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Abstract

A sequential estimator based on the Ensemble Kalman Filter for Data As-

similation of fluid flows is presented in this research work. The main feature

of this estimator is that the Kalman filter update, which relies on the determi-

nation of the Kalman gain, is performed exploiting the algorithmic features of

the numerical solver employed as a model. More precisely, the multilevel res-

olution associated with the multigrid iterative approach for time advancement

is used to generate several low-resolution numerical simulations. These results

are used as ensemble members to determine the correction via Kalman filter,

which is then projected on the high-resolution grid to correct a single simulation

which corresponds to the numerical model. The assessment of the method is

performed via the analysis of one-dimensional and two-dimensional test cases,

using different dynamical equations. The results show an efficient trade-off in

terms of accuracy and computational costs required. In addition, a physical

regularization of the flow, which is not granted by classical KF approaches, is

naturally obtained owing to the multigrid iterative calculations. The algorithm

is also well suited for the analysis of unsteady phenomena and, in particular,

for potential application to in-streaming Data Assimilation techniques.
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1. Introduction

In Computational Fluid Dynamics (CFD), newly developed numerical meth-

ods are generally assessed in terms of accuracy via comparison with experimental

data [1]. In practice, this validation step is far from being trivial since many

sources of error are inevitably introduced in the simulations. First, the partial5

differential equations used to derive the numerical scheme may be restricted to

oversimplified physical models, such as the Boussinesq approximation applied in

thermal convection or the incompressibility condition. Second, the discretiza-

tion process and the use of iterative numerical methods introduce computational

errors in the representation of the flow features [2]. Third, boundary and initial10

conditions are usually very sophisticated in complex applications but detailed a

priori knowledge is insufficiently available. Last, for very high Reynolds number

configurations, turbulence/subgrid-scale modelling must be included in order to

reduce the required computational costs [3]. All of these sources of error exhibit

complex interactions owing to the non-linear nature of the dynamical models15

used in numerical application, such as the Navier-Stokes equations.

The experimental results are also affected by uncertainties and biases. In

many cases, the set-up of the problem can be controlled up to a finite precision

(alignment between the flow and the wind tunnel or immersed bodies, mass flow

rate, . . . ). This kind of uncertainty, which is clearly affecting every physical20

system but cannot be exactly quantified, is usually referred to as epistemic

uncertainty. In addition, experimental results are also affected by the precision

(or bias) of the acquisition and measurement system. Thus, the main difficulty

in the comparison between numerical and experimental results is understanding

how much of the differences observed is due to an actual lack of precision of25

the numerical model, and how much is instead associated to differences in the

set-up of investigation.

One possible strategy to obtain an optimal combination of the knowledge

coming from simulations and experiments is to derive a state estimation which

complies with both sources of information. The degree of precision of such esti-30
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mation is connected with the confidence in the sources of information. This has

the advantage of naturally incorporating uncertainty and bias present in the

sources of information in the analysis. Tools providing such state estimation

are usually included in different disciplines, control theory for state observers

[4], Data Assimilation (DA) [5, 6, 7] for weather prediction, ocean modelling35

and more recently mechanical engineering problems. Essentially, DA methods

combine information issued from two sources: i) a model, which provides a

dynamical description of the phenomenon in the physical domain, ii) a set of

observations, which are usually sparse and/or local in time and space. These

methods are classified in different families according to the way the state estima-40

tion is performed. One of the classical criterion of classification deals with the

operative strategy used to derive the state estimation. Variational approaches

resolve a constrained optimization problem over the parametric space charac-

terizing the model (usually coefficients defining boundary conditions or physical

models). The solution of the variational problem minimizes prescribed error45

norms so that the assimilated model complies with the observation provided

over a specified time window. Methods from this family, which include 3D-Var

and 4D-Var, usually exhibit very high accuracy [8, 9, 10, 11]. However, they are

also affected by several drawbacks. First, the formulation of the adjoint problem

that is introduced to perform the parametric optimization can be difficult, if not50

impossible, when automatic differentiation is not employed. Second, the adjoint

problem is defined backward in time which may lead to numerical difficulties

of resolution related to the unaffordable data storage that is needed, and the

amplification of the adjoint solution that frequently happens when multi-scale

interactions are dominant [5, 8, 12].55

Another family of DA methods is represented by the sequential approaches.

These methods, mostly based on Bayes’ theorem, provide a probabilistic de-

scription of the state estimation. A well-known approach is the Kalman Filter

(KF) [13]. Extensions and generalizations of this method have also been de-

veloped, such that the Extended Kalman Filter (EKF) [14] which is tailored60

for nonlinear systems, and the Ensemble Kalman Filter (EnKF) [6]. This class
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of methods solves the state estimation problem by transporting error covari-

ance matrices of the model and observations. These methods are usually more

flexible than variational approaches (no required computation of first order sen-

sitivities), but the time advancement and update of the covariance matrices are65

prohibitively expensive for large scale problems encountered in practical appli-

cations [15]. One possible strategy is reducing the order of the Kalman filter

[16] or filtering the error covariance matrix. Inspired by a domain localization

procedure, Meldi & Poux [17, 18] proposed a strategy based on an explicit filter

of the error covariance matrix. The application of this estimator to different70

turbulent flows exhibited encouraging results considering the relatively small

increase in computational resources. Another strategy for data assimilation for

engineering applications is the Ensemble Kalman Filter [5, 6, 19], which relies

on a Monte Carlo implementation of the Bayesian update problem. The EnKF

(and follow-up models) was introduced as an extension of the original Kalman75

filter made for high-dimensional systems for which transporting the covariance

matrix is not computationally feasible. EnKF replaces the covariance matrix

by the sample covariance matrix computed from an ensemble of state vectors.

The main advantage of EnKF is that advancing a high-dimensional covariance

matrix is achieved by simply advancing each member of the ensemble. Several80

research works have been reported in the literature in recent years for applica-

tion in fluid mechanics [20, 21, 22]. Statistical convergence is usually obtained

for a typical ensemble size going from 60 to 100 ensemble members [5], which

may still require prohibitive computational resources for realistic applications.

In addition, the state estimation obtained via sequential tools does not nec-85

essarily comply with a model solution i.e., the conservativity of the dynamical

equations of the model is violated. This aspect is a potentially critical issue in

fluid mechanics studies. Violation of conservativity may result in loss of con-

servation of some physical properties of the flow (such as mass conservation or

momentum conservation) as well as in the emergence of non-physical disconti-90

nuities in the flow quantities. The aforementioned issues significantly affect the

precision of the prediction of the flow and may eventually produce irreversible
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instabilities in the time advancement of the dynamical model. A number of

works in the literature have provided advancement in the form of additional

constraints to be included in the state estimation process. Meldi & Poux [17]95

used a recursive procedure and a Lagrangian multiplier (the pressure field) to

impose the zero-divergence condition of the velocity field for incompressible

flows. Other proposals deal with imposing hard constraints in the framework

of an optimization problem [23], ad-hoc augmented observation [24] and gen-

eralized regularization [25]. These approaches are responsible for a significant100

increase in the computational resources required, which is due to augmentation

in size of the state estimation problem or to the optimization process, which

usually needs the calculation of gradients of a cost function.

The investigation of physically constrained sequential state estimation is here

performed using an advanced estimator strategy, which combines an EnKF ap-105

proach and a multigrid method. For this reason, the algorithm will be referred

to as Multigrid Ensemble Kalman Filter (MEnKF). Multigrid methods [26, 2]

are a family of tools which employ multi-level techniques to obtain the time-

advancement of the flow. In particular, the geometric multigrid [27] uses differ-

ent levels of the resolution in the computational grid to obtain the final state.110

The method here proposed exploits algorithmic features of iterative solvers used

in practical CFD applications. The EnKF error covariance matrix reconstruc-

tion is performed using information from a number of ensemble members which

are generated over a coarse level mesh of a multigrid approach. While the main

inspiration of this work deals with the integration of EnKF within the multigrid115

numerical algorithm, this procedure is reminiscent of reduced order / multi-

level applications of EnKF strategy reported in the literature [28, 29, 30, 31].

The state estimation obtained at the coarse level and the associated ensemble

statistics are used to obtain a single solution calculated on a high resolution

mesh grid, similarly to the work by Debreu et al. [32] for variational DA. It120

will be shown that this procedure allows to i) reduce the computational costs

of the EnKF and ii) ensure the conservativity and the smoothness of the final

solution. In addition, owing to the algorithmic structure of the problem, all the
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simulations on the fine and coarse level can be run simultaneously in parallel

calculations, providing a tool able to perform in-streaming DA for unsteady flow125

problems.

The strategy is tested on different configurations, using several physical mod-

els represented by the Burger’s equation and the compressible Euler and Navier-

Stokes equations for one-dimensional and two-dimensional test cases.

The article is structured as follows. In Sec. 2, the sequential DA proce-130

dure is detailed including descriptions of the classical KF and EnKF methods.

The numerical discretization and the multigrid strategy are also presented. In

Sec. 3, the MEnKF algorithm is discussed. In Sec. 4, the MEnKF tool is used

to investigate a one-dimensional case using the Burgers’ equation. In Sec. 5,

a second one-dimensional case is investigated, but in this case the dynamical135

model is represented by a Euler equation. In Sec. 6, we investigate the case of

the two-dimensional compressible Navier-Stokes equations, with application to

the spatially evolving mixing layer. Finally, in Sec. 7 concluding remarks are

drawn.
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2. Sequential data assimilation in fluid dynamics140

In Sec. 2.1, we introduce sequential data assimilation methods starting with

the Kalman filter. In Sec. 2.2, the procedures to transform a general transport

equation into a discretized model usable in sequential DA are described. A brief

description of the multigrid approach employed is also provided.

2.1. Sequential data assimilation145

2.1.1. Kalman filter

The Kalman Filter (KF) provides an estimate of the state of a physical

system at time k (xk), given the initial estimate x0, a set of observations, and

the information of a dynamical model (e.g., first principle equations):

xk =Mk:k−1 (xk−1, θk) + ηk (1)

whereMk:k−1 is a non-linear function1 acting as state-transition model and θk

contains the parameters that affect the state-transition. The term ηk is asso-

ciated with uncertainties in the model prediction which, as discussed before,

could emerge for example from incomplete knowledge of initial / boundary con-

ditions. In the framework of KF applications, these uncertainties are usually

modelled as a zero-mean Gaussian distribution characterized by a variance Qk,

i.e. ηk ∼ N (0,Qk). Indirect observations of xk are available in the components

of the observation vector yo
k. These two variables are related by:

yo
k = Hk(xk) + εok (2)

where Hk is the non-linear observation operator which maps the model state

space to the observed space. The available measurements are also affected by

1Throughout this manuscript, we will use the standard notations employed in data assimi-
lation studies. We will therefore make the difference between Mk:k−1, which is the non-linear
dynamical model, and Mk:k−1, which is its linearized version.
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uncertainties which are assumed to follow a zero-mean Gaussian distribution

characterized by a variance Rk, i.e. εok ∼ N (0,Rk).150

The model and observation errors can be described in first approximation

by Gaussian stochastic processes; therefore the solution can be completely de-

scribed by the first two moments of the state. Following the notation generally

used in DA literature, the forecast/analysis states and error covariances are in-

dicated as x
f/a
k and P

f/a
k , respectively. The error covariance matrix is defined as155

P
f/a
k = E

[(
x

f/a
k − E(x

f/a
k )
)(

x
f/a
k − E(x

f/a
k )
)>]

. In the framework of KF appli-

cations, a linear dynamical model (Mk:k−1 ≡Mk:k−1) and a linear observation

model (Hk ≡ Hk) are considered. Also, a common simplifying hypothesis is

that uncertainties in the model and in the set of observations are uncorrelated.

