
HAL Id: hal-03454793
https://hal.science/hal-03454793

Submitted on 29 Nov 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

LassoNet: A Neural Network with Feature Sparsity
Ismael Lemhadri, Feng Ruan, Louis Abraham, Robert Tibshirani

To cite this version:
Ismael Lemhadri, Feng Ruan, Louis Abraham, Robert Tibshirani. LassoNet: A Neural Network with
Feature Sparsity. Journal of Machine Learning Research, In press, 22 (127). �hal-03454793�

https://hal.science/hal-03454793
https://hal.archives-ouvertes.fr

LassoNet

LassoNet: A Neural Network with Feature Sparsity

Ismael Lemhadri lemhadri@stanford.edu
Department of Statistics, Stanford University, Stanford, U.S.A.

Feng Ruan fengruan@berkeley.edu
Department of Statistics, University of California, Berkeley, USA

Louis Abraham louis.abraham@yahoo.fr
Gematria Technologies, London, U.K.

Robert Tibshirani tibs@stanford.edu

Departments of Biomedical Data Sciences, and Statistics, Stanford University, Stanford, U.S.A.

Editor:

Abstract

Much work has been done recently to make neural networks more interpretable, and one
approach is to arrange for the network to use only a subset of the available features. In linear
models, Lasso (or `1-regularized) regression assigns zero weights to the most irrelevant or
redundant features, and is widely used in data science. However the Lasso only applies
to linear models. Here we introduce LassoNet, a neural network framework with global
feature selection. Our approach achieves feature sparsity by adding a skip (residual) layer
and allowing a feature to participate in any hidden layer only if its skip-layer representative
is active. Unlike other approaches to feature selection for neural nets, our method uses a
modified objective function with constraints, and so integrates feature selection with the
parameter learning directly. As a result, it delivers an entire regularization path of solutions
with a range of feature sparsity. We apply LassoNet to a number of real-data problems
and find that it significantly outperforms state-of-the-art methods for feature selection and
regression. LassoNet uses projected proximal gradient descent, and generalizes directly to
deep networks. It can be implemented by adding just a few lines of code to a standard
neural network.

Keywords: Neural Networks, Feature Selection, Strong Hierarchy, Proximal Gradient
Descent

1. Introduction

1.1 Background

In many problems of interest, much of the information in the features is irrelevant for
predicting the responses and only a small subset is informative. Feature selection methods
provide insight into the relationship between features and an outcome while simultaneously
reducing the computational expense of downstream learning by removing features that are
redundant or noisy.

With high-dimensional data sets becoming ever more prevalent, feature selection has
seen widespread usage across a variety of real-world tasks, including disease detection from
protein data, speech data and object recognition (Wulfkuhle et al., 2003; Cai et al., 2018;

1

ar
X

iv
:1

90
7.

12
20

7v
10

 [
st

at
.M

L
]

 1
6

Ju
n

20
21

A Neural Network with Feature Sparsity

Li et al., 2017). The benefits of feature selection include reducing experimental costs,
enhancing interpretability, computational speed up, memory reduction and even improving
model generalization on unseen data (Min et al., 2014; Ribeiro et al., 2016; Chandrashekar
and Sahin, 2014). For example, feature selection is especially valuable in biomedical studies
where the data with the full set of features is expensive or difficult to collect, as it can
alleviate the need to measure irrelevant or redundant features, and allows to identify a
small set of features while maintaining prediction performance − this can significantly save
on future data collection costs. While feature selection methods have been extensively
studied in the setting of linear regression (e.g. LASSO), identifying relevant features for
neural networks remains an open challenge.

As a motivating example, consider a data set that consists of the expression levels of
various proteins across tissue samples. Such measurements are increasingly carried out to
assist with disease diagnosis, as biologists measure a large number of proteins with the
aim of discriminating between disease classes. Yet, it remains expensive to conduct all of
the measurements that are needed to fully characterize proteomic diseases. It is natural
to ask: Are there redundant or unnecessary features? What are the most effective and
representative features to characterize the disease? Furthermore, when a small number of
proteins are selected, their biological relationship with the target diseases is more easily
identified. These ”marker” proteins thus provide additional scientific understanding of the
problem.

Figure 1 shows an example of feature selection path produced by our method on the
MICE Protein Dataset (Higuera et al., 2015), which contains protein expression levels of
normal and trisomic mice exposed to different experimental conditions. The curve is steeply
concave and typical, which explains why feature selection is often a key pre-processing step
in many machine learning tasks. We see that only about 35 proteins are needed to obtain
maximal classification accuracy.

The outline of this paper is as follows. First, we discuss related work on feature selec-
tion. Section 2 formulates the problem from a non-parametric model selection perspective.
Section 3 introduces our main proposal, and the optimization is presented in Section 4. In
Section 5, we conduct an experiments with several real-world datasets. Sections 6 and 7 offer
extensions of LassoNet to the unsupervised learning setting and to the matrix completion
problem, respectively. Finally, Section 8 discusses other possible extensions.

1.2 Related Works

Feature selection methods can generally be divided into three groups: filter, wrapper and
embedded methods.

• Filter methods operate independently of the choice of the predictor by selecting indi-
vidual features that maximize the desired criteria. For example, the popular Fisher
score (Gu et al., 2012) selects features such that in the data space spanned by the
selected features, the distances between data points in different classes are as large
as possible, while the distances between data points in the same class are as small
as possible. Relatedly, Song et al. (2012) propose to maximize Maximum Mean Dis-
crepancy, i.e. the difference between between-class distance and within-class distance.
Filter methods select features independently of the learning method to be used, and

2

LassoNet

Figure 1. Feature selection path produced by our method on the MICE Protein
Dataset (Higuera et al., 2015). Considering the cost of proteomic measurements, a trade-off
between the number of features kept and statistical performance is often desirable. In this
example, the method captures 70% of the signal with about 20% of the features. This allows
to narrow down the list of important features, making the conclusions of the prediction task
more actionable. More details on the MICE Protein Dataset are available in Section 5.

this is a major limitation. For example, since filter methods evaluate individual fea-
tures, they generally do not detect features that participate mainly in interactions
with other features.

• Wrapper methods use learning algorithms to evaluate subsets of features based on their
predictive power. For example, the recently proposed HSIC-LASSO (Yamada et al.,
2014) uses kernel learning to discover non-linear feature interactions. In another line
of work, Chen et al. (2017) use the well-known kernel dimension reduction algorithm
to perform feature selection.

• Similarly to wrapper methods, embedded methods use specific predictors to select
features, and are generally able to detect interactions and redundancies among fea-
tures. However, embedded methods tend to do so more efficiently as they combine
feature selection and learning into a single problem. A well-known example is the
Lasso (Tibshirani, 1996), which can be used to select features for regression by vary-
ing the strength of l1 regularization. The limitation of lasso, however, is that it only
applies to linear models. Recently, Feng and Simon (2017) proposed an input-sparse
neural network, where the input weights are penalized using the group Lasso penalty.
As will become evident in Section 3, our proposed method extends and generalizes
this approach in a natural way.

The literature on feature selection is vast and encompasses many fields. We do not
provide a comprehensive survey here, but focus on popular methods in machine learning
instead. We point the reader to Guyon and Elisseeff (2003) for a more in-depth review of
the feature selection literature.

3

A Neural Network with Feature Sparsity

Figure 2. Demonstrating LassoNet on the MNIST dataset. Here, we show the
results of using LassoNet to simultaneously select informative pixels and classify digits 5
and 6 from the MNIST dataset. Leftmost graph: The classification accuracy by number
of selected features Right 2 images: Individual pixel importance for the model with 220
active features. Here, pixel importance refers to the mean increase in digit 6’s predicted
probability when setting it to maximum intensity. Lighter colors indicate higher importance,
with yellow highest and dark blue lowest. Superimposed are two sample digits. This
confirms that the bottom left pixels of digit 6 are the most important.

We also note that in certain problems of interest, feature selection starts by looking for
the appropriate representation basis. As a consequence, one might transform the data into
this basis before applying feature selection algorithms. For example, it is commonplace in
signal processing problems to convert time series data to the frequency domain first. In this
work, we consider this step to be pre-processing. We will therefore assume that the correct
basis is already available. However, in Section 8 we discuss the more general problem of
simultaneously learning and selecting features.

