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Introduction

This article aims at the estimation of temperature and emissivity of metals above their melting points. It is a part of a global work dealing with the estimation of the physical properties of metals in solid and liquid states (density [START_REF] Le | Density measurement of liquid 22MnB5 by aerodynamic levitation[END_REF], viscosity, surface tension, diffusivity [START_REF] Lamien | A Bayesian Approach for the Simultaneous Estimation of the Thermal Diffusivity and Thermal Conductivity of Aerodynamically Levitated Solid Metals at High Temperatures -Theoretical Study[END_REF]). An apparatus, specifically developed, allows to perform aerodynamic levitation of samples of millimeter size. Once in levitation, the samples are heated with a laser up to and above their melting temperature. Therefore, temperature measurements with thermocouple are not possible and non-contact measurements are necessary, such as pyrometry. Among all the instrumentations around the apparatus, a six-wavelength pyrometer collects the radiative flux in six narrow spectral bands.

The simultaneous estimation of temperature and emissivity of the sample is possible with bispectral or multispectral pyrometry. This technique is largely used in many fields, but presents several drawbacks. The major one is that the inversion problem is ill-posed in the sense that it is underdetermined; indeed in multiwavelength pyrometry there is always one unknown parameter more than there are equations [START_REF] Krapez | Radiative measurements of temperature in Thermal Measurements and Inverse Techniques[END_REF]: for example in bispectral pyrometry,

for two measurements at wavelengths 𝜆 𝑖 and 𝜆 𝑗 , there are three unknowns, the temperature and the two spectral emissivities 𝜀 𝑖 and 𝜀 𝑗 . Nevertheless, some possibilities exist to solve the problem; however they all require some assumptions.

The classical bispectral assumption is to consider a constant emissivity 𝜀 𝑖 ≈ 𝜀 𝑗 for two measurements at wavelengths 𝜆 𝑖 and 𝜆 𝑗 not to far from each other, and nevertheless not to close to not increase the temperature uncertainty [START_REF] Pierre | Micro-scale temperature by multi-spectral and statistic method in the UV-visible wavelengths[END_REF]. In the case of the multiwavelength pyrometry, that is, for more than two wavelengths, it is common to use a mathematical or physical spectral model for the emissivity, on the condition that the number of unknowns is smaller than the number of wavelengths [START_REF] Duvaut | Multiwavelength infrared pyrometry: optimization and computer simulations[END_REF]. The model choice depends on the spectral range width of the pyrometer, and a low-order polynomial (order 1 or 2) form can be sufficient. However, a common result is that the identification error is highly sensitive to the matching of the chosen model with the real emissivity spectrum, which, by principle, is a difficult task since the real emissivity spectrum is not known beforehand [START_REF] Krapez | Radiative measurements of temperature in Thermal Measurements and Inverse Techniques[END_REF], [START_REF] Coates | Multiwavelength pyrometry[END_REF].

To solve the estimation problem three techniques are proposed here. The first one is based on bispectral pyrometry and ordinary least squares (OLS) coupled with a Levenberg-Marquardt algorithm using two out of the six measurements with different possibilities of combinations [START_REF] Gardner | Computer modeling of a multiwavelength pyrometer for measuring true surface temperature[END_REF]. The second technique is based on multispectral pyrometry and regularization by OLS estimation using a low-order model and some criteria allowing to not amplify the standard deviation on the estimated temperature [START_REF] Rodiet | Optimisation of wavelength selection used for the multi-spectral temperature measurement by ordinary least squares method of surfaces exhibiting non-uniform emissivity[END_REF].The third method is based on Bayesian inference, a stochastic technique, which allows to take into account a priori information about the parameters to be estimated [START_REF] Heasler | Nonlinear Bayesian Algorithms for Gas Plume Detection and Estimation from Hyper-Spectral Thermal Image Data Sensors[END_REF]. The present work is developed as follows. First the apparatus and the six-wavelength pyrometer are presented in section 2. Section 3 is dedicated to theoretical considerations regarding the apparatus. The parameter estimation methodologies are presented in section 4, which are finally used in the last section 5 with the experimental data obtained from measurements with two metallic samples: niobium with known melting temperature (1 750 K) [START_REF] Seifter | Microsecond Laser Polarimetry for Emissivity Measurements on Liquid Metals at High Temperatures-Application to Niobium[END_REF], and a steel sample, which has not been characterized, but according to ASTM, its melting temperature is about 1 697 K [14].

