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Abstract. This article presents the temperature and emissivity estimation of metals around 

their melting points using different techniques, which are based on deterministic (ordinary 

least squares) and Bayesian approaches. Linear and non-linear models are examined. The 

experimental data consist of radiative fluxes at six wavelengths, collected by a pyrometer. The 

apparatus is dedicated to the characterization of the physical properties of millimeter-sized 

metal samples at high temperatures, combining aerodynamic levitation and laser heating. 

Tests are performed on two metals: niobium with well-known temperature and steel. 

 

1.  Introduction 

This article aims at the estimation of temperature and emissivity of metals above their melting 

points. It is a part of a global work dealing with the estimation of the physical properties of 

metals in solid and liquid states (density [1], viscosity, surface tension, diffusivity [2]). An 

apparatus, specifically developed, allows to perform aerodynamic levitation of samples of 
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millimeter size. Once in levitation, the samples are heated with a laser up to and above their 

melting temperature. Therefore, temperature measurements with thermocouple are not 

possible and non-contact measurements are necessary, such as pyrometry. Among all the 

instrumentations around the apparatus, a six-wavelength pyrometer collects the radiative flux 

in six narrow spectral bands. 

The simultaneous estimation of temperature and emissivity of the sample is possible with 

bispectral or multispectral pyrometry. This technique is largely used in many fields, but 

presents several drawbacks. The major one is that the inversion problem is ill-posed in the 

sense that it is underdetermined; indeed in multiwavelength pyrometry there is always one 

unknown parameter more than there are equations [3]: for example in bispectral pyrometry, 

for two measurements at wavelengths 𝜆𝑖 and 𝜆𝑗, there are three unknowns, the temperature 

and the two spectral emissivities 𝜀𝑖 and 𝜀𝑗. Nevertheless, some possibilities exist to solve the 

problem; however they all require some assumptions. 

The classical bispectral assumption is to consider a constant emissivity 𝜀𝑖 ≈  𝜀𝑗 for two 

measurements at wavelengths 𝜆𝑖 and 𝜆𝑗 not to far from each other, and nevertheless not to 

close to not increase the temperature uncertainty [4]. In the case of the multiwavelength 

pyrometry, that is, for more than two wavelengths, it is common to use a mathematical or 

physical spectral model for the emissivity, on the condition that the number of unknowns is 

smaller than the number of wavelengths [5]. The model choice depends on the spectral range 

width of the pyrometer, and a low-order polynomial (order 1 or 2) form can be sufficient. 

However, a common result is that the identification error is highly sensitive to the matching of 

the chosen model with the real emissivity spectrum, which, by principle, is a difficult task 

since the real emissivity spectrum is not known beforehand [3], [6]. 

To solve the estimation problem three techniques are proposed here. The first one is based on 

bispectral pyrometry and ordinary least squares (OLS) coupled with a Levenberg-Marquardt 



algorithm using two out of the six measurements with different possibilities of combinations 

[7]. The second technique is based on multispectral pyrometry and regularization by OLS 

estimation using a low-order model and some criteria allowing to not amplify the standard 

deviation on the estimated temperature [8].The third method is based on Bayesian inference, a 

stochastic technique, which allows to take into account a priori information about the 

parameters to be estimated [9]. The present work is developed as follows. First the apparatus 

and the six-wavelength pyrometer are presented in section 2. Section 3 is dedicated to 

theoretical considerations regarding the apparatus. The parameter estimation methodologies 

are presented in section 4, which are finally used in the last section 5 with the experimental 

data obtained from measurements with two metallic samples: niobium with known melting 

temperature (1 750 K) [13], and a steel sample, which has not been characterized, but 

according to ASTM, its melting temperature is about 1 697 K [14]. 

 

2.  The levitation apparatus and the pyrometers 

Figure 1 presents the apparatus dedicated to the levitation of spherical sample with a diameter 

of 3 mm. The levitation is assured by a controlled argon flow. Once in levitation the sample is 

heated above its melting point by a laser (300 W, 1.070 µm). Figure 1 shows also infrared and 

high-speed cameras that are not dealt in this study. The six-wavelength pyrometer is aimed at 

the sample top surface. 

 



 

Figure 1. Sketch of the aerodynamic levitation apparatus  

 

 

 

Figure 2. Sketch of the six-wavelength pyrometer. 

 

The six-wavelength pyrometer is detailed in Figure 2. It is composed of collimators, lenses, 

dichroic mirrors, monochromatic filters, and silicon (Si) sensors. The six wavelengths that 

have been selected for applications above 1 000 K, are the following: 0.480 µm, 0.530 µm, 

0.680 µm, 0.850 µm, 0.940 µm, and 1.550 µm. The diameter of the focused area is 2 mm and 



the integration time is about 20 ms. The sensors can measure fluxes in the range [50 nW – 50 

mW]. 