1.3 Proposed Method

We propose a new approach that extends Lasso regression and its feature sparsity to feed-
forward neural networks. We call our procedure LassoNet. The method is designed so that
only a subset of the features are used by the network. Our procedure uses an input-to-
output skip-layer (residual) connection that allows a feature to have non-zero weights in a
hidden unit only if its skip-layer connection is active.

The linear and nonlinear components are optimized jointly, allowing to capture arbitrary
nonlinearity. As we show through experiments in Section 5, this leads to lower classification
errors on real-world datasets compared to the aforementioned methods. A visual example
of results from our method is shown in Fig. 2, where LassoNet selects the most informa-
tive pixels on a subset of the MNIST dataset, and classifies the original images with high
accuracy. We test LassoNet on a variety of datasets, and find that it generally outperforms
state-of-the-art methods for feature selection and regression.

We have made the code for our algorithm and experiments available on a public website
1.

1. https://lassonet.ml

4

Code available at https://lassonet.ml

LassoNet

2. Problem Formulation

We now describe the problem of global feature selection. Although global feature selection
is relevant for both supervised and unsupervised settings, we describe here the supervised
case, which is the focus of this paper, and defer discussion of the unsupervised case to
Section 6.

We assume a data-generating model p(x, y) over a d-dimensional space, where x ∈ Rd is
the covariate and y is the response, such as class labels. The goal is to find the best function
f∗(x) for predicting y. We emphasize that the problem of learning f∗ is non-parametric,
so that for example no linear or quadratic restriction is assumed. We seek to minimize the
empirical reconstruction error:

min
f∈F ,S

Ê[`(f(xS), y)] (1)

where S ⊆ {1, 2 . . . d} is a subset of features and ` is a loss function specified by the
user. For example, in a univariate regression problem, the function class might be the
set of all linear functions, and ` is a loss function such as `(f(x), y) = (y − f(x))2. The
principal difficulty in solving (1) is due to the combinatorial nature of the minimization—
the choice of possible subsets S grows exponentially in d, making the problem NP-hard
even for simple choices of f , such as linear regression (Amaldi et al., 1998), and exhaustive
search is intractable if the number of features is large. In addition, the function class F
needs to exhibit strong expressive power—that is, we seek to develop a method that can
approximate the solution for any given class of functions, from linear regression to deep
fully-connected neural networks.

3. Our proposal: LassoNet

3.1 Background and notation

Here we choose F to be the class of residual feed-forward neural networks:

F =
{
f ≡ fθ,W : x 7→ θTx + gW (x)

}
,

where the width and depth of the network are arbitrary. Residual networks are known to
be easier to train (He et al., 2016). Furthermore, they act as universal approximators to
many function classes (Raghu et al., 2017; Lin and Jegelka, 2018).

For the reader’s convenience, we collect key notation and background here. Throughout
the paper:

• n denotes the total number of training observations;

• d denotes the data dimension;

• gW denotes a feed-forward network with weights W (fully connected in our examples);

• K denotes the number of units in the first hidden layer;

• W (1) ∈ Rd×K denotes the weights in the first hidden layer, and θ ∈ Rd denotes the
weights in the residual layer;

5

A Neural Network with Feature Sparsity

Figure 3. LassoNet architecture
The architecture of LassoNet consists of a
single residual connection, shown in green
and an arbitrary feed-forward neural net-
work, shown in black. The residual layer
and the first hidden layer jointly pass
through a hierarchical soft-thresholding
optimizer.

• L(θ,W) = 1
n

∑n
i=1 `(fθ,W (xi), yi) is the empirical loss2 on the training data set, con-

sisting of samples {xi, yi}n1) and ` is the loss function such as squared-error, cross-
entropy (deviance) or misclassification rate.

• Sλ(x) = sign(x) ·max {|x| − λ, 0} is the soft-thresholding operator.

The general architecture of LassoNet is illustrated in Fig. 3. The method consists of
two main ingredients:

1. A penalty is introduced to the original empirical risk minimization that encourages
feature sparsity. The formulation transforms the combinatorial search to a continuous
search by varying the level of the penalty.

2. A proximal algorithm is applied in a mathematically elegant way, so that it admits
a simple and efficient implementation on top of back-propagation. The method can
be implemented by adding just a few lines of code to a standard neural network. The
mathematical derivation of this algorithm is detailed in Section 5.

3.2 Formulation

The LassoNet objective function is defined as

minimize
θ,W

L(θ,W) + λ ‖θ‖1

subject to
∥∥W (1)

j

∥∥
∞ ≤M |θj |, j = 1, . . . , d.

(2)

where the loss function L(θ,W) was defined above in Section 3.1, and W
(1)
j denotes the

weights for feature j in the first hidden layer. We emphasize that our goal is not just to
sparsify the network, but to do so in a structured way that selects the relevant input features
for the entire network. Since the network is feed-forward, we do not need to penalize the
weights in remaining hidden layers.

The key idea in our approach is the constraint

|W (1)
jk | ≤M · |θj |, k = 1, . . . ,K

2. We have removed the dependence of L on (xi, yi) for notational convenience

6

LassoNet

This budgets the total amount of non-linearity involving feature j according to the relative
effect importance of Xj as a main effect. An immediate consequence is that Wj = 0 if
θj = 0. In other words, feature j does not participate in the overall network if the skip-layer
weight θj is zero. Hence control of the sparsity of the skip layer weights gives complete
control of the feature sparsity in the network.

In the extreme case where M = 0, all the hidden units are inactive and only the skip
connection remains. That is, the formulation recovers exactly the Lasso. In the other
extreme (by letting M → +∞), one recovers a standard unregularized feed-forward neural
network.

This formulation has several benefits. First, it promotes the linear component of the
signal above the nonlinear one and uses it to guide feature sparsity. Such a strategy is
not new, and bears close resemblance to the hierarchy principle which has been extensively
studied in statistics (Choi et al., 2010; Radchenko and James, 2010; Lim and Hastie, 2014;
She et al., 2016; Yan and Bien, 2017). In addition, the formulation leverages the expressive
power of residual neural networks (He et al., 2016). Finally, by tying every feature to a
single coefficient (the linear component), our formulation provides a natural framework for
feature selection.

One added benefit of the formulation is that the linear and non-linear components are
fitted simultaneously, allowing the network to capture arbitrary nonlinearity in the data.

If the best fitting model would have
∥∥W (1)

j

∥∥
∞ large but |θj | only moderate, this can be

accommodated with a reasonable choice of M . Furthermore, Fig. 4 suggests that the
demand for hierarchy is analogous to the demand for sparsity—–a form of “regularization.”

Training LassoNet involves two operations. First, a vanilla gradient descent step is
applied to all model parameters. Then, a hierarchical proximal operator is applied to the
input layer pair (θ,W (1)). This sequential operation makes the procedure extremely simple
to implement in popular machine learning frameworks, and requires only modifying a few
lines of code from a standard residual network. The procedure is summarized in Alg. 1.

An added benefit of the method is its computational efficiency. The LassoNet regular-
ization path can be trained at a cost that is essentially that of training a single model. This
is achieved with the use of warm starts in a specific direction, as outlined in Section 4.1.

3.3 Hyper-parameter tuning

LassoNet has two hyper-parameters:

• the `1-penalty coefficient, λ, controls the complexity of the fitted model; higher values
of λ encourage sparser models;

• the hierarchy coefficient, M , controls the relative strength of the linear and nonlinear
components.

It may be difficult to set the hierarchy coefficient without expert knowledge on the
domain or task. We can circumvent this problem by treating the hierarchy coefficient as a
hyper-parameter. We may use a naive search, which exhaustively evaluates the accuracy
for the predefined hyper-parameter candidates with a validation dataset. This procedure
can be performed in parallel.

