
HAL Id: hal-03454808
https://hal.science/hal-03454808

Preprint submitted on 29 Nov 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Competition analysis on the over-the-counter credit
default swap market

Louis Abraham

To cite this version:
Louis Abraham. Competition analysis on the over-the-counter credit default swap market. 2021.
�hal-03454808�

https://hal.science/hal-03454808
https://hal.archives-ouvertes.fr


Competition analysis on the
over-the-counter credit default swap

market

Louis Abraham

July 2020

ar
X

iv
:2

01
2.

01
88

3v
1 

 [
cs

.L
G

] 
 3

 D
ec

 2
02

0





Abstract

We study two questions related to competition on the OTC CDS market
using data collected as part of the EMIR regulation.

First, we wanted to study the competition between central counterpar-
ties through collateral requirements. We present models that success-
fully estimate the initial margin requirements. However, our estima-
tions are not precise enough to use them as input to a predictive model
for CCP choice by counterparties in the OTC market.

Second, we model counterpart choice on the interdealer market using
a novel semi-supervised predictive task. We present our methodology
as part of the literature on model interpretability before arguing for the
use of conditional entropy as the metric of interest to derive knowledge
from data through a model-agnostic approach. In particular, we justify
the use of deep neural networks to measure conditional entropy on
real-world datasets. We created the Razor entropy using the framework
of algorithmic information theory and derived an explicit formula that
is identical to our semi-supervised training objective. Finally, we bor-
rowed concepts from game theory to define top-k Shapley values. This
novel method of payoff distribution satisfies most of the properties of
Shapley values, and is of particular interest when the value function is
monotone submodular. Unlike (classical) Shapley values, top-k Shapley
values can be computed in quadratic time of the number of features
instead of exponential. We implemented our methodology and report
the results on our particular task of counterpart choice.

Finally, we present an improvement to the node2vec algorithm that we
intended to use to study the intermediation in the OTC market. We
show that the neighbor sampling used in the generation of biased
walks can be performed in logarithmic time with a quasilinear time
(and space) pre-computation, unlike the current implementations that
do not scale well.

i





Contents

Contents iii

1 Introduction 1
1.1 Context . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1.1 OTC derivative markets . . . . . . . . . . . . . . . . . . 1
1.1.2 Credit Default Swaps . . . . . . . . . . . . . . . . . . . 2
1.1.3 Central counterparty clearing . . . . . . . . . . . . . . . 3
1.1.4 EMIR reporting . . . . . . . . . . . . . . . . . . . . . . . 4

1.2 Analysis of the central counterparty clearing market . . . . . 4
1.3 Modelling interdealer transactions . . . . . . . . . . . . . . . . 5
1.4 Other contributions . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.5 Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . 6

2 EMIR Data 7
2.1 Data description . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.1.1 Collection process . . . . . . . . . . . . . . . . . . . . . 7
2.1.2 Data format . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.2 Data cleaning and augmentation . . . . . . . . . . . . . . . . . 8
2.2.1 Activity report cleaning . . . . . . . . . . . . . . . . . . 8
2.2.2 Report merging . . . . . . . . . . . . . . . . . . . . . . . 9
2.2.3 Portfolio linkage . . . . . . . . . . . . . . . . . . . . . . 9

2.3 Exploration and visualizations . . . . . . . . . . . . . . . . . . 11
2.3.1 Comparison of data sources . . . . . . . . . . . . . . . . 11
2.3.2 Margin flows . . . . . . . . . . . . . . . . . . . . . . . . 11

3 Initial Margin prediction 15
3.1 Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.2 Related work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3.2.1 Competition analysis . . . . . . . . . . . . . . . . . . . . 16
3.2.2 Margin estimation . . . . . . . . . . . . . . . . . . . . . 17

iii



Contents

3.3 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.3.1 Baselines . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.3.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

4 Transaction graph modelling 23
4.1 Related work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

4.1.1 Counterparty choice . . . . . . . . . . . . . . . . . . . . 23
4.1.2 Graph modelling . . . . . . . . . . . . . . . . . . . . . . 24

4.2 Motivations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
4.3 An unsupervised objective for transaction graphs . . . . . . . 27

4.3.1 Notations . . . . . . . . . . . . . . . . . . . . . . . . . . 27
4.3.2 Likelihood function . . . . . . . . . . . . . . . . . . . . 27
4.3.3 Posterior maximization . . . . . . . . . . . . . . . . . . 28
4.3.4 Expectation–Maximization . . . . . . . . . . . . . . . . 29

4.4 Modelling and optimization . . . . . . . . . . . . . . . . . . . . 29
4.4.1 Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
4.4.2 Optimization . . . . . . . . . . . . . . . . . . . . . . . . 30
4.4.3 Validation . . . . . . . . . . . . . . . . . . . . . . . . . . 31
4.4.4 Early stopping . . . . . . . . . . . . . . . . . . . . . . . 32
4.4.5 Dropout . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

4.5 Hyperparameter optimization . . . . . . . . . . . . . . . . . . . 33
4.5.1 Tree-structured Parzen Estimators . . . . . . . . . . . . 33
4.5.2 Optuna and define-by-run optimization . . . . . . . . . 34

4.6 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
4.6.1 Experimental setting . . . . . . . . . . . . . . . . . . . . 35
4.6.2 Training curves . . . . . . . . . . . . . . . . . . . . . . . 37
4.6.3 Hyperparameter importance . . . . . . . . . . . . . . . 37
4.6.4 Embeddings . . . . . . . . . . . . . . . . . . . . . . . . . 39

5 Data interpretability 41
5.1 From model interpretability to data interpretability . . . . . . 41

5.1.1 Model interpretability . . . . . . . . . . . . . . . . . . . 42
5.1.2 Shapley values for feature importance . . . . . . . . . . 43
5.1.3 Rashōmon effect and solutions . . . . . . . . . . . . . . 45

5.2 An (Algorithmic) Information Theory view on variable im-
portance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
5.2.1 Introduction to Algorithmic Information Theory . . . 46
5.2.2 From Algorithmic Information Theory to Machine Learn-

ing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
5.2.3 Forgetting model size: the case for out-of-sample esti-

mates of conditional entropy . . . . . . . . . . . . . . . 48
5.3 Razor entropy . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
5.4 A novel cost-sharing rule . . . . . . . . . . . . . . . . . . . . . 52

5.4.1 Top-k efficiency . . . . . . . . . . . . . . . . . . . . . . . 52

iv



Contents

5.4.2 Submodular games . . . . . . . . . . . . . . . . . . . . . 53
5.4.3 Top-k Shapley values . . . . . . . . . . . . . . . . . . . . 53

5.5 Applying top-k Shapley values to data interpretability . . . . 54

6 Improvements to node2vec 59
6.1 Node2vec . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
6.2 Improved neighbor sampling . . . . . . . . . . . . . . . . . . . 60

6.2.1 Biased walks sampling . . . . . . . . . . . . . . . . . . . 60
6.2.2 Rejection sampling . . . . . . . . . . . . . . . . . . . . . 61
6.2.3 Application . . . . . . . . . . . . . . . . . . . . . . . . . 61

6.3 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

7 Conclusion 65

Appendices 67

A Model training code 69

B Hyperparameter search code 73

C Hyperparameter search results 77

Bibliography 83

v





Chapter 1

Introduction

The goal of this work is to apply machine learning techniques to the field
of economics by studying financial market data from the point of view of
machine learning interpretability and produce novel economical insight.

In this introduction, we start by explaining the context, the different entities
and concepts that are to be analysed and the data sources. We then formu-
late the questions we tackled during this research project and explicit our
other contributions.

1.1 Context

The data used in this work is essentially information about transactions from
the over-the-counter (OTC) derivative market. Our analysis was concen-
trated for simplicity on a special class of products, Credit Default Swaps ;
we will briefly explain their mechanics, market dynamics and pricing mod-
els. A fundamental concept when dealing with counterparty risk on OTC
markets is central counterparty clearing that we define. Finally, we present
the European market infrastructure regulation (EMIR) according to which
our data was collected by European regulators.

1.1.1 OTC derivative markets

Over-the-counter trading Over-the-counter, as opposed to exchange trad-
ing, refers to the trading of goods (commodities, financial instrument and
derivatives) done bilaterally between two entities, without the centrality of
an exchange. Unlike exchange trading, there is no common place where
traders can display or fetch buying/selling (bid/ask) prices.

Derivatives On the other side, the OTC market allows for a wider choice of
products, because they don’t have to be standardized. In particular, the OTC

1



1. Introduction

derivative market is important as it encompasses a lot of exotic products that
cannot be traded on exchanges. These derivatives are much more flexible
in the way they hedge the risk exposure. Most derivatives are defined by
agreements made by the International Swaps and Derivatives Association.

An over-the-counter trade is a bilateral contract between two parties (usu-
ally, financial companies) that defines some future transfers between them
in the future. Exchange-traded derivatives are bilateral contracts too, but on
OTC markets, the negotiation was made between the two parties without
other participants being able to observe. For example, a forward contract
involves two parties, one in a long position and the other in a short position.
They agree that the long party will buy a given asset from the short party at
a given time in the future for a given price.

The market for OTC derivative is one of the largest in the world, and as
grown exponentially since the 90 [55].

1.1.2 Credit Default Swaps

Credit default swaps (CDS) are an example of derivative contracts. They
involve two parties, a buyer and a seller. The CDS is linked to a reference
entity (e.g. a company or a government). The buyer of the CDS is bound
to make regular payments to the seller until the contract expiration date.
These payments are proportional to a theoretical value of the underlying
bond, called notional. In return, in the event of credit events on the reference
entity, auctions on the settlement price of CDS take place between the major
financial institutions. Unlike coupons, the settlement price of CDS has a
magnitude similar to the notional. The notional is also the maximum amount
payable for a credit event.

Under the hood, CDS are intended to be bought by holders of bonds emitted
by the reference entity, but it is in no way an obligation. A bond is a debt
instrument, a form of loan. The bond issuer (the reference entity) borrows
money to the people who hold the bond. The original amount of money
borrowed is called the nominal, principal, par or face amount. The bond
issuer will repay the nominal bond value at the maturity date, after which
the contract is terminated. Furthermore, coupons are regular payments of
the issuer to the bond holder that repay the loan interest. In case the bond
issuer goes bankrupt, it cannot pay the coupons nor the nominal.

Hence, a credit default swap can be viewed as a way to hedge (eliminate the
risk) a bond. Indeed, in exchange for regular payments (that will decrease
the interest rate of the bond), a bond holder is guaranteed not to lose the
nominal amount. Note that anyone can buy a CDS, not only bond holders.

An important quantity is the CDS spread, not to be confused with the bid/ask
spread of a product, which is simply the difference between the offer and

2



1.1. Context

demand prices on a market. Instead, the spread of a CDS contract is the
fraction of the notional that is to be paid annually (through coupons). In-
tuitively, the more risky a reference entity is, the higher the spread of the
CDS linked to it will be. Spreads are expressed in basis point, where 1 basis
point is 0.01%. For example, the buyer of a CDS with a notional of $10 mil-
lion with a 150 basis point spread is expected to make annual payments of
$150k (usually split in quarterly coupons).

More complex phenomenon arise when one considers the secondary mar-
ket, aka when people want to transfer the ownership of a CDS. Without the
ISDA standardization, it would be difficult to trade very different contracts,
as they could include a lot of different clauses, e.g. the condition to de-
clare default of the reference entity, the seniority (priority) of the underlying
bond, recovery rates, . . .

Thankfully, the standard ISDA allows for a clear pricing model. Note that
the expected value of a CDS is always zero for both sides. Theoretically, the
spread should be adjusted to match the expected bond risk. However, to
allow standardization, most CDS have a 1% or 5% coupon, which implies
that upfront payments are to be made to compensate the spread difference.
Note that this upfront payment can be positive or negative, depending on
the difference between the clean spread and the standardized one. We refer
the interested reader to [67] for a complete reference of CDS pricing under
the ISDA agreements.

CDS are complex products but thanks to standardization, it is not incorrect
to consider them like standard goods, with a quantity, the notional, and a
price, the spread. In the rest of this document, we will use call price the
spread of a CDS, computed using the methodology from [67].

1.1.3 Central counterparty clearing

OTC derivative trading presents a lot of risks. In particular, counterparty
risk has been deemed responsible of the 2007 credit risk by some actors.
Counterparty risk is relevant for derivatives, as they are contracts implying
some future delivery or payment. Hence, if a party defaults (goes bankrupt)
prior to the expiration date of the contract, it cannot fulfill its part of the
agreement. This is called counterparty risk.

To cover the counterparty risk, it is possible to trade through a CCP. Both
sides have to agree that the transaction will be cleared centrally or are com-
pelled by the regulation to do so. In practice, the clearing counterparty
becomes the counterparty of both parties: instead of Company A buying
from Company B, Company A will buy from the clearing counterparty and
Company B will sell to the clearing counterparty.

3



1. Introduction

Therefore, a clearing counterparty always has a null net balance, but is ex-
posed to the counterparty risk of all the actors it has contracted with. Hence,
the clearing counterparty will demand collateral in cash or other assets from
both sides. This collateral is called margin. Other assets can be accounted as
cash when deducting some fraction from their market value ; this fraction
is called a haircut. Safe assets have very low haircuts, while more volatile
assets might have haircut rates as high as 50%.

Since the 2009 G20 in Pittsburgh, regulators have mandated the use of cen-
tral counterparty clearing (CCP) for part of the transactions on standardized
derivative securities.

Clearing counterparties can fix themselves the amount of collateral they re-
quire using a pricing model. Collateral can be assimilated to a transaction
fee: even if it is not burnt, collateral transfer causes an opportunity cost for
its owner. Central counterparties are commonly abbreviated as CCPs.

1.1.4 EMIR reporting

Since the enactment of the European Market Infrastructure Regulation1 in
2013, most EU counterparties trading in the derivative markets have to re-
port all their derivative transactions.

Through the Bank of France, we had access to some of this highly valuable
data. In the rest of this document, we call this data the EMIR dataset. The
reporting format is detailed in chapter 2.

1.2 Analysis of the central counterparty clearing market

The first research question that we aimed to address is the competition be-
tween central clearing counterparties.

Up to now, CCPs had received little attention from the academic community.
Most of the debate had been focused on the netting efficiency of CCPs, how
the scope of netting between products and bilateral or central clearing affects
the quantity of collateral required to mitigate counterparty risk.

In this project, we wanted to investigate the type of competition at stake
between CCPs. CCPs sell protection against counterparty credit risk to their
members. For that purpose, they collect collateral from them, which is in-
cluded in the price of the service offered by the CCP. At the same time, they
compete for market share against other CCPs.

Furthermore, central clearing has a two-tiered structure. CCPs directly in-
teract with their members, who in turn, offer clearing through CCPs to their

1https://en.wikipedia.org/wiki/European_Market_Infrastructure_Regulation

4

https://en.wikipedia.org/wiki/European_Market_Infrastructure_Regulation


1.3. Modelling interdealer transactions

clients. It is possible to study competition on these two dimensions: the
choice of CCPs between members, and the choice of CCPs by clients.