A commercial pyrometer, which does not appear in Figure 1, is also associated to the six-

wavelength one. It is bispectral with wavelengths 0.900 µm and 1.050 µm. Therefore, as the 

laser wavelength is within its spectral band during the sample heating, the measurements of 

the pyrometer can only be used during the cooling of the sample, meaning when the laser is 

stopped. The parameter of the bispectral pyrometer to set is an emissivity ratio. 

For both niobium and steel samples, the heating procedure is as follows: 140 W during 1 s, 

then 30 W for another five seconds. 

 

3.  Theoretical considerations 

The flux Φ𝑖
𝑡ℎ(𝑇) collected by the i

th
 sensor is expressed theoretically by the following 

expression: 

 

Φ𝑖
𝑡ℎ(𝑇) = 𝐻𝑖 ∫ 𝑓𝑖(𝜆)𝜀𝑖(𝜆, 𝑇)𝑀0(𝜆, 𝑇)𝑑𝜆

∞

0

 (1) 

 

where T is the temperature (in kelvin),  is the wavelength (in µm), Hi is an amplitude 

correction coefficient estimated by calibration, fi() is the spectral transfer function of the i
th

 

optical path (OP#i) gathering all the optical manufacturing data (e.g. spectral transmittivity), 

i(,T) is the sample surface emissivity, and M
0
(,T) is the Planck’s law given by equation 

(2). This equation can be rewritten by using the Wien’s approximation as equation (3) which 

is valid for T less than 3 000 µm∙K, which is mostly the case here [3]. In the case of a 

blackbody at temperature T, the theoretical flux collected is Φ𝑖
0,𝑡ℎ(𝑇). 

 



𝑀0(𝜆, 𝑇) =
𝐶1𝜆−5

𝑒
𝐶2
𝜆𝑇 − 1

 (2) 

  

𝑀0(𝜆, 𝑇) = 𝐶1𝜆−5𝑒−
𝐶2
𝜆𝑇 (3) 

 

with C1 = 3.741 × 10
8
 W∙µm

4
∙m

-2
 and C2 = 14 388 µm∙K [15]. It is assumed that the influence 

of both the environment and the atmosphere inside the apparatus are negligible. 

Whatever the relation used to express the theoretical flux, (2) or (3), the signal is 

experimentally contaminated by an additive random noise ei. Thus, let’s define the observable 

Yi as following: 

 

𝑌𝑖 = 𝜀𝑖(𝑇)Φ𝑖
0,𝑡ℎ

(𝑇) + 𝑒𝑖 
(4) 

 

Section 4.3 will present the temperature-emissivity estimation through the Bayesian technique 

using a linear approximation. Therefore, assuming Wien’s approximation (3), and introducing 

mean values 𝜆𝑖, 𝜀𝑖 and fi for the wavelength, the emissivity and the transfer function, 

respectively, in each spectral band i. The flux in the band i can thus be simplified to: 

 

Φ𝑖
𝑡ℎ(𝑇) = 𝐻𝑖𝑓𝑖𝜀𝑖𝐶1𝜆𝑖

−5𝑒
−

𝐶2
𝜆𝑖𝑇 (5) 

 

The mean wavelengths 𝜆𝑖 are gathered in Table 1. The relation (5) can be linearized by taking 

the logarithm, by which the observable 𝑌′ is now: 

 

𝑌𝑖
′ ≡ 𝑙𝑛 (

Φ𝑖
𝑡ℎ(𝑇)𝜆𝑖

5

𝐶1𝐻𝑖𝑓𝑖
) = 𝑙𝑛(𝜀𝑖) − µ𝑖

𝑇𝑟𝑒𝑓

𝑇
+ 𝑒𝑖

′ (6) 



 

The new observables are now 𝐘′ = [𝑌1
′, 𝑌2

′, … 𝑌𝑚
′ ]𝑻 and in relation (6) µi is defined by (7), Tref 

is an arbitrary reference temperature used for scaling the temperature, and 𝑒𝑖
′ is a Gaussian 

additive experimental error affecting the observables 𝑌𝑖
′. 𝑒𝑖

′ differs from 𝑒𝑖 because of the 

linearization. 