The levitation apparatus and the pyrometers

Figure 1 presents the apparatus dedicated to the levitation of spherical sample with a diameter of 3 mm. The levitation is assured by a controlled argon flow. Once in levitation the sample is heated above its melting point by a laser (300 W, 1.070 µm). Figure 1 shows also infrared and high-speed cameras that are not dealt in this study. The six-wavelength pyrometer is aimed at the sample top surface. A commercial pyrometer, which does not appear in Figure 1, is also associated to the sixwavelength one. It is bispectral with wavelengths 0.900 µm and 1.050 µm. Therefore, as the laser wavelength is within its spectral band during the sample heating, the measurements of the pyrometer can only be used during the cooling of the sample, meaning when the laser is stopped. The parameter of the bispectral pyrometer to set is an emissivity ratio.

For both niobium and steel samples, the heating procedure is as follows: 140 W during 1 s, then 30 W for another five seconds.

Theoretical considerations

The flux Φ 𝑖 𝑡ℎ (𝑇) collected by the i th sensor is expressed theoretically by the following expression:

Φ 𝑖 𝑡ℎ (𝑇) = 𝐻 𝑖 ∫ 𝑓 𝑖 (𝜆)𝜀 𝑖 (𝜆, 𝑇)𝑀 0 (𝜆, 𝑇)𝑑𝜆 ∞ 0 ( 1 
)
where T is the temperature (in kelvin),  is the wavelength (in µm), H i is an amplitude correction coefficient estimated by calibration, f i () is the spectral transfer function of the i th optical path (OP#i) gathering all the optical manufacturing data (e.g. spectral transmittivity),  i (,T) is the sample surface emissivity, and M 0 (,T) is the Planck's law given by equation [START_REF] Lamien | A Bayesian Approach for the Simultaneous Estimation of the Thermal Diffusivity and Thermal Conductivity of Aerodynamically Levitated Solid Metals at High Temperatures -Theoretical Study[END_REF]. This equation can be rewritten by using the Wien's approximation as equation (3) which is valid for T less than 3 000 µm•K, which is mostly the case here [START_REF] Krapez | Radiative measurements of temperature in Thermal Measurements and Inverse Techniques[END_REF]. In the case of a blackbody at temperature T, the theoretical flux collected is Φ 𝑖 0,𝑡ℎ (𝑇). 𝜆𝑇 -1

(2)

𝑀 0 (𝜆, 𝑇) = 𝐶 1 𝜆 -5 𝑒 - 𝐶 2 𝜆𝑇 (3) 
with C 1 = 3.741 × 10 8 W•µm 4 •m -2 and C 2 = 14 388 µm•K [START_REF] Siegel | Thermal radiation heat transfer[END_REF]. It is assumed that the influence of both the environment and the atmosphere inside the apparatus are negligible.

Whatever the relation used to express the theoretical flux, (2) or (3), the signal is experimentally contaminated by an additive random noise e i . Thus, let's define the observable Y i as following:

𝑌 𝑖 = 𝜀 𝑖 (𝑇)Φ 𝑖 0,𝑡ℎ (𝑇) + 𝑒 𝑖 (4) 
Section 4.3 will present the temperature-emissivity estimation through the Bayesian technique using a linear approximation. Therefore, assuming Wien's approximation (3), and introducing mean values 𝜆 𝑖 , 𝜀 𝑖 and f i for the wavelength, the emissivity and the transfer function, respectively, in each spectral band i. The flux in the band i can thus be simplified to:

Φ 𝑖 𝑡ℎ (𝑇) = 𝐻 𝑖 𝑓 𝑖 𝜀 𝑖 𝐶 1 𝜆 𝑖 -5 𝑒 - 𝐶 2 𝜆 𝑖 𝑇 (5) 
The mean wavelengths 𝜆 𝑖 are gathered in 

The parameters of interest to estimate are the temperature and the emissivity. And one of the error sources comes from the spectral transfer functions f i (), that is why the H i coefficients have been introduced and estimated by calibration against a blackbody. As an example Figure 3 presents the evolution of both the commercial bispectral pyrometer temperature and the OP#5 flux versus time during the cooling of a blackbody, that is, after the laser heating is stopped. Note that this blackbody has been placed in the levitation apparatus instead of the levitation nozzle (Figure 1). The estimation of H i has been performed by solving equation ( 8), considering the temperature given by the commercial bispectral pyrometer as being the real one and the emissivity of the blackbody simulator being equal to one.