7

A Neural Network with Feature Sparsity

Algorithm 1 Training LassoNet

1: Input: training dataset X ∈ Rn×d, training labels Y , feed-forward neural network
gW (·), number of epochs B, hierarchy multiplier M , path multiplier ε, learning rate α

2: Initialize and train the feed-forward network on the loss L(θ,W)
3: Initialize the penalty, λ = λ0, and the number of active features, k = d
4: while k > 0 do
5: Update λ← (1 + ε)λ
6: for b ∈ {1 . . . B} do
7: Compute gradient of the loss w.r.t to (θ,W) using back-propagation
8: Update θ ← θ − α∇θL and W ←W − α∇WL
9: Update (θ,W (1))← Hier-Prox(θ,W (1), αλ,M)

10: end for
11: Update k to be the number of non-zero coordinates of θ
12: end while
13: where Hier-Prox is defined in Alg. 2

4. Optimization

4.1 Warm starts: a path from dense to sparse

The technique of warm starts is very effective in optimizing models over an entire regulariza-
tion path. For example, this technique is employed in Lasso `1-regularized linear regression
(Friedman et al., 2010). In this approach, optimization is carried out for each fixed value of
λ on a logarithmic scale from sparse to dense, and using the solution from the previous λ as
a warm start for the next. This is effective, since the sparse models are easier to optimize
and the sparse solution is often of main interest.

Somewhat surprisingly, to optimize LassoNet we find that a dense-to-sparse warm start
approach is far more effective than a sparse-to-dense approach, in the sense that the former
approach returns models that generalize better than those returned from the latter. This
phenomenon is illustrated in Fig. 4, where the standard sparse-to-dense approach gets
caught in local minima with poor generalization ability. On the other hand, the dense-to-
sparse approach leverages the favorable generalization properties of the dense solution and
preserves them after drifting into sparse local minima.

4.2 Hierarchical proximal optimization

The objective is optimized using proximal gradient descent, as outlined in Alg. 1. The key
novelty is a numerically efficient algorithm for the proximal inner loop. We call the proposed
algorithm Hier-Prox and detail it in Alg. 2. Underlying its development is the derivation
of equivalent optimality conditions that completely characterize the global solution of the
non-convex minimization problem defining the proximal operator. As it turns out, the inner
loop is decomposable across features. As we show in Appendix B, Hier-Prox finds the
global minimum of an optimization problem of the form

8

LassoNet

Figure 4. Left: The path of residual coefficients for the Boston housing dataset. We
augmented the Boston Housing dataset from p = 13 features with 13 additional Gaussian
noise features (corresponding to the broken lines). The number of features selected by
LassoNet is indicated along the top. LassoNet achieves the minimum test error (at the
vertical broken line) at 13 predictors. Upon inspection of the resulting model, 12 of the
13 selected features correspond to the true predictors, confirming the model’s ability to
perform controlled feature selection. Right: Comparing two kinds of initialization. The test
errors for Lasso and LassoNet using both the sparse-to-dense and dense-to-sparse strategies
are shown. The dense-to-sparse strategy achieves superior performance, confirming the
importance of a dense initialization in order to efficiently explore the optimization landscape.

9

A Neural Network with Feature Sparsity

minimize
b∈R,W∈RK

1

2
(v − b)2 +

1

2
‖u−W‖22 + λ|b|,

subject to ‖W‖∞ ≤M |b|

Remarkably, the complexity of Hier-Prox is controlled by O(p · log p), where p is the
total number of parameters being updated (i.e. p = dK + d) This overhead is negligible
compared to the computation of the gradients with respect to the same parameters. Fur-
thermore, implementing the optimizer is straightforward in most standard deep learning
frameworks. We provide more information about our implementation in Appendix D.

Algorithm 2 Hierarchical Proximal Operator

1: procedure Hier-Prox(θ,W (1);λ,M)
2: for j ∈ {1, . . . , d} do

3: Sort the entries of W
(1)
j into |W (1)

(j,1)| ≥ . . . ≥ |W
(1)
(j,K)|

4: for m ∈ {0, . . . ,K} do

5: Compute wm := M
1+mM2 · Sλ

(
|θj |+M ·

∑m
i=1 |W

(1)
(j,i)|

)
6: end for
7: Find m̃, the first m ∈ {0, . . . ,K} such that |W (1)

(j,m+1)| ≤ wm ≤ |W
(1)
(j,m)|

8: θ̃j ← 1
M · sign(θj) · wm̃

9: W̃
(1)
j ← sign(W

(1)
j) ·min(wm̃, |W (1)

j |)
10: end for
11: return (θ̃, W̃ (1))
12: end procedure
13: Notation: d denotes the number of features; K denotes the size of the first hidden layer.

14: Conventions: Ln. 6, W
(1)
(j,K+1) = 0, W

(1)
(j,0) = +∞; Ln. 9, minimum and absolute value

are applied coordinate-wise.

4.3 Computational Complexity

In most existing hierarchical models, computation remains a major challenge. Indeed,
the complex nature of the regularizers used to enforce hierarchy prevents most current
optimization algorithms from scaling with d. In contrast, training LassoNet is performed
at an attractive computational cost. Namely:

• The bulk of the computational cost occurs when training the dense network;

• Subsequently, training over the λ path is computationally cheap. By leveraging warm
starts and the efficient Hier-Prox solver, the method effectively prunes the dense
model. In practice, predictions across consecutive solutions in the path are usually
close, which explains the speed-ups we observe in our experiments.

The use of warm starts dramatically reduces the number of rounds of gradient descent
needed during each iteration, as the solution with penalty λ is often very similar to the

10

LassoNet

solution with penalty (1 + ε)λ. This added benefit distinguishes LassoNet from many com-
peting feature selection methods, which require advance knowledge of the optimal number
of features to select, and do not exhibit any computational savings over the path of features.
Finally, the computational complexity of the method improves with hardware acceleration
and parallelization techniques commonplace in deep learning.

4.4 Bias due to regularization

The use of the `1 penalty slightly biases the weights of the model downwards. This is not
exclusive to LassoNet, but is a well-known property of all `1 regularized models such as
Lasso (Lee et al., 2016). If the goal is to perform feature selection, this has no consequence
on the training of LassoNet. If the goal is to get optimal predictive performance, it can
be helpful to de-bias LassoNet. Our approach to do so is by re-training the network from
scratch, restricting the input features to the subset of interest and zeroing out all others.
In practice, this re-fitting tends to improve test-time performance. In addition, its com-
putational overhead is relatively minor: (1) it is only needed after model selection, and
therefore need not be performed on the entire regularization path; (2) the training time of
the reduced model is relatively light if one uses the previous (biased) model as initialization
in the gradient descent.

5. Experiments

In this section, we show experimental results on real-world datasets.

5.1 Data Sets

These datasets are drawn from several domains including protein data, image data and voice
data, and have all been used for benchmarking feature selection methods in prior literature
(Abid et al., 2019)3 (the size of the datasets can be found in Table 1):

• Mice Protein Dataset consists of protein expression levels measured in the cortex of
normal and trisomic mice who had been exposed to different experimental conditions.
Each feature is the expression level of one protein. 4

• MNIST and MNIST-Fashion consist of 28-by-28 grayscale images of hand-written
digits and clothing items, respectively. We choose these datasets because they are
widely known in the machine learning community. Although these are image datasets,
the objects in each image are centered, which means we can meaningfully treat each
784 pixels in the image as a separate feature.

• ISOLET consists of preprocessed speech data of people speaking the names of the
letters in the English alphabet, and is widely used as a benchmark in the feature
selection literature. Each feature is one of the 617 quantities produced as a result of
preprocessing, including spectral coefficients and sonorant features.

3. The dataset descriptions were provided by these authors.
4. This data set has a few missing values, which we impute by column-means.

11

A Neural Network with Feature Sparsity

• COIL-20 consists of centered grayscale images of 20 objects. Images of the objects
were taken at pose intervals of 5 degrees amounting to 72 images for each object.
During preprocessing, the images were resized to produce 20-by-20 images, with each
feature being one of the 400 pixels.

• Smartphone Dataset for Human Activity Recognition consists of sensor data
collected from a smartphone mounted on subjects while they performed several ac-
tivities such as walking upstairs, standing and laying. Each feature represents one of
the 561 raw or processed quantities from the sensors on the phone.