There is no clear-cut evidence regarding the model of competition between
CCPs and the type of competition at stake between CCPs could have an
impact on financial stability. We wanted to use the EMIR dataset to study
the choice of CCPs by members and clients. The EMIR dataset contains
several class of derivatives (credit, equity, forex, etc...). We wanted to use the
credit derivative data (CDS) that had already been partially preprocessed,
and also clean the equity derivative (mainly options and future contracts)
data. However, the forced telecommuting caused by the exceptional sanitary
situation made us technically unable to clean the equity derivative data, as
it involved processing large amounts of data remotely without a proper IT
architecture. Hence, our results concern only the CDS data.

Our intended methodology was the following. First, estimate the collateral
required by CCPs using machine learning models. Then, include the collat-
eral predictions in a discrete model of CCP choice by members.

However, one major challenge is that CCPs calculate collateral for portfolios
of transactions instead of single transactions, which makes the price per
transaction difficult to compute. After processing the data to reconstitute
portfolios, it appeared that the reported collateral requirements were not
predictable enough to be used as input to a CCP choice model. We report
the results of our analysis and propose some explanations for the mismatch
between the data and our models.

1.3 Modelling interdealer transactions

We then switched to a second problem, unrelated to central clearing, but
building on the same CDS transactions. The OTC CDS market is two-
tiered: there are both dealers (big banks) and clients. Each client exchanges
mostly with a very small number of dealers (one or two) while the dealers
trade both with clients and between them. The transactions between dealers
and clients form a typical two-sided market, a well-studied problem in eco-
nomics. Instead, we were particularly interested in the interdealer market
that is much less studied.

Our problematic can be formulated through the following question: how do
dealers choose other dealers to make a transaction with?

We make the following (strong) hypothesis: in each transaction, one dealer
chose the other. This hypothesis forces our model to choose an aggressor
side for each transaction before computing the likelihood. We model this
choice by a trainable prior and show it reduces to a typical expectation-

5



1. Introduction

maximization problem. Finally, we formulate this optimization problem as
a differentiable objective that can be trained by gradient descent.

Drawing upon this model, we apply techniques inspired by the field of in-
terpretability in machine learning to produce a principled framework for
analyzing economical datasets.

Our contribution is also theoretical, with the development of two novel con-
cepts: Razor entropy and top-k Shapley values. Razor entropy is a generalization
of our principled training objective that brings theoretical guarantees for our
likelihood. Top-k Shapley values are a solution to the payoff distribution prob-
lem in game theory. We show that they provide interesting properties for
monotone submodular value functions and can be computed efficiently.

1.4 Other contributions

In order to extend our analysis and feed our interdealer transaction pre-
dictive model some information about the transactions in the rest of the
network, we apply the famous node2vec [23] algorithm. When doing so, we
made 2 realizations: the existing Python implementations are excessively
slow, use huge amounts of memory, and the neighbor sampling as described
in [23] is not scalable as it uses non linear amounts of memory in a prepro-
cessing step (it can also run slower when using a linear amount of memory
thanks to a space–time trade-off).

We designed a randomized neighbor sampling algorithm based on rejection
sampling that has the same expected running time as in [23] but uses lin-
ear amounts of memory. We then programmed a novel implementation of
node2vec [1] that is orders of magnitude more efficient than existing ones,
both thanks to our improved algorithm and our use of JIT (just-in-time)
compilation.

1.5 Acknowledgements

We are grateful to Prof. Demange for her supervision during this work, and
PhD candidate Thibaut Piquard for his unfailing support and help on this
project. We also thank the whole macro-prudential policy team from the
Bank of France, particularly Dr. Julien Idier and Aurore Schilte for their
helpful comments on this work.

6



Chapter 2

EMIR Data

2.1 Data description

2.1.1 Collection process

EMIR The EMIR regulation requires every European Union domiciled en-
tity to submit every derivative contract they enter into to a so-called trade
repository. The detail of the reported data is specified by official guidelines
1. There are several trade repositories and each one records different subsets
of data. Fortunately for our analysis, the DTCC trade repository that we get
the data from captures the majority of the CDS market [49].

Available data Most of the collected data is not available to the public. The
Bank of France, as a regulatory entity, can access data related to the activities
of French companies. In this category enters (i) any transaction made by a
French institution, even if the other side of the trade is not French and (ii)
any transaction of a product linked to a French company. For credit default
swaps, this includes not only CDS on French companies (single names), but
also the much more traded indices.

Index An index is a basket of related assets with a public composition.
Indices allow to trade a combination of these products, thus simplifying
the actions of traders who want to own their combination. An example of
such CDS index is iTraxx Europe, which combines CDS on the 125 most
actively traded single names over the last period (indices’ contents are up-
dated semiannually). Indices are particularly interesting for our analysis as
they are widely and frequently traded and we have access to all the trans-
actions. We also have access to aggregated data provided by Bloomberg to
track the interdealer OTC price of indices.

1https://www.esma.europa.eu/policy-rules/post-trading/trade-reporting

7

https://www.esma.europa.eu/policy-rules/post-trading/trade-reporting


2. EMIR Data

As the EMIR dataset is highly confidential and we accessed regulator’s data,
we are not able to explicit entity names or give out portfolio compositions
in this report. However, this limitation does not apply to the aggregated
results we present or the analysis we make.

2.1.2 Data format

The EMIR data we used is composed of 3 kind of reports provided by DTCC,
a trade repository. Those reports are called: trade activity report, trade state
report and collateral valuation report.

Trade activity reports The trade activity reports are the most granular
ones: they contain the detail of every contract modification that are made.
However, they are hard to preprocess because of this granularity.

Trade state reports The trade state reports contain are daily aggregated
versions of the trade activity reports that state the content of every portfolio.
Because the trade activity reports are produced by the data collector (DTCC),
we try to use them when possible, instead of the more complex trade activity
reports. Furthermore, they avoid processing the whole history of activity
reports by stating the positions of every portfolio.

Collateral valuation reports The collateral valuation reports are the sim-
plest ones and contain the collateral for each portfolio. Note that initial
margins are only one of the different types of collateral that can be collected
by CCPs.

2.2 Data cleaning and augmentation

2.2.1 Activity report cleaning

The activity reports contain a lot of superfluous information that are not
relevant to our analysis. Indeed, they contain every modification made to a
contract, most of which are irrelevant to the study of counterparty choice,
like novations, terminations, error corrections and trade compressions.

A major challenge is that the activity reports are bilateral reports, that is one
transaction is to be reported by the two sides if they are both European. This
can lead to duplicates of transactions. Furthermore, the reporting process
is manual for most entities which can lead to transaction information being
incorrectly entered and the same transactions to be counted more than once
or twice. Another source of error is the reporting date that can be different
from the actual transaction date. Detecting duplicate transactions is a non-
trivial problem that needs to be done separately for each derivative class.

8



2.2. Data cleaning and augmentation

The activity reports have been cleaned for credit derivatives (CDS) in a pre-
vious work [14] in order to extract operations that are price relevant, as most
of the operations that are contained in the activity reports are back-office
transactions such as compression and clearing that do not involve the bar-
gaining of a new price.

This cleaning process used graph matching to de-duplicate transactions, and
a lot of handcrafted rules to account for frequent reporting errors. For ex-
ample, a frequent source of outlier data points was Japanese Yen amounts
reported with a wrong or missing currency field, thus multiplying values by
∼100 when considered as dollars or euros. A lot of other outlier detection
rules that we do not detail here are specific to CDS contracts and allow to
correct or discard erroneous lines.

2.2.2 Report merging

In theory, the collateral valuation report should contain all the information
about portfolio initial margins when one counterparty is French, as we ac-
cessed the data through the Bank of France. However, when one counterpart
is not French, the initial margins will only appear in trade state and trade
activity reports.

Thus, a significant amount of efforts was dedicated to processing state re-
ports to augment the content of the valuation reports from the content of
the state reports for all kind of assets.

Because the rest of our analysis is specific to credit derivatives, we restricted
ourselves to portfolios containing only credit derivatives as it would be
harder to analyse only partial portfolios.

Then, we merged those augmented valuation reports with the cleaned state
reports to have for each portfolio its contents and initial margin.

This aspect of our work involved a lot of code optimization to make the
processing reliable and scalable. Indeed, we ran our code on a 200 GB
sample covering the last year and it is now used on the data received daily
by the Bank of France.

2.2.3 Portfolio linkage

During our data processing, we encountered some situations where the
same transaction was reported by both sides, but with different portfolio
IDs.

We adopted an approach from graph theory to solve this problem. We con-
sider each portfolio ID as a node and when a transaction is reported with
two different portfolio IDs, we draw an edge between those two portfolio
IDs.

9



2. EMIR Data

ID 1234

ID ABCD

ID 1232

Figure 2.1: At least two transactions have been carried on. In the first one, one side reported
portfolio ID 1234 and the other ABCD. In the second one, one side reported portfolio ID ABCD
and the other one 1232.

A natural solution is to consider connected portfolio IDs between two coun-
terparties as the same portfolio or, put simply, find the connected compo-
nents in the undirected graph we defined. We use a disjoint-set data struc-
ture to track the components while reading the edges in an online fashion.

Algorithm 1: Portfolio linkage
Result: Lists of equivalent portfolio IDs

Initialize a disjoint-set data structure with functions Union and Find;

foreach transaction in reports do
Union(transaction.port f olio id1, transaction.port f olio id2);

end

Initialize a mapping from string to list of strings;

foreach portfolio id do
Add (port f olio id, Find(port f olio id)) to the mapping;

end

Return the values of the mapping;

This algorithm has O(n) space complexity and O(nα(m)) time complexity,
where n is the number of nodes, m the number of edges and α the inverse
Ackermann function.

After this linkage, we have to recover the characteristics of the portfolios.
The contents are easy to define, as they are simply the aggregated transac-
tions. The initial margins are harder to characterize. The collateral valuation
report gives us margins for each separate portfolio. To decide on the margin

10



2.3. Exploration and visualizations

Figure 2.2: Number of portfolios retrieved from the original data (valuation reports) and from
the post processing (state reports)

of the merged portfolio, we used voting on the aliased portfolios.

2.3 Exploration and visualizations

2.3.1 Comparison of data sources

We report in Figure 2.2 the number of portfolios retrieved from the merging
step described in Subsection 2.2.2. Our processing allowed us to get much
more data.

However, as we see in Figure 2.3, there are more portfolios reported without
a margin in the state reports.

Finally, we plot in Figure 2.4 the quartiles of the distribution of nonzero
margins to better represent the difference between the two sources. We
observe that the margins reported in valuation reports are much larger.

2.3.2 Margin flows

To show the coherence of the data with known market practices, we plot-
ted the amounts received by each sector and transferred between sectors in
Figures 2.5 and 2.6. The classification of actors was retrieved from an in-

11



2. EMIR Data

Figure 2.3: Proportion of zero margins

Figure 2.4: Quartiles of non-zero margins

12



2.3. Exploration and visualizations

2018-12 2019-02 2019-04 2019-06 2019-08 2019-10

10

5

0

5

10

Initial Margin

Received by Unknown
Received by Fund
Received by Life insurance & pension funds
Received by Other
Received by Bank
Received by g14_dealer
Received by Other FC
Received by NFC
Received by Central Bank
Received by Non-life insurance
Received by CCP

Figure 2.5: Net margin received by sector (in billion EUR)

ternal database of the Bank of France produced by hand, hence the large
proportion of Unknown actors, mostly small.

Unsurprisingly, G14 dealers (the largest 14 dealers) and CCPs are the main
entities receiving margin after netting, while Banks and Funds are the providers.
Interestingly, huge amounts of margins received by CCPs come from Un-
known institutions, indicating a fat tail.

Margins transfers from Banks and Funds to CCPs clearly follow a tiered pro-
cess. G14 dealers collect initial margins from banks and funds and transfer
a part to CCPs. Banks also transfer directly to CCPs.

Finally, these graphs show the instability of the collected data, part of which
corresponds to real-world phenomenons (e.g. periodic market events) while
inconsistencies in the data collection process are probably to blame as well.

13



2. EMIR Data

2018-12 2019-02 2019-04 2019-06 2019-08 2019-10

0

2

4

6

8

Initial Margin
Fund to Bank
Life insurance & pension funds to g14_dealer
Unknown to Bank
Other to CCP
Fund to g14_dealer
Unknown to Other
Bank to CCP
Bank to g14_dealer
g14_dealer to CCP
Unknown to g14_dealer

Figure 2.6: Net margin transfers between sectors (in billion EUR)

14



Chapter 3

Initial Margin prediction

3.1 Description

Competition between CCPs is an important question related to financial sta-
bility. The main reason to use central clearing is to insure each counterparty
against the default risk of the other. However, there are debates on the effi-
ciency of CCPs to reduce systemic risk, as there is a possibility for the CCP
itself to default, therefore exposing all its members to a greater risk.

Collateral requirement To mitigate the default risk of their members, CCPs
collect collateral. There are several ways collateral can be required by a
CCP, examples being contributions to the default fund, variation margins
that cover position changes and initial margins. In this work, we are only
interested in initial margins. Initial margins are an amount of collateral
requested by the CCP to cover the liquidity risk of the portfolio. If one side
of the contract were to default, the CCP would try to liquidate its position
to nullify its market exposure. However, by doing so, the CCP would be
subject to additional costs due to the market volatility. Hence, the initial
margins are collected to cover those costs and are adjusted with the market
conditions, typically the product volatility.

The study of collateral requirements is of great interest as it relates to the
netting efficiency and the competition between CCPs.

Netting Netting is a practice that cancels the exposure towards a CCP of
institutions that present positions of equal value in two distinct directions.
For example, if institution A bought 15 units from institution B and sold
10 to institution C, and cleared those transactions through a CCP, the net
exposure of A to the CCP will be a long position of 5 units. In this example,
netting reduces the initial margin requirements of institution A because its
position is reduced. Netting can also be performed on multiple correlated

15



3. Initial Margin prediction

products: if two products are highly correlated, the liquidity risk is lower
when a portfolio has a short (resp. long) position on the first and a long
(resp. short) on the second.

Competition Therefore, a limited number of CCPs is preferable on one
hand as they can capture more transactions and apply netting on a wider
scale. On the other hand, a monopoly would be detrimental by possibly
raising the clearing fees, thereby reducing the incentives to rely on central
clearing. Competition is not necessarily a good thing either, with the risk
of a race to the bottom of collateral requirements that would increase the
systemic risk.

To study how important margins are in the eyes of clients choosing CCPs,
one has to know how much each CCP charges. However, each transaction is
associated with only one CCP, the one that was chosen.

Our goal was to predict the initial margin requirements by the different
CCPs and use these estimations as part of a CCP choice model. However,
after thoroughly cleaning the EMIR data, we observed that our estimations
were not precise enough to yield clear insight on the pricing of CCPs, thus
compromising our original idea of using them in a CCP choice model.

3.2 Related work

As the prediction of margins was intended to be part of a competition analy-
sis between CCPs, we divide this section in two parts, one about competition
analysis and one about models for initial margins.

There is a large literature related to competition analysis, both between
CCPs or between exchanges [10].