The estimated state is obtained via a recursive procedure:160

1. A predictor (forecast) phase, where the analysed state of the system at

a previous time-step is used to obtain an a priori estimation of the state

at the current instant. This prediction, which is obtained relying on the

model only, is not conditioned by observation at time k:

xf
k = Mk:k−1x

a
k−1 (3)

Pf
k = Mk:k−1P

a
k−1M

>
k:k−1 + Qk (4)

2. An update (analysis) step, where the state estimation is updated account-165

ing for observation at the time k:

Kk = Pf
kH
>
k

(
HkP

f
kH
>
k + Rk

)−1
(5)

xa
k = xf

k + Kk

(
yo
k −Hkx

f
k

)
(6)

Pa
k = (I −KkHk) Pf

k (7)

The optimal prediction of the state (xa
k) is obtained via the addition to the pre-

dictor estimation (xf
k) of a correction term determined via the so called Kalman

gain Kk. The classical KF algorithm is not suited for direct application to

the analysis of complex flows since the classical KF formulation is developed170
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for linear systems. Applications to non-linear systems can be performed using

more advanced techniques such as the extended Kalman filter [14] or exploiting

features of the numerical algorithms used for numerical discretization [17]. The

canonical Kalman filter is difficult to implement with realistic engineering mod-

els. The matrices Qk and Rk are usually unknown and their behaviour must be175

modelled. One simple, classical simplification is to consider that errors for each

component are completely uncorrelated in space and from other components

i.e. Qk and Rk are considered to be diagonal [33, 34]. Also, KF relies on the

transport of a very large error covariance matrix Pk. It is therefore necessary

to store it but also to invert very large matrices (see (5)).180

2.1.2. Ensemble Kalman filter

The Ensemble Kalman Filter (EnKF) [35, 6] relies on the estimation of

Pk by means of an ensemble. More precisely, the error covariance matrix is

approximated using a finite ensemble of model states of size Ne. If the ensemble

members are generated using stochastic Monte-Carlo sampling, the error in the185

approximation decreases with a rate of
1√
Ne

.

Given an ensemble of forecast/analysed states at a certain instant k, the

ensemble matrix is defined as:

EEE
f/a
k =

[
x

f/a,(1)
k , · · · ,xf/a,(Ne)

k

]
∈ RNx×Ne (8)

To reduce the numerical cost of implementation, the normalized ensemble

anomaly matrix is then specified as:

X
f/a
k =

[
x

f/a,(1)
k − x

f/a
k , · · · ,xf/a,(Ne)

k − x
f/a
k

]

√
Ne − 1

∈ RNx×Ne , (9)

where the ensemble mean x
f/a
k is obtained as:

x
f/a
k =

1

Ne

Ne∑

i=1

x
f/a,(i)
k (10)
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The error covariance matrix P
f/a
k can thus be estimated via the informa-

tion derived from the ensemble. This estimation, hereafter denoted with the

superscript e, can be factorized into:

P
f/a,e
k = X

f/a
k

(
X

f/a
k

)>
∈ RNx×Nx (11)

The goal of the EnKF is to mimic the BLUE (Best Linear Unbiased Es-

timator) analysis of the Kalman filter. For this, Burgers et al. [36] showed

that the observation must be considered as a random variable with an average

corresponding to the observed value and a covariance Rk (the so-called data ran-

domization trick). Therefore, given the discrete observation vector yo
k ∈ RNy at

an instant k, the ensemble of perturbed observations is defined as:

y
o,(i)
k = yo

k + ε
o,(i)
k , with i = 1, · · · , Ne and ε

o,(i)
k ∼ N (0,Rk). (12)

A normalized anomaly matrix of the observations errors is defined as

Eo
k =

1√
Ne − 1

[
ε
o,(1)
k − εok, ε

o,(2)
k − εok, · · · , ε

o,(Ne)
k − εok,

]
∈ RNy×Ne (13)

where εok =
1

Ne

Ne∑

i=1

ε
o,(i)
k .

The covariance matrix of the measurement error can then be estimated as

Re
k = Eo

k (Eo
k)
> ∈ RNy×Ny . (14)

By combining the previous results, we obtain (see [5]) the standard stochastic

EnKF algorithm. The corresponding analysis step consists of updates performed

on each of the ensemble members, as given by

x
a,(i)
k = x

f,(i)
k + Ke

k

(
y

o,(i)
k −Hk

(
x

f,(i)
k

))
(15)
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The expression of the Kalman gain is

Ke
k = Xf

k

(
Yf
k

)> (
Yf
k

(
Yf
k

)>
+ Eo

k (Eo
k)
>
)−1

(16)

where Yf
k = HkX

f
k.

A version of the Ensemble Kalman filter algorithm using the previously

defined anomaly matrices is given in Appendix A.2. This is the version we use190

in our applications.

State-of-the-art approaches based on the EnKF are arguably the most ad-

vanced forms of state estimation available in the field of DA methods. These

techniques have been extensively applied in the last decade in meteorology and

geoscience [5]. Applications in mechanics and engineering are much more recent,195

despite a rapid increase in the number of applications in the literature. Among

those, studies dealing with wildfire propagation [22], combustion [37], turbulence

modeling [21] and hybrid variational-EnKF methods [10] have been reported.

These applications reinforce the idea that approaches based on EnKF have a

high investigative potential despite the highly non-linear, multiscale features of200

the flows studied by the fluid mechanics community.

2.1.3. Dual Ensemble Kalman filter

In this section, we extend the classical EnKF framework presented in Sec. 2.1.2

by considering the case of a parameterized model such as (1). The objective is to

enable the model to generate accurate forecasts. For this, we need to determine205

good estimates of both model state variables xk and parameters θk given erro-

neous observations yo
k. The procedure developed by [38], called dual estimation,

is here employed for this purpose. Two interactive filters are used, the former

for the estimation of the parameters from a guessed state solution, the latter

for the update of the state variables from the estimated previous parameters.210

In the first step of the algorithm, the ensemble of the analysed parameters
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is updated following the classical KF equation:

θ
a,(i)
k = θ

f,(i)
k + Kθ,e

k

(
y

o,(i)
k − y

f,(i)
k

)
with i = 1, · · · , Ne (17)

where y
f,(i)
k = Hk

(
x

f,(i)
k

)
.

The Kalman gain responsible for correcting the parameter trajectories in the

ensemble is obtained as follows:

Kθ,e
k = Θf

k

(
Yf
k

)> (
Yf
k

(
Yf
k

)>
+ Eo

k (Eo
k)
>
)−1

, (18)

where the variable Θf
k plays the same role for the parameters as the variable

Xf
k defined in (9) for the states. We then have:

Θ
f/a
k =

[
θ

f/a,(1)
k − θf/a

k , · · · , θf/a,(Ne)
k − θf/a

k

]

√
Ne − 1

∈ RNθ×Ne (19)

with

θ
f/a
k =

1

Ne

Ne∑

i=1

θ
f/a,(i)
k (20)

Once new values of the model’s parameters are inferred, we can update the

state by EnKF (see Sec. 2.1.2). The Dual Ensemble Kalman filter allows to per-

form a recursive parametric inference / state estimation using the information

from the ensemble members. The algorithm that we use is given in Appendix215

A.3.

2.2. From transport equation to multigrid resolution

The general expression for a conservation equation in local formulation over

a continuous physical domain reads as:

Dx

Dt
=

1

ρ
∇ · σ + f (21)

where D/Dt is the total (or material) derivative of the physical quantity of

investigation x and ρ is the flow density. The divergence operator is indicated as
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∇· while σ is the stress tensor. Finally, f represents the effects of volume forces.

The evolution of the flow is obtained via time advancement of the discretized

solution, which is performed in a physical domain where initial and boundary

conditions are provided. A general expression of the discretized form of (21) for

the time advancement from the step k − 1 to k is given by:

xk = Φkxk−1 + Bkbk (22)

where Φk is the state transition model which includes the discretized information

of (21). In case of non-linear dynamics described by (21), the state-of-the-art

algorithms used for the discretization process are able to preserve the non-linear

information in the product Φkxk−1, up to a discretization error which is usually

proportional to the size of the time step. The term bk represents the control

vector reflecting, for instance, the effect of the boundary conditions. Bk is the

control input model which is applied to the control vector bk. Equation (22) is

consistent with a time explicit discretization of (21). It is well known that this

class of methods, despite the very high accuracy, may exhibit some unfavorable

characteristics for the simulation of complex flows, such as limitations to the

time step according to the Courant-Friedrichs-Lewy (CFL) condition [2]. To

bypass this limitation, one possible alternative consists in using implicit schemes

for time discretization. In this case, the general structure of the discretized

problem is usually cast in the form:

Ψkxk = Ψ̃kxk−1 + B̃kbk := ck (23)

where Ψk, Ψ̃k and B̃k are matrices obtained via the discretization process.

Obviously, considering Φk = Ψ−1
k Ψ̃k, we retrieve (22). However, this manip-

ulation is in practice not performed due to the prohibitive costs associated to220

large scale matrices inversions at each time step. Instead, an iterative procedure

can be used until the residual δn, determined at the n-th iteration, falls below

a pre-selected threshold value ε. In other words, the procedure is stopped when

13



‖δn‖ = ‖Ψkx
n
k − ck‖ < ε. Among the various iterative methods proposed in

the literature, multigrid approaches are extensively used in CFD applications225

[39, 2]. The solution is found on the computational grid by updating an initial

guess via multiple estimations obtained on a hierarchy of discretizations. Two

well-known families of multigrid approaches exist, namely the algebraic multi-

grid method and the geometric multigrid method. With algebraic multigrid

methods, a hierarchy of operators is directly constructed from the state transi-230

tion model Ψ. On the other hand, the geometric multigrid obtains the solution

via a set of operations performed in two (or more) meshes. In this paper, focus

on the latter technique and we consider the simplified case of two grids. There-

after, the variables defined on the fine grid will be denoted with the superscript

F (xF for instance), those defined on the coarse grid will be denoted with the235

superscript C (xC for instance).