Φ 𝑖 0,𝑡ℎ (𝐻 𝑖 ) = 𝑌 𝑖 (8) 
The evolution of H 5 is plotted in Figure 4. Except during the very first period of time when the blackbody temperature is not uniform, the estimation of H 5 gives rather constant values;

Figure 5 presents the histogram of the constant H 5 from which, assuming a Gaussian distribution, the mean and the standard deviation are calculated. The mean values of the amplitude correction coefficients and the associated standard deviations are information of prime importance. Firstly, they allow to discuss the credibility of the estimated parameters. Secondly, they will be used for the Bayesian inference as a priori information [START_REF] Heasler | Nonlinear Bayesian Algorithms for Gas Plume Detection and Estimation from Hyper-Spectral Thermal Image Data Sensors[END_REF], so that their uncertainties are taken into account as regards the estimation of the parameters of interest, that is, the temperature and the emissivity of the sample (see section 4.3). 

Simultaneous estimation of Temperature and Emissivity

The bispectral method

Fundamentally, the bispectral method consists in estimating the temperature by using two radiative fluxes measured at wavelengths i  and j  . Regarding the spectral emissivity values, one of them is estimated in the same time as temperature, say i  at i  , whereas a functional relationship is assumed between j  (at j  ) and i  . One possible functional relationship is

ji i j    
where ji  is a predetermined constant. In the classical "greybody" approximation the constant ji  is set to one, which, to be satisfactory, requires that the wavelengths i  and j  be not too far from each other.

Consider two radiative fluxes Φ 𝑖 𝑒𝑥𝑝 (𝑇) ≡ 𝑌 𝑖 and Φ 𝑗 𝑒𝑥𝑝 (𝑇) ≡ 𝑌 𝑗 measured at wavelengths  i and  j . The method lays on the simultaneous temperature emissivity estimation by solving the system ( 9)-( 10):

where the coefficient 𝜉 𝑗𝑖 is the assumed emissivity ratio 𝜀 𝑗 /𝜀 𝑖 , which is 1 in the classical "greybody" approximation.

The multispectral method

In the case of multispectral pyrometry, that is to say using three and more wavelengths, the emissivity can be considered in terms of a low order polynomial form [START_REF] Ash | Temperature-emissivity separation for LWIR sensing using MCMC[END_REF] even if some physical models exist (e.g. Drude, Hagen-Rubens [START_REF] Duvaut | Multiwavelength infrared pyrometry: optimization and computer simulations[END_REF]).

𝜀(𝜆, 𝑇) = ∑ 𝑎 𝑘 𝜆 𝑘 𝑚 𝑘=0 (11) 
The proposed method here implies to correct the experimental flux 𝑌 𝑖 by 𝑌 𝑖 𝑐𝑜𝑟 = 𝑌 𝑖 /𝐻 𝑖 𝑓 𝑖 according to the linearization of the Planck's law [START_REF] Le | Density measurement of liquid 22MnB5 by aerodynamic levitation[END_REF]. In order to not amplify the standard deviation on the estimated temperature and emissivity by multispectral methods, a parsimonious model is preferable, that is, the parametrization of a spectral emissivity of order 2 maximum, m = 0, 1, or 2 in [START_REF] Ash | Temperature-emissivity separation for LWIR sensing using MCMC[END_REF], and a minimum distance between two consecutive wavelengths [START_REF] Pierre | Micro-scale temperature by multi-spectral and statistic method in the UV-visible wavelengths[END_REF][8] [16][17] expressed by relation [START_REF] Krapez | Measurements without contact in heat transfer. Part A: radiative thermometry: principles, implementation and pitfalls[END_REF]. The objective is to minimize the cost function [START_REF] Seifter | Microsecond Laser Polarimetry for Emissivity Measurements on Liquid Metals at High Temperatures-Application to Niobium[END_REF], where W is the number of considered wavelengths, Φ 𝑖 𝑡ℎ,𝑐𝑜𝑟 is the corrected