 

𝜇𝑖 =
𝐶2

𝜆𝑖𝑇𝑟𝑒𝑓
 (7) 

 

The parameters of interest to estimate are the temperature and the emissivity. And one of the 

error sources comes from the spectral transfer functions fi(), that is why the Hi coefficients 

have been introduced and estimated by calibration against a blackbody. As an example Figure 

3 presents the evolution of both the commercial bispectral pyrometer temperature and the 

OP#5 flux versus time during the cooling of a blackbody, that is, after the laser heating is 

stopped. Note that this blackbody has been placed in the levitation apparatus instead of the 

levitation nozzle (Figure 1). The estimation of Hi has been performed by solving equation (8), 

considering the temperature given by the commercial bispectral pyrometer as being the real 

one and the emissivity of the blackbody simulator being equal to one. 

 

 Φ𝑖
0,𝑡ℎ(𝐻𝑖) = 𝑌𝑖 (8) 

 

The evolution of H5 is plotted in Figure 4. Except during the very first period of time when 

the blackbody temperature is not uniform, the estimation of H5 gives rather constant values; 

Figure 5 presents the histogram of the constant H5 from which, assuming a Gaussian 



distribution, the mean and the standard deviation are calculated. Table 1 gathers all results for 

the six optical paths. 

 

Table 1. Means values and standard deviations of the Hi coefficients. 

OP#i 1 2 3 4 5 6 

𝝀𝒊 (µm) 0.483 0.532 0.680 0.851 0.940 1.554 

𝑯̅𝒊 × 10
9
 32.68 2.23 3.82 2.46 3.22 3.63 

𝝈𝑯𝒊
 × 10

11
 91.31 2.64 2.19 1.10 1.25 2.86 

 

 

Figure 3. Evolution of the commercial bispectral pyrometer temperature (solid line) and of 

the OP#5 flux (dashed line) versus time during the calibration by means of a blackbody. 

 

The mean values of the amplitude correction coefficients and the associated standard 

deviations are information of prime importance. Firstly, they allow to discuss the credibility 

of the estimated parameters. Secondly, they will be used for the Bayesian inference as a priori 



information [9], so that their uncertainties are taken into account as regards the estimation of 

the parameters of interest, that is, the temperature and the emissivity of the sample (see 

section 4.3). 

 

 

Figure 4. Example of estimating the H5 coefficient during calibration. 

 



 

Figure 5. Gaussian representation of H5. 

 

4.  Simultaneous estimation of  Temperature and Emissivity 

4.1.  The bispectral method 

Fundamentally, the bispectral method consists in estimating the temperature by using two 

radiative fluxes measured at wavelengths i  and j . Regarding the spectral emissivity 

values, one of them is estimated in the same time as temperature, say i  at i , whereas a 

functional relationship is assumed between j  (at j ) and i . One possible functional 

relationship is jiij    where ji  is a predetermined constant. In the classical “greybody” 

approximation the constant ji  is set to one, which, to be satisfactory, requires that the 

wavelengths i  and j  be not too far from each other. 



Consider two radiative fluxes Φ𝑖
𝑒𝑥𝑝(𝑇) ≡ 𝑌𝑖 and Φ𝑗

𝑒𝑥𝑝(𝑇) ≡ 𝑌𝑗 measured at wavelengths i 

and j. The method lays on the simultaneous temperature emissivity estimation by solving the 

system (9)-(10): 

 

 

where the coefficient 𝜉𝑗𝑖 is the assumed emissivity ratio 𝜀𝑗/𝜀𝑖, which is 1 in the classical 

“greybody” approximation. 

 

4.2.  The multispectral method 

In the case of multispectral pyrometry, that is to say using three and more wavelengths, the 

emissivity can be considered in terms of a low order polynomial form (11) even if some 

physical models exist (e.g. Drude, Hagen-Rubens [5]). 

𝜀(𝜆, 𝑇) = ∑ 𝑎𝑘𝜆𝑘

𝑚

𝑘=0

 (11) 

The proposed method here implies to correct the experimental flux 𝑌𝑖 by 𝑌𝑖
𝑐𝑜𝑟 = 𝑌𝑖/𝐻𝑖𝑓𝑖 

according to the linearization of the Planck’s law (1). In order to not amplify the standard 

deviation on the estimated temperature and emissivity by multispectral methods, a 

parsimonious model is preferable, that is, the parametrization of a spectral emissivity of order 

2 maximum, m = 0, 1, or 2 in (11), and a minimum distance between two consecutive 

wavelengths [4][8][16][17] expressed by relation (12). The objective is to minimize the cost 

function (13), where W is the number of considered wavelengths, Φ𝑖
𝑡ℎ,𝑐𝑜𝑟

 is the corrected 

𝛷𝑖
𝑡ℎ(𝜀𝑖, 𝑇𝑖𝑗) = 𝑌𝑖 (9) 

  

𝜉𝑗𝑖𝛷𝑗
𝑡ℎ(𝜀𝑖, 𝑇𝑖𝑗) = 𝑌𝑗 (10) 



theoretical flux using the Planck’s law (without 𝐻𝑖𝑓𝑖(𝜆)), and 𝐚 = [𝑎0, … 𝑎𝑊]𝑇 is the 

parameter vector of the emissivity model (11). 