The coarse-level representation xC is usually obtained suppressing multiple

mesh elements from the initial fine-level one xF. This operation may be defined

by a coarsening ratio parameter rC, which indicates the total number of elements

on the fine grid over the number of elements conserved in the coarse grid. Among240

the numerous algorithms proposed for geometric multigrid, we use the Full

Approximation Scheme (FAS), which is a well-documented strategy [26, 27]. A

general formulation for a two-grid algorithm is now provided. The time subscript

k is excluded for clarity. The superscript n represents the iteration step of the

procedure.245

1. Starting from an initial solution on the fine grid
(
x0
)F

(which is usually

equal to x at the previous time step k − 1), an iterative procedure is

applied to obtain a first solution
(
x1
)F

. A residual
(
δ1
)F

= cF−ΨF
(
x1
)F

is calculated.

2.
(
x1
)F

and
(
δ1
)F

are projected from the fine grid to the coarse grid space via250

a projection operator ΠC, so that
(
x1
)C

and
(
δ1
)C

are obtained. Similarly,

the state transition model ΨF is projected on the coarse grid (that is re-

estimated based on the projection of the solution of the fine grid onto the

14



coarse grid) to obtain ΨC. Finally, we evaluate cC = ΨC
(
x1
)C

+
(
δ1
)C

.

3. An iterative procedure is employed to obtain
(
x2
)C

on the coarse grid255

using as initial solution
(
x1
)C

.

4. The updated variable on the fine grid is obtained as
(
x2
)F

=
(
x1
)F

+

ΠF

((
x2
)C −

(
x1
)C)

where ΠF is a projection operator from the coarse

grid to the fine grid.

5. At last, the final solution
(
x3
)F

is obtained via a second iterative procedure260

on the fine grid starting from the intermediate solution
(
x2
)F

.

This procedure can be repeated multiple times imposing
(
x0
)F

=
(
x3
)F

at

the beginning of each cycle. When the convergence is reached, the fine grid

solution at time instant k is equal to
(
x3
)F

. In this work, the two projection

operators (ΠF and ΠC) are chosen to be 4-th order Lagrange interpolators.265
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3. Multigrid Ensemble KF method (MEnKF)

Despite the game-changing advantage that EnKF offers for the analysis of

large-scale dynamical systems, the use of a sufficiently large ensemble (usually

60 to 100 members are required for convergence [5]) may still be prohibitive for

advanced applications. In the following, we present an EnKF strategy which270

relies on the generation of the ensemble members on a sub-space (i.e. coarser

mesh) of the original model. To do so, we exploit the multiple levels of reso-

lution naturally used by the multigrid procedure for the time advancement of

the flow. For the classical case of the FAS two-grid multigrid algorithm, which

employs two levels of resolution (coarse and fine), the ensemble members calcu-275

lated on the coarse mesh level are run with a single high-refinement simulation,

which is updated using the coarse mesh assimilation results. For this reason,

the computational costs and the memory storage of the physical variables are

dramatically reduced. For sake of simplicity, the procedure is here detailed just

for the FAS two-grid multigrid algorithm. However, it can be integrated in every280

implementation of a multigrid method. In particular, using more than two reso-

lution levels may allow to generate a larger number of ensemble members on the

coarsest grid level, which would bring a further reduction of the computational

resources required.

The present multigrid-ensemble algorithm here proposed works through the285

steps described below. An overview of the assimilation cycle is presented in

Fig. 1. In the following description, the notation Ψ might hold for both Ψ and

Ψ̃ introduced in (23), depending on the choice of the time integration strategy.

1. First iteration on the fine grid. Starting from an initial solution on

the fine grid
(
xF

k−1

)a
, a forecasted state (xF

k)
f

is obtained by using θa
k as

parameter for the model ΨF, i.e.

(xF

k)
f

=MF

k:k−1

((
xF

k−1

)a
, θa
k

)

2. Projection on the coarse grid. (xF

k)
f

is projected on the coarse grid
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FINE GRID

COARSE GRID

Figure 1: Schematic representation of the Multigrid Ensemble Kalman Filter (MEnKF). Two
different levels of representation (fine and coarse grids) are used to obtain a data-driven fine
grid estimation. The Dual Ensemble Kalman filter procedure is solved in the coarse grid. In
the current implementation, the coarse level dual ensemble is not influenced by the fine grid
simulations. The influence is then only one-directional, from coarse grid to fine grid. The
full algorithm is given in Appendix A.

space via a projection operator ΠC, so that (xC

k)
∗

is obtained, i.e.

(xC

k)
∗

= ΠC

(
(xF

k)
f
)

In this step, the flow field obtained on the fine mesh level can be used to

optimize the behaviour of an ad-hoc model included in the time-marching290

process of the ensemble members to compensate the lack of resolution on

the coarse grid and improve their accuracy. This aspect is discussed in

the following.

3. Time advancement of the ensemble members used in the Dual

EnKF. For each member i of the ensemble, the state matrix (ΨC)
(i)

used295

for the advancement in time on the coarse grid is determined2. The ensem-

2While the advancement model is unique (the Navier-Stokes equations, for example), the
discretization process contained in Ψ is also unique for each member of the ensemble. To
distinguish them, it is therefore necessary to introduce an exponent i in the notations.
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ble forecast (xC

k)
f,(i)

is corrected with the standard Dual EnKF procedure

to obtain (xC

k)
a,(i)

as well as the parameters θ
a,(i)
k . See details in Appendix

A.4, Algo. 4.

4. Determination of the state variables on the coarse grid. This step

provides the update of the physical state of the main simulation on the

coarse grid. This state, which will be referred to as (xC

k)
′
, is obtained by

classical iterative procedures on the coarse grid using the initial solution

(xC

k)
∗

if observations are not available (see step 3 of the FAS algorithm in

Section 2.2). On the other hand, if observations are available, the Kalman

gain matrix (KC

k)
x,e

is used to determine the coarse grid solution (xC

k)
′

through a Kalman filter estimation, i.e.

(xC

k)
′

= (xC

k)
∗

+ (KC

k)
x,e [

(yC

k )
o −HC

k

(
(xC

k)
∗)]

300

5. Final iteration on the fine grid. The initial estimation (xF

k)
′

of the

final iteration of the fine grid state is determined using the results obtained

on the coarse space: (xF

k)
′

= (xF

k)
f
+ ΠF

(
(xC

k)
′
− (xC

k)
∗
)

. The state (xF

k)
a

is obtained from a final iterative procedure starting from (xF

k)
′
.

This algorithm has been specifically conceived to reduce the computational305

costs associated with the classical EnKF approach for large scale problems. For

this, we combine a multigrid framework, frequently encountered in flow solvers,

and a Dual Ensemble Kalman filter. Broadly speaking, our method falls into the

class of multilevel techniques that aim at improving the estimation of statistics

of expensive numerical simulations by considering different levels of resolution310

– in time or in space – of the same set of equations. In multilevel Monte Carlo

applications, a small number of high-resolved solutions is combined with a larger

number of low-resolution data [see 28, 29, 30, 31, for some applications]. In-

stead of considering additional simulation models for the same set of equations

and several resolutions, it is also possible to reduce the variance of Monte Carlo315

methods by considering different sets of equations (surrogate models at differ-
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ent levels of accuracy). This approach, called multifidelity, has recently been

used with POD Galerkin reduced-order models [40]. At this point, it should be

noted that, at the opposite of the classical filtering methods, our algorithm does

not attempt to directly approximate the term E[Mk:k−1((xFk )f , θk)|yo1:k]. The320

specificity of MEnKF is that it is tailored for the simulation of compressible

flows, for which spurious oscillations produced by the KF procedure may be re-

sponsible for irreversible numerical instabilities. For this reason, two important

features must be discussed:

- The recursive structure of the algorithm allows for integration of iterative325

corrections for non-linear systems [42] as well as hard constraints (see the

discussion in the introduction of [23, 24, 25]) to respect the conservativ-

ity of the model equations. However, these corrections may result in an

increase of the computational resources required. Here, the multigrid algo-

rithm itself is used for regularization (i.e. for smoothing the discontinuities330

in the physical variables produced by the update via Kalman Filter) of

the flow. If an intentionally reduced tolerance is imposed in the iterative

steps 4 and 5, the final solution will keep memory of the features of the

state estimation produced in step 3. However, the iterative resolution will

smooth the estimation via the state transition model Ψ, which will per-335

form a natural regularization of the flow. Clearly, if a reduced tolerance is

imposed, the final solution will not necessarily respect the conservativity

constraints of the model equations. However, one can argue that complete

conservativity is not an optimal objective in this case if the model state

at the beginning of the time step is not accurate.340

- The state obtained on the fine grid level could be used to improve the

accuracy of the calculation of the ensemble members via a second nested

EnKF application. This nested cycle should use as observation the sam-

pled data from the fine grid level prediction (variable (xC

k)
∗

in the step 2

of the MEnKF algorithm) to infer the parametric behaviour of an ad-hoc

modelling term γ(i) included in the time advancing model for the ensemble
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members:

(xC

k)
f,(i)

=MC

k:k−1

((
xC

k−1

)a,(i)
, θ

f,(i)
k

)
+ γ(i) (24)

This second, internal EnKF procedure is used only to infer the parametric

description of the terms γ(i) and no modification to the state is performed,

in order to avoid the collapse of the solutions of the ensemble members. A

similar procedure, although not in the framework of multigrid applications,

has been very recently proposed by Brajard et al. [43]. In their work345

the model γ(i) measures the difference between the state obtained using

two models with different accuracy. For application to turbulent flows,

one could envision for example to run a Large Eddy Simulation (LES)

ensemble on the coarse grid level and to use DNS results on the fine grid

level to infer the behaviour of subgrid scale modelling for the LES. In the350

present work, we have chosen to exclude this inner EnKF loop from the

solver i.e. γ(i) = 0 for every ensemble member. This implies that the

results from the coarse grid affect the simulation on the fine grid level,

but not vice versa. This choice has been performed to quantify at first

the accuracy of the MEnKF method in its simplest form. A dedicated355

study, beyond the scope of the present paper, will address this point and

detail more precisely the true potential advantages of allowing the results

obtained on the fine grid level to influence retro-actively the results of

the ensemble members on the coarse grid. Current development about

this aspect and future envisioned applications are further discussed in the360

perspectives included in Sec. 7.

Let us now consider how this choice affects the derivation of the state

matrices for time advancement. In non-linear problems of interest in fluid

mechanics, the state transition matrix Ψ includes information of the multi-

scale interactions that are specific for every case investigated. The simplest365

possible choice, which is the one adopted in this work, is to calculate the

coefficients of the matrices ΨC and (ΨC)
(i)

separately for each simulated
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state. Thus, the similarities between the employed state matrices are

limited to the use of the same discretization schemes / structure of Ψ.

