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Abstract. Aiming to estimate the effective behavior of the parts obtained by fused deposition modeling (FDM) in the case of
short fiber composite materials, the Mean-field homogenization procedure, introduced in linear elasticity, is here extended to linear
thermo-viscoelasticity. The variation of the parameters describing the state of the fibers inside the printing filament is represented
by introducing appropriate distribution functions obtained through the statistical analysis of the microstructure. The validation of
the procedure is achieved by comparing its predictions with calculations based on full-field Fast-Fourier-Transform homogenization
and experiments results from samples treated in autoclave to remove layer-scale porosities from the printed filament.

INTRODUCTION

We are interested in the capabilities and performance of 3D printed parts, manufactured from a thermoplastic matrix
reinforced with short (100 µm) or intermediate (1 mm) glass fibers. The goal is to estimate the residual stresses
induced by the cooling of these parts from extrusion to room temperature, which is an essential requirement for the
design of these parts, especially with respect to the filament deposition trajectory. This is difficult to estimate due to the
complexity of the material (thermo-viscoelastic composite) and the complexity of the printing process itself (Fig. 1).
This study therefore focuses on the influence of the topological and mechanical complexity of the microstructure of
the printing filament.

FIGURE 1. Three-scale configuration: printed part, printed filament structure and the short fiber reinforced composite filament.



HOMOGENIZATION OF REINFORCED POLYMER FILAMENTS

The homogenization procedure consists of the following two fundamental steps: the estimation of the effective prop-
erties of the reinforced filament and the estimation of the effective properties of the final composite material treated
in the autoclave, which contains the particular arrangement of the filaments as a function of the printing path. In this
modeling, the fibers of the filament are considered as linear elastic solids whereas the polymer matrix is described as
a linear thermo-viscoelastic solid.

Thermo-viscoelastic modeling of the matrix

In general, linear viscoelastic materials behavior is characterized by a delayed response in a dual consideration of
stress or deformations, this fact put in evidence the time dependency of the modulus relating these two physical
quantities. The mathematical structure of the theory is defined via the Boltzman superposition principle [1] which in
the case of a non-aging and homogeneous viscoelastic solid under isothermal conditions at equilibrium for t ≤ 0, can
be represented as follows:

σ(t) =
∫ t

0
L(t− τ)dε(τ) =L(t)∗ε′(t) =L(t)⊗ε(t) (1)

where σ(t) and ε(t) are the stress and strain, respectively, and L(t) is the time dependent modulus known as the
"relaxation modulus". The last expression in Eq. (1) is a symbolic form of the Stieltjes convolution product. In
continuum mechanics the relaxation modulus is represented as an analogy of an assembly of elastic springs and vis-
cous dashpots (e.g Maxwell and Kelvin-Voigt models) and its complexity depends on the material response observed
from relaxation or creep experiments. In practice the material functions are defined for a fixed temperature. Opera-
tional calculus is presented as a mathematical tool in viscoelastic materials theory, allowing to avoid the computation
of convolution products by using Laplace-Carson transform (Correspondence principle [1]), obtaining an equivalent
problem that comes out as a symbolic analogy of linear elastic solids in the frequency domain, where the Laplace
variable p is the complex circular velocity ( jω).

In this study the matrix is considered as an isotropic and amorphous polymer; its linear viscoelastic behavior is
described by a generalized N-branches Maxwell model. The consideration of thermally induced deformations is
represented by a rheological model equivalent to the generalized NT -branches Kelvin-Voigt model [2], to capture
the information from delayed deformations as a function of temperature history, being the main source of residual
stresses due to the nature of the manufacturing process. This model is similar to one presented in [3] in the case of
shape memory alloys. An illustrative representation of the model is shown below.

FIGURE 2. Rheological model of the polymer matrix



The difficulty in this step is the need to establish a form of the problem that is compatible with the correspondance
principle in isothermal linear viscoelasticity. The nature of the printing process imposes continuous temperature
variations, acting on the material properties. These variations in properties have been modelled based on the principle
of time-temperature superposition of thermo-rheologically simple materials, with the introduction of a coefficient
linking the observer’s own time scale and that of the polymer, being a function of temperature [4]. According to
this principle and taking into account the homogeneity of the temperature field in the formulation of the mean-field
homogenization problem for the thermomechanical effective behavior, the problem is reduced to an equivalent form
of the isothermal case in the “reduced” (or internal) time domain [5].

From the preceding considerations and the introduction of two types of internal variables [6], we obtain a sim-
plified writing of the thermodynamic formulation of the thermo-viscoelastic problem. This formulation is devel-
oped within the framework of generalized standard materials and is characterized by the Helmholtz free energy,
ω(ε,(ε i

v)
N
i=1,(q
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j=1,T ), and by the mechanical dissipation potential, ϕ((ε̇vi)N
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j)NT
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j are the
deformation, the viscous strain in branch i, and the internal variable related to delayed thermal strain in branch j,
respectively, and T , the temperature. Using this framework, these potentials can be written as follows:
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where Li and Li
v are the elasticity and viscosity tensors for the i-branch, respectively, αg is the instantaneous

thermal expansion tensor, c0 is the heat capacity at constant stress, η0 and e0 are the initial entropy and initial internal
energy, respectively. The number of branches and the tensors Li and Li

v were found using dynamic-mechanical anal-
ysis (DMA) and creep experiments at different temperatures. The number of branches and the expansion coefficient
tensors of the rheological model for thermal strains are obtained from isothermal recovery tests for step type thermal
loading.