 

Δλ𝑖𝑗,𝑚𝑖𝑛 =
𝜆𝑖

2𝑇

𝐶2
|

𝜆𝑖>𝜆𝑗

 (12) 

  

∑[Φ𝑖
𝑡ℎ,𝑐𝑜𝑟(𝑇, 𝐚) − 𝑌𝑖

𝑐𝑜𝑟𝑟]
2

𝑊

𝑖=1

 (13) 

 

4.3.  Estimation by Bayesian inference 

The Bayesian theorem is given in reference [12]: 

 

𝜋(𝛃|𝐘) =
𝜋(𝐘|𝛃)𝜋(𝛃)

𝜋(𝐘)
 (14) 

 

𝛃 = [𝜺, 𝑇]𝑇 

(15) 

 

where  is the vector of the following parameters: the temperature and the emissivities  

𝜺 = [𝜀1, … 𝜀𝑚 ]𝑇, where m represents the number of wavelengths. 𝜋(𝐘|𝛃) is the likelihood 

function or the probability density of the measurements with the parameters  given, 𝜋(𝛃) is 

the a priori density of the unknown or uncertain parameters, and 𝜋(𝐘) is the marginal 

probability density of the measurements, which plays the role of a normalization constant. As 

per equation (6), measurement uncertainties are supposed Gaussian with known zero mean 

and a covariance matrix, additive and independent from the unknown parameters. Thus, the 

likelihood function can be written: 

 



𝜋(𝐘|𝛃) ∝ 𝑒𝑥𝑝 {−
1

2
[𝐘 − 𝛆⨂𝚽𝟎,𝒕𝒉(𝑇)]

𝑇
𝛀−1[𝐘 − 𝛆⨂𝚽𝟎,𝒕𝒉(𝑇)]} (16) 

 

where  is the measurement error covariance matrix and   denotes the element-wise 

product. Regarding the density of an a priori distribution of the parameters, it was assumed 

independent and given by (17), where 𝜋(𝛆) and 𝜋(T) are the probability densities of the 

emissivity and the temperature, respectively: 

 

𝜋(𝛃) = 𝜋(𝛆)𝜋(𝑇) (17) 

 

4.3.1.  Multiwavelength pyrometer in linear approximation 

In the case of the linear approximation, let’s consider the system (5)-(7). Equation (6) can be 

rewritten as: 

 

𝐘 = 𝐗𝛃 + 𝐞′ 

 

(18) 

𝐗 = [𝐈𝐦𝐦 −𝛍𝒎𝟏] 

 

(19) 

𝛍 = [𝜇1 𝜇2 … 𝜇𝑚]𝑇 (20) 

 

where 𝐈𝐦𝐦 is the identity matrix of size m × m. Thus the relation (16) becomes, taking into 

account equation (17) and the linear hypothesis: 

 

𝜋(𝛃|𝐘) ∝ 𝑒𝑥𝑝 {−
1

2
[(𝐘 − 𝐗𝛃)𝑇𝛀−1(𝐘 − 𝐗𝛃) + (𝛃 − 𝛃𝒑𝒓𝒊𝒐𝒓)𝑇𝐖−1(𝛃 − 𝛃𝒑𝒓𝒊𝒐𝒓)]} (21) 

 



The maximum a posteriori (MAP) estimator is then obtained when its derivative is null with 

respect to the parameter vector. Introducing the MAP estimator and the posterior covariance 

matrix, relation (21) becomes: 

 

𝜋(𝛃|𝐘) ∝ {−
1

2
[(𝛃 − 𝛃̂𝑀𝐴𝑃)

𝑇
𝚪𝛃|𝐘

−𝟏(𝛃 − 𝛃̂𝑀𝐴𝑃)]} (22) 

 

In relation (22), 𝛽̂𝑀𝐴𝑃 is the MAP estimator (23) and 𝚪𝛃|𝐘 is the posterior covariance matrix 

(24). They are given by [15]: 

 

𝛃̂𝑀𝐴𝑃 = 𝛃𝐩𝐫𝐢𝐨𝐫 + 𝐖𝐗𝐓(𝐗𝐖𝐗𝐓 + 𝛀)−𝟏(𝐘 − 𝐗𝛃𝐩𝐫𝐢𝐨𝐫) (23) 

𝚪𝛃|𝐘 = 𝐖 − 𝐖𝐗𝐓(𝐗𝐖𝐗𝐓 + 𝛀)−1𝐗𝐖 (24) 

 

4.3.2.  Multiwavelength pyrometry in non-linear estimation 

In the non-linear case, the theoretical fluxes are calculated from relations (1), (2), and (4), that 

is, with Planck’s law. The  vector of the parameter is the same as in eq. (17). 