The advantages of our strategy with respect to classical approaches based370

on EnKF may be summarized in the following points:

- The RAM requirement necessary to store theNe ensemble members during

the assimilation is usually moderate. The reduction in computational

costs is driven by Ne and by the size of the coarse variables. To illustrate

this, let us consider the case of a simple two-level geometric multigrid375

approach for a 3D test case with a constant coarsening ratio rC = 4 and a

size of ensembles Ne = 100. Each ensemble member is then described by

43 = 64 times less mesh elements than the single simulation on the fine

grid. If one considers that one main simulation and 100 ensemble members

are run simultaneously, and if the RAM requirement is normalized over380

the main simulation, this implies that RRAM, the non-dimensional RAM

requirement, is equal to 1 + 100/64 = 2.56. In other words, the total

cost in RAM is increased to just 2.56 times the cost of the simulation

without EnKF. For rC = 8, the normalized RAM requirement is RRAM =

1 + 100/83 = 1.195, thus just a 20% increase in RAM requirements. This385

is clearly orders of magnitude more advantageous than a fine-grid classical

EnKF application with Ne = 100, since in this case RRAM = Ne = 100.

- The computational cost relative to the ensemble forecast on the coarse grid

can typically become less important than the cost of the single simulation

retained on the fine grid depending on the rc value. Considering that the390

ensemble members in the coarse grid and the simulation over the fine grid

are running simultaneously, communication times are optimized.

- Owing to the iterative procedures of steps 4 and 5, regularization of the

final solution is naturally obtained.

- The algorithm is here described and tested in the framework of geometric395

multigrid, but it can actually be integrated within other algorithmic struc-
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tures. For iterative methods, the only essential operation to be performed

is the determination of the state transition model ΨC and of the projec-

tions ΠC and ΠF. This implies that the method can be easily extended to

other popular procedures, such as the algebraic multigrid. If the multigrid400

operations are removed, then no regularization is obtained unless specific

corrections are included.

This general algorithm may be easily tailored accounting for the complexity

of the test case investigated, in particular for the requirements of iterative loops

on both the coarse grid level and the fine grid level. The algorithm that we used405

to validate our approach is described in Appendix A.4.
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4. Application: one-dimensional Burgers’ equation

The MEnKF method introduced in Sec. 3 is now applied to the analysis of

different test cases. Several dynamical systems of increasing complexity were

chosen in order to highlight different properties of the algorithm. Also, a set of

different tests is performed in order to obtain a comprehensive validation of the

method. At first, let us consider a 1D Burgers’ equation:

∂u

∂t
+ u

∂u

∂x
=

1

Re

∂2u

∂x2
(25)

where x is the spatial coordinate, u the velocity and Re is the Reynolds number.

Equation (25) is non-dimensionalized with a reference velocity u0 and a reference

length L0. This equation is solved with a second-order centred finite difference

scheme for the space derivatives and a first-order scheme for the time integration

to obtain the general form of discretized representation as given by (23). A

Dirichlet time-varying condition is imposed at the inlet:

u(x = 0, t) = 1 + θ1 sin(2πt+ θ2) (26)

where θ1 and θ2 represent the amplitude and phase of the sinusoidal signal,

respectively. The outlet boundary condition is extrapolated from the nearest

points to the outlet using 4-th order Lagrange polynomials. The initial condition410

is u(x, t = 0) = 1 everywhere in the physical domain. The value of the

Reynolds number is Re = 200. The time advancement step is chosen as ∆t =

0.0002. It is kept constant throughout the simulation. The analysis is performed

over a physical domain of size [0, 10]. The distance between the computational

nodes in the fine mesh is constant and set to ∆x = 0.0125. This choice has415

been performed to discretize the characteristic length L0 = 1 using 80 mesh

elements. This also implies that the total number of nodes employed to perform

the calculation is Nx = 800. A reference simulation is run on the fine grid with

values θ1 = 0.2 for the amplitude and θ2 = 0 for the phase. Thereafter, the

solution obtained by this reference simulation is called the true state or truth.420
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A flow visualization at t = 10 is shown in Fig. 2. For the investigated value of

Reynolds number, the non-linear effects and viscous mechanisms can be clearly

identified. One can see that the initial condition imposed at t = 0 has been

completely advected outside the physical domain. Therefore, the simulation is

no longer affected by the initial condition, and a so-called fully developed flow425

configuration is observed. The state obtained at t = 10 is then used to re-

initialize the reference simulation at t = 0. The solution of this second run is

finally sampled to obtain the set of observations.

Figure 2: Solution of the 1D Burgers’ equation at t = 10 for θ1 = 0.2 and θ2 = 0 (reference
simulation, true state).

Data assimilation is performed in the following conditions:

- The observations are sampled each 30 time steps of the second run on the430

space domain [0, 1] (80 sensors) and on the time window [0, 19]. This time

horizon is long enough for the flow to be fully developed. For simplicity, we

assume that the observations and the coarse-grid ensemble are represented

on the same space. Therefore, Hk ≡ H is a subsampling operator inde-

pendent of time retaining only the points comprised in the coarse space435

domain [0, 1]. The observations are artificially perturbed using a constant

in time Gaussian noise of covariance Rk ≡ R = 0.0025I. This choice has

been performed for every test case following the recommendations of [44],

which extensively investigated the sensitivity of the EnKF to the noise /

uncertainty in the model and in the observation.440
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- The model is chosen to be the discretized version of (25). The numerical

test consists of one main simulation, which is run on the fine grid previ-

ously introduced, and an ensemble of Ne = 100 coarse simulations used

for assimilation purposes. The coefficients θ1 and θ2 are initially assumed

to be described by Gaussian distributions, so that θ1 ∼ N (0,Qθ1) and445

θ2 ∼ N (0.3,Qθ2). The initial value of the covariance of the parameters is

chosen equal to Qθ1(t = 0) = Qθ2(t = 0) = 0.0025. The values prescribed

on the fine grid simulation are the mean values of the Gaussian distribution

i.e. θ1 = 0 and θ2 = 0.3. Random values for the parameters are imposed

at the inlet for each ensemble member on the coarse grid level. The initial450

mean values for the parameters are significantly different when compared

with the values prescribed in the reference simulation, which are θ1 = 0.2

and θ2 = 0. This choice allows to analyse the rate of convergence of the

optimization procedure. The initial condition u(x, t = 0) = 1 is imposed

to the fine-grid and coarse ensemble simulations. Thus, at t = 0, the refer-455

ence simulation exhibits a very different behaviour when compared to the

state imposed on the fine grid and for the ensemble members. This choice

allows to explore the evolution of the first state estimation stages when

the solution of the model could be very different from the observations.

This transient is usually critical for complex flow investigation because it460

can be responsible of numerical instabilities. One can also see that the

main fine grid simulation and the truth are identical in terms of mesh and

numerical schemes, but for the former the parametric description via θ1

and θ2 needs to be optimized using the MEnKF.

The data estimation is performed at regular intervals of 30 time steps for a time465

window of TDA = 19 characteristic times, which encompass roughly 3000 DA

analysis phases. The sensitivity of the parametric inference procedure to the

resolution of the coarse simulations is investigated considering several coarsen-

ing ratios rC = 1, 2, 4, 8, 16. The fine grid is unchanged, so that the MEnKF

is performed using information of progressively coarser grids as rC increases.470
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The interest of this test is to analyse the loss of accuracy of the estimator as rC

increases and to ascertain the potential for efficient trade-off between accuracy

and computational resources required for the estimation process. The perfor-

mance of the estimator is analysed in terms of deviation to the true state, either

by direct comparison or by estimating the Root Mean Square error as defined475

in (27). The developed algorithm is aimed at applications where, usually, an

inexact state of the system is available a priori. Should scatter observations

be integrated in the system through DA methods, the estimation shall progres-

sively converge towards the true state. This implies that the estimator should

undergo a transitional phase as the integrated observations are propagated in480

the entire domain.

The time-evolution of the estimation of θ1 is shown in Fig. 3. Very rapid con-

vergence (t < 2) is observed for rC ≤ 4. In addition, the parameter estimation

is extremely precise (discrepancy lower than 0.01% for rC = 1, lower than 2%

for rC = 4). For higher values of the parameter rC, the estimation of θ1 becomes485

progressively more degraded. For the case rC = 8, θ1 is initially overestimated

and it finally converges to a value of θ1 = 0.194, 3% smaller that the true value.

Larger errors in the optimization of θ1 are observed for rC = 16. In this case,

the optimized amplitude parameter is θ1 = 0.27, which is 35% larger than the

true value.490
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Figure 3: Values of the parameter θ1 for different coarsening ratios rC = 1, 2, 4, 8, 16. In the
zoomed region, the shaded area represents the 95% credible interval for the shown cases.

Similar considerations can be drawn by the analysis of the optimization of the
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parameter θ2, which is shown in Fig. 4. For rC = 1, 2, 4, we obtain an accurate

prediction of the parameter, while a loss in accuracy is observed for the cases

rC = 8, 16. This observation can be justified considering the number of mesh

elements representing one characteristic length L0 for these cases, which are495

10 and 5 for rC = 8 and 16, respectively. Since one complete oscillatory cycle

is performed on average over a characteristic length L0, this means that the

average phase angle between mesh elements is equal to 0.63 radians for rC = 8

and 1.26 radians for rC = 16. Thus, the values observed for the optimization of

θ2 for these two cases, which are around θ2 ≈ 0.15, are significantly lower than500

the uncertainty due to the coarse-level resolution.
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Figure 4: Values of the parameter θ2 for different coarsening ratios rC = 1, 2, 4, 8, 16. In the
zoomed region, the shaded area represents the 95% credible interval for the shown cases.

State estimation results for the case rC = 1 are shown in Fig. 5. This case,

which is performed using the same grid for the coarse and fine mesh level, is

equivalent to a standard Dual EnKF. However, owing to the final multigrid

iterative loop, the final solution is naturally regularized. The results, which are505

shown for t = 1, 3.88, 10.60, show that the estimator successfully represents

the behaviour of the dynamical system. A full domain advective time (i.e. 10

characteristic time units) must be simulated in order to observe the effect of the

MEnKF in the whole domain. In fact, the parametric information imposed at

the inlet for the ensemble members must affect the whole physical domain before510

a reliable correlation between the state variables can be established. However,

once this initial transient is faded, the state estimation almost perfectly captures
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the behaviour of the true state.

Results are now investigated for increasing values of rC. Results for rC = 8

are shown in Fig. 6. Minor differences between the state estimation and the515

true state can be observed in this case. This discrepancy is due to the lack of

resolution of the ensemble members. In fact, the resolution in this case is of 10

mesh elements per characteristic length. This number of points is arguably not

enough to provide an accurate representation of the sinusoidal waves which are

imposed at the inlet. However, one can see that no spurious numerical effects520

are observed as the estimator provides a smooth, continuous prediction of the

velocity. The discrepancy between the true state and the state estimation is

mainly associated with an erroneous calculation of the Kalman gain due to the

under-resolution of the ensemble, which also affects the parameter estimation.