Upscaling

A finite element based calculations were used to solve the coupled mechanical and thermal equilibrium equations for
macroscopic stress, strain, and temperature. At each integration point, these quantities are averaged over a representa-
tive elemental volume (REV) of their microscopic counterparts, solving the local mechanical and thermal equilibrium
equations given by :
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∂ω
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divq(x, t) = 0,σ(x, t) =−k(x) ·∇T (x, t) (5)

where q and k are the heat flux and the thermal conductivity tensor, respectively. It should be noted that the
microscopic mechanical and thermal equations Eq. (4) and Eq. (5) are decoupled for the following reasons: (i) Only
the macroscopic mean, T̄ , is considered in the mechanical formulation Eq. (4). (ii) The dissipated energy is considered
at the macroscopic scale, which simplifies the thermal equation as shown in Eq. (5). The thermo-mechanical coupling
is then carried out at the macroscopic scale. The equations Eq. (4) and Eq. (5) are supplemented by appropriate
boundary conditions by noting ε̄ and T̄ , the respective averages of the local fields ε̄, solution of Eq. (4), and T̄ ,
solution of Eq. (5).



Mean-field models to account for the presence of fibers

Mean-field homogenization is a methodology used to approximate effective properties at the macroscopic scale based
on the information at lower scales in heterogeneous media. this procedure is implemented on a characteristic region
of the material known as the representative volume element (RVE) that must contains enough information about the
physical quantities of interest and the morphological properties of the inhomogeneities coexisting in the predomi-
nant phase. Therefore the quality of the approximation depends on the way as one choose and use the information
available. The existence of some effective property in proved from the Hill-Mandel lemma under the imposition of
homogeneous stress or strain in the RVE, and its uniqueness proof comes from the convexity of the potentials related
to the observable mechanical quantities. In this study Mean-field methods are intended to determine approximations
of the mean fields (ε̄ and T̄ ) in each phase using simplifying assumptions (generally valid for at average volume
fraction) and analytical results from methods equivalent to the well-known Eshelby’s inclusion problem.

Analytical methods (Mori-Tanaka, Interaction Direct Derivative, Ponte-Castañeda-Willis, Lielens, etc.) were used
to estimate and compare the mean of the thermomechanical fields that solve the local equations Eq. (4) and Eq. (5).
The mean-field methods used, consider the high complexity of the composite material’s microstructure (non-alignment
of the fibers, thermo-viscoelasticity of the matrix, etc.). Several models were used to estimate the effective relaxation
and creep thermal dilatation functions (Leff and αeff ), including the Direct Derivative Interaction model (IDD) [7],
which is characterized by the following equation :

Leff = LM +

(
I− cF

∫
S

f (n)∆LF,M (n) :AF ,M (n) : PD
F (n)dS

)−1

:
(

cF
∫

S
f (n)∆LF ,M (n) :AF ,M (n)dS

)
(6)

where S is the unit sphere, cF is the volume fraction of the fibres, n is the unit vector describing the orientation
of the fibres, f is the probability density function for the orientation distribution, AF ,M , is the localization tensor,
a function of the fiber geometry, the material contrast, defined as ∆LF,M = LF(n)−LM , and PD

F (n) is the Hill’s
tensor which takes into account the spatial distribution of the fibers inside the filament.

In the case of linear viscoelastic constituents, the Laplace-Carson transform is conventionally used to define a linear
symbolic elastic composite in the Laplace domain (correspondence principle [1]). This method cannot be used directly
because of the temperature dependence of the viscous modules of the matrix. To overcome this difficulty, we used
an incremental formulation [8] for the equivalent form of the problem using as argument the "reduced time", an ex-
tension of the superposition principle for thermo-rheologically simple materials in the case of continuous temperature
variations.

VALIDATION

The proposed mean-field model was evaluated by comparing its predictions in terms of effective moduli with those
of full-field simulations based on Fast-Fourier-Transform approximations on representative volume elements (e.g.
Fig. 3). The proposed macroscopic structural analysis was evaluated by comparing its predictions in terms of defor-
mation with the deformation developed in asymmetrical 3D printed plates (plates with two deposition orientations: 0◦

and 90◦), subjected to an additional heat treatment in the autoclave, thus limiting the degree of heterogeneity due to
the presence of porosities that appear during the printing process and allowing to study the particular influence of the
state of the fibers in the overall mechanical behavior of the part.

FIGURE 3. Representative element volume: Glass fibers in polymer matrix
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