3.2.1 Competition analysis

An early paper on the question of competition between CCPs is [72]. They
examine manually the changes in fees of the major CCPs and draw 3 conclu-
sions: competition led to tariff cuts, there is no fit-for-all risk management
mechanism and there is no evidence that competition among CCPs has led
to a deterioration in the robustness of CCPs’ risk management. They based
their analysis on the 3 major CCPs operating on the pan-European equity
market (LCH.Clearnet SA, EMCF and EuroCCP). It is not clear that the ob-
served reduction of transaction-based fees is due to competition only, as
trading patterns also evolved with algorithmic trading to result with more
low-value and high frequency trades. We remark that the greatest risk for
CCPs is the replacement cost risk and the risk analysis presented in the pa-
per is focused on CCPs for equity. There is a main difference between the

16



3.2. Related work

clearing of equities and derivatives due to the insurance provided by the
CCP against counterparty risk: in the case of equities, the risk is very lim-
ited because the period where the CCP bears the counterparty risk is very
short. This explains why the exchange and clearing functions were usually
fully integrated. In the case of derivatives, the CCP takes long time risk.

[50] analyse the margin changes in a dataset of futures margins set by CME
Group. They first want to model the margin changes after a volatility
change. They also want to measure the impact of competition on margin
changes. Since margin changes are infrequent (one every few months), their
model asserts that a margin changes only if an indicator rises above a certain
threshold level. They establish that variations of margin follow a EWMA es-
timator of volatility for futures, an effect that is particularly noticeable on
currency futures. They also show that there is a negative correlation be-
tween the probability of margin shortfall and the average number of days
between margin changes across different futures contract panels. The au-
thors first fit a linear model to predict the margins from some features. Their
second model to predict the margin changes is more original as they use a
Tobit regression, i.e. a regression where the observed value of the depen-
dent variable is censored. This model draws from the intuition that clearing
counterparties want to keep human-readable fees and will update their tar-
iffs only when the difference goes above some threshold levels that they set
to the smallest historical margin changes. Their third model is a trichoto-
mous Tobit regression (outcomes -1, 0 and 1) that separates the features in
positive and negative components to investigate the symmetry of margin
changes. Like many papers in econometrics, they interpret the regression
coefficients as feature importance, an issue we tackle in the next chapters.

3.2.2 Margin estimation

There is also a quite well developed, albeit old, literature on margin estima-
tion.

[30] provides an extended review, but the margin definitions evolved since
2002. A more recent treatment is made in [39], where the two major existing
frameworks, Value-at-Risk (VaR) and SPAN are detailed.

SPAN SPAN was introduced in 1988 by the CME exchange. SPAN makes
use of numeric methods to simulate 16 scenarios and assess the variation
of the portfolio value. However, SPAN only sums the risks over the differ-
ent assets contained in the portfolio and does not make use of correlations
between assets. The complexity and innovation of the SPAN system comes
from the wide range of contracts it can support, with many contract param-
eters, CCP charges and risk levels that can be chosen by the user.

17



3. Initial Margin prediction

Value-at-Risk The VaR margin is the default measure for the aggregate
risk exposure and regulatory capital requirements of banks. VaR can also be
used to set margins on derivatives.

Definition 3.1 The VaR margin M on an asset with return V for risk level α ∈
[0, 1] is defined by the equation:

Pr[V < −M] = α

[39] extends the VaR margin framework to encompass risks at the CCP level
instead of the portfolio level, that is, compute the joint probability of two
portfolios exceeding their margins.

3.3 Experiments

After collecting portfolio contents as described in chapter 2, we tried to
predict the initial margin according to some baseline models.

3.3.1 Baselines

The initial margin covers the liquidity risk, hence only depends on the pos-
sible price variation during an attempt to nullify the position.

If one supposes that the price of CDS indices follows a normal probability
distribution on a given time interval, then their difference will be a centered
normal distribution. Furthermore, we have the following property:

Lemma 3.2 For a given risk level r ∈ [0, 1], there is a positive constant α ∈ R+

such that for any asset following a normal price distribution with standard deviation
σ, its VaR initial margin M is given by:

M = α · σ

α has a simple expression following from the inverse cumulative distribution func-
tion of the standard normal distribution.

We present some baselines below, in increasing order of sophistication.

A portfolio p f is a set of positions (pr, q) where pr is the product and q is
the quantity.

Because we do not have full access to the portfolio contents of all actors, we
restrict our analysis to portfolios of French entities. When running the same
baselines on the full dataset, the results are much less convincing because of
the products that are not observed. As a byproduct, we ignore the portfolios
retrieved from state reports.

18



3.3. Experiments

Product-oblivious baselines

The first two baselines are:

ĨM1(p f ) = α

∣∣∣∣∣∣ ∑
(pr,q)∈p f

q

∣∣∣∣∣∣
ĨM2(p f ) = α ∑

(pr,q)∈p f
|q|

ĨM1 estimates the margin as proportional to the net sum of notionals. This
assumes that all products are perfectly correlated and have the same volatil-
ity.

ĨM2 uses the gross notionals. This is similar to the SPAN system that as-
sumes some kind of independence between products. We furthermore as-
sume that all products have the same risk.

To estimate α, we can use a least squares regression:

arg min
α

∑
p

f (IM(p f )− ĨM(p f ))2

However, this gives poor results because the notionals are very imbalanced
and do not follow a normal distribution.

Instead, one can assume log-normality and apply log-log least-squares re-
gression [7]:

log ĨM1(p f ) = log α + log

∣∣∣∣∣∣ ∑
(pr,q)∈p f

q

∣∣∣∣∣∣
log ˜IM2(p f ) = log α + log ∑

(pr,q)∈p f
|q|

This model can simply be estimated by subtracting the means of the depen-
dent and covariate.

Sum of volatility baseline

One can take the volatility of products into account. Applying lemma 3.2
and supposing that risks are measured separately for each products and
summed, we establish baseline 3:

ĨM3(p f ) = α ∑
(pr,q)∈p f

|q| · σ(pr)

19



3. Initial Margin prediction

The values of the standard deviations σ(pr) are not estimated but computed
using a rolling window of daily prices retrieved from Bloomberg for the last
1000 business days. We restrict the products to indices and hence ignore the
portfolios containing less than 80% of indices (in notional).

We also estimate α with log-log least squares regression.

Variance-covariance VaR

Here, we suppose that products follow a Gaussian multivariate distribution.
From the properties of multivariate Gaussians:

Var(∑
i

Xi) = ∑
i

∑
j

Cov(Xi, Xj)

Hence, we propose the following model:

ĨM4(p f ) = α

√
∑

(pr1,q1)∈p f
∑

(pr2,q2)∈p f
q1 · q2 · Cov(pr1, pr2)

Again, we compute α to minimize the least squares error in log space.

More complex models

We also tried more complex models that implicitly compute the VaR without
knowing the deviations Cov(pr1, pr2). Hence, it would possible to estimate
the VaR of portfolios that are not mainly composed of indexes. However, for
n products, such a model would have to estimate O(n2) coefficients, which
is much larger than our number of observations.

We used the same formula as model 3:

ĨM3(p f ) = α ∑
(pr,q)∈p f

|q| · σ(pr)

but tried to estimate σ(pr) instead of giving it as an input. We cannot use the
same log-log criterion as there are no efficient solvers. This gives baseline 5:

ĨM5(p f ) = ∑
(pr,q)∈p f

|q| · αpr

A direct least squares regression approach led to absurd solutions with neg-
ative coefficients. We tried non-negative least squares (using scipy.optimize.nnls)
to ensure αpr > 0 and constrained least squares (scipy.optimize.lsq linear)
to also ensure αpr < 1 so that that the margin for a product is never larger
than the notional.

20



3.3. Experiments

However, we could not make them converge because there are too many
different products compared to the number of observations we had. Fur-
thermore, since we use time-series data that track the content and margin of
portfolios over time, many data points are highly correlated.

3.3.2 Results

We restricted ourselves to a subset of the dataset where each portfolio has
at least one French member, and where indices represent more than 80% of
the portfolio value. This resulted in 3115 unique data points for 65 different
portfolios.

We report the R2 coefficient of the log-log least-squares regressions.

Method R2

ĨM1 0.466
ĨM2 0.598
ĨM3 0.608
ĨM4 0.500

We plot the data and estimates of the best model ( ĨM3) in Figure 3.1.

We observe that although most portfolios fit our model well, there are some
outliers that are either isolated or present some horizontal or vertical com-
ponent. Vertical trajectories mean that the initial margin changes whereas
the the volatility of the portfolio did not. They can be associated to com-
pression and netting done by the CCP. Horizontal trajectories mean that the
content of the portfolio changed significantly but the margin did not. The
most probable explanation is that there is a delay in the update of margins
or in the update of the reported values.

21



3. Initial Margin prediction

Figure 3.1: Initial margins versus sum of volatility. Each portfolio is represented by a different
curve indicating its trajectory over time. The estimate is represented by a straight strip. To
protect the confidentiality of the amounts, we hid the scale. Here, α = 1.022 · 10−3.

22



Chapter 4

Transaction graph modelling

In this part, we are trying to model interdealer choices to understand their
dynamics. Our data is a temporal graph with data on the edges. In mathe-
matical terms, we have a set of nodes V and a list of transactions

(t, a, b, c) ∈ T ×V ×V × D

T describes temporal information, it can be described continuously with
T = R+ or discretely with T = N. D describes the data of the transaction,
i.e. the product, quantity (notional) and price (spread).

Furthermore, the nodes V can be associated some other metadata M from
other sources. An example of such data is the spread of a CDS on the dealer
(thus, a so-called single name CDS). Since the dealers are all important fi-
nancial companies, they all have CDS on their debt. Note that we study
indices, not single name products, hence we do not take the exact index
composition as a parameter of our model.

4.1 Related work

4.1.1 Counterparty choice

The closest work to ours is [16], as they also study counterparty choice on
the OTC CDS market. They motivate this question in regard of the 2008
crisis, during which Bear Stearns and Lehman Brothers would not find any
counterparties to trade with them because their risk measure was too high.

Data [16] also base their analysis on confidential transaction level data
provided by DTCC. One difference is that we don’t have access to the same
subset of the dataset, as they accessed it through the FRB and we accessed it
through the Bank of France. Hence, our respective analyses have the same

23



4. Transaction graph modelling

restrictions, namely that we can only access transactions for which either
one side or the reference entity of the contract is regulated by the institution
we obtain the data form. They based their analysis on single-name CDS
contracts, while we focused on the CDS indices that represent the largest
part of our dataset.

Modelling The most crucial difference is that they model the dealer choice
by clients, including non-dealers. Another difference is that their model
predicts the choice of a seller dealer by a buyer. This hypothesis makes
less sense on the interdealer market where intermediation is a driver of
transactions [35]. On the opposite, our model follows a maximum likelihood
approach to attribute a direction to the choice (sometimes the choice is made
by the buyer, sometimes by the seller).

Methodology On the algorithmic part, they only make use of logistic or
multinomial linear regressions whereas we use multilayer perceptrons and
show they (unsurprisingly) better fit the data.
Their results are purely in-sample, meaning they do not test or validate their
predictions with data different from their training set. On the other hand,
we temporally split our data and make use of Bayesian hyperparameter op-
timization and several regularization techniques to ensure our model learns
real patterns.
Finally, their conclusions are based on the amplitude of the regression co-
efficients whereas ours use interpretability and causality techniques framed
in information theory to establish more rigorous measures of feature impor-
tance.

4.1.2 Graph modelling

Our methodology is also closely related to the wider literature of link pre-
diction and (temporal) graph modelling.

Link prediction

The survey paper [38] defines link prediction with the following question:
given a snapshot of a social network, can we infer which new interactions among
its members are likely to occur in the near future? Our modelling is inspired
by this question but is different on several points: (i) we have multigraphs,
i.e. two entities can be linked by more than one edge (ii) the edges contain
information. In this framework, any possible pair of nodes is associated a
connection weight that describes some sort of similarity between them but
nothing is said about metadata.

[3] showed that supervised learning was a possible solution: classifiers can
learn to discriminate between fake and true links. To take care of the edge

24



4.1. Related work

information, one could give the edge information as input when trying to
predict existing edges. However, it is not clear how one could generate
plausible the metadata of fake edges.

GAN Some approaches used the famous framework of Generative Adver-
sarial Networks [20] for link prediction in dynamic networks [34] or repre-
sentation learning [66]. However, our final goal is to draw insights about
the behavior of actors and it is not straightforward whether a discriminator
would really learn what we want. To give an example, suppose that we add
totally uncorrelated inputs that are hard to generate, like high resolution im-
ages. Then the discriminator might base its judgement on the uncorrelated
inputs rather than the legitimate ones. This remark motivates us to predict
part of the data, and we justify this with information-theoretic arguments in
section 5.2.

Graph modelling

Representation learning A lot of papers are concerned with learning rep-
resentations of either graph with edge features on one hand and temporal
graphs (also called dynamic networks) on the other. Although representa-
tion learning is not the primary motivation of our approach, our method
produces entity embeddings as a byproduct.

[19] proposes an enhanced graph neural network [57]. They extend the
standard graph convolutional neural network [29] to take multi-dimensional
edge features into account.
[22, 21] (two similar papers by the same authors) use an auto-encoder to
reconstruct edge attributes from node attributes.

In [60], the authors develop an alignment technique for node2vec [23] em-
beddings using orthogonal transformations, hence producing unsupervised
node representations that are consistent over time.
[68] allows to produce inductive representations of nodes (which means one
can predict representations for nodes outside of the training set) and use
time as a model input (using what they call functional time encoding).
From the model descriptions and experiments performed in the literature,
we conclude that although the formulation looks similar, temporal graph
learning does not seem to be adapted to our problem as transactions are
more similar to events than some graph snapshots.

Interpreting graph convolutional networks Finally, a paper of interest is [37].
They apply graph neural networks with edge weights to networks of fi-
nancial transactions, making node classification experiments on the Bitcoin
network. They present several interpretability methods for both informa-
tive components detection and node feature importance. In particular, one

25



4. Transaction graph modelling

of their methods optimizes a constrained multiplicative mask applied the
neighboring edges of a node to minimize the cross-entropy of the predic-
tion.
It is the only reference we found on information theory and model inter-
pretability applied to the analysis of transaction networks.

4.2 Motivations

In this section, we explicit our problem in more details.

As stated above, our data is tabular with both continuous and discrete fea-
tures. In particular, 2 categorical features are of special interest: buyer and
seller, because they are directly linked to economical concepts of competi-
tion and counterparty choice.

The fundamental question we are trying to answer is: How do transactions
happen, and why?
This model-independent question is intrinsically linked to the field of causal-
ity. However, we treat it with techniques from the field of model inter-
pretability, as most of the existing literature confuses those two different
concepts, and using arguments developed in 5.2.

The current literature related to transaction graph modelling is somewhat
limited, as the closest community efforts are concerned with the weakly
related concept of temporal graphs and more general benchmarks of node
classification exposed in the previous section.

The starting point of our reflection is that our model should be conditional
on the transaction data. Indeed, different products lead to very different
transaction graphs. In this work, we are not interested in what products peo-
ple trade, nor the quantities or prices, as it would probably involve studying
global market trends. Instead, we put this information as an input.