5.2 Methodology

We compare LassoNet with several supervised feature selection methods mentioned in the
Related Works Section, including HSIC-LASSO and the Fisher Score. We also include
principal feature analysis (PFA), a popular method for selecting discrete features based on
PCA, proposed by Lu et al. (2007). Where available, we made use of the scikit-feature

implementation (Li et al., 2018) of each method. Fig. 5 shows the results on the ISOLET
data set , which is widely used as a benchmark in prior feature selection literature (Xue
et al., 2020; Doquet and Sebag, 2019).

We benchmarked each feature selection method with varying number of features. Al-
though LassoNet is an integrated procedure — simultaneously performing feature selection
and learning, most other methods are not, and therefore we explore the use of the selected
feature set as input into two separate downstream learners.

In our experiments, we also include, as an upper-bound on performance, reconstruc-
tion methods that are not restricted to choosing individual features. In experiments with
decoders, we use a standard feed-forward auto-encoder with all the input features, and in
tree-based learners, we use equivalent full trees.

For every task, we run each algorithm being evaluated to extract the k features selected.
We measure classification accuracy by passing the resulting matrix XS to a one-hidden-layer
feed-forward network and to an extremely randomized trees classifier (Geurts et al., 2006),
a variant of random forests that has been used with feature selection methods in prior
literature (Drotár et al., 2015). We chose these two classifiers to emphasize the inherent
value of the selected features: since decoders and random forests are very different classifiers
by nature, Figure 5 (for the ISOLET data set) indicates that the selected features are
intrinsically informative (regardless of the classifier).

For all of the experiments, we use Adam optimizer with a learning rate of 10−3 to train
the initial dense model. Then, we use vanilla gradient descent with momentum equal to
0.9 on the regularization path. See Appendix D for the architecture of the networks. For
LassoNet, we did not use the network that was learned during training, but re-trained the
feed-forward network from scratch. We divide each data set randomly into train, validation
and test with a 70-10-20 split. The number of neurons in the hidden layer of the feed-
forward network was varied within [k/3, 2k/3, k, 4k/3], and the network with the highest
validation accuracy was selected and measured on the test set.

12

LassoNet

10 20 30 40 50 75 100 125 150 175 200
Features selected

0.5

0.6

0.7

0.8

0.9

De
co

de
r c

la
ss

ifi
ca

tio
n

ac
cu

ra
cy

LassoNet
Fisher
PFA
HSIC-LASSO
All-Features

10 20 30 40 50 75 100 125 150 175 200
Features selected

0.5

0.6

0.7

0.8

0.9

XT
re

e
cla

ss
ifi

ca
tio

n
ac

cu
ra

cy

LassoNet
Fisher
PFA
HSIC-LASSO
All-Features

Figure 5. Results on the ISOLET dataset. Here, we compare LassoNet to other
feature selection methods using a 1-hidden layer neural network (left) and an Extremely
Randomized Trees (a variant of random forests) classifier (right). We find that across all
values of k tested, and for both learners, LassoNet has highest classification accuracy.

Dataset (n, d) # Classes All-Features Fisher HSIC-Lasso PFA LassoNet

Mice Protein (1080, 77) 8 0.990 0.944 0.958 0.939 0.958
MNIST (10000, 784) 10 0.928 0.813 0.870 0.873 0.873

MNIST-Fashion (10000, 784) 10 0.833 0.671 0.785 0.793 0.800
ISOLET (7797, 617) 26 0.953 0.793 0.877 0.863 0.885
COIL-20 (1440, 400) 20 0.996 0.986 0.972 0.975 0.991
Activity (5744, 561) 6 0.853 0.769 0.829 0.779 0.849

Table 1: Classification accuracies of feature selection methods using decoder
networks as the learner. Here we show the classification accuracies of the various feature
selection methods on six publicly available datasets. Here Fisher refers to the Fisher score,
PFA refers to principal feature analysis and All-Feature refers to the learner that uses all
input features. For each method, we select k = 50 features and use a 1-hidden layer neural
network for classification. All reported values are on a hold-out test set. (Higher is better.)

5.3 Results

The resulting classification errors are shown in Table 1 for the decoder network, and in
Appendix C for the tree-based classifier. Overall, we find that our method is the strongest
performer in the large majority of cases. While occasionally more than one method achieves
the best accuracy, we find that our method either ties or outperforms the remaining methods
in all instances, suggesting that our hierarchical objective may be widely applicable for
different learning tasks.

In addition to Table 1, Figure 5 shows the classification accuracies for varying number
of features on the ISOLET data set. We also report the corresponding figures for the other
data sets in Appendix A, with similar results and conclusions.

13

A Neural Network with Feature Sparsity

Figure 6. Demonstrating the unsupervised LassoNet on the MNIST dataset.
Left: 3 test images from each class of digits are shown, sampled at random.
Right: the reconstructed versions of the test images using LassoNet with an intermediate
penalty level (corresponding to about 50 active features) show that generally the digit is
identified correctly and some stylistic features, such as the orientation in the digit ”5” and
the thickness in the digit ”7”, are preserved. (see Figures 7,8,9 which show the results of
applying LassoNet to individual classes of digits.)

6. Extension to Unsupervised Feature Selection

6.1 Background

In certain applications, specific prediction tasks may not be known ahead of time, and thus
it is important to develop methods that can identify a subset of features while allowing
imputation of the remaining features with minimal distortion for arbitrary downstream
tasks. Thus, an unsupervised approach becomes relevant in order to identify the most
important features in the dataset, and whether there are redundant features that do not
need to be measured.

In this section, we show how to adapt LassoNet to the unsupervised setting. As another
potential use case, we note that the algorithm is appropriate for multi-response classification
and regression as well. By selecting a common set of features, the method is able to borrow
strength across outputs to impute several different but potentially related responses.

6.2 Training

LassoNet adapts to the unsupervised setting easily by replacing the neural network classifier
with a decoder network. More precisely, we consider the reconstruction loss L(θ,W) =
‖fθ,W (X)−X‖2F , where ‖·‖F denotes the Frobenius matrix norm.

The pseudocode, shown below, is quite similar to that for training the standard Las-
soNet. The major difference is the use of the group-LASSO penalty rather than LASSO in
order to enforce the same set of selected features across all reconstructed inputs, leading to
the Group-Hier-Prox algorithm.

14

LassoNet

Algorithm 3 Training LassoNet for Unsupervised Feature Selection

1: Input: training datasetX ∈ Rn×d feed-forward neural network gW (·), number of epochs
B, multiplier M , path multiplier ε, learning rate α.

2: Initialize and train the feed-forward network on the reconstruction loss L(θ,W)
3: Initialize the penalty, λ = λ0, and the number of active features, k = d
4: while k > 0 do
5: Update λ← (1 + ε)λ
6: for b ∈ {1 . . . B} do
7: Compute gradient of the loss w.r.t to θ and W using backpropagation
8: Update θ ← θ − α∇θL and W ←W − α∇WL
9: Update (θ,W (1)) = Group-Hier-Prox(θ,W (1), αλ,M)

10: end for
11: Update k to be the number of non-zero coordinates of θ
12: end while

Algorithm 4 Group Hierarchical Proximal Operator

1: procedure Group-Hier-Prox(θ,W (1);λ,M)
2: Notation:
3: for j ∈ {1, . . . , d} do

4: Sort the coordinates of W
(1)
j ∈ RK into |W (1)

(j,1)| ≥ . . . ≥ |W
(1)
(j,K)|

5: for m ∈ {0, . . . ,K} do

6: wj,m ← M
1+mM2 · Sλ(‖θj‖2 +M

∑m
j=1 |W

(1)
j |).

7: end for
8: Find m̃, the first m ∈ {0, ...,K} such that |W (1)

(j,m)| ≥ wj,m ≥ |W
(1)
(j,m+1)|.

9: Update θ̃j ← 1
M · wj,m̃ ·

θj
‖θj‖2

10: Update W̃
(1)
j ← sign(W

(1)
j) ·min(wj,m̃, |W (1)

j |)
11: end for
12: return (θ̃, W̃ (1))
13: end procedure
14: Notation: d denotes the number of features and K the size of the first hidden layer.

The vectors θj ∈ RK , W
(1)
j ∈ RK denote the linear coefficients and the bottom-layer

coefficients in the neural networks that are associated with j-th feature.

