ∈ R 4 } Im L = {(u 1 , u 2 , v 1 , v 2 ) T ∈ X : ω 0 u i (t)dt = ω 0 v i (t)dt = 0, i = 1, 2.} ImL is closed in Y and dimker L = codim Im L = 4. Therefore, L is a Fredholm mapping of index zero. Further, Im P = Ker L, Ker Q = Im L = Im (I -Q)
and the inverse K p of L p exists, that is K p : Im L → Dom L ∩ Ker P, which is given by

K p       u 1 (t) u 2 (t) v 1 (t) v 2 (t)       =        t 0 u 1 (s)ds -1 ω ω 0 t 0 u 1 (s)dsdt t 0 u 2 (s)ds -1 ω ω 0 t 0 u 2 (s)dsdt t 0 v 1 (s)ds -1 ω ω 0 t 0 v 1 (s)dsdt t 0 v 2 (s)ds -1 ω ω 0 t 0 v 2 (s)dsdt        Then QN : X → X and K p (I -Q)N : X → X take the form QN       u 1 (t) u 2 (t) v 1 (t) v 2 (t)       =         1 ω ω 0 g 1 (t, e u 1 (t) ) -e u 2 (t) q 1 (e u 1 (t) ) -e v 1 (t) p 1 (e u 1 (t) ) dt 1 ω ω 0 g 2 (t, e u 2 (t) ) -e u 1 (t) q 2 (e u 2 (t) ) -e v 2 (t) p 2 (e u 2 (t) ) dt 1 ω ω 0 -b 1 + h 1 -γ 0 -γ e u 1 (t+θ) dη 1 (θ) dt 1 ω ω 0 -b 2 + h 2 -γ 0 -γ e u 2 (t+θ) dη 2 (θ) dt         and K p (I -Q)N u = t 0 N u(s)ds - 1 ω ω 0 t 0 N u(s)dsdt - t ω - 1 2 ω 0 N u(s)ds
where, u = (u 1 , u 2 , v 1 , v 2 ) T . By the Lebesgue theorem QN and K p (I -Q)N are continuous. Further, N is L-compact in Ω [see, [START_REF] Ding | Positive periodic solutions in delayed Gause-type predator-prey systems[END_REF][START_REF] Gaines | Coincidence Degree and Nonlinear Differential Equations[END_REF] for some open bounded subset Ω ⊂ X. The corresponding operator equation Lx = λN x, λ ∈ (0, 1) takes the form

u ′ i (t) = λ g i (t, e u i (t)
) -e u j (t) q i (e u i (t) ) -e v i (t) p i (e u i (t) )

v ′ i (t) = λ -b i + h i -γ 0 -γ e u i (t+θ) dη i (θ) (2.3)
where j = 2 when i = 1 and j = 1 when i = 2. Suppose that (u

1 (t), u 2 (t), v 1 (t), v 2 (t)) T ∈ X, is a solution of system (2.
3) for some λ ∈ (0, 1). Integrating system (2.3) over [0, ω], we have

ω 0 g i (t, e u i (t) )dt = ω 0 e u j (t) q i (e u i (t) )dt + ω 0 e v i (t) p i (e u i (t) )dt (2.4) ω 0 h i -γ 0 -γ e u i (t+θ) dη i (θ) dt = b i ω (2.5)
From (2.4) and (H1), it follows that ω 0 e u j (t) q i (e u i (t) )dt + ω 0 e v i (t) p i (e u i (t) )dt = ω 0 g i (t, e u i (t) )dt ≤ K i ω, for i = 1, 2.

(2.6)

Suppose that M 1i = {t ∈ [0, ω] : g i (t, e u i (t) ) ≥ 0}
and

M 2i = {t ∈ [0, ω] : g i (t, e u i (t) ) < 0}, for i = 1, 2. Then - M 2i g i (t, e u i (t) )dt = M 1i g i (t, e u i (t) )dt - ω 0 e u j (t) q i (e u i (t) )dt - ω 0 e v i (t) p i (e u i (t) )dt < M 1i g i (t, e u i (t) )dt ≤ K i ω, for i = 1, 2.
(2.7) ) -e u j (t) q i (e u i (t) ) -e v i (t) p i (e u i (t) )|dt

Hence, ω 0 |g i (t, e u i (t) )|dt = M 1i |g i (t, e u i (t) )|dt + M 2i |g i (t, e u i (t) )|dt = M 1i g i (t, e u i (t) )dt - M 2i g i (t, e u i (t) )dt ≤ 2K i ω, for i = 1, 2. ( 2 
leq ω 0 |g(t, e u i (t) )|dt + ω 0 e u j (t) q i (e u i (t) dt + ω 0 e v i (t) p i (e u i (t) )dt leq2K i ω + K i ω = 3K i ω, for i = 1, 2, (2.9)
and from (2.3) and (2.5) we obtain,