We also assume that the choice to trade is ultimately made by one of the
two counterparties. This hypothesis is unrelated to the classical economical
question of whether trades are zero-sum (hence implying that only one of
the two parties will benefit from it). We don’t assume that the choice direction
is linked to any concept of benefit, e.g. that the one who chooses the other
does it because they know they will benefit from the transaction.
Instead, we apply Occam’s razor: “Accept the simplest explanation that fits the
data” (chapter 28 of [41]).

We show in the next section that modelling the choice direction as a super-
position is the same as choosing the directions that maximize the likelihood.
Ultimately, our derivations answer the question who chooses whom? with the
side that is the most likely to choose the other.

26



4.3. An unsupervised objective for transaction graphs

Thus, we make a very strong assumption in our modelling efforts for the
choice dynamics, but that is coherent with current practices in economics.
Indeed, in imbalanced markets, like the client-dealer market studied in [16],
people usually model the choice that has the smallest entropy. On the client-
dealer market, there are much more clients than dealers and it is widely
assumed that clients choose their dealers. We relate this practice to our Oc-
cam’s razor – maximum likelihood principle and extend it to the interdealer
market.

4.3 An unsupervised objective for transaction graphs

4.3.1 Notations

In this section, we use the following notations and conventions:

• t is the time, that is naturally associated with a filtration on the data
items, which we will use in our validation process to split the data
chronologically.

• a and b are the two sides of a transaction that don’t need to be sym-
metrical (a can be the seller and b the buyer)

• c is the context of the transaction, e.g. the product, price and quantity.
It can also include features that are computed from t, like the week
day, or data from previous transactions.

• ca (resp. cb) is the context from the perspective of a (resp. b). We will
instead write them as c when they are present in conditional probabil-
ities:

Pr[. . . |a, c] := Pr[. . . |a, ca]

• The notation Pr[. . . |a, c] is deliberately the same as Pr[. . . |b, c], i.e. we
reflect in our notation that we consider a unique probability distribu-
tion instead of one for each side (buyer and seller). A consequence is
that the bit of information indicating whether we are modelling the
buyer’s or seller’s choice has to be included in the counterparty con-
text ca or cb.

4.3.2 Likelihood function

Hence we are left with characterizing for each transaction (a, b, c) the likeli-
hood of the transaction.

27



4. Transaction graph modelling

If we consider that a is the chooser (we write a → ·), the likelihood of the
transaction is naturally defined as

L[a, b|c, a→ ·] := Pr[b|a, c, a→ ·]
= Pr[b|a, c]

The first equality is the assumption of our model. The second equality
comes from the fact that a→ · is not an observable event of our data but our
interpretation of it. Hence, a → · is not part of the data but an a posteriori
conception of the observer.

Likewise, the likelihood of the transaction given that b chooses (we write
this event b→ ·) is L[a, b|c, b→ ·] = Pr[a|b, c].

The likelihood function L is not sticto sensu a probability but can be thought
of as one. In particular, we define by the law of total probabilities:

L[a, b|c] := L[a, b|c, a→ ·]Pr[a→ ·] + L[a, b|c, b→ ·]Pr[b→ ·]

4.3.3 Posterior maximization

Pr[a → ·] and Pr[b → ·] are part of our modelling, so we can rewrite them
as coefficients: {

wa→· := Pr[a→ ·]
wb→· := Pr[b→ ·]

Following from them being probabilities of exclusive (virtual) events (by our
assumption that one entity chooses the other), we have the constraints{

w{a,b}→· ∈ [0, 1]
wa→· + wb→· = 1

In a maximum a posteriori estimation setting, one is interested in maximiz-
ing the parametric likelihood Lw:

L[a, b|c] = max
w

Lw[a, b|c]

= max
w

L[a, b|c, a→ ·]wa→· + L[a, b|c, b→ ·]wb→·

= max(L[a, b|c, a→ ·], L[a, b|c, b→ ·])
= max(Pr[b|a, c], Pr[a|b, c])

Hence, if we want to approximate Pr[·|a, c] and Pr[·|b, c] with a model fθ , it
is natural to maximize the log-likelihood:

arg max
θ

Ea,b,c[log max( fθ(a, c)[b], fθ(b, c)[a])]

In all our applications, fθ is a differentiable function and we learn the pa-
rameters θ using gradient descent optimization.

28



4.4. Modelling and optimization

4.3.4 Expectation–Maximization

Another way to see the training of objective with gradient descent is as an
instance of the expectation maximization method.

The latent variable are the binary choices {a→ ·, b→ ·} for each datum. We
define a binary variable direction that represent this choice. Our practical
learning objective is now:

arg max
θ,direction

∑
i

log
{

fθ(ai, ci)[bi] if directioni
fθ(bi, ci)[ai] else

Supposing we use gradient descent to optimize fθ , the forward pass evalu-
ates the model and chooses directioni for each datum. It is perfectly equiva-
lent because the gradient of the maximum of two outputs is the gradient of
the largest so the other output is simply ignored.

The backward pass computes the gradient of the loss according to θ, and the
optimizer locally solves

arg max
θ

Ex,y,c[log fθ(y, c)[x]] = arg min
θ

−Ex,y,c[log fθ(y, c)[x]]

where x and y are a and b swapped according to direction. This objective is
exactly a cross-entropy.

Note that unlike the vanilla EM algorithm, we don’t fully optimize θ during
the backward pass and re-evaluate direction at each forward pass.

4.4 Modelling and optimization

In this section, we describe the models and optimization process.

4.4.1 Models

In all our experiments, we use multilayer perceptrons.

In our experiments, we use between 0 and 2 hidden layers. When the num-
ber of hidden layers is 0, multilayer perceptrons become linear models.

We use the ReLU function as activation function, as it is well-studied and
one of the most popular activation functions [48]:

ReLU(x) = max(0, x)

Since our model has to learn probability distributions, its output is nor-
malized by the softmax function (sometimes more accurately named soft-
argmax):

29



4. Transaction graph modelling

Figure 4.1: A typical multilayer perceptron with one hidden layer

so f tmax(z1, · · · , zK)i =
ezi

∑K
j=1 ezj

In the above equation, K is the number of classes. In our application prob-
lem, it is the number of dealers.

Furthermore, to reflect the structural constraint that a dealer will never trade
with itself, we manually set zi = −∞ for the choosing party during both
training and inference.

4.4.2 Optimization

Our models are optimized using Adam [28, 53] with the default parameters
(β1 = 0.9, β2 = 0.999, ε = 10−8) if not for the learning rate that we fine-tune.
Adam is a gradient-based optimizer for stochastic functions.

The optimization process is iterative and organized in epochs. During an
epoch, the optimizer will be run once on each example of the training
dataset. Instead of either optimizing the full objective or running on individ-
ual examples, we optimize so-called batches. The batch size is the number
of samples that are simultaneously evaluated by the stochastic objective.

30



4.4. Modelling and optimization

The batch size is an important parameter that affects both the convergence
speed and the generalization ability of neural networks and can be viewed
considered as a regularization technique [61]. We also set it as a hyperpa-
rameter.

4.4.3 Validation

To follow the best practices [6], people should use 4 different random subsets
in a layered optimization process, each layer calling the previous one as a
subroutine. In our setup, these subsets are

1. training set for gradient descent

2. validation set for early stopping, see the next subsection

3. hyperparameter validation set

4. testing set

These practices are adapted when the quantity of data is sufficient to have a
low variance relative to the random sampling of those subsets.

For smaller quantities of data, it is possible to apply variance reduction
techniques like bootstrapping or k-fold cross-validation.

However, our dataset is chronological. Hence, it contains trends that can
lead to overly confident estimations that cannot transpose to real-world
evaluations. For example, the COVID-19 crisis (that we didn’t include in
our analysis) profoundly transformed the landscape of financial markets.
In particular, the prices of Chinese assets dropped in January while they
regained value in March. This is an extreme example but similar changes
are impossible to predict so we don’t want our model to learn them. In a
random sampling scenario, the model would be able, even without provid-
ing it with dates, to pick up correlations in the data that would boost its
performance.

No major event happened during the period we studied, hence such major
changes should not appear in our data. However, such changes can happen
on a smaller scale which motivates us to split our data chronologically.

The downside of chronological data splitting is that it makes variance reduc-
tion techniques much harder to apply without seriously reducing the sizes
of training sets.

Furthermore, the quantity of data we have is quite small and splitting in 4
subsets leads to poor performance.

Therefore, we split our data chronologically in a training and an evaluation
set. The training set is used by the gradient descent optimizer and the

31



4. Transaction graph modelling

early stopping procedure while the evaluation set is used to validate the
hyperparameter optimization and measure the generalization capabilities.

4.4.4 Early stopping

The objective value as a function of the number of training steps (epochs)
has diminishing returns. Furthermore, training for too many epochs results
in a phenomenon called over-fitting: the model learns the training set well
but performs poorly on the testing set.

Early stopping is a regularization technique that limits the number of epochs.
The need to reduce the training times, even at the cost of slightly decreased
performance, is motivated by the gains of the hyperparameter search.

The principle of early stopping is to compute the loss value on a valida-
tion set at regular intervals and stop the training as soon as the monitored
quantity increases, even if some variants exist [52].

Because we don’t have a validation set, our early stopping is not based
on an out-of-sample validation set. Furthermore, we make heavy use of
hyperparameter optimization, that was noted by [6] to conflict with vanilla
early stopping.

Instead, our early stopping procedure aims to detect the convergence of the
training loss. We define two parameters:

• α ∈]0, 1]: minimum geometric improvement

• k ∈N∗: maximum number of epochs without improvement

The algorithm is the following:

Algorithm 2: Early stopping

CNT ← k;

BEST ← inf;

while CNT > 0 do
train loss ← train one epoch();

if train loss < α BEST then
BEST ← train loss;

CNT ← k;

else
CNT -= 1;

end

end

32



4.5. Hyperparameter optimization

One would be tempted to set α = 1 to make the algorithm insensitive to
order-preserving loss transformations. However, we monitor the training
loss that will most likely decrease frequently. Hence we use α < 1 to effec-
tively limit the number of training steps.

In our experiments, we use α = 0.99. k is set such that k epochs train in a
reasonable time, where the definition of reasonable depends on the time we
are ready to wait. In our hyperparameter optimization setting, k = 50 gives
effective waiting times of a few seconds.

4.4.5 Dropout

Dropout [62] is one of the most popular regularization techniques, and was
crucial in improving generalization.

The principle of dropout is to randomly set some neurons in hidden layers
to zero during training. Thus, for a network with n neurons, dropout trains
a collection of 2n networks with extensive weight sharing. At test time,
dropout is disabled and the inference is done by the full network.

In [62], the authors also apply dropout on the inputs but remark that the
ideal retention probability is closer to 1 than for hidden layers. Because the
gains are small and we then remove inputs in our interpretability study, we
don’t apply dropout on the inputs as it could affect the results of our other
experiments.

In our experiments, the dropout rate is uniform across layers and is set as a
hyperparameter.

4.5 Hyperparameter optimization

In the previous section, we defined several hyperparameters controlling our
model.

Following the results of [8], we applied Tree-structured Parzen Estimator
(TPE) optimization on the hyperparameter space.

We first describe how Tree-structured Parzen Estimators work, then present
the implementation we used and explicit our parameter space.

4.5.1 Tree-structured Parzen Estimators

Let’s assume we want to minimize a function y = f (x). However, the argu-
ments of f define a configuration space that cannot be simply expressed as
a product of standard sets (like finite sets, N or R). This setting is exactly
the case in hyperparameter optimization, where making a choice on one

33



4. Transaction graph modelling

setting can modify the choices on others. For example, sampling a number
of hidden layers modifies the number of layer sizes one has to specify.

In this case, the simplest approach is to sample each parameter indepen-
dently according to the distribution of previously obtained results.

Some parameters are not present in all function evaluations, hence we only
consider for each parameter the function evaluations where it was used.

Parzen estimators [51, 56] are non-parametric density estimates that are sim-
ilar to Gaussian Mixtures.

Unlike other approaches like Gaussian processes that model the conditional
distribution p(y|x), Parzen estimators are used to model p(x|y). Note that
Parzen estimators only model the value of one hyperparameter.

Since Parzen estimators are not conditional, we divide the observations in
two sets, L and G, depending on the objective value y. L is a lower quantile
and G is an upper quantile. Then, we estimate two densities with Parzen
estimators:

{
l(x) = p(x|y ∈ L)
g(x) = p(x|y ∈ G)

To choose a new value for a hyperparameter, one wants to maximize the
expected improvement

EI(x) = E[max(0, y∗ − f (x))]

In the above equation, y∗ is the current best objective value. We also sup-
posed without loss of generality that our objective is to minimize f , as it is
often the case of loss functions in deep learning.

The computations in [8] show that EI is approximated as an increasing func-
tion of l(x)

g(x) . This result is coherent with the intuition that one wants to
choose values of x that are much more frequent for good rather than bad
objective values.

Hence, the chosen sampling approach is simply to draw a fixed number of
candidates according to l(x) and choose the one that maximizes l(x)

g(x) .

4.5.2 Optuna and define-by-run optimization

To make full use of the capabilities of Tree-structured Parzen Estimators that
sample one variable at a time, one needs to be able to change the parameters
that are sampled conditional to the values of the previous ones.

34



4.6. Results

Tree-structured Parzen estimators are an instance of independent samplers,
that is, they model each parameter separately. However, the hyper-parameter
space can depend on the values of already sampled parameters.

Optuna [2] is a define-by-run hyperparameter optimization framework im-
plementing many state-of-the-art techniques. In particular, its API is simple
to use, only requiring one to use a trial object to choose the parameter
values.

An advantage is that some parameters can be ignored, e.g. dropout when
there are no hidden layers. The full code of our hyperparameter search is
outlined in Appendix B

4.6 Results

4.6.1 Experimental setting

Dataset

Intragroup Our dataset contains a high number of transactions that are
done between entities belonging to the same group. Some entities make a
large number of transactions with their own group, thus making our analy-
sis less relevant. Therefore, we ignore those transactions.

Counterparts We select the counterparts belonging to more than 1/100 of
transactions. This process gives us 19 entities that are part of 12 financial
groups: Bank of America Merrill Lynch, Barclays, BNP Paribas, Citibank,
Credit Suisse, Deutsche Bank, Goldman Sachs, HSBC, JP Morgan Chase,
Morgan Stanley, Société Générale, Nomura. Compared to [16], the only two
missing dealers in our restricted dataset are RBS Group and UBS.

Products We select the indices representing more of 1/100 of transactions:
CDX.EM (emerging markets, cdxem), CDX.NA.HY (North America high
yield, cdxhy), CDX.NA.IG (North America investment grade, cdxig), iTraxx
Australia (itxau), iTraxx Europe main (Europe investment grade, itxeb), iTraxx
Europe senior financials (Europe financials investment grades, itxes), iTraxx
Europe Crossover (Europe high yield, itxex), iTraxx Japan (itxjp), iTraxx Asia
ex-Japan (itxxj).

Train/test split We make a 80/20 split and obtain 14349 transactions be-
tween December 2018 and October 2019. Our training set has 11538 transac-
tions and our testing set 2811.