15: Conventions: Ln. 6, W
(1)
(j,K+1) = 0, W

(1)
(j,0) = +∞; Ln. 10, minimum is applied entry-

wise.

6.3 Selected Digits for Single Classes in MNIST

We trained LassoNet in this unsupervised manner on subsets of the MNIST data consisting
of a single digit. Some representative images for different digit classes are shown in Figs. 7,
8 and 9.

15

A Neural Network with Feature Sparsity

Figure 7. Results for LassoNet in choosing the most informative
pixels of images of the digit 3 in the MNIST dataset, for three
different penalty levels (λ = 5, λ = 1, λ = 0.1).

Figure 8. Results for LassoNet in choosing the most informative
pixels of images of the digit 5 in the MNIST dataset, for the three
penalty levels.

Figure 9. Results for LassoNet in choosing the most informative
pixels of images of the digit 7 in the MNIST dataset, for the three
penalty levels.

7. Extension to Matrix Completion

In several problems of contemporary interest, arising for instance in biomedical settings
where measurements are costly or otherwise limited, the observed data are in the form of a
large sparse matrix, Zij , (i, j) ∈ Ω, where Ω ⊂ {1, ...,m} × {1, ..., n}. Popularly dubbed the
matrix completion problem (Candès and Recht, 2008; Mazumder et al., 2010), the task is
to predict the unobserved entries.

16

LassoNet

Many existing approaches to the problem (Rennie and Srebro, 2005; Bennett et al., 2007;
Srebro, 2004), including the popular Soft-Impute algorithm (Mazumder et al., 2010) make
low-rank assumptions about the underlying matrix. In this section, we propose an extension
of LassoNet that provides a new matrix completion method that does not make any low-
rank assumption. Our method is detailed in Algorithm 5, and differs from Soft-Impute in
two major aspects:

• First, it trains a feed-forward neural network on the imputation task. Our method is
also iterative and updates the input using the reconstruction from the feed-forward
network. Here the reconstruction loss is ‖X − Z‖2F , where ‖·‖2 denotes the Frobenius
norm. In Soft-Impute, the corresponding operation is singular value thresholding
(that is, singular value decomposition followed by soft-thresholding) and finds a linear
low-dimensional structure. In contrast, our method uses a nonlinear low-dimensional
manifold through the network’s hidden layers.

• Once the dense model has been trained, the method performs feature selection using
the Group-Hier-Prox operator (presented in Algorithm 4). This allows to prune
the original imputation model so that it only uses a small set of input features.

Algorithm 5 LassoNet for Matrix Completion

1: procedure
2: Input: data matrix Z, index of observed entries Ω.
3: Perform initial imputation

X[i, j] =

{
Z[i, j] if (i, j) ∈ Ω

1
|j:(i,j)∈Ω|

∑
j:(i,j)∈Ω Z[i, j] if (i, j) 6∈ Ω [row-mean imputation]

4: while X not converged do
5: Compute Xproj = PΩ(Z) + PΩ⊥(X)
6: Train the feed-forward network on the reconstruction loss L(θ,W) between Xproj

and Z
7: Update X ← fθ,W (Xproj)
8: end while
9: Perform feature selection on the λ-path using Algorithms 1 [Lns. 4-12] and 4.

10: end procedure
11: Notation: Ln. 5: PΩ(X) denotes the projection of X onto the entries in Ω:

PΩ(X)[i, j] =

{
X[i, j] if (i, j) ∈ Ω

0 if (i, j) 6∈ Ω

To investigate the method’s performance, we run both LassoNet and Soft-Impute on the
MICE Protein Dataset. This dataset was previously used in Section 5 for the supervised
prediction task. Here the goal is to impute the entries that are missing from the training
data. Initially, the data is complete with no missing entries (up to the few missing values

17

A Neural Network with Feature Sparsity

Figure 10. Imputation errors of LassoNet and and Soft-Impute. Here, we show the
mean-squared error of the imputation task on the MICE Protein data set. Left: We report
the test MSE for LassoNet and Soft-Impute on the data set prior to performing feature
selection. We observe about a 30% reduction (note that the y-axis begins at 0.65) of the
reconstruction error when using LassoNet. Standard deviation bars are shown over 25 trials
with different initializations. Right: We report the performance of LassoNet with different
numbers of selected features using the MSE on the test set. We find that we can achieve a
similar MSE to Soft-Impute using only about 40 proteins, a 50% reduction in the number
of proteins measured.

we mentioned in Section 5.1. We construct our training set by keeping 80% of the entries at
random. We use 10% of the data for validating hyper-parameters and for determining the
stopping criterion. Finally, we reserve 10% of the data for the hold-out test test. To control
for the performance of the reconstruction network, we trained each reconstruction network
using early stopping with a patience of 10 epochs. Similarly to Section 5, we did not use
the network that was learned during training, but retrained the reconstruction network
from scratch. The results are displayed in Figure 10, where LassoNet achieves about a 50%
reduction in the number of proteins measured for an equivalent test MSE. More details on
the experimental settings are provided in Appendix D.

Our results show that the low-rank assumption underlying most existing matrix im-
putation methods is not always the most appropriate. More worryingly, when the linear
assumption is violated, the statistical performance of standard imputation methods may be
severely impaired. Therefore, it may be more reasonable to expect an arbitrary nonlinear
low-dimensional structure. If that is the case, LassoNet will outperform linear reconstruc-
tion.

Finally, our method provides the added benefit of feature selection, which is of indepen-
dent interest when measuring different features is costly or otherwise unavailable.

8. Sparsity in Learned Features

In some problems, the raw features are not interpretable and hence inducing sparsity in
these features is not helpful:

18

LassoNet

• For example in computer vision, the inputs are pixels and without perfect registration,
a given pixel does not even have the same meaning across different images. In this
case, one may instead want to select visual shapes or patterns. The current practice
of convolutional neural networks shies away from hand-engineered features and learns
these from the data instead (Neyshabur, 2020). Currently, the state-of-the-art is
based on learning these convolutional filters. In this setting, it would be desirable to
achieve “filter sparsity”, that is, select the most relevant convolutional filters. This
can improve the interpretability of the model and alleviate the need for architecture
search. In future work, we plan to achieve this by applying LassoNet to the output of
one or more convolutional layers.

• Another application area is that of auto-encoders, whose bottleneck layer learns the
most representative latent variables. Again, it is often of interest to further reduce
the complexity of the auto-encoder by selecting the most important hidden units. We
believe this is another promising direction for future research.

9. Discussion

In this paper, we have proposed a new feature selection method for neural networks. Unlike
most other feature selection methods, our method is data-driven and provides a path of
regularized models at a cost that is essentially that of training a single model. At its core,
LassoNet involves a nonconvex optimization problem with hierarchy constraints to satisfy
feature sparsity. By using proximal gradient descent, the nonconvex optimization problem is
decomposed into two subproblems that are solved iteratively, one using stochastic gradient
descent and the other analytically. The stochasticity of the initial dense model allows it to
efficiently explore and converge over an entire regularization path with varying number of
input features. This makes LassoNet different from many feature selection methods, which
assume prior knowledge of the number of features to select.

Advantages of LassoNet include its generality and ease of use. First, the generality
of the method allows it to extend to several other learning tasks, such as unsupervised
reconstruction and matrix completion. Second, implementing the architecture in popular
machine learning frameworks requires only modifying a few lines of code from a standard
feed-forward neural network. Furthermore, the runtime of LassoNet over an entire path
of feature sizes is similar to that of training a single model and improves with hardware
acceleration and parallelization techniques commonplace in deep learning. Finally, the only
additional hyperparameter of LassoNet is the hierarchy coefficient. We find that the default
value, M = 10, used in this paper works well for a variety of datasets.

LassoNet, like the other feature selection methods we compared with in this paper, does
not provide p-values or statistical significance quantification. Features discovered through
LassoNet should be validated through hypothesis testing or additional analysis using rele-
vant domain knowledge. In this regard, a growing body of research about hypothesis testing
for Lasso (Lockhart et al., 2014; Javanmard and Montanari, 2014; Taylor and Tibshirani,
2015) could serve as a fruitful starting point.