A sampling method based on the Markov Chain Monte Carlo (MCMC) method is used in this 

work. The Metropolis-Hastings algorithm was applied to generate samples of the posterior 

distribution based on the likelihood given by equation (16). This algorithm begins with the 

selection of a proposal distribution 𝑝(𝛃∗, 𝛃𝑡−1 ), which is used to define a new candidate *, 

given the current state 𝛃𝑡−1
 of the Markov Chain. Once the proposal distribution is defined, 

the Metropolis-Hastings sampling algorithm can be implemented by repeating the following 

steps: 

1- Sample a candidate * from the proposal distribution 𝑝(𝛃∗, 𝛃𝑡−1 ). 

2- Calculate the acceptance: 



 

𝛼 = 𝑚𝑖𝑛 [1,
𝜋(𝛃∗|𝐘), 𝑝(𝛃∗, 𝛃𝐭−𝟏)

𝜋(𝛃𝑡−1|𝐘), 𝑝(𝛃𝑡−1, 𝛃)
] (25) 

 

3- Generate a random value U uniformly distributed between 0 and 1. 

4- If U ≤ 𝛼, set 𝛃𝑡 = 𝛃∗; otherwise, set 𝛃𝑡 = 𝛃𝑡−1. 

5- Return to step 1 to generate the sequence {𝛃1, 𝛃2 … , 𝛃𝑛 }. 

 

In this manner, a sequence is generated to represent the posterior distribution, and inference 

on this posterior distribution is obtained from inference on the samples {𝛽1, 𝛽2 … , 𝛽𝑛 }. Note 

that the values 𝛽𝑖 must be rejected as long as the chain has not converged. 

 

5.  Results and discussions 

5.1.  Estimation with niobium 

Figure 6 presents all the fluxes and temperature measurements during the experiment. The six 

continuous lines are the fluxes, the one at the bottom represents the flux at 0.48 µm 

wavelength while the one at the top corresponds to the 1.55 µm wavelength. The dashed line 

represents the temperature measured by the commercial bispectral pyrometer. As already 

mentioned above, this pyrometer works only during the cooling period due to wavelengths 

overlapping with the laser during heating. The melting and solidification plateaus are 

approximately at t = 1.2 s and 6.4 s, respectively. 

The six-wavelength pyrometer offers numerous possible combinations to use the multispectral 

method for the parameter estimation. The bispectral method, presented in section 4.1, is now 

used, and two combinations are tested, the combination 3/4 due to literature data given at the 

wavelength of 0.680 µm, and the combination 4/5. 



The two state changes (fusion, solidification), the large temperature variation, and the broad 

spectral range are three reasons that make the emissivity change highly likely. However, the 

niobium melting temperature is known (2 750 K) and the literature mentions values of 

emissivity around 0.35 at 0.684 5 µm in the liquid phase [13] and 0.35 at 0.650 µm in the 

solid phase [19], respectively. All these values are convenient to verify the estimations at the 

solidification plateau mainly, and useful as a priori data. 

 

 

Figure 6. Niobium sample fluxes and commercial bispectral pyrometer temperature as a 

function of time. 

 

We first analyze the solution of the system (9)-(10) by considering 𝜀𝑖 = 𝜀𝑗, for two bispectral 

combinations and different initial guesses for temperature and emissivity, by comparison with 

literature values of the emissivity at the melting temperature. As the results are not satisfying, 

the greybody assumption should be relieved, which means that one should solve the system 

(9)-(10) by introducing an emissivity ratio 𝜉𝑗𝑖. The estimation of this parameter is only 

possible using a known data, such as the solidification plateau. 



This estimation is based on the experimental data, obtained during the cooling period, when 

the bispectral commercial pyrometer measures temperature Tbis. This minimization is based 

on a high confidence in the temperature given by the commercial bispectral pyrometer Tbis. 

Indeed, the measured temperature during the solidification plateau has been estimated at 

(2 731 ± 12) K (i.e. 0.5 %), which made it coincides with the literature [20], and its emissivity 

ratio has been set to 1.025 (consistent with 𝜉43= 1.087, see further). 