𝛷 𝑖 𝑡ℎ (𝜀 𝑖 , 𝑇 𝑖𝑗 ) = 𝑌 𝑖 (9) 
𝜉 𝑗𝑖 𝛷 𝑗 𝑡ℎ (𝜀 𝑖 , 𝑇 𝑖𝑗 ) = 𝑌 𝑗 [START_REF] Berrett | A Bayesian Nonparametric Model for Temperature-Emissivity Separation of Long-Wave Hyperspectral Images[END_REF] theoretical flux using the Planck's law (without 𝐻 𝑖 𝑓 𝑖 (𝜆)), and 𝐚 = [𝑎 0 , … 𝑎 𝑊 ] 𝑇 is the parameter vector of the emissivity model [START_REF] Ash | Temperature-emissivity separation for LWIR sensing using MCMC[END_REF].

Δλ 𝑖𝑗,𝑚𝑖𝑛 = 𝜆 𝑖 2 𝑇 𝐶 2 | 𝜆 𝑖 >𝜆 𝑗 (12) ∑[Φ 𝑖 𝑡ℎ,𝑐𝑜𝑟 (𝑇, 𝐚) -𝑌 𝑖 𝑐𝑜𝑟𝑟 ] 2 𝑊 𝑖=1 (13) 

Estimation by Bayesian inference

The Bayesian theorem is given in reference [START_REF] Krapez | Measurements without contact in heat transfer. Part A: radiative thermometry: principles, implementation and pitfalls[END_REF]:

𝜋(𝛃|𝐘) = 𝜋(𝐘|𝛃)𝜋(𝛃) 𝜋(𝐘) (14) 
𝛃 = [𝜺, 𝑇] 𝑇 ( 15 
)
where  is the vector of the following parameters: the temperature and the emissivities 𝑇 , where m represents the number of wavelengths. 𝜋(𝐘|𝛃) is the likelihood function or the probability density of the measurements with the parameters  given, 𝜋(𝛃) is the a priori density of the unknown or uncertain parameters, and 𝜋(𝐘) is the marginal probability density of the measurements, which plays the role of a normalization constant. As per equation ( 6), measurement uncertainties are supposed Gaussian with known zero mean and a covariance matrix, additive and independent from the unknown parameters. Thus, the likelihood function can be written:

𝜺 = [𝜀 1 , … 𝜀 𝑚 ]
𝜋(𝐘|𝛃) ∝ 𝑒𝑥𝑝 {- 1 2 [𝐘 -𝛆⨂𝚽 𝟎,𝒕𝒉 (𝑇)] 𝑇 𝛀 -1 [𝐘 -𝛆⨂𝚽 𝟎,𝒕𝒉 (𝑇)]} ( 16 
)
where  is the measurement error covariance matrix and  denotes the element-wise product. Regarding the density of an a priori distribution of the parameters, it was assumed independent and given by [START_REF] Rodiet | Influence of measurement noise and number of wavelengths on the temperature measurement of opaque surface with variable emissivity by a multispectral method based on the flow ratio in the infrared-ultraviolet range[END_REF], where 𝜋(𝛆) and 𝜋(T) are the probability densities of the emissivity and the temperature, respectively:

𝜋(𝛃) = 𝜋(𝛆)𝜋(𝑇) (17) 

Multiwavelength pyrometer in linear approximation

In the case of the linear approximation, let's consider the system ( 5)- [START_REF] Gardner | Computer modeling of a multiwavelength pyrometer for measuring true surface temperature[END_REF]. Equation ( 6) can be rewritten as:

𝐘 = 𝐗𝛃 + 𝐞′ (18) 𝐗 = [𝐈 𝐦𝐦 -𝛍 𝒎𝟏 ] (19) 
𝛍 = [𝜇 1 𝜇 2 … 𝜇 𝑚 ] 𝑇 (20) 
where 𝐈 𝐦𝐦 is the identity matrix of size m × m. Thus the relation ( 16) becomes, taking into account equation [START_REF] Rodiet | Influence of measurement noise and number of wavelengths on the temperature measurement of opaque surface with variable emissivity by a multispectral method based on the flow ratio in the infrared-ultraviolet range[END_REF] and the linear hypothesis:

𝜋(𝛃|𝐘) ∝ 𝑒𝑥𝑝 {- 1 2 [(𝐘 -𝐗𝛃) 𝑇 𝛀 -1 (𝐘 -𝐗𝛃) + (𝛃 -𝛃 𝒑𝒓𝒊𝒐𝒓 ) 𝑇 𝐖 -1 (𝛃 -𝛃 𝒑𝒓𝒊𝒐𝒓 )]} (21) 
The maximum a posteriori (MAP) estimator is then obtained when its derivative is null with respect to the parameter vector. Introducing the MAP estimator and the posterior covariance matrix, relation [START_REF] Cezairliyan | High-speed (subsecond) measurement of heat capacity, electrical resistivity, and thermal radiative properties of molybdenium in the range 1900 to 2800 K[END_REF] becomes:

𝜋(𝛃|𝐘) ∝ {- 1 2 [(𝛃 -𝛃 ̂𝑀𝐴𝑃 ) 𝑇 𝚪 𝛃|𝐘 -𝟏 (𝛃 -𝛃 ̂𝑀𝐴𝑃 )]} (22) 
In relation ( 22), 𝛽 ̂𝑀𝐴𝑃 is the MAP estimator (23) and 𝚪 𝛃|𝐘 is the posterior covariance matrix (24). They are given by [START_REF] Siegel | Thermal radiation heat transfer[END_REF]:

𝛃 ̂𝑀𝐴𝑃 = 𝛃 𝐩𝐫𝐢𝐨𝐫 + 𝐖𝐗 𝐓 (𝐗𝐖𝐗 𝐓 + 𝛀) -𝟏 (𝐘 -𝐗𝛃 𝐩𝐫𝐢𝐨𝐫 ) (23) 
𝚪 𝛃|𝐘 = 𝐖 -𝐖𝐗 𝐓 (𝐗𝐖𝐗 𝐓 + 𝛀) -1 𝐗𝐖 (24)

Multiwavelength pyrometry in non-linear estimation

In the non-linear case, the theoretical fluxes are calculated from relations (1), [START_REF] Lamien | A Bayesian Approach for the Simultaneous Estimation of the Thermal Diffusivity and Thermal Conductivity of Aerodynamically Levitated Solid Metals at High Temperatures -Theoretical Study[END_REF], and (4), that is, with Planck's law. The  vector of the parameter is the same as in eq. [START_REF] Rodiet | Influence of measurement noise and number of wavelengths on the temperature measurement of opaque surface with variable emissivity by a multispectral method based on the flow ratio in the infrared-ultraviolet range[END_REF].

A sampling method based on the Markov Chain Monte Carlo (MCMC) method is used in this work. The Metropolis-Hastings algorithm was applied to generate samples of the posterior distribution based on the likelihood given by equation ( 16). This algorithm begins with the selection of a proposal distribution 𝑝(𝛃 * , 𝛃 𝑡-1 ), which is used to define a new candidate *,

given the current state 𝛃 𝑡-1 of the Markov Chain. Once the proposal distribution is defined, the Metropolis-Hastings sampling algorithm can be implemented by repeating the following steps:

1-Sample a candidate * from the proposal distribution 𝑝(𝛃 * , 𝛃 𝑡-1 ).

2-Calculate the acceptance:

𝛼 = 𝑚𝑖𝑛 [1, 𝜋(𝛃 * |𝐘), 𝑝(𝛃 * , 𝛃 𝐭-𝟏 ) 𝜋(𝛃 𝑡-1 |𝐘), 𝑝(𝛃 𝑡-1 , 𝛃) ] (25) 
3-Generate a random value U uniformly distributed between 0 and 1.

4-If U ≤ 𝛼, set 𝛃 𝑡 = 𝛃 * ; otherwise, set 𝛃 𝑡 = 𝛃 𝑡-1 .