Python code and documentation for LassoNet is available at https://lassonet.ml,
and R code will soon be available in the same website.

19

https://lassonet.ml

A Neural Network with Feature Sparsity

Acknowledgments

We would like to thank John Duchi and Ryan Tibshirani for helpful comments. Robert
Tibshirani was supported by NIH grant 5R01 EB001988-16 and NSF grant 19 DMS1208164.

References

A. Abid, M. F. Balin, and J. Zou. Concrete autoencoders for differentiable feature selection
and reconstruction. arXiv preprint arXiv:1901.09346, 2019.

E. Amaldi, V. Kann, et al. On the approximability of minimizing nonzero variables or
unsatisfied relations in linear systems. Theoretical Computer Science, 209(1-2), 1998.

J. Bennett, C. Elkan, B. Liu, P. Smyth, and D. Tikk. Kdd cup and workshop 2007. ACM
SIGKDD Explorations Newsletter, 9(2):51–52, 2007.

J. Cai, J. Luo, S. Wang, and S. Yang. Feature selection in machine learning: A new
perspective. Neurocomputing, 300:70–79, 2018.

E. Candès and B. Recht. Exact matrix completion via convex optimization. Foundations of
Computational Mathematics, 2008. doi: 10.1007/s10208-009-9045-5. URL http://dx.

doi.org/10.1007/s10208-009-9045-5.

G. Chandrashekar and F. Sahin. A survey on feature selection methods. Computers &
Electrical Engineering, 40(1):16–28, 2014.

J. Chen, M. Stern, M. J. Wainwright, and M. I. Jordan. Kernel feature selection via condi-
tional covariance minimization. In Advances in Neural Information Processing Systems,
pages 6946–6955, 2017.

N. H. Choi, W. Li, and J. Zhu. Variable selection with the strong heredity constraint and
its oracle property. Journal of the American Statistical Association, 105(489):354–364,
2010.

G. Doquet and M. Sebag. Agnostic feature selection. In Joint European Conference on
Machine Learning and Knowledge Discovery in Databases, pages 343–358. Springer, 2019.

P. Drotár, J. Gazda, and Z. Smékal. An experimental comparison of feature selection
methods on two-class biomedical datasets. Computers in biology and medicine, 66:1–10,
2015.

D. Dua and C. Graff. UCI machine learning repository, 2017. URL http://archive.ics.

uci.edu/ml.

J. Feng and N. Simon. Sparse-input neural networks for high-dimensional nonparametric
regression and classification. arXiv preprint arXiv:1711.07592, 2017.

J. Friedman, T. Hastie, and R. Tibshirani. Regularization paths for generalized linear
models via coordinate descent. Journal of Statistical Software, 33:1–22, 2010.

20

http://dx.doi.org/10.1007/s10208-009-9045-5
http://dx.doi.org/10.1007/s10208-009-9045-5
http://archive.ics.uci.edu/ml
http://archive.ics.uci.edu/ml

LassoNet

P. Geurts, D. Ernst, and L. Wehenkel. Extremely randomized trees. Machine learning, 63
(1):3–42, 2006.

Q. Gu, Z. Li, and J. Han. Generalized fisher score for feature selection. arXiv preprint
arXiv:1202.3725, 2012.

I. Guyon and A. Elisseeff. An introduction to variable and feature selection. Journal of
Machine Learning Research, 55:1157–1182, 03 2003. doi: 10.1023/A:1024068626366.

K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image recognition. In
Proceedings of the IEEE conference on computer vision and pattern recognition, pages
770–778, 2016.

C. Higuera, K. J. Gardiner, and K. J. Cios. Self-organizing feature maps identify proteins
critical to learning in a mouse model of down syndrome. PloS one, 10(6):e0129126, 2015.

A. Javanmard and A. Montanari. Confidence intervals and hypothesis testing for high-
dimensional regression. The Journal of Machine Learning Research, 15(1):2869–2909,
2014.

J. D. Lee, D. L. Sun, Y. Sun, J. E. Taylor, et al. Exact post-selection inference, with
application to the lasso. Annals of Statistics, 44(3):907–927, 2016.

J. Li, K. Cheng, S. Wang, F. Morstatter, R. P. Trevino, J. Tang, and H. Liu. Feature
selection: A data perspective. ACM Computing Surveys (CSUR), 50(6):1–45, 2017.

J. Li, K. Cheng, S. Wang, F. Morstatter, R. P. Trevino, J. Tang, and H. Liu. Feature
selection: A data perspective. ACM Computing Surveys (CSUR), 50(6):94, 2018.

M. Lim and T. Hastie. Learning interactions via hierarchical group-lasso regularization.
Journal of Computational and Graphical Statistics, pages 1–41, 2014.

H. Lin and S. Jegelka. Resnet with one-neuron hidden layers is a universal approximator.
In Advances in neural information processing systems, pages 6169–6178, 2018.

R. Lockhart, J. Taylor, R. J. Tibshirani, and R. Tibshirani. A significance test for the lasso.
Annals of statistics, 42(2):413, 2014.

Y. Lu, I. Cohen, X. S. Zhou, and Q. Tian. Feature selection using principal feature analysis.
In Proceedings of the 15th ACM international conference on Multimedia, pages 301–304,
2007.

R. Mazumder, T. Hastie, and R. Tibshirani. Spectral regularization algorithms for learning
large incomplete matrices. J. Mach. Learn. Res., 11:2287¿2322, 2010.

F. Min, Q. Hu, and W. Zhu. Feature selection with test cost constraint. International
Journal of Approximate Reasoning, 55(1):167–179, 2014.

B. Neyshabur. Towards learning convolutions from scratch. arXiv preprint
arXiv:2007.13657, 2020.

21

A Neural Network with Feature Sparsity

P. Radchenko and G. M. James. Variable selection using adaptive nonlinear interaction
structures in high dimensions. Journal of the American Statistical Association, 105(492):
1541–1553, 2010.

M. Raghu, B. Poole, J. Kleinberg, S. Ganguli, and J. Sohl-Dickstein. On the expressive
power of deep neural networks. In international conference on machine learning, pages
2847–2854, 2017.

J. D. Rennie and N. Srebro. Fast maximum margin matrix factorization for collaborative
prediction. In Proceedings of the 22nd international conference on Machine learning,
pages 713–719, 2005.

M. T. Ribeiro, S. Singh, and C. Guestrin. ” why should i trust you?” explaining the
predictions of any classifier. In Proceedings of the 22nd ACM SIGKDD international
conference on knowledge discovery and data mining, pages 1135–1144, 2016.

Y. She, Z. Wang, and H. Jiang. Group regularized estimation under structural hierarchy.
Journal of the American Statistical Association, 0(ja):0–0, 2016. doi: 10.1080/01621459.
2016.1260470. URL https://doi.org/10.1080/01621459.2016.1260470.

L. Song, A. Smola, A. Gretton, J. Bedo, and K. Borgwardt. Feature selection via dependence
maximization. Journal of Machine Learning Research, 13(5), 2012.

N. Srebro. Learning with matrix factorizations. Ph.D Thesis, 2004.

J. Taylor and R. J. Tibshirani. Statistical learning and selective inference. Proceedings of
the National Academy of Sciences, 112(25):7629–7634, 2015.

R. Tibshirani. Regression shrinkage and selection via the lasso. Journal of the Royal
Statistical Society, Series B, 58:267–288, 1996.

J. D. Wulfkuhle, L. A. Liotta, and E. F. Petricoin. Proteomic applications for the early
detection of cancer. Nature reviews cancer, 3(4):267–275, 2003.

H. Xue, Y. Song, and H.-M. Xu. Multiple indefinite kernel learning for feature selection.
Knowledge-Based Systems, 191:105272, 2020.

M. Yamada, W. Jitkrittum, L. Sigal, E. P. Xing, and M. Sugiyama. High-dimensional
feature selection by feature-wise kernelized lasso. Neural computation, 26(1):185–207,
2014.

X. Yan and J. Bien. Hierarchical sparse modeling: A choice of two group lasso formulations.
Statist. Sci., 32(4):531–560, 11 2017. doi: 10.1214/17-STS622. URL https://doi.org/

10.1214/17-STS622.