A combined analysis of Fig. 3 and 6 shows that, due to the lack of accuracy in525

the estimation of θ1, the variable u is over-predicted for t < 2 while it is slightly

under-predicted for t > 4.

At last, the case for rC = 16 is shown in Fig. 7. In this case, the mesh

elements are only 5 times smaller than the characteristic length L0. Despite

the important under-resolution of the ensemble members, which severely affects530

the estimation of θ1 and θ2, the state estimation still adequately represents the

main features of the dynamical system.

The discrepancy between the truth and the state estimation is measured via

the time-dependent relative Root Mean Square Error (RMSE), i.e.

RMSE(k) =

√√√√√√√

∫

x

[
(uF

k)
a

(x)− (uF

k)
True

(x)
]2

dx
∫

x

[
(uF

k)
True

(x)
]2

dx

(27)

The results are shown in Fig. 8 for different values of the coarsening ratio rC.

One can see that the error decreases slowly for t < 10. This threshold time

corresponds to a complete advective cycle in the physical domain. After this535

transient, the error may rapidly decrease before reaching a quasi-asymptotic

28



(a) t = 1

(b) t = 3.88

(c) t = 10.60

Figure 5: Estimations obtained by MEnKF for rC = 1 at t = 1 (a), t = 3.88 (b) and t = 10.60
(c). The times are dimensionless. The grey shaded area corresponds to the observation
window.
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(a) t = 1

(b) t = 3.88

(c) t = 10.60

Figure 6: Estimations obtained by MEnKF for rC = 8 at t = 1 (a), t = 3.88 (b) and t = 10.60
(c). The times are dimensionless. The grey shaded area corresponds to the observation
window.
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(a) t = 1

(b) t = 3.88

(c) t = 10.60

Figure 7: Estimations obtained by MEnKF for rC = 16 at t = 1 (a), t = 3.88 (b) and t = 10.60
(c). The times are dimensionless. The grey shaded area corresponds to the observation
window.
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behaviour.

Figure 8: Time evolution of the RMS error of u for rC = 1, 2, 4, 8, 16.

One can also see that, once convergence is reached, the asymptotic RMSE

value decreases with lower rC values, as expected. However, lower rC values

are as well associated with larger computational costs, so that a trade-off be-540

tween accuracy and required resources must be found. This aspect is further

investigated considering the computational resources required to perform a full

assimilation window for a given value of rC. In Fig. 9, results are shown and nor-

malized over the case rC = 1. One can see that the computational resources re-

quired rapidly decrease with increasing rC, even for this simple one-dimensional545

test case. For large values of rC = 8, 16, one can see that the computational

resources reach a plateau. Here the computational time to perform the DA

procedures, which is the same for every rC, is of similar order of magnitude of

the calculation for the time advancement of the ensemble members.

In summary, the present analysis assesses the performance of the MEnKF550

tool for varying mesh resolution of the ensemble members. As expected, the ac-

curacy of the state and parameter estimations diminishes for increasing rC, but

so does the computational cost. In addition, it was observed that the accuracy

significantly drops when the mesh resolution is not able to provide a suitable

description of the main scales characterizing the flow. Such a significant discrep-555
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Figure 9: Computational time required to perform a full assimilation cycle for rC =
1, 2, 4, 8, 16. Results are normalized over the computational time required for rC = 1.

ancy for a relatively simple test case stresses how a minimal resolution threshold

must be achieved in order to capture the essential physical features and to ob-

tain a successful state estimation. In conclusion, the results of the parametric

optimization may become unreliable with extreme under-resolution of the en-

semble members. This finding is not surprising, as a minimum resolution level560

must be granted to capture the main features of the flow. Generally speak-

ing, the level of resolution on the coarse grid must at least respect the Shannon

Sampling Theorem [45], which states that at least two points per wavelength are

necessary to capture the frequency of a given signal. However, this is not suf-

ficient to approximate the function. Schmiechen [46] recommends 6-10 points565

per element for an accurate reconstruction. This threshold should never be

crossed on the coarse grid. The dispersive and diffusive effects of the coarse grid

on the state prediction deserve an in-depth analysis, which is out of the scope

of this work. Here, the discretization schemes used are the same for the fine

and coarse grids. However, one could argue that choosing adapted schemes for570

progressively coarser grids could improve the performance of the estimator.
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5. Acoustic propagation of sinusoidal wave

The MEnKF strategy is now applied to a more complex physical system,

namely the inviscid one-dimensional Euler equations:

∂ρ

∂t
+
∂(ρu)

∂x
= 0 (28)

∂(ρu)

∂t
+
∂((ρu)u)

∂x
+
∂p

∂x
= 0 (29)

∂ (ρE)

∂t
+
∂((ρE)u)

∂x
+
∂(pu)

∂x
= 0 (30)

where ρ is the density, u is the velocity, p is the pressure and E is the total energy

per unit mass. In this case, viscous effects are absent, but acoustic propagation

affects the evolution of the flow. The equations are discretized in space using a

second-order finite difference centred scheme. A first-order explicit Euler scheme

is used for the time integration method. After discretization, a representation

similar to (23) is obtained. A centred sixth-order numerical filter is included to

damp numerical spurious oscillations [47]. We specifically analyse the acoustic

propagation of a sinusoidal wave with a time-varying amplitude. To do so, a

Dirichlet time-varying velocity condition is imposed at the inlet:

u(x = 0, t) = u0 (1 + θ(t) sin(2πfct)) (31)

The value of u0 is set in order to impose an inlet Mach number M = u0

a = 0.4,575

where a is the speed of the sound. The amplitude of variation in θ is sufficiently

low to allow a flow evolution mainly driven by acoustic phenomena. The inlet

velocity perturbation creates an acoustic wave that is transported along the

domain with a speed equal to u0 + a. The characteristic velocity and length

scales are uc = u0 + a and Lc, which is the wavelength of the signal imposed at580

the inlet. The characteristic time of the system is defined as tc = Lc/uc.

The sinusoidal behaviour of the velocity at the inlet is characterized by a

constant frequency fc = 1/tc. However, the amplitude of the sinusoidal wave

is driven by the time-varying parameter θ(t) = θ0

(
1 + sin

(
2π
fc
10
t

))
, where
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θ0 is a constant. At the inlet, we set ρ(x = 0, t) = ρ0 and E(x = 0, t) =585

E0 = e+ 0.5u2
0, where e is the internal energy per unit of mass. By definition,

e = CvT0 where Cv is the heat capacity at constant volume and T0 the initial

temperature of the flow. The outlet boundary condition is extrapolated from

the nearest points to the outlet using 4-th order Lagrange polynomials. The

initial condition imposed at t = 0 is u(x, t = 0) = u0, ρ(x, t = 0) = ρ0 and590

E(x, t = 0) = E0 everywhere in the physical domain and for all the simulations

(fine-grid and coarse-grid ensemble members). The fluid is considered an ideal

gas with Cv = 0.7171, γ = 1.4, ρ0 = 1.17 and T0 = 300 in S.I. units.

The computational domain has been set to a size of Lx = 10. A uniform

mesh distribution is used for every calculation. Similarly to the analysis in595

Sec. 4, 80 mesh elements are used to discretize the characteristic length Lc for

a total of Nx = 800 elements in the domain. Finally, the normalized value of

∆t is set to ∆t = 0.0006.

A preliminary simulation is performed for θ0 = 0.015 (true state). A flow

visualization of the wave patterns is shown in Fig. 10 at t = 17.3. The fully600

developed state obtained at t = 10 is used to initialize a new simulation from

t = 0. This simulation is run for a total time of TDA = 110. As in Sec. 4, the fine

grid data are projected on the coarse grid and sampled to obtain observations

of ρu in the space region x ∈ [0, 1]. These observations are artificially perturbed

using a Gaussian noise of variance R = 0.09I. The observation operator H605

selects the points in the coarse grid where ρu is available.

Figure 10: Solution ρu of the inviscid one-dimensional Euler equations at t = 17.3 for θ0 =
0.015 (true state).
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The DA procedure is identical to the analysis presented in Sec. 4. The as-

similation is composed of the base simulation, which is run on the fine grid, and

Ne = 100 simulations on the coarse-grid level. In this section, only one coarsen-

ing ratio is considered (rC = 4). The estimator is used to dynamically track the610

value of the parameter θ, which evolves in time. No a priori knowledge about

the behaviour of the parameter is used. This time optimization is significantly

more challenging when compared with the inference of a constant parameter

as done in Sec. 4. A similar analysis using a classical Kalman smoother was

recently proposed by Mons et al. [20].615

For each coarse grid simulation of the estimator, θ is initially assumed to

be a random Gaussian phenomenon θ ∼ N (0,Qθ). The initial value of the

covariance is Qθ(t = 0) = 6.4 × 10−5. The value initially imposed at the inlet

of the fine-grid simulation is θ = 0, while random values are selected for each

ensemble member on the coarse grid level following the normal distribution620

introduced above. The variance of the parameter θ for the ensemble members

is artificially increased, as in the classical Dual EnKF algorithm. As described

in Appendix A.3, we add to the estimated parameter of each member of the

ensemble a Gaussian noise of covariance Σθ
k = 10−10I, which is reminiscent of

the strategy used by Moradkhani et al. [38]. Extensive numerical tests have625

been performed and a sensitivity of the results to Σθ
k has been observed. The

value chosen for Σθ
k has been set to avoid the collapse of the ensemble members

over the state estimation while keeping the noise level for θ moderately low.

Let fa be the number of analysis phases per characteristic time of simulation

tc, i.e. fa = tc/ta. In the following, three different values of fa are investigated:630

fa = 2, 10, 55.

The estimator is run for a total simulation time TDA = 110, which encom-

passes 220 to 6000 DA analysis phases, depending on the value of fa. At the

end of each analysis, the mean value and the variance of the amplitude θ are

updated following the Dual EnKF technique [38], similarly to what was done in635

Sec. 4.

The results for the estimation of the time-varying parameter θ are reported
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in Fig. 11. For clarity, only the results for the assimilation window t ∈ [40, 70]

are shown. The precision of the parametric inference is measured via the rela-

tive error η defined as ηk =
θak − θTrue

k

maxk
∣∣θTrue
k

∣∣ . The time evolution of θ is correctly640

estimated for the three values of fa. This is an important result, considering

that no a priori information was provided for the evolution of this parameter.