Features

In total, we have 9 features:

35



4. Transaction graph modelling

Figure 4.2: Interdealer market price retrieved from Bloomberg.

• entity: categorical feature to represent the choosing entity

• direction: a Boolean indicating whether entity is the buyer or seller

• product: categorical feature representing the traded product

• notional: equivalent of quantity for CDS

• price: spread of the contract, equivalent to a price. We standardize it
for each product.

• market price: average spread of this product on the previous day on the
interdealer market. This auxiliary data comes from Bloomberg. We
standardize it for each product. As seen on Figure 4.2, it is coherent
with the values from our dataset.

• Dealer spread: Array of the spreads for each dealer on the previous day.
It indicates how the market perceives the risk of this dealer.

• day: categorical variable indicating the day of the week

• time: numerical variable indicating the time of the day normalized
between 0 and 1

Categorical embeddings

To handle the categorical variables (entity, product and day), we used embed-
dings [25]. The embedding dimensions are hyperparameters.

36



4.6. Results

Hyperparameters

• entity dim: dimension of the entity embedding, integer between 1 and
the number of entities

• product dim: dimension of the product embedding, integer between 1
and the number of products

• day dim: dimension of the day embedding, integer between 1 and 3

• nb layers: number of layers, between 0 (multinomial logistic regression)
and 2.

• layer sizes: one variable for each layer, between 32 and 256 (when
nb layers = 1) or 128 (when nb layers = 2). The TPE optimizes their
logarithm.

• dropout: probability of dropout in [0, 1]

• use batch: if true, use stochastic gradient, else make updates based on
the full dataset

• batch size: if use batch is true, a power of two between 512 and 8192

• lr: learning rate, follows a log scale between 10−4 and 10−2.

Implementation

We implemented our models using the PyTorch deep learning framework.
It provides efficient tensors, automatic differentiation and gradient-based
optimizers like Adam.

4.6.2 Training curves

The model appears to successfully learn and generalize. We report a sample
training curve in Figure 4.3 for the best hyperparameters reported in the
next subsection.

At first glance, it is surprising that the training loss is larger than the test
loss. This can be explained both by the small dataset size, statistical artifacts
in the split that make the test dataset easier, and our extensive use of reg-
ularization, with both early stopping and dropout. One can see in Figure
4.4 that without dropout, the training loss becomes indeed smaller than the
testing loss.

4.6.3 Hyperparameter importance

During our hyperparameter optimization process, we explored a lot of dif-
ferent settings. This allowed us to determine what parameters were the most
important to improve our metrics.

37



4. Transaction graph modelling

Figure 4.3: Loss curve for the training and testing datasets. They are correlated and decrease,
which indicates that our learning objective is well-defined. The x-axis represents the epochs i.e.
full pass on the dataset

Figure 4.4: Loss curve for the training and testing datasets with dropout = 0. The x-axis
represents the epochs.

38



4.6. Results

Figure 4.5: PCA of the products embeddings

We report our results in Appendix C.

Based on these experiments, we chose the following values:

• entity dim: 16

• product dim: 6

• day dim: 2

• nb layers: 1

• layer sizes: one hidden layer of size 50

• dropout: 0.7

• use batch: Yes

• batch size: 212 = 4096

• lr: learning rate, follows a log scale between 10−4 and 10−2.

4.6.4 Embeddings

Finally, we remark that our training procedure produces meaningful em-
beddings for products. To visualize those embeddings, we apply a principal
component analysis (PCA) in dimension 2 (Figure 4.5).

39



4. Transaction graph modelling

We observe that although the network never saw the characteristics of the
products, it learned meaningful embeddings that group similar products
together. For example, we see that CDX High Yield and Investment Grade
are very similar. CDX Emerging Markets is closer to the other CDX indices
than to the iTraxx indices. iTraxx Japan (itxjp) and iTraxx Asia ex-Japan
(itxej) are grouped together as they both concern Asian markets. Finally, the
3 largest European iTraxx indices are grouped together, and the investment
grade indices (itxes and itxeb) are the most similar.

On this OTC market, there are too many products with very low volumes
that we ignored. However, these results seem encouraging and would mo-
tivate our approach on markets with a fat tail to learn embeddings. The
results were not as meaningful for institutions, and because of the confiden-
tiality of our dataset, we cannot report the names of the institutions which
limits the interest of the figure, so we omit it.

40



Chapter 5

Data interpretability

In this chapter, we first argue why models can be used to interpret data. We
then draw the landscape of model interpretability techniques with a special
focus on Shapley values. Stepping back from the current trends in model
interpretation, we motivate our approach through algorithmic information
theory and define the Razor entropy. Finally, we present top-k Shapley values,
a novel value distribution method for coalitional games that presents special
properties on games with a submodular characteristic function. We then use
it to present a model-agnostic feature importance evaluation algorithm that
runs in quadratic time in the number of features.

5.1 From model interpretability to data interpretability

In today’s world, analyzing large quantities of data has become crucial in
various fields such as physics, economics, biology or marketing.

However, as underlined by [64], some patterns are not observed in the data,
which makes counterfactual studies (e.g. if the price of meat rose, would people
consume less?) impossible. This is where the predictive capabilities of (su-
pervised) machine learning models can help. Indeed, a machine learning
algorithm will try, with more or less success, to generalize the training sam-
ples it saw. Numerous subsequent papers [45, 71, 4] also advocated for the
use of machine learning models to interpret data.

Unlike data, models can be queried on instances that never happened. In
this sense, the model becomes the source of knowledge. One can question
the validity of this approach, we address this point in this chapter through
the lens of Solomonoff’s theory of inductive inference.

41



5. Data interpretability

5.1.1 Model interpretability

Interpretable Machine Learning [44, 24] is a field that received a growing
interest from the community throughout the last years.

Interpretability Interpretability was defined in [43] as the degree to which
a human can understand the cause of a decision. This definition does not lift
the veil on the meaning of understand. Furthermore, it invokes causality.
Here, we suppose that the observed variable depends on the explanatory
features given as input to the model, thus that the model learns a conditional
distribution.

Categorizations

Several categorizations exist for model interpretability techniques [44].

Intrinsic vs post-hoc For example, intrinsic methods rely on using sim-
ple models that are already fairly interpretable, like linear regressions or
small number of rules. Intrinsic methods will typically enforce a low model
complexity through the use of regularization for linear models (e.g. using
Lasso [63] for sparsity) or by limiting the depth of decision trees. On the
other hand, post-hoc methods do not modify how the model is trained,
even if they may use the model structure.

Model-specific vs model-agnostic Model-specific methods make use of the
specific model that is being used whereas model-agnostic methods just use
the fact that the model supports a training and an evaluation method. The
former treat the model as a so-called white box while the latter are often
referred to as black box methods.

Scope of explanation The scope of interpretability is an important char-
acteristic: it lies on a spectrum, ranging from the local level (the method
explains a single prediction) to the global level (the method allows to under-
stand the model as a whole).

Explanation format Finally, the different interpretability techniques are
categorized by how they present their results. Note that these categories
are not mutually exclusive. For example, a (kernel) SVM will provide sup-
port vectors that are both model-specific but also prototypes.

Model internals The most flexible methods, that are obviously model-specific,
report the model internals. Examples are the coefficients of generalized
linear models, or visualization of convolutional neural network filters [70].

42



5.1. From model interpretability to data interpretability

Deep learning also popularized some architectures that compute some nor-
malized multiplicative weights in a mechanism called attention. The values
of these coefficients can also be used as part of a model interpretability pro-
cess [58].

Feature statistic Other methods propose some feature statistic or summary.
They include methods that provide individual or group feature importance.
Some of these methods offer visualizations of the statistics they compute.

Prototypes and counterfactuals Finally, a whole class of methods output data
points from the same space as the input. These methods are either prototype
based (they explain the model with some typical examples) or counterfactual
(they explain specific predictions with inputs that look similar but obtain
different outputs).

5.1.2 Shapley values for feature importance

In this section, we describe a very popular approach to model interpretabil-
ity.

Shapley values

Shapley values come from the field of economics, where they were intro-
duced by Lloyd Shapley [59].

Let us consider a finite set N of elements we call players and a function
f : 2N → R such that f ({}) = 0 that we call the value or characteristic
function. Together, these objects define a coalitional game.

This game can be interpreted as follows: for any subset S ⊂ N, f (S) is the
value of this subset and models the payoff that the members of S can expect
when working together.

Economists are interested in allocating a value φi, to each player, and make
this value satisfy some axioms.

Efficiency The sum of all attributions is equal to the value of the total
coalition:

∑
i

φi = f (N)

This axiom has a practical interest when redistributing physical payoffs as it
balances the earnings and payouts.

Symmetry or Anonymity The identity of players is not taken into account,
that is, two identically performing actors will receive the same value.
If for all S ⊂ N such that i /∈ S, j /∈ S, f (S ∪ {i}) = f (S ∪ {j}) then φi = φj.

43



5. Data interpretability

Null effects A player who does not contribute gets value 0. If for all S ⊂ N,
f (S ∪ {i}) = f (S), then φi = 0.

Linearity This axiom is the most particular as it involves another game. Let
us consider player values φ′i according to another game on the same set of
players N but using a different value function g, as well as player values φi”
defined for the sum game with value function f + g. Then they must satisfy
for every i ∈ N:

φi” = φi + φ′i

To these axioms, one can add the following:

Monotonicity With the above notations, if for all S ⊂ N such that i /∈ S,

g(S ∪ {i})− g(S) ≥ f (S ∪ {i})− f (S)

then
φ′i ≥ φi

Shapley showed that the four first axioms are sufficient to ensure the exis-
tence and uniqueness of the solution. In fact, one can replace linearity and
null effects with the monotonicity axiom without changing the result [69].

Definition 5.1 The Shapley value is the average across all ordered coalitions of the
marginal contribution of a player to the set of players already in the coalition. It can
be computed as:

φi = ∑
S⊂N,i/∈S

|S|!(|N| − |S| − 1)!
|N|! ( f (S ∪ {i})− f (S))

Shapley feature importance

Shapley values to measure feature importance have been popularized by [40],
although they were already applied before. They named their approach
SHAP for SHapley Additive exPlanations.

The goal is to explain the algorithm prediction ỹ on a single input x. The
players N are the features and the characteristic function is the prediction
for feature subsets. More precisely, it is the prediction of the model when
replacing the missing features with zeros.

Issues There are several issues with this procedure.

44



5.1. From model interpretability to data interpretability

Filling with zeros Replacing inputs with zeros is not always possible or a
good option. For categorical features, there is no such mean value. Even
when inputs are centered, zero can have no meaning, e.g. for a balanced
variable taking the values {−1,+1}. This issue can be mitigated by sam-
pling the missing values over the rest of the dataset, as first suggested (for a
global procedure over the whole dataset) in [9].

Independence However, even sampling missing values supposes that the
features are somewhat independent. As an example, suppose that one
wants to make predictions on individuals from their height and weight.
The procedure above would measure the contribution of weight by compar-
ing a prediction made from both variables with a prediction made with the
height and a fake weight, randomly sampled. In general, height and weight
are strongly correlated but the model will be asked to make predictions on
combinations it has rarely seen in the training set, thus leading to absurd
interpretations.

Categorical dependent variables Finally, the target can be categorical. Then,
what value should be modelled by the characteristic functions? Should it be
the probability of the true class, its logarithm or the last network activation
before the softmax?

5.1.3 Rashōmon effect and solutions

Finally, the largest issue occurring in the above methodology is the so-called
Rashōmon effect [9, 17]. This effect is named after the 1950 Kurosawa film
where the same person is described in contradictory terms by four wit-
nesses. Similarly, different models can fit the data equally well while work-
ing very differently. Thus, [45] fit 10 LASSO regressions on the same dataset
and find strong disparities in the coefficients.

This effect motivates the concepts introduced in [17]: model reliance, model
class reliance and algorithm reliance.

Model reliance Model reliance is the procedure causing the Rashomon ef-
fect: measuring how much a single model relies on a feature is unstable be-
cause it is possible to achieve the same performance in very different ways.

Model class reliance [17] advocate for model class reliance. Model class
reliance is the interval of the reliance values of individual models from a
given class that perform above a baseline threshold. They provide theoretical
guaranties to estimate model class reliance.

45



5. Data interpretability

Algorithm reliance Finally, they define as algorithm reliance the proce-
dures that run the model-fitting algorithm multiple times, on different sub-
sets of features. Hence, it does not measure the reliance of a single model
but instead compares the performances of multiple models outputted by the
same learning algorithm.

An example of algorithm reliance is the forward stepwise method described
in [18]. This procedure starts from an empty set of variables and recursively
adds the variable maximizing the improvement of the error value until all
variables have been selected. Their algorithm is similar to the top-k Shapley
value we propose.

A similar algorithm was used in [12] as a feature selection technique. In-
terestingly, instead of considering the marginal improvement of the metric,
they use a low-order approximation of the Shapley value to choose the vari-
ables they add.

5.2 An (Algorithmic) Information Theory view on vari-
able importance

The choice of models in machine learning is quite unsettling from an episte-
mological point of view as it supposes some congruence between the world
structure (or at least the structure of the patterns appearing in the data) and
the models that have been described by the literature and implemented so
far.

Fortunately, there are seemingly universal tools that free us from any model
choice, at least in theory. We first introduce the reader to the Solomonoff
theory of inductive inference and present some elementary results of algo-
rithmic information theory that justify its relevance for model-agnostic in-
terpretations of data. We then apply a connection with classical information
theory to motivate the use of neural networks to approximate conditional
entropy as a proxy for Kolmogorov complexity.

5.2.1 Introduction to Algorithmic Information Theory

The starting point of AIT is the Church–Turing thesis that supposes the ex-
istence and universality of a concept of computable functions. Using the
existence and practical definition of a universal Turing machine being able
to simulate any other, one is able to associate with any computable function
a minimum program length that will be well defined for a given description
language and equivalent up to an additive constant across all possible im-
plementations of a Turing machine. The Kolmogorov complexity of data x
is defined as the minimum program length K(x) of the computable function
that takes no input and outputs this data.

46



5.2. An (Algorithmic) Information Theory view on variable importance

Thus, Solomonoff’s theory of inductive inference explains observations by
supposing they were generated by the program defining their Kolmogorov
complexity, that is, the smallest program that can produce those observa-
tions.

It is also possible to define a conditional Kolmogorov complexity K(y|x) that
measures the minimum length of a program trying to output y when given
x as input [36]. From now on, y is a categorical variable.

However, Kolmogorov complexity is not computable.

5.2.2 From Algorithmic Information Theory to Machine Learning

In this section, we approach machine learning from the point of view of
Kolmogorov complexity.

Given training and test sets, one would intuitively define the best prediction
by computing the minimal program producing ytrain from xtrain and evaluate
it on xtest. However, nothing guarantees that the program will run correctly.
Also, we did not define any evaluation metric yet that can measure the
success of our operation.