22

https://doi.org/10.1080/01621459.2016.1260470
https://doi.org/10.1214/17-STS622
https://doi.org/10.1214/17-STS622

LassoNet

Appendix A. Additional Experiments

In this section, we report the results for different numbers of features on the other data sets,
similar to what was done for the ISOLET data set in Figure 5. These figures complement
Table 1 where the number of features was fixed to k = 50. Overall, we find that LassoNet
continues to achieve high (though not always highest) accuracy.

We note that for all methods other than LassoNet, the computational cost of producing
these figures was multiples of that of producing the table. This is because most other feature
selection methods take as input k, the number of features to select, and need to run from
scratch for diferent values of k. On the other hand, for LassoNet the cost remains essentially
unchanged. We refer the reader to Section 4.3 for further discussion.

10 20 30 40 50
Features selected

0.75

0.80

0.85

0.90

0.95

1.00

De
co

de
r c

la
ss

ifi
ca

tio
n

ac
cu

ra
cy

LassoNet
Fisher
PFA
HSIC-LASSO

10 20 30 40 50
Features selected

0.80

0.85

0.90

0.95

1.00

XT
re

e
cla

ss
ifi

ca
tio

n
ac

cu
ra

cy
LassoNet
Fisher
PFA
HSIC-LASSO

Figure 11. Results on the COIL dataset.

10 20 30 40 50 75 100 125 150 175 200
Features selected

0.60

0.65

0.70

0.75

0.80

0.85

De
co

de
r c

la
ss

ifi
ca

tio
n

ac
cu

ra
cy

LassoNet
Fisher
PFA
HSIC-LASSO

10 20 30 40 50 75 100 125 150 175 200
Features selected

0.65

0.70

0.75

0.80

0.85

XT
re

e
cla

ss
ifi

ca
tio

n
ac

cu
ra

cy

LassoNet
Fisher
PFA
HSIC-LASSO

Figure 12. Results on the ACTIVITY dataset.

Appendix B. Proofs

Proof of Correctness of the Hier-Prox and Group-Hier-Prox Operators

At its core, LassoNet performs a step of vanilla gradient descent and subsequently solves
a constrained minimization problem. Since the problem is decomposable across features,
each iteration of the algorithm decouples into d single-feature optimization problems. Here
we show the following:

23

A Neural Network with Feature Sparsity

10 20 30 40 50
Features selected

0.75

0.80

0.85

0.90

0.95

1.00

De
co

de
r c

la
ss

ifi
ca

tio
n

ac
cu

ra
cy

LassoNet
Fisher
PFA
HSIC-LASSO
Trace-Ratio

10 20 30 40 50
Features selected

0.92

0.94

0.96

0.98

1.00

XT
re

e
cla

ss
ifi

ca
tio

n
ac

cu
ra

cy

LassoNet
Fisher
PFA
HSIC-LASSO
Trace-Ratio

Figure 13. Results on the MICE dataset.

10 20 30 40 50
Features selected

0.4

0.5

0.6

0.7

0.8

0.9

De
co

de
r c

la
ss

ifi
ca

tio
n

ac
cu

ra
cy

LassoNet
Fisher
PFA
HSIC-LASSO

10 20 30 40 50
Features selected

0.3

0.4

0.5

0.6

0.7

0.8

0.9

XT
re

e
cla

ss
ifi

ca
tio

n
ac

cu
ra

cy
LassoNet
Fisher
PFA
HSIC-LASSO

Figure 14. Results on the MNIST dataset.

1. Hier-Prox returns the global optimum of the following optimization problem:

minimize
b∈R,W∈RK

1

2
(v − b)2 +

1

2
‖u−W‖22 + λ|b|,

subject to ‖W‖∞ ≤M |b|
(3)

where v ∈ R is a scalar and u ∈ RK is a vector.

2. Hier-Prox-Group returns the global optimum of the following problem:

minimize
(b,W)

1

2

(
‖v − b‖22 + ‖U −W‖22

)
+ λ ‖b‖2 ,

subject to ‖W‖∞ ≤M ‖b‖2
(4)

where v ∈ RK , U ∈ RK are vectors of the same size.

It turns out that the aforementioned two results are special cases of the following propo-
sition. They can be easily recovered by setting λ̄ = 0.

Proposition 1 Fix v ∈ Rk and U ∈ RK . (Note: the two integers k,K can be different)
Let us consider the problem

minimize
(b,W)

1

2

(
‖v − b‖22 + ‖U −W‖22

)
+ λ ‖b‖2 + λ̄ ‖W‖1

subject to ‖W‖∞ ≤M · ‖b‖2 .

24

LassoNet

We derive the sufficient and necessary condition for characterizing the global optimum
(b∗,W ∗) of the above optimization problem:

1. Let us order the coordinates {|Ui|}i∈[K] in decreasing order∣∣U(1)

∣∣ ≥ ∣∣U(2)

∣∣ ≥ . . . ≥ ∣∣U(K)

∣∣ .
and define for each s ∈ [K] = {0, 1, . . . ,K} the value bs by

bs =
1

1 + sM2

(
1− as
‖v‖2

)
+

v where as = λ−M
s∑
i=1

(
|U(i)| − λ̄

)
.

Then b∗ = bs∗ where s∗ ∈ [K] is the unique s ∈ [K] such that

M ‖bs‖2 ∈
[
Sλ̄(|U(s+1)|),Sλ̄(|U(s)|)

)
.

By convention Sλ̄(|U(K+1)|) = 0 and Sλ̄(|U(0)|) =∞.

2. The W ∗ must satisfy

W ∗ = sign(U) min {M ‖b∗‖2 ,Sλ̄(|U |)} .

Proof We start by proving the claim below: for some w ∈ R+

Claim : W ∗ = sign(U) min {M ‖b‖2 ,Sλ̄(|U |)} . (5)

Denote w = M ‖b∗‖2. By definition, W ∗ is the minimum of the below optimization problem:

minimize
W

1

2
‖U −W‖2F + λ̄ ‖W‖1

subject to ‖W‖∞ ≤M ‖b
∗‖2 = w.

Now that strong duality holds since Slater’s condition holds. Thereby, we know for some
dual variable s ∈ RK+ , W ∗ minimizes the Lagrangian function below:

W ∗ = argmin
W∈RK

1

2
‖U −W‖22 +

K∑
j=1

sj |Wj |+ λ̄ ‖W‖1 .

Now, let’s take subgradient and get that W ∗ needs to satisfy,

W ∗j − Uj + (λ̄+ sj)v
∗
j = 0 for some v∗j ∈ ∂(|W ∗j |).

sj(|W ∗j | − w) = 0.

sj ≥ 0, and |W ∗j | ≤ w.
(6)

Now we divide our discussion into two cases:

1. sj = 0. The KKT condition (Eq. (6)) shows Uj = W ∗j + λ̄v∗j for some v∗j ∈ ∂(|W ∗j |).
This implies that W ∗j = Sλ̄(Uj), which is possible if and only if |Sλ̄(Uj)| ≤ w.

25

A Neural Network with Feature Sparsity

2. sj > 0. The KKT condition (Eq. (6)) gives |W ∗j | = w. Since Uj = W ∗j + (λ̄ + sj)v
∗
j

for v∗j ∈ ∂(|W ∗j |), it implies sign(v∗j) = sign(W ∗j) = sign(Uj). Hence W ∗j = sign(Uj)w.
Note if w 6= 0, then we must have v∗j = sign(W ∗j) = sign(Uj). Thus, having some

sj > 0 with Uj = W ∗j + (λ̄+ sj)v
∗
j is equivalent to that |Sλ̄(Ui,j)| > w.

Summarizing the above discussion, we see that W ∗ must satisfy

W ∗j = sign(Uj) min{w,Sλ̄(|Uj |)}.

This proves the claim at Eq (5). Introduce the mapping W : Rk → RK

Wj(b) = sign(Uj) ·min {M ‖b‖2 ,Sλ̄(|Uj |)} .

The claim at Eq (5) shows that it suffices to find b that minimizes

F (b) =
1

2

(
‖v − b‖22 + ‖U −W (b)‖2F

)
+ λ ‖b‖2 + λ̄ ‖W (b)‖1 .