A more detailed analysis reveals a lag in the parameter estimation. The appli-

cation of a simple Kalman filter seems to be responsible for this result, while a

Kalman Smoother (KS) should have been used to obtain a better synchroniza-645

tion. However, considering that the implementation of a KS is straightforward

in this case and that observation is always provided close to the inlet, we con-

sidered that the increase in computational resources required by the KS was

not needed. We find that the lag increases when a relatively small number of

DA analyses is done. One can see that the prediction is significantly degraded650

for fa = 2, while similar results are obtained for fa = 10, 55. This observation

is quantified by the time evolution of the relative error η, which is significantly

large for fa = 2. In addition, θ tends to be generally underestimated (around

10−20%) when it reaches its maximum value. This result is arguably associated

with the under-resolution of the coarse level of the grid, where the gradients of655

physical variables are calculated with lower accuracy.

Now, results dealing with the state estimation are discussed. The predicted

physical variable ρu, normalized over the initial value ρ0u0, is shown in Fig. 12,

13 and 14 for fa = 2, 10 and 55, respectively. For fa = 2, the state estimation is

significantly distant from the truth. It appears that the field correction applied660

via the Kalman gain is not able to compensate the poor estimation of θ. How-

ever, accurate results are observed for fa = 10 and 55. Even though the value

of the parameter θ is not exact, the state estimation including the correction

via Kalman gain is very precise. For the case fa = 55, almost no discernible

difference is observed between the state estimation and the truth.665
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Figure 11: Time estimation of the parameter θ driving the amplitude of the sinusoidal
acoustic wave for the assimilation window t ∈ [40, 70] . In the top image, results are shown
for fa = 2, 10, 55 and compared to the true value of θ. In the bottom image, the relative
error η quantifying the parametric inference is shown.
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(a) t = 1.23

(b) t = 8.32

(c) t = 16.30

Figure 12: Estimations by MEnKF of the momentum ρu normalized by ρ0u0 for fa = 2 at
t = 1.23 (a), t = 8.32 (b) and t = 16.30 (c). Times are given in tc units. The grey shaded
area corresponds to the observation window.
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(a) t = 1.23

(b) t = 8.32

(c) t = 16.30

Figure 13: Estimations by MEnKF of the momentum ρu normalized by ρ0u0 for fa = 10 at
t = 1.23 (a), t = 8.32 (b) and t = 16.30 (c). Times are given in tc units. The grey shaded
area corresponds to the observation window.
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(a) t = 1.23

(b) t = 8.32

(c) t = 16.30

Figure 14: Estimations by MEnKF of the momentum ρu normalized by ρ0u0 for fa = 55 at
t = 1.23 (a), t = 8.32 (b) and t = 16.30 (c). Times are given in tc units. The grey shaded
area corresponds to the observation window.

41



At last, the relative Root Mean Square Error (RMSE) defined as

RMSE(k) =

√√√√√√√

∫

x

[(
(ρu)

F

k

)a
(x)−

(
(ρu)

F

k

)True
(x)
]2

dx
∫

x

[(
(ρu)

F

k

)True
(x)
]2

dx

(32)

is shown in Fig. 15. The error achieves a quasi-constant asymptotic behaviour

after a complete propagation of the signal in the physical domain (t ≈ 10tc). As

expected, a low global error is obtained for the cases fa = 10 and fa = 55. On

the other hand, the error for fa = 2 case is around 2− 3 times larger. The very

small difference in performance between the cases fa = 10 and fa = 55 can be670

interpreted as a sign of convergence of the procedure. Another interpretation

may be that the leading contribution of the error corresponds to the statisti-

cal error from using only 100 ensemble members in the estimation. We can

however note that similar results were previously observed in three-dimensional

simulations [18].675

Figure 15: Time evolution of the RMS error of ρu for fa = 2, 10, 55.
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6. Spatially evolving compressible mixing layer

In this section, we consider the compressible Navier-Stokes equations in a

two-dimensional physical domain:

∂ρ

∂t
+ div(ρu) = 0 (33)

∂ (ρu)

∂t
+ div(ρu⊗ u) = −grad p+ div τ (34)

∂ (ρE)

∂t
+ div(ρEu) = −div(pu) + div(τu) + div (λ(T )gradT ) (35)

where ρ is the density, u is the velocity (components u in the streamwise direc-

tion and v in the normal direction), p is the pressure, E is the total energy per680

unit of mass, τ is the tensor of the viscous constraints and T is the temperature.

To obtain the representation given by (23), the equations are discretized using

the finite difference method. Second-order centred schemes are used for the

derivatives in space and a first-order scheme for the time integration. A centred

sixth-order numerical filter is included to damp numerical spurious oscillations685

[47].

The two-dimensional spatially evolving mixing layer at Re = 100 is here

investigated. For this value of Reynolds number, the flow exhibits unsteady

features. It can be shown [48, 49] that the characteristics of the mixing layer

are strongly affected by the inlet and, in particular, by imposed ad hoc time690

perturbations. The computational domain has been set to a size of 14Lc ×
6Lc in the streamwise direction x and normal direction y, respectively. The

characteristic length Lc, which is taken as reference length from now on, is

given by Lc = Aδ0, where δ0 is the initial vorticity thickness imposed at the

inlet. The value of the parameter A is set in order to represent the most unstable695

wavelength determined by Linear Stability Theory (LST). At Re = 100, we have

A = 14.132 [50]. The mesh resolution in the horizontal direction is constant for

x ∈ [0; 10]. The size of the elements is ∆x = δ0
8 . For x ≥ 10, a sponge zone is

established with a coarsening ratio between successive elements which increases

from 1.025 to 1.04. The resolution in the normal direction is constant and equal700
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to ∆y = δ0
20 for −0.18 ≤ y ≤ 0.18. Outside this zone, the mesh elements increase

in size moving away from the centreline with a constant coarsening ratio of 1.01.

The Reynolds number of the flow is calculated as Re = (U1 − U2)δ0/ν =

100 with asymptotic velocities set to U1 = 173.61 and U2 = 104.17. These

values correspond to a Mach number Ma = 0.5 and Ma = 0.3, for each stream,

respectively. The kinematic viscosity and thermal diffusivity of the flow are

considered to be constant and their value is fixed to ν = 1.568 × 10−5 and

α = 22.07 × 10−7, respectively. Finally, the flow is considered to be a perfect

gas with γ = 1.4 and Cv = 0.7171. All these quantities are expressed in S.I.

units. The inlet boundary condition is taken from [48]. For the velocity field,

one has:

Uin(y, t) =
U1 + U2

2
+
U1 − U2

2
tanh

(
2y

δ0

)
+UPert(y, t) −3 < y < 3 (36)

Vin(y, t) = 0 (37)

where Uin is the streamwise velocity at the inlet and Vin is the normal velocity.

Uin is estimated as a classical hyperbolic tangent profile plus a time-varying

perturbation component:

UPert(y, t) =

Nin∑

i=1

εi(t)
U1 + U2

2
[fi(y) sin(ωit)], (38)

where Nin is the total number of perturbation modes and εi quantifies the

magnitude of each mode. The function fi(y) = cos

(
4ni

y

δ0

)
h(y) controls the

shape of the perturbation of the inlet velocity profile in the normal direction.705

The role of h(y) = 1 − tanh2

(
2y

δ0

)
is to damp the perturbation component

moving away from the centreline. The wavelength parameters ni are tuned

according to the LST results. In the following, we consider Nin = 1 i.e. the

inlet perturbation consists of a single mode. In the numerical tests, we follow

[48] and set n1 = 0.4π and ω1 = 1/tc, where tc = 2Lc/(U1 + U2) is the average710
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advection time. The inlet density is set to be constant so that ρin = 1.177, as

well as the temperature Tin = 300 in S.I. units. The inlet total energy per unit

mass Ein is calculated as Ein = e + 0.5
(
U2

in + V 2
in

)
, where the internal energy

e is defined as e = CvTin. The outlet boundary conditions for all the variables

present in the state vector are extrapolated from the nearest points to the outlet715

using 4-th order Lagrange polynomials. The zero gradient boundary condition

is imposed on the transverse sides of the domain (at y = −3 and y = 3).

In this section, the parameter θ of the model corresponds to the single param-

eter ε1, which is the time variable governing the amplitude of the perturbation.

A reference simulation is run where ε1 varies in time following a sinusoidal form:720

ε1(t) = ε(1 + sin(ωεt)). The values of the numerical parameters characterizing

the perturbation are ε = 0.15 and ωε = 0.62ω1. At t = 0, the variables of the

fine grid and the coarse grid ensemble are initialized in the physical domain

using the values imposed at the inlet. This implies that the physical quantities

can exhibit initial variations in the y direction, while their value in the stream-725

wise x direction is constant. For the case of the streamwise velocity, the velocity

perturbation UPert = 0 at t = 0, see (38). A flow visualization of ρv at t = 10

is shown in Fig. 16 for this reference simulation. One can clearly observe the

emergence of coherent structures with complex pairing patterns.

Figure 16: Visualization of the normal momentum ρv (S.I. units) for the 2D compressible
Navier-Stokes equation. Reference simulation at t = 10 for a time-varying value of ε1.

The DA procedure is performed using the following elements:730

- The observation is sampled from the reference simulation shown in Fig. 16,

which is run for a total simulation time of TDA = 40 in tc units. This value
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corresponds to four complete advections in the whole physical domain.

A fully developed state obtained from a prior simulation at t = 10 is

used to initialize the simulations at t = 0. Data are projected on the735

coarse grid and sampled every 30 time steps in the region x ∈ [0, 0.55] and

y ∈ [−0.16, 0.16]. Considering the results obtained in Sec. 5, the number

of analysis phases per characteristic time of simulation (fa = 75) is chosen

sufficiently high to assure a good estimation. The observations are made

from the instantaneous fields ρu and ρv. The data used as observation740

are artificially perturbed using a Gaussian noise of covariance R = I. The

observation operator H acts as described in Sec. 5.

- The model is the discretized version of the system given by (33) - (35).

The features of the fine mesh level were previously introduced. For the

coarse grid level, a homogeneous coarsening ratio rC = 4 is employed. The745

initialization strategy used for the coarse ensemble simulations is identical

to the one described above for the fine-grid reference case. We consider

that no prior information is available on the time evolution of ε1. At t = 0,

this coefficient is fixed to be a random Gaussian value ε1 ∼ N (0,Qa) where

the initial value of Qa(t = 0) = 0.0625. Similarly to the cases analysed750

in Sec. 4, the value imposed on the main fine-grid simulation at t = 0 is

ε1 = 0, while random values are imposed for each ensemble member on

the coarse grid level. The size of the ensemble is Ne = 100.

The estimation algorithm is run over a time window equal to TDA = 40

which encompass roughly 3200 DA analysis phases. At the end of each analysis,755

the mean value and the variance of the coefficient ε1 are updated following the

Dual EnKF technique [38], similarly to what was done in Sec. 4 and 5.

The time evolution of the estimated value of ε1 is reported in Fig. 17. The

overall sinusoidal trend is generally respected, although a relatively small phase

lag is visible. This lag does not appear to be larger than the one previously760

observed for the one-dimensional case based on the Euler equation. This lag is

due to the usage of a Kalman Filter approach instead of a Kalman Smoother, as
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discussed in Sec. 5. However, in this case, some over prediction of the parameter

is locally observed in time, which was not obtained for the wave propagation

test case.