A possible solution is to add some conditions on the output program P by
enforcing that not only P(xtrain) = ytrain, but also that P(xtest) is a valid com-
putation. Hence we see that P also depends on xtest.
To make a comparison with classical machine learning algorithms, if some
categorical feature presents classes that are only present in the testing dataset,
the prediction function will probably raise an error in most implementa-
tions, unless there is a mechanism to catch those exceptions. Such a mecha-
nism would not exist in the shortest program.

Instead, the interesting quantity to be measured is K(ytest|xtrain, ytrain, xtest).
This solves all our problems. First, we do not forget about the training
data that can be used at will. We included xtest in our data so the program
will run correctly on it. Furthermore, trying to output ytest means that if
we cannot find a simple pattern in the training data, we will have to en-
code ytest itself in our program code. Hence, the optimal program will be
a compromise between the predictable and unpredictable components of ytest,
the unpredictable components being the similar to an error. We note the
predictable component M and the error component E.

K(ytest|xtrain, ytrain, xtest) ≈ M + E

Here, we see a connection to model selection. Since K(ytest|xtrain, ytrain, xtest)
is an absolute lower bound on any function that can output ytest from xtrain,
ytrain, xtest, it applies to machine learning models. Criterion like AIC or BIC

47



5. Data interpretability

try to minimize not only the model error but the sum of the error and an
estimate of the model size with a similar decomposition in a model size and
an error. Furthermore, cross-entropy loss encodes exactly the additional
quantity of information needed to correctly decode ytest from the model
output. Note that in this case, the model can even be trained on ytest but just
does not have access to it at inference time.

Hence, we argue that summing the cross-entropy of a machine learning clas-
sifier and its size is an effective upper bound on the conditional Kolmogorov
complexity.

This result is not surprising, as compression programs have been used for
years as proxies to measure Kolmogorov complexity [11] and there are now
programs applying deep learning to lossless compression [5].

Note that the same reasoning would not hold for regression tasks: neural
networks do not consider floating-point representations as bit strings but as
real values. Thus, the Hamming distance between the binary representation
of 4 and 4.321 is 8 whereas the distance between 4 and 32 is 2. Values
that would yield a better approximation in the space of real numbers often
perform worse when looking at them from the point of view of information
theory.

5.2.3 Forgetting model size: the case for out-of-sample estimates
of conditional entropy

However, deep learning is most successful with overparametrized mod-
els [15], which compromises the use of regularization on model sizes. Here
we argue that simply measuring the generalization loss of classifiers gives a
meaningful quantity.

Supposing that we can vary the length of the testing set, because we have
virtually infinitely many samples, we now suppose that the test set is infinite
and consider the n first items: (xtest:n, ytest:n)

From the above intuition, M should not augment with n when n becomes
large enough because it is a pattern common to all of the data, whereas E(n)
depends on n. Furthermore, E(n) being unpredictable, it should increase
linearly. But because Kolmogorov complexity is bounded by linear functions
of the length, it cannot increase more than linearly. Thus, we write:

K(ytest:n|xtrain, ytrain, xtest:n) ≈ M + n · E

Hence, the quantity

lim
n→∞

1
n

K(ytest:n|xtrain, ytrain, xtest:n)

48



5.2. An (Algorithmic) Information Theory view on variable importance

is well defined and will converge either to 0 or to some positive quantity
that we identify with the error E.

A classical result in information theory now tells us [26] that

lim
n→∞

1
n

K(ytest:n|xtrain, ytrain, xtest:n) = H(ytest|xtrain, ytrain, xtest) =: E

where (xtest, ytest) are considered as finite-order stationary Markov sources
and H is the (conditional) entropy.

Another classical inequality in AIT is:

K(A|B) . K(A) . K(A|B) + K(B)

Hence, we can eliminate the finite-sized xtrain and ytrain in the Kolmogorov
complexity limit. Similarly, by conditional independence, ytest does not de-
pend on the training set and we can simplify the above to:

lim
n→∞

1
n

K(ytest:n|xtest:n) = H(ytest|xtest) =: E

However, Kolmogorov complexity is not computable in general. We want to
approximate K(ytest|xtrain, ytrain, xtest) with a simpler value. From the previ-
ous computations:

K(ytest:n|xtrain, ytrain, xtest:n) ≈ n · E = n · H(ytest, xtest)

Conditional entropy is frequently mentioned in machine learning as the
lower bound of the cross-entropy H(p, c) of a classifier c(y|x) trying to learn
the true distribution p(y|x):

H(y|x) = −Ep(y|x)[log p(y|x)]
≤ −Ep(y|x)[log c(y|x)]
= H(p(y|x), c(y|x))

Hence, the loss of a classifier is an upper bound for E, the marginal size of
a minimal program reconstructing y from x.

From the previous considerations on Kolmogorov complexity, it makes sense
to use a training set to better approximate E when being given a finite quan-
tity of testing data n, as the expression we want to approximate also has
access to xtrain, ytrain. Therefore, when measuring the test cross-entropy

49



5. Data interpretability

H(p(ytest|xtest), c(ytest|xtrain, ytrain, xtest))

one assumes that the classifier is the result of a training process (xtrain, ytrain)
that produced weights Θ(xtrain, ytrain). Hence, we write

1
n

K(ytest:n|xtrain, ytrain, xtest:n)

≈ 1
n

K(ytest:n|xtest:n)

→ H(ytest|xtest)

≤ H(p(ytest|xtest), cΘ(xtrain,ytrain)(ytest|xtest))

The above inequality has several causes:

1. it is in general impossible to compute the actual value of Kolmogorov
complexity, let alone the shortest program, hence we can only produce
rigorous upper bounds or sketchy approximations like we did

2. c does not learn from ytest (some semi supervised models can learn
from xtest though)

3. the model class c might be too limited and the learning process does
not give an optimal solution Θ

On the other hand, to compensate the both practical and theoretical limita-
tions of the optimization process, we close the gap by cheating and using an
overparametrized model c, far from being the shortest program. This creates
a problem as the M component can grow indefinitely to learn ytest while E
is underestimated (this is called overfitting).
Fortunately, it is possible to ignore any finite (reasonable) model size M by
supposing n→ ∞. Therefore, Θ is produced mainly from the training data,
so that our trainable surrogate c does not try to learn ytest and is more likely
to generalize to an infinite testing. Note that in our experiments, we allow
the model to look at the test data for hyperparameter search.

Hence, we showed how classifiers can provide a reasonable proxy for Kol-
mogorov complexity through out-of-sample estimates of cross-entropy loss.

5.3 Razor entropy

Our transaction graph objective can be best understood as an instance of a
more general quantity that we define below.

50



5.3. Razor entropy

Definition 5.2 Given two finite sequences ai and bi of length n, we define the
Razor Kolmogorov complexity of a and b as:

RK(a�b) := minz∈{0,1}n K (({ai, bi}[zi])1≤i≤n)

where {ai, bi}[zi] means ai if zi = 0 else bi.

Given two infinite sequences ai and bi, we define the Razor entropy of a and b as:

RH(a�b) := lim
n→∞

1
n

RK(a:n�b:n)

An intuitive way to understand this is to imagine that one tries to output
any sequence of elements of either a or b.

The following theorem motivates the definitions of section 4.3.

Theorem 5.3 When a and b are two sequences of discrete and iid random variables
over a finite set E such that Pr[{a, b} = {i, j}] = pij (they are un-ordered pairs),
the Razor entropy can be computed as:

RH(a�b) := min
q
−∑

i,j
pij log max(qi, qj)

where q is a probability distribution.

Proof We suppose that there is a deterministic function z : E× E → E such
that z(i, j) = z(j, i) ∈ {i, j} and such that RK(a:n�b:n) = K ((z(ai, bi))i). In
other words, we admit that the optimal encoding is deterministic.
We define the distribution of the target z(a, b):

q(z)i = Pr[z(a, b) = i] = ∑
j|z(i,j)=i

pi

Thus, we deduce that the Razor entropy of a and b is the entropy of their
optimal encoding:

RH(a�b) = min
z

H(q(z)) = min
z
−∑

i
q(z)i log q(z)i

Thanks to the properties of cross-entropy, we know that:

H(q(z)) = min
q
−∑

i
q(z)i log qi

where q is any distribution. We develop q(z)i:

H(q(z)) = min
q
−∑

i,j
pij log qz(i,j)

51



5. Data interpretability

We can plug this in the first expression, and remember that z(i, j) ∈ {i, j}:

RH(a�b) = min
z

H(q(z))

= min
z

min
q
−∑

i,j
pij log qz(i,j)

= min
q

min
z
−∑

i,j
pij log qz(i,j)

= min
q
−∑

i,j
pij log max(qi, qj)

�

Furthermore, one can make use of additional data and replace the proba-
bility, entropy and complexity with their conditional counterpart without
changing the proof. It is also possible to make the pairs {a, b} ordered, and
even use different sets for the values of a and b since our definitions are
oblivious to the chosen encoding.

Two particular cases that are not covered by our theory are the conditioning
on zi, the Boolean choice that makes sense only for ordered pairs, and on
{ai, bi}[¬zi], the variable that is not predicted. We conjecture that Theorem
5.3 still applies in this case and leave the verification for future works.

5.4 A novel cost-sharing rule

In this section, we present a cost-sharing rule that has similar properties
to the Shapley value but is easier to compute in games that have certain
properties.

5.4.1 Top-k efficiency

From the 4 axioms characterizing Shapley values uniquely (efficiency, sym-
metry, null effects and linearity), we remove the linearity. Indeed, when we
only consider one game, linearity does not apply. Instead, we consider a
new rule.

Top-k efficiency For any coalition size k, the maximal value of a coalition
must be equal to the sum of the k largest contributions. In other terms, for
every 0 ≤ k ≤ |N|

max
S⊂N,|S|=k

f (S) =
|N|

∑
i=|N|−k+1

φ(i)

where φ(1) ≤ φ(2) ≤ · · · ≤ φ(|N|) is the order statistic of φi. Such a set S is
called top-k efficient.

52



5.4. A novel cost-sharing rule

Remark 5.4 Top-k efficiency implies efficiency (take k = |N|).

Remark 5.5 A cost-sharing rule verifies top-k efficiency if and only if there is a
permutation of the players such that for every 0 ≤ k ≤ |N|, {1, 2, · · · , k} has the
highest value among all coalitions of size k.

Thus, this axiom appears to make strong suppositions on the game. We will
see that a relaxed version of top-k efficiency can be satisfied by a wide and
natural class of games.

5.4.2 Submodular games

We are particularly interested in games with a submodular characteristic
function.

Definition 5.6 A submodular set function is a function f : 2N → R such that for
every X ⊂ N, and every x1, x2 /∈ X, we have

f (X ∪ {x1}) + f (X ∪ {x2}) ≥ f (X ∪ {x1, x2}) + f (X)

Submodular set functions occur in various real-world problems are they
formalize the concept of diminishing returns. A common example is the
coverage problem. They also possess an interesting property:

Proposition 5.7 Maximizing a monotone submodular function subject to a car-
dinality constraint can be done with a 1− 1

e approximation factor with a greedy
algorithm.

Proof See [47]. �

Remark 5.8 The greedy algorithm is oblivious to the cardinality constraint.

5.4.3 Top-k Shapley values

The consequence of Proposition 5.7 is that submodular games can verify a
relaxed version of top-k efficiency.

Relaxed top-k efficiency For every 0 ≤ k ≤ |N|

(
1− 1

e

)
max

S⊂N,|S|=k
f (S) ≤

|N|

∑
i=|N|−k+1

φ(i)

53



5. Data interpretability

Definition 5.9 Top-k Shapley values. The top-k Shapley values φi are defined re-
cursively along with an ordering σ in the following way:

σ(N) = arg maxi f ({i})
φσ(N) = f ({σ(N)})
σ(k) = arg maxi f ({σ(N), σ(N − 1), · · · , σ(k + 1)} ∪ {i})

− f ({σ(N), σ(N − 1), · · · , σ(k + 1)})
φσ(k) = f ({σ(N), σ(N − 1), · · · , σ(k)})

− f ({σ(N), σ(N − 1), · · · , σ(k + 1)})

Ties are resolved arbitrarily.

Theorem 5.10 In a game with a monotone submodular characteristic function,
top-k Shapley values are a cost-sharing rule satisfying efficiency, symmetry, null
effects and relaxed top-k efficiency.

Proof This follows directly from Proposition 5.7. �

Theorem 5.11 Top-k Shapley values can be computed in O(|N|2) evaluations of
f .

Proof Definition 5.9 defines a greedy algorithm. |N| values have to be com-
puted and each value is a max over O(|N|) terms, each of which requires a
constant number of function evaluations. Hence the total number of func-
tion evaluations is O(|N|2). �

5.5 Applying top-k Shapley values to data interpretabil-
ity

In this section, we apply the previously defined top-k Shapley values to the
unsupervised objective defined in section 4.3.

As a reminder, we model edges (a, b) with a context c to maximize the log
likelihood:

max
θ,direction

1
n ∑

i
log fθ(yi, ci)[xi]

where xi, yi = bi, ai if directioni else ai, bi.

Hence, we define the set of players N as the features contained in c. For any
S ⊂ N, we note c|S the restriction of c to the features contained in S (and
ci|S the value of c|S for the i-th item) and use the following empirical value
function f (not to be confused with the model fΘ):

f (S) := − max
θ,direction

1
n ∑

i
log fθ(yi, ci|S)[xi] + C

54



5.5. Applying top-k Shapley values to data interpretability

Note the minus sign, as f the likelihood is a decreasing function. C is a
normalization constant to ensure f ({}) = 0.

As justified in the previous section, the average is made over the testing set
while Θ is the result of a learning algorithm on the training set.

Remark 5.12 Our unsupervised objective is not a cross-entropy of actual variables.
However, it can be understood as approximating the Kolmogorov complexity of y
given x where x and y represent a and b swapped to make the result as small as
possible.

Lemma 5.13 Conditional entropy gains are not submodular, as stated in remark
13 of [31].

Proof We give a simpler proof for discrete random variables here: let us con-
sider 2 random bits b1, b2 and b3 = b1⊕ b2. H(b3) = H(b3|b2) = H(b3|b1) = 1
and H(b3|b1, b2) = 0. Hence, H(b3|b1, b2) − H(b3|b1) < H(b3|b2) − H(b3),
that is b2 helps more when combined with b1 than alone. �

Hence, the theoretical guarantees of top-k Shapley values generally do not
hold in this setting. However, the absence of provable submodularity should
not be viewed as an obstacle to the use of top-k Shapley values, for two
reasons:

1. Human decision makers sometimes unconsciously apply strategies that
work best when the rewards follow a law of diminishing returns (sub-
modularity) [32]. This shows that submodularity is consistent with
human intuition and should help in simplifying interpretation.

2. Even when the reward function is not submodular but is either ap-
proximated by a submodular function [46] or satisfies a weakened
form of submodularity [13], greedy algorithms still achieve constant
factor approximation. This approach is taken by [27] that performs
greedy feature selection by optimizing the R2 statistic, which satisfies
a weakened form of submodularity.

We define h(S) as the test loss of a model taking features from S as input.
Since h is a decreasing function (in theory) and we want to ensure f ({}) = 0,
we define f (S) := h({}) − h(S). Furthermore, as our estimation is very
noisy because of the small dataset size, we average the test values over 5
runs.