5-Return to step 1 to generate the sequence {𝛃 1 , 𝛃 2 … , 𝛃 𝑛 }.

In this manner, a sequence is generated to represent the posterior distribution, and inference on this posterior distribution is obtained from inference on the samples {𝛽 1 , 𝛽 2 … , 𝛽 𝑛 }. Note that the values 𝛽 𝑖 must be rejected as long as the chain has not converged. The two state changes (fusion, solidification), the large temperature variation, and the broad spectral range are three reasons that make the emissivity change highly likely. However, the niobium melting temperature is known (2 750 K) and the literature mentions values of emissivity around 0.35 at 0.684 5 µm in the liquid phase [START_REF] Seifter | Microsecond Laser Polarimetry for Emissivity Measurements on Liquid Metals at High Temperatures-Application to Niobium[END_REF] and 0.35 at 0.650 µm in the solid phase [START_REF] Y S Touloukian | Thermal radiative properties[END_REF], respectively. All these values are convenient to verify the estimations at the solidification plateau mainly, and useful as a priori data. We first analyze the solution of the system ( 9)-( 10) by considering 𝜀 𝑖 = 𝜀 𝑗 , for two bispectral combinations and different initial guesses for temperature and emissivity, by comparison with literature values of the emissivity at the melting temperature. As the results are not satisfying, the greybody assumption should be relieved, which means that one should solve the system ( 9)-( 10) by introducing an emissivity ratio 𝜉 𝑗𝑖 . The estimation of this parameter is only possible using a known data, such as the solidification plateau.

Results and discussions

Estimation with niobium

This estimation is based on the experimental data, obtained during the cooling period, when the bispectral commercial pyrometer measures temperature T bis . This minimization is based on a high confidence in the temperature given by the commercial bispectral pyrometer T bis .

Indeed, the measured temperature during the solidification plateau has been estimated at (2 731 ± 12) K (i.e. 0.5 %), which made it coincides with the literature [START_REF] F P Incropera | Fundamentals of Heat and Mass Transfer[END_REF], and its emissivity ratio has been set to 1.025 (consistent with 𝜉 43 = 1.087, see further).

Results of two bispectral combinations are presented: 3/4 where  34 = 170 nm; 4/5 where  45 = 90 nm. Then the principle is to minimize the mean of the residuals (26) between the estimated temperature T ij and T bis during a short time interval (N = 50 between 5.9 s and 6.9 s).

1 𝑁 ∑[𝑇 𝑖𝑗 (𝑡 𝑘 ) -𝑇 𝑏𝑖𝑠 (𝑡 𝑘 )] 2 𝑁 𝑘=1 (26) 
Figure 7 plots the evolution of the mean of residuals in eq. ( 23) versus  43 . Consequently,  43 = 1.087 and the results of emissivity and temperature, obtained for this value are presented in Figures 8 and9. Even if the emissivity ratio has been evaluated during the short time interval of solidification, the obtained value has been applied to the whole duration of the experiment. Even if literature mentions a rather constant emissivity in the liquid state [START_REF] Seifter | Microsecond Laser Polarimetry for Emissivity Measurements on Liquid Metals at High Temperatures-Application to Niobium[END_REF],

this is a major assumption. Nevertheless, we can observe that in Figures 9 and10 the estimated temperatures T 34 and T 45 are very close. Measurements on known materials, such as pure niobium, are convenient, since there is a possibility to have an a priori value such as the melting temperature as the point of reference.

But in the case of unknown materials, such as alloys, the solidification plateau would not be that constant but rather shows a slight decrease. This will be discussed in section 5.2. on the basis of the steel sample.