10 12 14 16 18 20
t

0.0

0.1

0.2

0.3

0.4

1

Truth MEnKF

(a) Estimation history

17.2 17.4 17.6 17.8 18.0 18.2 18.4 18.6
t

0.0

0.1

0.2

0.3

1

Truth MEnKF

(b) Zoom

Figure 17: Time evolution of the inferred values of ε1 for the time-varying reference case. (a)
Large time window. (b) Zoomed region. The shaded area represents the 95% credible interval
for the estimated parameter.

765

The results obtained for the prediction of the normal momentum ρv are

shown in Fig. 18. One can see that the combination of parameter and state

estimations produces an accurate prediction of the flow. Minor discrepancies are

observed when comparing the state estimation with the true state. In particular,

the momentum ρv does not exhibit spurious oscillations which could stem from770

the field correction determined via the Kalman gain. In order to evaluate the
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respective influence of the parameter estimation step and state estimation phase,

a test case is run in which only the parameter estimation is performed. That

is, the state estimation obtained on the coarse-grid level is not included in the

steps 4 and 5 of the algorithm presented in Sec. 3. While the results of the775

parameter estimation are the same for the two cases, one can see in Fig. 19 that

the prediction is sensibly deteriorated.

This observation is quantified by the evaluation of the relative Root Mean

Square Error (RMSE), defined as:

RMSE(k) =

√√√√√√√

∫

x

[(
(ρv)

F

k

)a
(x)−

(
(ρv)

F

k

)True
(x)
]2

dx
∫

x

[(
(ρv)

F

k

)True
(x)
]2

dx

(39)

The results, which are shown in Fig. 20, indicate that the accuracy of the

complete algorithm is higher when compared to the case in which only the

parameter estimation is performed. Therefore, the two operations concurrently780

provide an improvement in the prediction of the flow.

At last, an analysis of the conservativity of the algorithm is performed. As

previously discussed, the state estimation obtained via EnKF does not necessar-

ily comply with the dynamical equations of the model. This drawback can be

responsible for discontinuities in the physical field, which can significantly affect785

the accuracy and stability of the global algorithm. The analysis is performed

considering an indicator ΓF

k which measures the conservation of the transversal

momentum equation (34) in discretized form:

(
(ρv)

F

k

)a −
(
(ρv)

F

k−1

)a

∆t
−Fρv

(
ρk,uk, pk, τk

)
:= ΓF

k(x, y), (40)

where Fρv represents the spatial discretization terms in the transversal momen-

tum equation. In the forecast step performed via the model, ΓF

k = 0 down to790

a convergence rate δ which is prescribed. However, the value of ΓF

k, at the end

of a time step where a forecast-analysis is performed, is strictly connected with

the computational strategy employed. Here, three scenarios are considered for
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(a) t = 1

(b) t = 5

(c) t = 30

Figure 18: Estimations obtained by MEnKF of the momentum ρv (S.I. units) at the centreline
y = 0 of the mixing layer. Results at t = 1 (a), t = 5 (b) and t = 30 (c) for the time-varying
ε1.
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(a) t = 1

(b) t = 5

(c) t = 30

Figure 19: Estimations obtained by MEnKF of the momentum ρv (S.I. units) at the centreline
y = 0 of the mixing layer. Here, MEnKF is only used to provide the estimation of ε1. Results
at t = 1 (a), t = 5 (b) and t = 30 (c) for the time-varying ε1.
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Figure 20: Time evolution of the RMS error of ρv for the case of a time-varying inlet parameter
ε1. The symbol P.E. corresponds to the case where MEnKF is only used for the estimation
of ε1. The notation MEnKF corresponds to the standard version of the algorithm, including
parameter estimation and physical state correction via Kalman gain.

a simplified case where the amplitude of the inlet-perturbation is assumed to be

constant (ε1 = ct = 0.15):795

- S1: A classical Dual EnKF is performed on the coarse grid and a fine-grid

correction is obtained through the ensemble statistics. In this scenario, the

state estimation obtained in the step 4 of the MEnKF algorithm presented

in Sec. 3 is directly projected in the fine mesh space and used as final

solution. The step 5 of the algorithm is not performed.800

- S2: A standard MEnKF algorithm, as described in Sec. 3.

- S3: A MEnKF algorithm where the ensemble prediction is just used to esti-

mate the unknown parameter of the system. No update of the physical

solution is performed using the correction via Kalman gain.

The results are shown in Fig. 21 after the first forecast / analysis step. For805

clarity, we introduce a normalized criterion (ΓF

k)
∗

=
ΓF
k

ΓC
where ΓC is defined

as maxk

∣∣∣∣
((ρv)Fk)

a−((ρv)Fk−1)
a

∆t

∣∣∣∣. As expected, ΓF

k = 0 everywhere when MEnKF

is only used for the parameter estimation (scenario S3). In this case, the time

advancement of the solution is performed using the model only, which exactly

complies with the discretized equation and respects conservativity (up to a con-810
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(a) Standard Dual EnKF on the coarse mesh.

(b) Standard MEnKF.

(c) MEnKF used only for parameter estimation.

Figure 21: Analysis of the conservativity of the dynamical model via the normalized quantity(
ΓF
k

)∗
. Results are shown for three scenarios: (a) the classical Dual EnKF, (b) the classical

MEnKF algorithm and (c) the MEnKF only used for parameter estimation.
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vergence error which is negligible). On the other hand, results in Fig. 21 (a)

show some lack of conservativity in the physical domain for the first scenario.

This is also expected, since no constraint is imposed to force the Kalman gain

correction to comply with the dynamical equations. Finally, results for the

MEnKF are shown in Fig. 21 (b). The evolution of (ΓF

k)
∗

is very similar to the815

results observed for the first scenario. However, one can clearly see that this

field appears to be sensibly smoothed out by the multigrid iterative procedures

in step 4 and 5 of the MEnKF algorithm. As previously discussed, complete

conservativity starting from an erroneous state at k−1 is possibly not an optimal

objective, while one wants a regularized solution to avoid affecting the preci-820

sion of the global calculation. On this last objective, the MEnKF appears to

provide a better result when compared with the classical Dual EnKF, described

in the first scenario. Considering also that the MEnKF showed better accu-

racy than the algorithm relying on parameter estimation only, one can conclude

that the MEnKF provides an efficient compromise between global accuracy and825

regularization of the solution. In order to draw more information about this

important aspect, the MEnKF algorithm needs to be tested for the simulation

of three-dimensional compressible flows, where the Kalman gain correction may

be responsible for important acoustic phenomena which are not observable in

2D and 1D dynamical systems.830
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7. Conclusions

Solving a data assimilation problem with a sequential approach is strongly

constrained in real configurations by the excessive computational costs of the

methods based on Kalman filters. In this paper, we proposed a strategy, called

Multigrid Ensemble Kalman Filter (MEnKF), that relies on Dual Ensemble835

Kalman filter and targets data assimilation of unsteady fluid flows. This esti-

mator exploits multigrid iterative features which are employed in many CFD

codes for the resolution of complex applications in fluid mechanics. From this

point of view, our method falls into the class of multilevel techniques that aim

at improving the estimation of statistics of expensive numerical simulations by840

considering different levels of resolution of the same set of equations. These

low-resolution solutions are then considered as the members of an EnKF ap-

proach to determine: i) a correction of the numerical model by projection of

the estimation on the high-resolution grid and ii) an optimization of the free

parameters driving the simulation. One of the main advantages of the proposed845

approach is that, owing to the iterative procedure for the calculation of the flow

variables, the final solution is regularized. For turbulent flows, assimilating data

from a coarse grid level to a fine grid level can be conceived as filtering the state

estimation correction so that only the large scale contribution is kept. Classical

turbulence theories such as K41 [51, 52] indicate that the characteristic features850

of the flow are intimately associated with the large scales, while the small scales

exhibit a more universal behaviour. Within this framework, one could envision

that the MEnKF will assimilate the flow dependent information associated with

the large structures and let the model calculate the small scales, which would

arguably exhibit more universal features.855

Our method is assessed via the analysis of one-dimensional and two-dimensional

test cases for different dynamical equations. First, the one-dimensional Burgers

equation at Re = 200 is analysed. Here, the performance of MEnKF is assessed

considering several coarsening ratios rC, which determines the difference in reso-

lution between the main simulation and the ensemble members. The results for860
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rC = 1 (i.e. method equivalent to a classical EnKF) indicate that the State Es-

timation and the parametric optimization of the inlet parameters provide very

high accuracy in the results. With increasing coarsening ratios the quality of

the results is progressively degraded, but the main features of the flow are ob-

tained even for very under-resolved ensemble members. In addition, higher rC865

values are associated with significantly decreased computational costs, so that

this method exhibit a potential to be explored for efficient trade-off between

accuracy and resources required.

Then, MEnKF is used to track the time evolution of a free parameter for the

case of a wave propagation, using a one-dimensional Euler model. Three cases870

are here investigated, varying the time window between successive assimilations.

The estimator can efficiently represent the evolution in time of the parameter, as

well as to provide an accurate state estimation. However, the global prediction

is significantly degraded if the assimilation window is larger than a threshold

value, which is arguably connected to the physical features of the flow.875

At last, the analysis of the two-dimensional spatially evolving mixing layer

at Re = 100 is performed. The algorithm appears to be well suited for the

analysis of unsteady phenomena, in particular for the analysis of time varying

free parameters of the simulation. These features are promising for potential

application to in-streaming Data Assimilation techniques.880

Future research will target improvement of the coarse grain resolution by us-

ing information from the physical state calculated on the fine grid. Preliminary

tests have shown that, in the case of non-linear models, the parameter γ(i) in

(24) can be optimized using data from the fine level of the grid, significantly im-

proving the accuracy of the prediction of the ensemble members. This implies a885

more accurate estimation of the state and of the parameters on the coarse level,

from which the main refined simulation will benefit. This process has the po-

tential to improve even more the performance of the MEnKF model. Strategies

for efficient application are currently under investigation. Moreover, we plan

to test the MEnKF algorithm on more complex configurations involving com-890

plex geometries and more challenging parametric optimization problems. The
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compressible effects are relatively low for the tests performed so far. Further

research is planned on test-cases where the compressible effects are more accen-

tuated.
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Appendix A. Data Assimilation algorithms905

Appendix A.1. Kalman filter algorithm

The Kalman filter algorithm given in Sec. 2.1.1 corresponds to Fig. A.22.

k = 0

xa
k

Pa
k

Initialization

xf
k+1 = Mk+1:kx

a
k

Pf
k+1 = Mk+1:kP

a
kM
>
k+1:k +Qk+1

Forecast/Prediction

k ← k+1

Kk = Pf
kH
>
k

(
HkP

f
kH
>
k +Rk

)−1

xa
k = xf

k +Kk

(
yo
k −Hkx

f
k

)

Pa
k = (I−KkHk)P

f
k

Analysis/Correction

Figure A.22: Kalman Filter algorithm. The initialization is made with the analysed state.