55



5. Data interpretability

Order Feature φ

1 Entity 0.858
2 Product 0.143
2 Dealer spread 0.011
4 Price 0.010
5 Notional 0.023
6 Time 0.000
7 Direction 0.004
8 Day -0.003
9 Market price -0.028

We observe that φ globally decreases, although some error exists as we use
experimental values.

It is also possible to draw all marginal improvements that were computed,
i.e. the values of f (S∪ {i})− f (S) for all S that are top-k efficient and i /∈ S.
We report the results in Figure 5.1.

Obviously, the choosing entity is the most important feature, as different
dealers trade differently. The product is second, as dealers specialize in
different products.

Dealer spreads come third, which is coherent with the findings of [16].
Dealer preferences change over time and spreads are correlated with how
close a sample is to our testing set, hence one could argue that dealer spreads
are indirectly correlated with dealer choice, being a mere proxy for time.
However, one can notice that price comes just after, with a very similar top-
k Shapley value, even though it contains less temporal information. This
suggests that both dealer spreads and prices are directly useful to the pre-
diction and not an artifact of our temporal splitting.

It is particularly interesting to note that the market price is not taken into
account at this point and has a very low importance. It means that the price
information merely reflects market trends and not a difference with a ”fair”
price. The marginal contribution of notional grows after learning the price,
which is hard to explain other than by spurious correlations. Finally, the
top-k Shapley values of subsequent features are much less and much closer
to being noise.

56



5.5. Applying top-k Shapley values to data interpretability

Figure 5.1: Marginal gains of test loss for each feature. Each feature is associated a different
curve displaying its improvement over one of the top-k efficient subsets for all values of k.

57





Chapter 6

Improvements to node2vec

A possible extension of our model would process a recent history of trans-
actions, including those done with non-dealer entities, for example using
recurrent neural networks instead of multilayer perceptrons. This could al-
low to better explore intermediation on the OTC market [35].

However, non-dealers trade infrequently, which can hinder the learning pro-
cess. We propose to use node2vec embeddings as a feature. The graph would
have tens of thousands of nodes, which could be challenging if it was not
sparse.

In this chapter, we describe improvements we made to the node2vec algo-
rithm [23] to make it more scalable for large graphs. First, we explain the
original node2vec algorithm. Then, we present our improved neighbor sam-
pling algorithm. Finally, we describe our implementation.

6.1 Node2vec

Node2vec is a common technique used to produce low-dimensional repre-
sentations of nodes in a directed or undirected graph. The idea of node2vec
is that a node should be embedded similarly to its neighborhood. The neigh-
borhood of a node is defined by using random walks. Given these random
walks, one can apply the word2vec algorithm [42] to compute representations
that try to maximize a negative sampling version of Skip-gram.

Skip-gram

Given a sequence of words w1, w2, · · · , wT, and a window size c that defines
the context, the objective is to maximize

∑
s

s+c

∑
t=s−c

log p(wt|ws)

59



6. Improvements to node2vec

Negative sampling

An obvious parametric model for p(wt|ws) would be

p(wt|ws) ∼ exp(vws · vwt)

However, the computation of the normalization constant is not usually tractable.
Therefore, the alternative chosen by word2vec is to train a binary classifier
distinguishing ws from words coming from a noise distribution D. The noise
distribution is usually the unigram distribution raised to the power 0.75.
The formula is the following:

log p(wt|ws) ≈ log σ(vws · vwt)−Ew∼D [log σ(−vws · vw)]

The expectation is approximated with a constant number of samples, e.g. 5.

6.2 Improved neighbor sampling

6.2.1 Biased walks sampling

To formulate node embeddings in a graph as word embeddings in sentences,
one uses random walks. Node2vec uses second-order Markov chains.

Starting from a node, one produces a random walk by repeatedly sampling
a neighbor of the last visited node. The walk is biased using two parameters
p and q.

Supposing we just traversed the edge (t, v), and are taking a decision in v,
we assign a transition probability to (v, x) that is proportional to weight(v, x) ·
α(t, x). weight(v, x) is the weight of this edge and

α(t, x) =


1
p if t = x

1 if dist(x, t) = 1
1
q if dist(x, t) = 2

The problem of the above approach is that the transition probabilities de-
pend on the two last visited nodes. The authors suggest to store them for
every such pair first, which approximately multiplies the space complexity
by the average degree d̄. In that case, it is possible to sample in O(1) using
the alias method [65].

Without additional space, it is still possible to compute the probabilities on
the fly in O(d̄) by merging sorted adjacency lists. We remark that in most
use cases, the model is trained for a small number of epochs, and thus this
sampling method should be preferred.

60



6.2. Improved neighbor sampling

Figure 6.1: We just traversed the edge (t, v), and are taking a decision in v. Depending on the
values of p and q, one is more likely to go back or forward.

6.2.2 Rejection sampling

Instead, we propose a method based on rejection sampling. Rejection sam-
pling can be stated formally by the following lemma.

Lemma 6.1 Given a discrete probability distribution Pr[X = i] = pi, a sampling
function f for this distribution, the ability to sample uniform random variables
in constant time and weights 0 ≤ wi ≤ 1, one can sample from a distribution
Pr[X = i] ∼ pi · wi in O

(
1

Ei∼pi [1−wi ]

)
expected calls to f .

Proof The following procedure works:

• draw a sample i using f

• draw a uniform random variable r ∈ [0, 1]

• if r < wi, return i

• else, repeat

The probability of returning i is proportional to pi · wi, hence the algorithm
is correct. The probability of failure is Ei∼pi [1− wi], the expected success
time is its inverse. Figure 6.2 summarizes the situation in a graphical way.�

6.2.3 Application

We want to compute the next neighbor after visiting edge (t, v). To apply
rejection sampling, we take px ∼ weight(x, v) where pi was defined in the
previous section and weight denotes possible graph weights that may be
oriented. In an unbiased graph, weight(v, x) = 1 for all neighbors x, and
px = 1

deg(v) for normalization. We also choose wx = α(t, x). Thus, px · wx =

weight(v, x) · α(t, x).

This procedure uses a linear time and space preprocessing that computes
the normalized first-order transition probabilities from each node.

61



6. Improvements to node2vec

p

w

Figure 6.2: The algorithm first chooses a green bar i according to the discrete distribution p,
then compares its height wi with r and returns i or fails accordingly. The green area is the
success area, the red area represents failure.

To evaluate the time complexity, we consider that sampling a neighbor can
be done in constant time (using the alias method). Computing wx = α(t, x)
is a bit more costly, as one has to test whether x is a neighbor of t. This can
be done in O(log deg(t)) using binary search on sorted adjacency lists.

Finally, rejection happens with a probability at most β = max {a/b|a, b ∈ {1, p, q}}.
For typical values of p and q reported in the paper, β < 4 and can be con-
sidered constant.

Thus, we apply a O(n log n) preprocessing and can sample in expected
O(log D) time with D the maximum degree.

6.3 Implementation

We implemented our modified node2vec sampling in Python.

JIT compilation

Generating the walks is time consuming as it uses loops that are slow in
Python. We used numba [33], a jit compiler. We store the graph using its
adjacency matrix in compressed sparse row format.

We achieve performances such that the walk generation is unnoticeable
when used to feed the word2vec training.

62



6.3. Implementation

Word2vec

We used the word2vec implementation provided by the gensim package [54].
This implementation is widely used and tested and supports parallelization.

We exploited inheritance to produce a class that calls our random walks
generation function from the parallel sections of the gensim code. Thus,
when using parallelization, each thread will generate its own random walks.
This avoids having to allocate processes separately for the walk generation
and word2vec training.

Difference with the original implementation

Because of the limitations of their pure Python implementation of the walk
generation, the authors of the paper suggest to pre-compute and store the
random walks. This uses considerable storage: when computing 20 walks
per node, each of length 100 (values taken from their paper), the user ef-
fectively stores 2000 times each node. Furthermore, as they noted, their
algorithm is biased by the choice of walks.

Unlike the original implementation, we do not use pre-computed walks. In-
stead, each iteration of the word2vec training will generate one new walk
per starting node. This choice improves both the storage use and the con-
vergence of the algorithm.

63





Chapter 7

Conclusion

In this work, we aimed to study the dynamics of counterpart choice on the
over-the-counter market. We cleaned and used a dataset of credit default
swap transactions containing information about central clearing.

We first used this dataset to model the initial margins on portfolios con-
sisting of multiple products. Our analysis showed that the data quality is
insufficient to infer the dynamics of initial margin requirements by central
counterparts.

Then, we questioned the choice of counterparts on the interdealer market.
We derived a semi-supervised likelihood function for transaction data that
can effectively be used to train end-to-end differentiable models. We trained
deep learning models on our dataset, providing experimental evidence that
our objective captures meaningful information and produces interpretable
embeddings of categorical edge and node features.

On the theoretical side, we tackled the epistemological question of data in-
terpretability and motivated the application of conditional cross-entropy to
study real world data through the lens of algorithmic information theory, as
well as the use of neural networks to measure it.

Borrowing ideas from algorithmic information theory, we defined the Razor
entropy, a principled measure of information for pairs of variable. We proved
that its formula matches the likelihood function we used on our transaction
dataset.

Finally, we applied game theory to create a new method of payoff distribu-
tion that provides unique properties for games with monotone submodular
characteristic functions. Our top-k Shapley values can be used to model the
algorithm reliance on each explanatory variable. On our dataset, we con-
cluded that dealer choices are mainly motivated by prior structural affinities.
We also confirmed the hypothesis that dealer spread is a factor of differen-

65



7. Conclusion

tiation, albeit the size of our dataset does not allow for precise estimations.

Future work

There are several ways in which our work could be extended.

Our models can be used to study intermediation on the OTC market, by
evaluating recurrent models on a transaction history. As a byproduct of our
work, we produced a more efficient node2vec algorithm and implementation.

Communication and information sharing between dealers could also be re-
searched by using graph neural networks to pass messages between nodes
and observe the algorithm reliance on those connections.

On the theoretical part, we conjecture that theorem 5.3 can be extended as
explained.

We showed that the Razor entropy can be used to learn node and edge rep-
resentations on graph and temporal networks. Further research would be
needed to compare its performance to other methods.

Finally, our protocol applying top-k Shapley value to measure algorithm re-
liance is suitable for numerous use-cases of data interpretation.

66



Appendices

67





Appendix A

Model training code

def train(

processor ,

model ,

loader_train ,

loader_test ,

restrict_choices ,

batch_size ,

patience ,

improvement ,

max_epochs ,

lr ,

progress_bar=True ,

):

optimizer = torch.optim.Adam(

chain(processor.parameters (), model.

parameters ()), lr=lr

)

loss_fn = nn.CrossEntropyLoss(reduction="none")

def eval_direction(data , direction):

X, y, z = processor(direction , *data)

preds = model(X)

if restrict_choices:

preds[torch.arange(len(X)), z] = float("-

inf")

return loss_fn(preds , y)

def eval_loss(data):

return torch.min(eval_direction(data , False),

69



A. Model training code

eval_direction(data , True)).mean()

history = []

best_loss = float("inf")

epochs_since_best = 0

with tqdm(leave=False , disable=not progress_bar)

as pbar:

for epoch in range(max_epochs):

model.train ()

for data in loader_train.iter(batch_size ,

shuffle=True):

optimizer.zero_grad ()

loss = eval_loss(data)

loss.backward ()

optimizer.step()

model.eval()

with torch.no_grad ():

for data in loader_train.iter (0):

loss_train = eval_loss(data)

for data in loader_test.iter (0):

loss_test = eval_loss(data)

history.append(

dict(loss_train=loss_train.item(),

loss_test=loss_test.item() ,)

)

loss = loss_train

epochs_since_best += 1

if loss < improvement * best_loss:

best_loss = loss

epochs_since_best = 0

if epochs_since_best == patience:

break

pbar.update (1)

pbar.set_description("%.04f %.04f" % (

70



loss_train.item(), loss_test.item()))

return history

71





Appendix B

Hyperparameter search code

import optuna

def objective(trial):

processor = Processor(

products=products ,

dealers=dealers ,

entity_direction=trial.suggest_categorical(

"entity_direction", [False , True]

),

entity_dim=trial.suggest_int(

"entity_dim", 1, len(entities)

),

product_dim=trial.suggest_int(

"product_dim", 1, len(products)

),

day_dim=trial.suggest_int(

"day_dim", 1, 3

),

).to(DEVICE)

nb_layers = trial.suggest_categorical(

"nb_layers", list(range (3))

)

layers = [

trial.suggest_int(

"layer_%i/%i" % (i + 1, nb_layers),

32,

256 if nb_layers == 1 else 128,

73



B. Hyperparameter search code

log=True ,

)

for i in range(nb_layers)

]

if nb_layers > 0:

dropout = trial.suggest_uniform(

"dropout", 0, 0.8

)

else:

dropout = 0

model = MLP(

processor.output_dim ,

*layers ,

processor.n_cp ,

dropout=dropout ,

).to(DEVICE)

use_batch = trial.suggest_categorical(

"use_batch", [False , True]

)

if use_batch:

log_batch_size = trial.suggest_int(

"log_batch_size", 11, 16

)

batch_size = 2 ** log_batch_size

else:

batch_size = 0

history = train(

processor ,

model ,

loader_train ,

loader_test ,

restrict_choices=True ,

lr=trial.suggest_loguniform(

"lr", 1e-4, 1e-2

),

batch_size=batch_size ,

patience =50,

improvement =0.99 ,

max_epochs =10_000 ,

progress_bar=False ,

)

74



return history [-1]["loss_test"]

study = optuna.create_study ()

study.optimize(objective , n_trials =200)

75





Appendix C

Hyperparameter search results

Figure C.1: Entity dimension hyperparameter search. We chose 16.

77



C. Hyperparameter search results

Figure C.2: Product dimension hyperparameter search. We chose 6.

Figure C.3: Day dimension hyperparameter search. We chose 2.

78



Figure C.4: Number of hidden layers hyperparameter search. It motivated the use of perceptrons
with one hidden layer.

Figure C.5: Size of the hidden layer in architectures with 1 hidden layer hyperparameter search.
We chose 50.

79



C. Hyperparameter search results

Figure C.6: Dropout rate hyperparameter search. We chose 0.7.

Figure C.7: Batched optimization hyperparameter search. It shows the advantage of stochastic
gradient descent.

80



Figure C.8: Batch size hyperparameter search. We choose 212.

Figure C.9: Learning rate hyperparameter search. We choose 2 · 10−3.

81





Bibliography

[1] Louis Abraham. fastnode2vec, 2020.

[2] Takuya Akiba, Shotaro Sano, Toshihiko Yanase, Takeru Ohta, and
Masanori Koyama. Optuna: A next-generation hyperparameter op-
timization framework. In Proceedings of the 25th ACM SIGKDD Inter-
national Conference on Knowledge Discovery & Data Mining, pages 2623–
2631, 2019.

[3] Mohammad Al Hasan, Vineet Chaoji, Saeed Salem, and Mohammed
Zaki. Link prediction using supervised learning. In SDM06: workshop
on link analysis, counter-terrorism and security, volume 30, pages 798–805,
2006.