Denote w = M ‖b‖2. Order the coordinates {|Ui|}i∈[K] in decreasing order∣∣U(1)

∣∣ ≥ ∣∣U(2)

∣∣ ≥ . . . ≥ ∣∣U(K)

∣∣ .
Define by convention that U(0) = ∞ and U(K)+1 = 0. Now, we compute the value F (b)
when w = M ‖b‖2 ∈

[
Sλ̄(|U(s+1)|),Sλ̄(|U(s)|)

)
. Indeed, we have

F (b) =
1

2
(1 + sM2)

∥∥∥∥b− 1

1 + sM2
v

∥∥∥∥2

2

+

(
λ−M

s∑
i=1

(
|U(i)| − λ̄

))
‖b‖2 + rs.

where rs denotes the remainder term, which is independent of b but can be dependent of
U , v, M , s, λ, λ̄. Now, let’s define for s ∈ [K]

Fs(b) =
1

2
(1 + sM2)

∥∥∥∥b− 1

1 + sM2
v

∥∥∥∥2

2

+

(
λ−M

s∑
i=1

(
|U(i)| − λ̄

))
‖b‖2 .

and denote bs ∈ Rk to be the global minimum of Fs on Rk, i.e.,

bs =
1

1 + sM2

(
1− as
‖v‖2

)
+

v where as = λ−M
s∑
i=1

(
|U(i)| − λ̄

)
.

Now we show the two claims below, which implies the desired proposition.

(a) There exists one unique s∗ ∈ [K] such that

M ‖bs∗‖2 ∈
[
Sλ̄(|U(s∗+1)|),Sλ̄(|U(s∗)|)

)
. (7)

(b) The global minimum b∗ = bs∗ .

26

LassoNet

Proof of Point (a) Denote smax ∈ [K] to be the one that satisfies

Sλ̄(|U(smax+1)|) = 0 < Sλ̄(|U(smax)|).

It suffices to prove the existence and uniqueness of s∗ ∈ [smax] satisfying Eq (7). Introduce
the function h : [smax]→ R by

h(s) = M(‖v‖2 − λ) + λ̄− |U(s)|+M2
s∑
i=1

(|U(i)| − |U(s)|).

It is clear that h is increasing w.r.t. s ∈ [smax]. Moreover, by algebraic manipulation, one
can show that s ∈ [smax] satisfies

M ‖bs‖2 ∈
[
Sλ̄(|U(s+1)|),Sλ̄(|U(s)|)

)
.

if and only if (set by convention h(0) = −∞, h(smax + 1) =∞)

h(s) ≤ 0 < h(s+ 1).

This proves the existence and uniqueness of s∗ that satisfies Eq (7).

Proof of Point (b) Introduce the function

f(w) = min
b:M‖b‖2=w

F (b).

We will show that

(i) f(w) is strictly increasing when w ∈
[
Sλ̄(|U(s+1)|),Sλ̄(|U(s)|)

)
and s < s∗.

(ii) f(w) is strictly decreasing when w ∈
[
Sλ̄(|U(s+1)|),Sλ̄(|U(s)|)

)
and s > s∗.

The above two facts imply that the global minimum w∗ of f(w) must belong to the interval
w∗ ∈

[
Sλ̄(|U(s∗+1)|),Sλ̄(|U(s∗)|)

]
. Thus b = bs∗ is the global minimum of F (b) since b = bs∗

achieves the minimum over all b that satisfy w = M ‖b‖2 ∈
[
Sλ̄(|U(s∗+1)|),Sλ̄(|U(s∗)|)

)
.

Now we prove point (i) and point (ii). For w ∈
[
Sλ̄(|U(s+1)|),Sλ̄(|U(s)|)

)
, we know that

F (b) = Fs(b) + rs. From all b satisfying M ‖b‖2 = w, it is clear that b = wv
M‖v‖2

minimizes

Fs(b). Therefore, for w ∈
[
Sλ̄(|U(s+1)|),Sλ̄(|U(s)|)

)
,

f(w) = F

(
wv

M ‖v‖2

)
=

1 + sM2

2M2
(w − ws)2 + r′s for ws =

M(‖v‖2 − as)
1 + sM2

,

where rs denotes the remainder term, which is independent of b but can be dependent of
U , v, M , s, λ, λ̄. Now, by definition of s∗, we know that

(1) h(s) ≤ 0 for s ≤ s∗.

(2) h(s) > 0 for s > s∗.

Simple algebraic manipulation shows that, this implies that

(1) ws ≤ Sλ̄(|U(s+1)|) for s < s∗.

(2) ws > Sλ̄(|U(s)|) for s > s∗.

Note that f(w) is quadratic centered at w = ws for w ∈
[
Sλ̄(|U(s+1)|),Sλ̄(|U(s)|)

)
. This

proves the desired deferred point (i) and point (ii).

27

A Neural Network with Feature Sparsity

Appendix C. Classification accuracies using tree-based classifiers as the
downstream learner

Here we report the equivalent table to Table 1, but using the extremely randomized tree
classifier as downstream learner. The results are competitive, as LassoNet continues to have
high (but not always highest) classification accuracy.

Dataset (n, d) # Classes All-Feature Fisher HSIC-Lasso PFA LassoNet

Mice Protein (1080, 77) 8 0.997 0.996 0.996 0.997 0.997
MNIST (10000, 784) 10 0.941 0.818 0.869 0.879 0.892

MNIST-Fashion (10000, 784) 10 0.831 0.66 0.775 0.784 0.794
ISOLET (7797, 617) 26 0.951 0.818 0.888 0.855 0.891
COIL-20 (1440, 400) 20 0.996 0.996 0.993 0.993 0.993
Activity (5744, 561) 6 0.859 0.794 0.845 0.808 0.860

Table 2: Classification accuracies of feature selection methods using the tree-
based learner. Here, we show the classification accuracies of the various feature selection
methods on six publicly available datasets. Here Fisher refers to the Fisher score, PFA
refers to principal feature analysis, and All-Feature refers to the learner that uses all input
features. For each method, we select k = 50 features. The classifier used here was an
Extremely Randomized Tree classifier (a variant of random forests) with the number of
trees being 50. All reported values are on a hold-out test set. (Higher is better.)

28

LassoNet

Appendix D. Experimental Details

All experiments were run on a single computer with NVIDIA Tesla K80 and Intel Xeon
E5-2640.

D.1 LassoNet Architecture

The implementation was conducted in the PyTorch framework. For LassoNet, we use a one-
hidden-layer feed-forward neural network with ReLU activation function. We also included
a two-hidden-layer network in Section 7 for the matrix completion problem. The number
of neurons in the hidden layer was varied within [d/3, 2d/3, d, 4d/3], where d is the total
number of features, and the network with the highest validation accuracy was selected and
measured on the test set. We used a learning rate of 0.001 and early stopping criterion of
10. Although the hierarchy parameter could in principle be selected on a validation set as
well, we have found that the default value M = 10 works well for a variety of datasets.

D.2 Benchmark Datasets

The MNIST and MNIST-Fashion datasets were retrieved using their official source. The
remaining datasets were retrieved from the UCI Repository (Dua and Graff, 2017).

29

	1 Introduction
	1.1 Background
	1.2 Related Works
	1.3 Proposed Method

	2 Problem Formulation
	3 Our proposal: LassoNet
	3.1 Background and notation
	3.2 Formulation
	3.3 Hyper-parameter tuning

	4 Optimization
	4.1 Warm starts: a path from dense to sparse
	4.2 Hierarchical proximal optimization
	4.3 Computational Complexity
	4.4 Bias due to regularization
	5 Experiments
	5.1 Data Sets
	5.2 Methodology
	5.3 Results

	6 Extension to Unsupervised Feature Selection
	6.1 Background
	6.2 Training
	6.3 Selected Digits for Single Classes in MNIST

	7 Extension to Matrix Completion
	8 Sparsity in Learned Features
	9 Discussion
	A Additional Experiments
	B Proofs
	C Classification accuracies using tree-based classifiers as the downstream learner
	D Experimental Details
	D.1 LassoNet Architecture
	D.2 Benchmark Datasets