ω 0 |v ′ i (t)|dt < ω 0 |-b i + h i -γ 0 -γ e u i (t+θ) dη i (θ) |dt ≤ ω 0 |-b i |dt + ω 0 h i -γ 0 -γ e u i (t+θ) dη i (θ) dt = |b i |ω + b i ω = 2b i ω, for i = 1, 2.
(2.10)

With respect to (H4), (H5) and (2.5), there exists a constant Bi > 0 and a point t 1i ∈ [0, ω] such that

|u i (t 1i )| < Bi , for i = 1, 2.
Therefore, (2.9) implies that

|u i (t)| ≤ |u i (t 1i )| + ω 0 |u ′ i (t)|dt < Bi + 3K i ω def = B i , for i = 1, 2.
(2.11)

Using the hypotheses (H1), (H2) and (H3) we write

p i (e B i ) ω 0 e v i (t) dt ≥ ω 0 e v i (t) p i (e u i (t) )dt (2.12
)

and e B j q i (e B i )ω ≥ ω 0 e u j (t) q i (e u i (t) )dt, for i = 1, 2. (2.13)
Then,

p i (e B i ) ω 0 e v i (t) dt + e B j q i (e B i )ω ≥ ω 0 e v i (t) p i (e u i (t) )dt + ω 0 e u j (t) q i (e u i (t) )dt = ω 0 g i (t, e u i (t) )dt ≥ ḡi ω, for i = 1, 2.
(2.14)

where ḡi = min t∈[0,ω] u i ∈[-Bi , Bi ] {g i (t, e u i (t) )}, for i = 1, 2. Further, p(0) ω 0 e v i (t) dt ≤ ω 0 p i (e u i (t) )e v i (t) dt = ω 0 g i (t, e u i (t) )dt - ω 0 e u j (t) q i (e u i (t) )dt < ω 0 g i (t, e u i (t) )dt ≤ K i ω, for i = 1, 2.
(2.15) Thus, by (2.14) and (2.15) there exists a constant Di and a point

t 2i ∈ [0, ω] such that |v i (t 2i )| < Di , for i = 1, 2.
From this and (2.10), we get

|v i (t)| ≤ |v i (t 2i )| + ω 0 |v ′ i (t)|dt < Di + 2b i ω def = D i , for i = 1, 2.
(2.16) Now we suppose that

B = B 1 + B 2 + D 1 + D 2 + ln x 01 + ln x 02 + ln ω 0 g 1 (t, x 01 )dt -x 02 q 1 (x 01 ) p 1 (x 01 ) + ln ω 0 g 2 (t, x 02 )dt -x 01 q 2 (x 02 ) p 2 (x 02 ) .
(2.17)

Every solution (α * 1 , α * 2 , β * 1 , β * 2 ) of the system 1 ω ω 0 g i (t, e α i )dt -e α j q i (e α i ) -e β i p i (e α i ) = 0 -b i + h i (e α i ) = 0, (2.18) 
for j = 2 when i = 1 and j = 1

when i = 2, satisfies ∥(α * 1 , α * 2 , β * 1 , β * 2 ) T ∥ = |α * 1 | + |α * 2 | + |β * 1 | + |β * 2 | < B, if system (2.
18) has a solution or a number of solutions. We take

Ω = {(u 1 , u 2 , v 1 , v 2 ) T ∈ X : ∥(u 1 , u 2 , v 1 , v 2 )∥ < B}.
This satisfies condition (a) of Lemma (1.1).

When (u 1 , u 2 , v 1 , v 2 ) T ∈ ∂Ωker L = ∂Ω ∩ R 4 , (u 1 , u 2 , v 1 , v 2 ) T is a constant vector in R 4 with |u 1 | + |u 2 | + |v 1 | + |v 2 | = B.
If system (2.18) has a solution or a number of solutions, then

QN       u 1 (t) u 2 (t) v 1 (t) v 2 (t)       =       1 ω ω 0 g 1 (t, e u 1 )
dt -e u 2 q 1 (e u 1 ) -e v 1 p 1 (e u 1 )

1 ω ω 0 g 2 (t, e u 2 )dt -e u 1 q 2 (e u 2 ) -e v 2 p 2 (e u 2 ) -b 1 + h 1 (e u 1 ) -b 2 + h 2 (e u 2 )       ̸ =       0 0 0 0      
If system (2.18) does not have a solution, then naturally