Results of two bispectral combinations are presented: 3/4 where 34 = 170 nm; 4/5 where  

45 = 90 nm. Then the principle is to minimize the mean of the residuals (26) between the 

estimated temperature Tij and Tbis during a short time interval (N = 50 between 5.9 s and 6.9 

s).  

 

1

𝑁
∑[𝑇𝑖𝑗(𝑡𝑘) − 𝑇𝑏𝑖𝑠(𝑡𝑘)]

2
𝑁

𝑘=1

 (26) 

 

Figure 7 plots the evolution of the mean of residuals in eq. (23) versus 43. Consequently,  

43 = 1.087 and the results of emissivity and temperature, obtained for this value are presented 

in Figures 8 and 9. Even if the emissivity ratio has been evaluated during the short time 

interval of solidification, the obtained value has been applied to the whole duration of the 

experiment. Even if literature mentions a rather constant emissivity in the liquid state [13], 

this is a major assumption. Nevertheless, we can observe that in Figures 9 and 10 the 

estimated temperatures T34 and T45 are very close. 

 



 

 

Figure 8. Estimated emissivity 3 (3 = 0.68 µm) versus temperature and comparison with 

literature data at approximatively the same wavelength. 

 

Figure 7. Residuals mean between the estimated temperature T34 and Tbis versus the 

emissivity ratio 43 during the cooling. 



 

Figure 8 plots the evolution of the estimated emissivity 3 versus the estimated temperature 

T34. Results are compared with niobium emissivity values, found in the literature. In the solid 

state, emissivity tends to decrease from 0.6 around 1 200 K to 0.3 until the liquefaction 

plateau, and are closer to Touloukian’s than Seifter’s value. However in the solid state, these 

emissivity and temperature are estimated values from fluxes recorded after 9 s (Figure 9), so 

they must be considered very carefully, since the fluxes are lower than 50 nW, which is at the 

lower limit of confidence of the sensor. Then in the liquid state, the emissivity is constant and 

just below 0.3 whereas the other values are rather between 0.3 and 0.4. 

There is obviously a strong dispersion between measurements and literature values, and they 

are in the range 0.20 – 0.40. In our measurements, the samples are protected by an argon jet, 

limiting the oxidation. Nevertheless the major uncertainty concerns the blackbody calibration, 

as already mentioned in section 2. Although our estimated emissivities are more or less 

satisfying, new measurements are necessary to improve the confidence in our calibration. 

Indeed, an over- or underestimation on the Hi coefficient in relation (1) will directly lead to an 

under- or overestimation of the emissivity, respectively. 

 



 

Figure 9. Bispectral temperature emissivity estimation for the combination 3/4. 

 

 

Figure 10. Bispectral temperature emissivity estimation for the combination 4/5. 

 

Measurements on known materials, such as pure niobium, are convenient, since there is a 

possibility to have an a priori value such as the melting temperature as the point of reference. 



But in the case of unknown materials, such as alloys, the solidification plateau would not be 

that constant but rather shows a slight decrease. This will be discussed in section 5.2. on the 

basis of the steel sample. 

In the multispectral case (section 4.2), tests are performed considering emissivity as a 

polynomial of orders 0 (m = 0) and 1 (m = 1); the order 2 is not conceivable due to the 

spectral range being too narrow in the case of this study. Considering the six wavelengths, 

only four are kept to respect the minimal spectral criteria given by relation (12) with T = 2 

750 K: 2 = 0.530 µm, 3 = 0.680 µm, 5 = 0.940 µm, and 6 = 1.055 µm. The estimation has 

been performed by ordinary least squares coupled with the Levenberg-Marquardt algorithm; 

estimated temperatures are presented in Figures 11 and 12. Figure 12 shows a difference of 

estimation between the two tested emissivity models. Nevertheless, estimated temperatures 

with the order 1 polynomial are better, since the temperature at the solidification plateau is 

estimated at (2 753 ± 20) K (0.8 %) (Figure 12). The order 0 polynomial overestimates the 

temperatures. This result is predictable, since the emissivity is considered constant along the 

spectral range [0.530 µm – 1.055 µm], which seems improbable with such a spectral range. 

 



 

Figure 11. Estimated temperatures by multispectral method. 

 

 

Figure 12. Zoom of the estimated temperatures at the solidification plateau. 

 



 

Figure 13. Modified observables for the combination 3/4 with Bayesian inference, 

considering linear approximation. 

 

 

Figure 14. Estimated temperature around the melting point and comparison with Tbis. 