[4] Susan Athey and Guido W Imbens. Machine learning methods that
economists should know about. Annual Review of Economics, 11:685–
725, 2019.

[5] Fabrice Bellard. Lossless data compression with neural networks, 2019.

[6] Yoshua Bengio. Practical recommendations for gradient-based training
of deep architectures. In Neural networks: Tricks of the trade, pages 437–
478. Springer, 2012.

[7] Kenneth Benoit. Linear regression models with logarithmic transfor-
mations. London School of Economics, London, 22(1):23–36, 2011.

[8] James S Bergstra, Rémi Bardenet, Yoshua Bengio, and Balázs Kégl. Al-
gorithms for hyper-parameter optimization. In Advances in neural infor-
mation processing systems, pages 2546–2554, 2011.

[9] Leo Breiman. Random forests. Machine learning, 45(1):5–32, 2001.

83



Bibliography

[10] Estelle Cantillon and Pai-Ling Yin. Competition between exchanges:
Lessons from the battle of the bund. In Atlanta Competitive Advantage
Conference Paper, 2008.

[11] Rudi Cilibrasi and Paul MB Vitányi. Clustering by compression. IEEE
Transactions on Information theory, 51(4):1523–1545, 2005.

[12] Shay B Cohen, Eytan Ruppin, and Gideon Dror. Feature selection based
on the shapley value. In IJCAI, volume 5, pages 665–670, 2005.

[13] Abhimanyu Das and David Kempe. Submodular meets spectral:
Greedy algorithms for subset selection, sparse approximation and dic-
tionary selection. arXiv preprint arXiv:1102.3975, 2011.

[14] Gabrielle Demange and Thibaut Piquard. On the market structure of
central counterparties in the eu. 2020.

[15] Simon S Du, Xiyu Zhai, Barnabas Poczos, and Aarti Singh. Gradient
descent provably optimizes over-parameterized neural networks. arXiv
preprint arXiv:1810.02054, 2018.

[16] Wenxin Du, Salil Gadgil, Michael B Gordy, and Clara Vega. Counter-
party risk and counterparty choice in the credit default swap market.
Available at SSRN 2845567, 2019.

[17] Aaron Fisher, Cynthia Rudin, and Francesca Dominici. All models
are wrong, but many are useful: Learning a variable’s importance by
studying an entire class of prediction models simultaneously. Journal of
Machine Learning Research, 20(177):1–81, 2019.

[18] Muriel Gevrey, Ioannis Dimopoulos, and Sovan Lek. Review and com-
parison of methods to study the contribution of variables in artificial
neural network models. Ecological modelling, 160(3):249–264, 2003.

[19] Liyu Gong and Qiang Cheng. Exploiting edge features for graph neural
networks. In Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, pages 9211–9219, 2019.

[20] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David
Warde-Farley, Sherjil Ozair, Aaron Courville, and Yoshua Bengio. Gen-
erative adversarial nets. In Advances in neural information processing sys-
tems, pages 2672–2680, 2014.

[21] Palash Goyal, Homa Hosseinmardi, Emilio Ferrara, and Aram Gal-
styan. Capturing edge attributes via network embedding. IEEE Trans-
actions on Computational Social Systems, 5(4):907–917, 2018.

84



Bibliography

[22] Palash Goyal, Homa Hosseinmardi, Emilio Ferrara, and Aram Gal-
styan. Embedding networks with edge attributes. In Proceedings of the
29th on Hypertext and Social Media, pages 38–42. 2018.

[23] Aditya Grover and Jure Leskovec. node2vec: Scalable feature learn-
ing for networks. In Proceedings of the 22nd ACM SIGKDD international
conference on Knowledge discovery and data mining, pages 855–864, 2016.

[24] Dominique Guégan et al. A note on the interpretability of machine
learning algorithms. Technical report, Université Panthéon-Sorbonne
(Paris 1), Centre d’Economie de la Sorbonne, 2020.

[25] Cheng Guo and Felix Berkhahn. Entity embeddings of categorical vari-
ables. arXiv preprint arXiv:1604.06737, 2016.

[26] A Kaitchenko. Algorithms for estimating information distance with
application to bioinformatics and linguistics. In Canadian Conference
on Electrical and Computer Engineering 2004 (IEEE Cat. No. 04CH37513),
volume 4, pages 2255–2258. IEEE, 2004.

[27] Rajiv Khanna, Ethan Elenberg, Alexandros G Dimakis, Sahand Negah-
ban, and Joydeep Ghosh. Scalable greedy feature selection via weak
submodularity. arXiv preprint arXiv:1703.02723, 2017.

[28] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic
optimization. arXiv preprint arXiv:1412.6980, 2014.

[29] Thomas N Kipf and Max Welling. Semi-supervised classification with
graph convolutional networks. arXiv preprint arXiv:1609.02907, 2016.

[30] Raymond Knott and Alastair Mills. Modelling risk in central coun-
terparty clearing houses: a review. Bank of England Financial Stability
Review, pages 162–174, 2002.

[31] Andreas Krause, Ajit Singh, and Carlos Guestrin. Near-optimal sen-
sor placements in gaussian processes: Theory, efficient algorithms and
empirical studies. Journal of Machine Learning Research, 9(Feb):235–284,
2008.

[32] Jan Kubanek. Optimal decision making and matching are tied through
diminishing returns. Proceedings of the National Academy of Sciences,
114(32):8499–8504, 2017.

[33] Siu Kwan Lam, Antoine Pitrou, and Stanley Seibert. Numba: A llvm-
based python jit compiler. In Proceedings of the Second Workshop on the
LLVM Compiler Infrastructure in HPC, pages 1–6, 2015.

85



Bibliography

[34] Kai Lei, Meng Qin, Bo Bai, Gong Zhang, and Min Yang. Gcn-gan: A
non-linear temporal link prediction model for weighted dynamic net-
works. In IEEE INFOCOM 2019-IEEE Conference on Computer Communi-
cations, pages 388–396. IEEE, 2019.

[35] Dan Li and Norman Schürhoff. Dealer networks. The Journal of Finance,
74(1):91–144, 2019.

[36] Ming Li, Paul Vitányi, et al. An introduction to Kolmogorov complexity and
its applications, volume 3. Springer, 2008.

[37] Xiaoxiao Li and Joao Saude. Explain graph neural networks to un-
derstand weighted graph features in node classification. arXiv preprint
arXiv:2002.00514, 2020.

[38] David Liben-Nowell and Jon Kleinberg. The link-prediction problem
for social networks. Journal of the American society for information science
and technology, 58(7):1019–1031, 2007.

[39] Jorge A Cruz Lopez, Jeffrey H Harris, Christophe Hurlin, and
Christophe Perignon. Comargin. Journal of Financial and Quantitative
Analysis, 52(5):2183–2215, 2017.

[40] Scott M Lundberg and Su-In Lee. A unified approach to interpreting
model predictions. In Advances in neural information processing systems,
pages 4765–4774, 2017.

[41] David JC MacKay and David JC Mac Kay. Information theory, inference
and learning algorithms. Cambridge university press, 2003.

[42] Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. Effi-
cient estimation of word representations in vector space. arXiv preprint
arXiv:1301.3781, 2013.

[43] Tim Miller. Explanation in artificial intelligence: Insights from the social
sciences. Artificial Intelligence, 267:1–38, 2019.

[44] Christoph Molnar. Interpretable Machine Learning. Lulu. com, 2020.

[45] Sendhil Mullainathan and Jann Spiess. Machine learning: an applied
econometric approach. Journal of Economic Perspectives, 31(2):87–106,
2017.

[46] Mukund Narasimhan and Jeff A Bilmes. Pac-learning bounded tree-
width graphical models. arXiv preprint arXiv:1207.4151, 2012.

86



Bibliography

[47] George L Nemhauser, Laurence A Wolsey, and Marshall L Fisher.
An analysis of approximations for maximizing submodular set func-
tions—i. Mathematical programming, 14(1):265–294, 1978.

[48] Chigozie Nwankpa, Winifred Ijomah, Anthony Gachagan, and Stephen
Marshall. Activation functions: Comparison of trends in practice and
research for deep learning. arXiv preprint arXiv:1811.03378, 2018.

[49] Malgorzata Osiewicz, Linda Fache-Rousova, and Kirsi-Maria Kulmala.

”reporting of derivatives transactions in europe–exploring the potential
of emir micro data against the challenges of aggregation across six trade
repositories.“. BIS Report, 2015.

[50] Yang-Ho Park and Nicole Abruzzo. An empirical analysis of futures
margin changes: determinants and policy implications. Journal of Fi-
nancial Services Research, 49(1):65–100, 2016.

[51] Emanuel Parzen. On estimation of a probability density function and
mode. The annals of mathematical statistics, 33(3):1065–1076, 1962.

[52] Lutz Prechelt. Early stopping-but when? In Neural Networks: Tricks of
the trade, pages 55–69. Springer, 1998.

[53] Sashank J Reddi, Satyen Kale, and Sanjiv Kumar. On the convergence
of adam and beyond. arXiv preprint arXiv:1904.09237, 2019.

[54] Radim Rehurek and Petr Sojka. Gensim—statistical semantics in
python. Retrieved from genism. org, 2011.

[55] Eli M Remolona et al. The recent growth of financial derivative markets.
QUARTERLY REVIEW-FEDERAL RESERVE BANK OF NEW YORK,
17:28–28, 1992.

[56] Murray Rosenblatt et al. Remarks on some nonparametric estimates of
a density function. The Annals of Mathematical Statistics, 27(3):832–837,
1956.

[57] Franco Scarselli, Marco Gori, Ah Chung Tsoi, Markus Hagenbuchner,
and Gabriele Monfardini. The graph neural network model. IEEE Trans-
actions on Neural Networks, 20(1):61–80, 2008.

[58] Sofia Serrano and Noah A Smith. Is attention interpretable? arXiv
preprint arXiv:1906.03731, 2019.

[59] Lloyd S Shapley. A value for n-person games. Contributions to the Theory
of Games, 2(28):307–317, 1953.

87



Bibliography

[60] Uriel Singer, Ido Guy, and Kira Radinsky. Node embedding over tem-
poral graphs. arXiv preprint arXiv:1903.08889, 2019.

[61] Leslie N Smith. A disciplined approach to neural network hyper-
parameters: Part 1–learning rate, batch size, momentum, and weight
decay. arXiv preprint arXiv:1803.09820, 2018.

[62] Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever,
and Ruslan Salakhutdinov. Dropout: a simple way to prevent neu-
ral networks from overfitting. The journal of machine learning research,
15(1):1929–1958, 2014.

[63] Robert Tibshirani. Regression shrinkage and selection via the lasso.
Journal of the Royal Statistical Society: Series B (Methodological), 58(1):267–
288, 1996.

[64] Hal R Varian. Causal inference in economics and marketing. Proceedings
of the National Academy of Sciences, 113(27):7310–7315, 2016.

[65] Alastair J Walker. An efficient method for generating discrete random
variables with general distributions. ACM Transactions on Mathematical
Software (TOMS), 3(3):253–256, 1977.

[66] Hongwei Wang, Jia Wang, Jialin Wang, Miao Zhao, Weinan Zhang,
Fuzheng Zhang, Xing Xie, and Minyi Guo. Graphgan: Graph represen-
tation learning with generative adversarial nets. In Thirty-second AAAI
conference on artificial intelligence, 2018.

[67] Richard White. The pricing and risk management of credit default
swaps, with a focus on the isda model. OpenGamma Quantitative Re-
search, 16, 2013.

[68] Da Xu, Chuanwei Ruan, Evren Korpeoglu, Sushant Kumar, and Kan-
nan Achan. Inductive representation learning on temporal graphs.
arXiv preprint arXiv:2002.07962, 2020.

[69] H Peyton Young. Monotonic solutions of cooperative games. Interna-
tional Journal of Game Theory, 14(2):65–72, 1985.

[70] Matthew D Zeiler and Rob Fergus. Visualizing and understanding con-
volutional networks. In European conference on computer vision, pages
818–833. Springer, 2014.

[71] Qingyuan Zhao and Trevor Hastie. Causal interpretations of black-box
models. Journal of Business & Economic Statistics, pages 1–10, 2019.

88



Bibliography

[72] Siyi Zhu et al. Is there a ”race to the bottom” in central counterparties
competition? Technical report, Netherlands Central Bank, Research
Department, 2011.

89


	Contents
	1 Introduction
	1.1 Context
	1.1.1 OTC derivative markets
	1.1.2 Credit Default Swaps
	1.1.3 Central counterparty clearing
	1.1.4 EMIR reporting

	1.2 Analysis of the central counterparty clearing market
	1.3 Modelling interdealer transactions
	1.4 Other contributions
	1.5 Acknowledgements

	2 EMIR Data
	2.1 Data description
	2.1.1 Collection process
	2.1.2 Data format

	2.2 Data cleaning and augmentation
	2.2.1 Activity report cleaning
	2.2.2 Report merging
	2.2.3 Portfolio linkage

	2.3 Exploration and visualizations
	2.3.1 Comparison of data sources
	2.3.2 Margin flows


	3 Initial Margin prediction
	3.1 Description
	3.2 Related work
	3.2.1 Competition analysis
	3.2.2 Margin estimation

	3.3 Experiments
	3.3.1 Baselines
	3.3.2 Results


	4 Transaction graph modelling
	4.1 Related work
	4.1.1 Counterparty choice
	4.1.2 Graph modelling

	4.2 Motivations
	4.3 An unsupervised objective for transaction graphs
	4.3.1 Notations
	4.3.2 Likelihood function
	4.3.3 Posterior maximization
	4.3.4 Expectation–Maximization

	4.4 Modelling and optimization
	4.4.1 Models
	4.4.2 Optimization
	4.4.3 Validation
	4.4.4 Early stopping
	4.4.5 Dropout

	4.5 Hyperparameter optimization
	4.5.1 Tree-structured Parzen Estimators
	4.5.2 Optuna and define-by-run optimization

	4.6 Results
	4.6.1 Experimental setting
	4.6.2 Training curves
	4.6.3 Hyperparameter importance
	4.6.4 Embeddings


	5 Data interpretability
	5.1 From model interpretability to data interpretability
	5.1.1 Model interpretability
	5.1.2 Shapley values for feature importance
	5.1.3 Rashomon effect and solutions

	5.2 An (Algorithmic) Information Theory view on variable importance
	5.2.1 Introduction to Algorithmic Information Theory
	5.2.2 From Algorithmic Information Theory to Machine Learning
	5.2.3 Forgetting model size: the case for out-of-sample estimates of conditional entropy

	5.3 Razor entropy
	5.4 A novel cost-sharing rule
	5.4.1 Top-k efficiency
	5.4.2 Submodular games
	5.4.3 Top-k Shapley values

	5.5 Applying top-k Shapley values to data interpretability

	6 Improvements to node2vec
	6.1 Node2vec
	6.2 Improved neighbor sampling
	6.2.1 Biased walks sampling
	6.2.2 Rejection sampling
	6.2.3 Application

	6.3 Implementation

	7 Conclusion
	Appendices
	A Model training code
	B Hyperparameter search code
	C Hyperparameter search results
	Bibliography