In the multispectral case (section 4.2), tests are performed considering emissivity as a polynomial of orders 0 (m = 0) and 1 (m = 1); the order 2 is not conceivable due to the spectral range being too narrow in the case of this study. Considering the six wavelengths, only four are kept to respect the minimal spectral criteria given by relation [START_REF] Krapez | Measurements without contact in heat transfer. Part A: radiative thermometry: principles, implementation and pitfalls[END_REF] with T = 2 750 K:  2 = 0.530 µm,  3 = 0.680 µm,  5 = 0.940 µm, and  6 = 1.055 µm. The estimation has been performed by ordinary least squares coupled with the Levenberg-Marquardt algorithm; estimated temperatures are presented in Figures 11 and12. Figure 12 shows a difference of estimation between the two tested emissivity models. Nevertheless, estimated temperatures with the order 1 polynomial are better, since the temperature at the solidification plateau is estimated at (2 753 ± 20) K (0.8 %) (Figure 12). The order 0 polynomial overestimates the temperatures. This result is predictable, since the emissivity is considered constant along the spectral range [0.530 µm -1.055 µm], which seems improbable with such a spectral range. Now parameter estimation is performed according to the Bayesian method in two ways: by a linear approximation (section 4.3.1) and in non-linear case, using MCMC (section 4.3.2).

Only bispectral estimations are presented. To start with the linear approximation, the theoretical fluxes are linearized, as presented in relations (3),( 5)-( 7): Figure 13 presents them for the measurements of OP#3 and OP#4. Estimations are performed during the first part of the cooling, mainly during the solidification plateau.

Three parameters are considered: the temperature and the two emissivities. Tests are performed with different levels of confidence, with priors of good or bad quality. In the first stage we concentrated on the solidification plateau (Figure 14). Since the phase-change temperature is well known, we introduced a temperature prior of small uncertainty, 𝑇 𝑝𝑟𝑖𝑜𝑟 = (2 750 ± 30) K whereas the emissivity priors were given a high uncertainty, namely 𝜀 3 𝑝𝑟𝑖𝑜𝑟 = 𝜀 4 𝑝𝑟𝑖𝑜𝑟 = 0.30 ± 0.15. The results of this second identification phase are described in Figures 17 and18. The MAP estimator of the emissivity 𝜀 3 and 𝜀 4 are quite stable in the liquid phase. On the contrary, in the solid phase, 𝜀 3 shows a slight increase whereas 𝜀 4 shows a slight decrease. The mean standard-deviation of the estimator of temperature is between 7 and 32 K during the period [1s, 9s] of the experiment.

For the case of non-linear approximation, still with the measurements of OP#3 and OP#4, the estimation has been performed during the whole experiment and only two parameters are considered: the temperature and the emissivity 𝜀 34 . The Markov chains were started with parameters with the same priors as previously (of good quality for the temperature and bad quality for the emissivity). The chains were run with 30 000 states and the 15 000 first states were neglected for the computation of the posterior statistics (burn-in period). 

Estimation with steel sample

This last part concerns some results for the 100c6 steel, also referenced as AISI 52100 by ASTM [14]. Only Bayesian results are presented for this material with the linear approximation and the non-linear case. Figure 23 

Conclusion

The article presented the first steps of the simultaneous temperature and emissivity estimation of molten metals by multispectral pyrometry using both deterministic and Bayesian techniques. Estimations were focused on bispectral pyrometry and one case by the multispectral method. The materials, niobium and steel samples, were aerodynamically levitated, then heated by laser above their melting point then cooled until room temperature.

Radiative flux measurements have been performed with the help of a multispectral pyrometer, whereas a second commercial bispectral pyrometer measured the temperature as a supplementary information. The estimation results have shown that all techniques presented similar temperature and emissivity values consistent with the literature.