 



Now parameter estimation is performed according to the Bayesian method in two ways: by a 

linear approximation (section 4.3.1) and in non-linear case, using MCMC (section 4.3.2). 

Only bispectral estimations are presented. To start with the linear approximation, the 

theoretical fluxes are linearized, as presented in relations (3),(5)-(7): Figure 13 presents them 

for the measurements of OP#3 and OP#4. Estimations are performed during the first part of 

the cooling, mainly during the solidification plateau. 

Three parameters are considered: the temperature and the two emissivities. Tests are 

performed with different levels of confidence, with priors of good or bad quality. In the first 

stage we concentrated on the solidification plateau (Figure 14). Since the phase-change 

temperature is well known, we introduced a temperature prior of small uncertainty, 𝑇𝑝𝑟𝑖𝑜𝑟 = 

(2 750 ± 30) K whereas the emissivity priors were given a high uncertainty, namely 𝜀3
𝑝𝑟𝑖𝑜𝑟

 = 

𝜀4
𝑝𝑟𝑖𝑜𝑟

 = 0.30 ± 0.15. 

 

 

Figure 15. A priori and estimated emissivities 4 and 5 at the solidification plateau. 

 



 

Figure 16. A priori and estimated temperature at the solidification plateau. 

 

 

Figure 17. MAP estimator of temperature (in blue) with plus or minus one standard-

deviation (dashed blue) and bispectral pyrometer (dashed black). 

 



 

Figure 18. MAP estimator of emissivity 𝜀3 (in orange) and 𝜀4 (in violet) and plus or minus 

one standard-deviation (dashed lines). 

 

Figures 15 and 16 show the normalized probability densities for the three parameters. On the 

solidification plateau, the mean and standard-deviation of the emissivities are  

𝜀3 = 0.261 ± 0.023 and 𝜀4 = 0.288 ± 0.020 and for the temperature T = (2 748 ± 29) K. The 

emissivities previously obtained with the OLS method are close, but 7 % higher:  

𝜀3 = 0.278 ± 0.009, 𝜀4 = 0.300 ± 0.008. The method has then been extended to the whole 

duration of the experience by levering the previous results. As a matter of fact, since we have 

now a better confidence into the emissivity values, we considered as new priors 𝜀3
𝑝𝑟𝑖𝑜𝑟

 = 

0.260 ± 0.023 and 𝜀4
𝑝𝑟𝑖𝑜𝑟

 = 0.290 ± 0.020, whereas temperature was given a prior of reduced 

quality since it is expected to evolve widely during the experiment: 𝑇𝑝𝑟𝑖𝑜𝑟 = (2 000 ± 1 000) 

K. 

The results of this second identification phase are described in Figures 17 and 18. The MAP 

estimator of the emissivity 𝜀3 and 𝜀4 are quite stable in the liquid phase. On the contrary, in 



the solid phase, 𝜀3 shows a slight increase whereas 𝜀4 shows a slight decrease. The mean 

standard-deviation of the estimator of temperature is between 7 and 32 K during the period 

[1s, 9s] of the experiment. 

 

For the case of non-linear approximation, still with the measurements of OP#3 and OP#4, the 

estimation has been performed during the whole experiment and only two parameters are 

considered: the temperature and the emissivity 𝜀34. The Markov chains were started with 

parameters with the same priors as previously (of good quality for the temperature and bad 

quality for the emissivity). The chains were run with 30 000 states and the 15 000 first states 

were neglected for the computation of the posterior statistics (burn-in period). Figures 19 and 

20 show the good fitting between the experimental and estimated flux and temperature, 

respectively. The 2.5 % and 97.5 % quantiles have also been calculated and presented in these 

figures, for the verification of the estimated fluxes and temperature versus the experimental 

ones. 

 

 



Figure 19. Estimated and experimental fluxes. 

 

 

Figure 20. Estimated and experimental temperatures. 

 

 

Figure 21. Markov chain states for the temperature estimation. 



 

 

Figure 22. Markov chain states for the emissivity estimation. 

 

Finally, Figures 21 and 22 presents the states of the Markov chains for both the temperature 

and emissivity at t = 6.7 s, that is, during the solidification plateau. They clearly show that the 

estimation tends to a rather constant value after 10 000 states. The histograms plotted for 

values after 15 000 states are not of Gaussian shapes, especially as regards the temperature. 

The prior for the temperature was centered at values at previous time with a constant standard 

deviation of 300 K, while the prior for the emissivity was considered as uniform in the 

interval [0, 1]. The estimated values for the solidification plateau are 𝑇 = (2 747 ± 2) K, 𝜀34 = 

0.303 ± 0.002. 