Appendix A.2. Ensemble Kalman filter algorithm

An efficient implementation of the EnKF relying on anomaly matrices is

given in Algo. 1. We have used the secant method described in [5] to change910

the definition of the variable Yf
k.
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Algorithm 1: Stochastic Ensemble Kalman Filter (slightly adapted
from [5]). Use of anomaly matrices with Yf

k = HkX
f
k.

Input: For k = 0, . . . ,K: the forward models Mk:k−1, the observation
models Hk, the observation error covariance matrices Rk

Output: {xa,(i)
k } ; k = 0, · · · ,K ; i = 1, · · · , Ne

begin

1: Initialize the ensemble of forecasts {xf,(i)
0 } ; i = 1, · · · , Ne

for k = 0, . . . ,K do
2: Draw a statistically consistent observation set ; i = 1, · · · , Ne

y
o,(i)
k = yo

k + ε
o,(i)
k with ε

o,(i)
k ∼ N (0,Rk)

3: Compute the model counterparts of the observation set ;
i = 1, · · · , Ne

y
f,(i)
k = Hk

(
x

f,(i)
k

)

4: Compute the ensemble means

xf
k =

1

Ne

Ne∑

i=1

x
f,(i)
k ; yf

k =
1

Ne

Ne∑

i=1

y
f,(i)
k ; εok =

1

Ne

Ne∑

i=1

ε
o,(i)
k

5: Compute the normalized anomalies ; i = 1, · · · , Ne

[
Xf
k

]
:,i

=
x

f,(i)
k − xf

k√
Ne − 1

;
[
Yf
k

]
:,i

=
y

f,(i)
k − yf

k√
Ne − 1

; [Eo
k]:,i =

ε
o,(i)
k − εok√
Ne − 1

6: Compute the Kalman gain

Ke
k = Xf

k

(
Yf
k

)> (
Yf
k

(
Yf
k

)>
+ Eo

k (Eo
k)
>
)−1

7: Update the ensemble ; i = 1, · · · , Ne

x
a,(i)
k = x

f,(i)
k + Ke

k

(
y

o,(i)
k − y

f,(i)
k

)

8: Compute the ensemble forecast ; i = 1, · · · , Ne

x
f,(i)
k+1 =Mk+1:k(x

a,(i)
k )

Appendix A.3. Dual Ensemble Kalman filter algorithm

An efficient implementation of the Dual EnKF relying on anomaly matrices

is given in Algo. 2. We have slightly adapted this algorithm from [38].

Appendix A.4. Multigrid Ensemble Kalman filter algorithm915

The algorithm 4 represents a simplified, ready-to-use application of the con-

ceptual methodology presented in Sec. 3. This algorithm was tailored for the

58



Algorithm 2: Dual Ensemble Kalman Filter (slightly adapted from
[38]). Use of anomaly matrices with Yf

k = HkX
f
k. We have i =

1, · · · , Ne.

Input: For k = 1, . . . ,K: the forward models Mk:k−1, the observation
models Hk, the observation error covariance matrices Rk

Output: {θa,(i)
k } and {xa,(i)

k } ; k = 0, · · · ,K
begin

1: Initialize {θa,(i)
0 } and {xa,(i)

0 }
for k = 1, . . . ,K do

2: Observation ensemble:

y
o,(i)
k = yo

k + ε
o,(i)
k with ε

o,(i)
k ∼ N (0,Rk)

Re
k =

1

Ne − 1

Ne∑

i=1

ε
o,(i)
k

(
ε
o,(i)
k

)>

3: Parameter forecast:

θ
f,(i)
k = θ

a,(i)
k−1 + τ

(i)
k with τ

(i)
k ∼ N (0,Σθ

k)

x
f,(i)
k =Mk:k−1(x

a,(i)
k−1 , θ

f,(i)
k )

y
f,(i)
k = Hk

(
x

f,(i)
k

)

4: Compute the normalized anomalies
[
Θf
k

]
:,i

=
θ

f,(i)
k − θf

k√
Ne − 1

;
[
Yf
k

]
:,i

=
y

f,(i)
k − yf

k√
Ne − 1

; [Eo
k]:,i =

ε
o,(i)
k − εok√
Ne − 1

5: Parameter update:

Kθ,e
k = Θf

k

(
Yf
k

)> (
Yf
k

(
Yf
k

)>
+ Eo

k (Eo
k)
>
)−1

θ
a,(i)
k = θ

f,(i)
k + Kθ,e

k

(
y

o,(i)
k − y

f,(i)
k

)

6: State forecast:

x
f,(i)
k =Mk:k−1(x

a,(i)
k−1 , θ

a,(i)
k )

y
f,(i)
k = Hk

(
x

f,(i)
k

)

7: Compute the normalized anomalies
[
Xf
k

]
:,i

=
x

f,(i)
k − xf

k√
Ne − 1

;
[
Yf
k

]
:,i

=
y

f,(i)
k − yf

k√
Ne − 1

; [Eo
k]:,i =

ε
o,(i)
k − εok√
Ne − 1

8: State update:

Kx,e
k = Xf

k

(
Yf
k

)> (
Yf
k

(
Yf
k

)>
+ Eo

k (Eo
k)
>
)−1

x
a,(i)
k = x

f,(i)
k + Kx,e

k

(
y

o,(i)
k − y

f,(i)
k

)
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Algorithm 3: Dual Ensemble Kalman filter of Algo. 2 applied on the
coarse mesh. We have i = 1, · · · , Ne.

Input: For k = 1, . . . ,K: the forward models MC

k:k−1, the observation
models HC

k , the observation error covariance matrices RC

k

Output: {θa,(i)
k } and {(xC

k)
a,(i)} ; k = 0, · · · ,K

begin

1: Initialize {θa,(i)
0 } and {(xC

0 )
a,(i)};

for k = 1, . . . ,K do
2: Parameter forecast:

θ
f,(i)
k = θ

a,(i)
k−1 + τ

(i)
k with τ

(i)
k ∼ N (0,Σθ

k)

(xC

k)
f,(i)

=MC

k:k−1

((
xC

k−1

)a,(i)
, θ

f,(i)
k

)

if Observation available then

(yC

k )
f,(i)

= HC

k

(
(xC

k)
f,(i)
)

3: Observation ensemble:
(yC

k )
o,(i)

= (yC

k )
o

+ (εCk)
o,(i)

with (εCk)
o,(i) ∼ N (0,RC

k)

(RC

k)
e

=
1

Ne − 1

Ne∑

i=1

(εCk)
o,(i)

(
(εCk)

o,(i)
)>

4: Compute the normalized anomalies

[
Θf
k

]
:,i

=
θ

f,(i)
k − θf

k√
Ne − 1

;
[
Yf
k

]
:,i

=
(yC

k )
f,(i) − (yC

k )
f

√
Ne − 1

; [Eo
k]:,i =

(εCk)
o,(i) − (εCk)

o

√
Ne − 1

5: Parameter update:

(KC

k)
θ,e

= Θf
k

(
Yf
k

)> (
Yf
k

(
Yf
k

)>
+ Eo

k (Eo
k)
>
)−1

θ
a,(i)
k = θ

f,(i)
k + (KC

k)
θ,e
(

(yC

k )
o,(i) − (yC

k )
f,(i)
)

6: State forecast:
(xC

k)
f,(i)

=MC

k:k−1

((
xC

k−1

)a,(i)
, θ

a,(i)
k

)

(yC

k )
f,(i)

= HC

k

(
(xC

k)
f,(i)
)

7: Compute the normalized anomalies

[
Xf
k

]
:,i

=
(xC

k)
f,(i) − (xC

k)
f

√
Ne − 1

;
[
Yf
k

]
:,i

=
(yC

k )
f,(i) − (yC

k )
f

√
Ne − 1

; [Eo
k]:,i =

(εCk)
o,(i) − (εCk)

o

√
Ne − 1

8: State update:

(KC

k)
x,e

= Xf
k

(
Yf
k

)> (
Yf
k

(
Yf
k

)>
+ Eo

k (Eo
k)
>
)−1

(xC

k)
a,(i)

= (xC

k)
f,(i)

+ (KC

k)
x,e
(

(yC

k )
o,(i) − (yC

k )
f,(i)
)
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Algorithm 4: Multigrid EnKF algorithm. We have i = 1, · · · , Ne.

begin

1: Initialize
{

(xF
0)

a
, θa

0, θ
a,(i)
0 , (xC

0 )
a,(i)

}

for k = 1, . . . ,K do
2: Fine grid forecast:

(xF

k)
f

=MF

k:k−1

((
xF

k−1

)a
, θa
k

)

3: Dual EnKF on coarse mesh: Apply Algo. 3
if Observation available then

4: Projection on the coarse grid

(xC

k)
∗

= ΠC

(
(xF

k)
f
)

5: Fine grid state correction using the ensemble statistics:

(xC

k)
′

= (xC

k)
∗

+ (KC

k)
x,e [

(yC

k )
o −HC

k

(
(xC

k)
∗)]

(xF

k)
′

= (xF

k)
f
+ ΠF

(
(xC

k)
′
− (xC

k)
∗
)

6: (xF

k)
a

is obtained through a matrix-splitting iterative

procedure starting from (xF

k)
′
.
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relatively simple physical models used in this work. While it may not be suited

for complex three-dimensional applications, it proved an optimum trade-off in

accuracy and computational resources for the present analysis.920

First, when observation is not available, the two main forecast operations

(fine grid forecast and ensemble coarse forecast) are performed using explicit

time advancement schemes. This choice allows to reduce the computational

costs. However, when observation is available, the following strategies are em-

ployed:925

1. The two forecast operations (main simulation and ensemble members) are

performed using an implicit matrix-splitting iterative procedure, using

a single iteration. As stated in Sec. 3, the state transition model for

each ensemble member is determined independently, but using the same

structure and discretization schemes of the main simulation.930

2. The number of iterative solutions for the main simulation on the coarse-

grid level is equal to zero. That is, the solution from the first forecast

is projected on the coarse grid, and the difference between the KF state

estimation and this forecast is re-projected over the fine grid. Note that

in this version, the communication between coarse ensemble and fine grid935

simulation is one directional, i.e. the coarse Dual EnKF simulation in-

fluences the fine grid forecast through parametric optimization and state

correction, but it is not affected by the physical state calculated in the

fine grid.

3. In the final iteration on the fine grid, an implicit matrix-splitting iterative940

procedure is employed, using a single iteration and a relaxation coefficient

α = 0.5. This choice, which provides the best compromise between accu-

racy and regularization, has been identified after extensive tests for the

configurations investigated.
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