Nevertheless, whatever the considered multispectral pyrometry, both temperature and emissivity are not easy to estimate since, firstly, they are correlated parameters, and, secondly, the problem is ill-posed since the number of unknown is always one more than the number of information. In the case of the bispectral pyrometry and the multispectral pyrometry with m = 0 (constant emissivity), the current approach to assume a greybody hypothesis, considering two measurements at two wavelengths, was not successful in this study. On the contrary, bispectral pyrometry with  ji ≠ 1 and multispectral pyrometry in the case of a linear emissivity (m = 1) gave better temperature values. Concerning the Bayesian technique, it has been necessary to take into account prior information, namely the emissivity, encountered in the literature and the temperature measured by the commercial bispectral pyrometer. However, it must be clear that the latter information was used only for initial calibration and for validation. Its systematic use is of course not needed. Nevertheless, with this information, the three tested methods give satisfying results, but need to be improved. The detection and the rigorous quantification of the uncertainties are of prime importance; it concerns for instance the calibration with a blackbody, which should be improved (e.g. blackbody ratio length/diameter [START_REF] Cezairliyan | High-speed (subsecond) measurement of heat capacity, electrical resistivity, and thermal radiative properties of molybdenium in the range 1900 to 2800 K[END_REF]). Even if they are necessary in the Bayesian inference (𝜋(𝛃)), the major point to solve concerns the fact that we must use external information (priors) to commit estimation, due to the strong correlation between temperature and emissivity. Since the Bayesian techniques seem relevant to circumvent the ill-posed problem, it would be appropriate to couple this methodology with temperature-emissivity separation considerations [3][12]. It is all the more appropriate, since we have to consider emissivity variation due to phase changes, for instance oxidation.
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 1 Figure 1. Sketch of the aerodynamic levitation apparatus
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 2 Figure 2. Sketch of the six-wavelength pyrometer.
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 3 Figure 3. Evolution of the commercial bispectral pyrometer temperature (solid line) and of
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 4 Figure 4. Example of estimating the H 5 coefficient during calibration.
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 5 Figure 5. Gaussian representation of H 5 .
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 6 Figure 6 presents all the fluxes and temperature measurements during the experiment. The six
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 6 Figure 6. Niobium sample fluxes and commercial bispectral pyrometer temperature as a
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 8 Figure 8. Estimated emissivity  3 ( 3 = 0.68 µm) versus temperature and comparison with
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 7 Figure 7. Residuals mean between the estimated temperature T 34 and T bis versus the
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 8 Figure 8 plots the evolution of the estimated emissivity  3 versus the estimated temperature
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 9 Figure 9. Bispectral temperature emissivity estimation for the combination 3/4.
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 10 Figure 10. Bispectral temperature emissivity estimation for the combination 4/5.
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 11 Figure 11. Estimated temperatures by multispectral method.
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 12 Figure 12. Zoom of the estimated temperatures at the solidification plateau.
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 13 Figure 13. Modified observables for the combination 3/4 with Bayesian inference,
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 14 Figure 14. Estimated temperature around the melting point and comparison with T bis .
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 15 Figure 15. A priori and estimated emissivities  4 and  5 at the solidification plateau.
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 16 Figure 16. A priori and estimated temperature at the solidification plateau.
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 17 Figure 17. MAP estimator of temperature (in blue) with plus or minus one standard-
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 18 Figure 18. MAP estimator of emissivity 𝜀 3 (in orange) and 𝜀 4 (in violet) and plus or minus
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 16 Figures 15 and 16 show the normalized probability densities for the three parameters. On the

  figures, for the verification of the estimated fluxes and temperature versus the experimental
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 19 Figure 19. Estimated and experimental fluxes.
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 20 Figure 20. Estimated and experimental temperatures.
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 21 Figure 21. Markov chain states for the temperature estimation.
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 22 Figure 22. Markov chain states for the emissivity estimation.

  presents the experimental fluxes measured with the multispectral pyrometer and the temperature T bis with an emissivities ratio adjusted at 1.025. The fluxes measured by means of OP#1 and OP#2 are too weak to be used for the parameter estimation. As before, bispectral estimations are presented from the measurements of OP#3 and OP#4.
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 23 Figure 23. 100c6 steel sample fluxes.
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 24 Figure 24. Estimated temperature through Bayesian inference with linear approximation.
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 25 Figure 25. Estimated emissivities through Bayesian inference with linear approximation.
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 26 Figure 26. Estimated temperature versus Markov chain states with non-linear Bayesian.
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 27 Figure 27. Estimated emissivity versus Markov chains states with non-linear Bayesian.

Table 1

 1 

	. The relation (5) can be linearized by taking

Table 1 .

 1 Table 1 gathers all results for the six optical paths. Means values and standard deviations of the H i coefficients.

	OP#i	1	2	3	4	5	6
	𝝀 𝒊 (µm)	0.483	0.532	0.680	0.851	0.940	1.554
	𝑯 ̅ 𝒊 × 10 9	32.68	2.23	3.82	2.46	3.22	3.63
	𝝈 𝑯 𝒊 × 10 11	91.31	2.64	2.19	1.10	1.25	2.86