 

5.2.  Estimation with steel sample 

This last part concerns some results for the 100c6 steel, also referenced as AISI 52100 by 

ASTM [14]. Only Bayesian results are presented for this material with the linear 



approximation and the non-linear case. Figure 23 presents the experimental fluxes measured 

with the multispectral pyrometer and the temperature Tbis with an emissivities ratio adjusted at 

1.025. The fluxes measured by means of OP#1 and OP#2 are too weak to be used for the 

parameter estimation. As before, bispectral estimations are presented from the measurements 

of OP#3 and OP#4. 

 

 

Figure 23. 100c6 steel sample fluxes. 

 

The priors for the temperature and the emissivities are, respectively, 𝑇𝑝𝑟𝑖𝑜𝑟 = (1 700 ± 30) K 

and 𝜀3
𝑝𝑟𝑖𝑜𝑟

 = 𝜀4
𝑝𝑟𝑖𝑜𝑟

 = 0.30 ± 0.15 according to literature data. We consider only the area of the 

solidification plateau, which does not appear clearly since the sample is an alloy. 

 



 

Figure 24. Estimated temperature through Bayesian inference with linear approximation. 

 

 

Figure 25. Estimated emissivities through Bayesian inference with linear approximation. 

 



Figures 24 and 25 plot the normalized probability density of the estimated temperature and 

emissivities, whereas Figures 26 and 27 plot the estimated parameter-value evolution versus 

the Markov chain states (run with 100 000 states). First, the linear approximation and the non-

linear methods give the following results: 𝑇 = (1 703 ± 28) K, 𝜀3 = 0.328 ± 0.074, 𝜀4 = 0.351 

± 0.062, and 𝑇 = (1 720 ± 7) K, 𝜀34 = 0.296 ± 0.010, respectively. These values are averages 

of the range corresponding to the solidification plateau. The Markov chain shows rather 

constant values after the second half of the 100 000 states and a histogram with Gaussian 

shape. However, it is not plotted here, but we can note that the estimated temperatures fit 

rather well with the commercial bispectral pyrometer temperature Tbis along the whole cooling 

period (from 5.6 s to 9.0 s) giving credit to the priors. 

 

 

Figure 26. Estimated temperature versus Markov chain states with non-linear Bayesian. 

 



 

Figure 27. Estimated emissivity versus Markov chains states with non-linear Bayesian. 

 

6.  Conclusion 

The article presented the first steps of the simultaneous temperature and emissivity estimation 

of molten metals by multispectral pyrometry using both deterministic and Bayesian 

techniques. Estimations were focused on bispectral pyrometry and one case by the 

multispectral method. The materials, niobium and steel samples, were aerodynamically 

levitated, then heated by laser above their melting point then cooled until room temperature. 

Radiative flux measurements have been performed with the help of a multispectral pyrometer, 

whereas a second commercial bispectral pyrometer measured the temperature as a 

supplementary information. The estimation results have shown that all techniques presented 

similar temperature and emissivity values consistent with the literature. 

Nevertheless, whatever the considered multispectral pyrometry, both temperature and 

emissivity are not easy to estimate since, firstly, they are correlated parameters, and, secondly, 

the problem is ill-posed since the number of unknown is always one more than the number of 

information. In the case of the bispectral pyrometry and the multispectral pyrometry with m = 

0 (constant emissivity), the current approach to assume a greybody hypothesis, considering 



two measurements at two wavelengths, was not successful in this study. On the contrary, 

bispectral pyrometry with ji ≠ 1 and multispectral pyrometry in the case of a linear emissivity 

(m = 1) gave better temperature values. Concerning the Bayesian technique, it has been 

necessary to take into account prior information, namely the emissivity, encountered in the 

literature and the temperature measured by the commercial bispectral pyrometer. However, it 

must be clear that the latter information was used only for initial calibration and for 

validation. Its systematic use is of course not needed. Nevertheless, with this information, the 

three tested methods give satisfying results, but need to be improved. The detection and the 

rigorous quantification of the uncertainties are of prime importance; it concerns for instance 

the calibration with a blackbody, which should be improved (e.g. blackbody ratio 

length/diameter [21]). Even if they are necessary in the Bayesian inference (𝜋(𝛃)), the major 

point to solve concerns the fact that we must use external information (priors) to commit 

estimation, due to the strong correlation between temperature and emissivity. Since the 

Bayesian techniques seem relevant to circumvent the ill-posed problem, it would be 

appropriate to couple this methodology with temperature-emissivity separation considerations 

[3][12]. It is all the more appropriate, since we have to consider emissivity variation due to 

phase changes, for instance oxidation. 
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