QN       u 1 (t) u 2 (t) v 1 (t) v 2 (t)       ̸ =       0 0 0 0      
Thus condition (b) of Lemma (1.1) is satisfied. Finally, to prove condition (c) of Lemma (1.1) we define ϕ :

Dom L × [0, 1] → X by ϕ(u 1 , u 2 , v 1 , v 2 , µ) =       1 ω ω 0 g 1 (t, e u 1 )dt -e v 1 p 1 (e u 1 ) 1 ω ω 0 g 2 (t, e u 2 )dt -e v 2 p 2 (e u 2 ) -b 1 + h 1 (e u 1 ) -b 2 + h 2 (e u 2 )       + µ       -e u 2 q 1 (e u 1 ) -e u 1 q 2 (e u 2 ) 0 0       where µ ∈ [0, 1] is a parameter. When (u 1 , u 2 , v 1 , v 2 ) T ∈ ∂Ω ∩ ker L = ∂Ω ∩ R 4 + , (u 1 , u 2 , v 1 , v 2 ) T is a constant vector in R 4 with |u 1 | + |u 2 | + |v 1 | + |v 2 | = B. We will show that when (u 1 , u 2 , v 1 , v 2 ) T ∈ ∂Ω ∩ ker L, ϕ(u 1 , u 2 , v 1 , v 2 , µ) ̸ = 0. If the conclusion is not true, then there is a constant vector (u 1 , u 2 , v 1 , v 2 ) T with |u 1 | + |u 2 | + |v 1 | + |v 2 | = B and this satisfies ϕ(u 1 , u 2 , v 1 , v 2 , µ) = 0, that is, 1 ω ω 0 g 1 (t, e u 1 )dt -µe u 2 q 1 (e u 1 ) -e v 1 p 1 (e u 1 ) = 0 1 ω ω 0 g 2 (t, e u 2 )dt -µe u 1 q 2 (e u 2 ) -e v 2 p 2 (e u 2 ) = 0 -b 1 + h 1 (e u 1 ) = 0 -b 2 + h 2 (e u 2 ) = 0 (2.19)
Following the same above arguments in (2.11) and (2.16), we obtain,

|u i | = |ln x 0i | < Bi |v i | < Di for i = 1, 2. Thus, |u 1 | + |u 2 | + |v 1 | + |v 2 | < B which contradicts that |u 1 | + |u 2 | + |v 1 | + |v 2 | = B.
Using the property of topological degree and considering J = I : , Ω ∩ ker L, (0, 0, 0, 0) T (2.24)

Im Q → ker L (u 1 , u 2 , v 1 , v 2 ) T → (u 1 , u 2 , v 1 , v 2 ) T , we get deg JQN (u 1 , u 2 , v 1 , v 2 ) T ,
The system of the following equations This completes the proof of condition (c) of Lemma (1.1). Hence system (1) has an ω-periodic solution. The proof is complete.

g 1 ω ω 0 g 2

 102 Ω ∩ ker L, (0, 0, 0, 0) T (2.20)= deg ϕ(u 1 , u 2 , v 1 , v 2 , 1) T , Ω ∩ ker L, (0, 0, 0, 0) T (2.21) = deg ϕ(u 1 , u 2 , v 1 , v 2 , 0) T , Ω ∩ ker L, (0, 0, 0, 0) (t,e u 1 )dt -e v 1 p 1 (e u 1 ), 1 (t, e u 2 )dt -e v 2 p 2 (e u 2 ), (2.23) -b 1 + h 1 (e u 1 ), -b 2 + h 2 (e u 2 )

1 ω ω 0 g 1 g 1 ω ω 0 g 2 =

 11102 (t, e u 1 )dt -e v 1 p 1 (e u 1 ) = 01 ω ω 0 g 2 (t, e u 2 )dt -e v 2 p 2 (e u 2 ) = 0 -b 1 + h 1 (e u 1 ) = 0 -b 2 + h 2 (e u 2 ) = 0 (2.25)has a unique positive solution (x 01 , x 02 , e v1 , e v2 ), wheree vi = ω -1 ω 0 g i (t, x 0i )dt p i (x 0i ), for i = 1, 2. (t, e u 1 )dt -e v 1 p 1 (e u 1 ), 1 (t, e u 2 )dt -e v 2 p 2 (e u 2 ),-b 1 + h 1 (e u 1 ), -b 2 + h 2 (e u 2 ), Ω ∩ ker L, (0, 0, 0, 0) sign{p 1 (x 01 )e v1 p 2 (x 02 )e v2 h ′ 1 (x 01 )x 01 h ′ 2 (x 02 )x 02 } = 1 ̸ = 0.