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Diffusion NMR experiments rely on the measurement of signal attenuation as a function of the area of diffusion-encoding pulsed magnetic-field gradients. In conventional experiments, arbitrary series of gradient values can be used, and different gradient spacing strategies have different advantages. Ultrafast diffusion NMR relies on the spatial parallelisation of effective gradient areas values to collect full 2D diffusion data sets in a single scan. Until recently, only linear spacing was available. We have shown that quadratic spacing can be achieved using a tailored frequency swept pulse. Here we describe the design of the pulse and validate it with numerical spin simulations, that make it possible to check the effect of the quadratic spacing pulse at different stages of the pulse sequence. We also show that quadratic spacing makes it possible to use a recently reported analysis method for diffusion NMR, the Matrix Pencil Method. We describe the results obtained with the MPM and those obtained with the direct exponential curve resolution algorithm (DECRA), which also requires quadratic gradient spacing. Overall, these developments open new opportunities for applications of spatially encoded diffusion experiments, such as ultrafast DOSY NMR and ultrafast Laplace NMR.

Introduction

Spatial parallelisation is a powerful approach to accelerate the acquisition of multidimensional data sets in nuclear magnetic resonance (NMR) experiments. It consists of replacing the step-wise incrementation of a parameter by the parallel acquisition of different sub-experiments in different slices of the NMR sample. Ultrafast (UF) NMR relies on spatial parallelisation to accelerate 2D spectroscopy, diffusion, and relaxation experiments [START_REF] Loening | Single-scan longitudinal relaxation measurements in high-resolution NMR spectroscopy[END_REF][START_REF] Frydman | Principles and features of single-scan twodimensional NMR spectroscopy[END_REF][START_REF] Ahola | Ultrafast multidimensional Laplace NMR for a rapid and sensitive chemical analysis[END_REF][START_REF] Thrippleton | A fast method for the measurement of diffusion coefficients: One-dimensional DOSY[END_REF][START_REF] Dumez | Spatial encoding and spatial selection methods in high-resolution NMR spectroscopy[END_REF] .

With UF NMR, 2D data sets can be obtained in a single scan of less than one second, instead of several minutes for conventional experiments. This has notably led to applications in metabolomics [START_REF] Marchand | Multidimensional NMR approaches towards highly resolved, sensitive and highthroughput quantitative metabolomics[END_REF], reaction monitoring, [START_REF] Herrera | Monitoring organic reactions by UF-NMR spectroscopy[END_REF] and the analysis of hyperpolarised substrates. [START_REF] Ahola | Ultrafast multidimensional Laplace NMR for a rapid and sensitive chemical analysis[END_REF][START_REF] Dumez | Hyperpolarized NMR of plant and cancer cell extracts at natural abundance[END_REF] In UF NMR, spatial encoding is usually achieved by the combined application of a frequency-swept pulse and a magnetic-field gradient. [START_REF] Dumez | Spatial encoding and spatial selection methods in high-resolution NMR spectroscopy[END_REF][START_REF] Dumez | Frequency-swept pulses for ultrafast spatially encoded NMR[END_REF][START_REF] Tal | Single-scan multidimensional magnetic resonance[END_REF] This results in the spatial parallelisation of the evolution delay of 2D spectroscopy experiments, the duration of the diffusion-encoding gradient in diffusion experiments, or the inversion recovery delay for relaxation experiments. Single-scan acquisition methods such as echo-planar spectroscopic imaging (EPSI) or a Carr-Purcell-Meiboom-Gill (CPMG) loop are then used to simultaneously read the spatially encoded information and to sample the direct dimension. In almost all the UF NMR experiments described so far, a linear frequency sweep is used for spatial encoding.

This results in a linear relation between the parallelised delay and position along the spatialencoding axis. Since the MRI acquisition scheme yields data points at linearly spaced positions, this means that linear spacing is used in the indirect dimension of most UF NMR experiments. Linear spacing is both simple and reliable. For the encoding of the chemical shift, it is not obvious that a better solution could be found. However, for diffusion and relaxation experiments, linear spacing of the increment is not necessarily the best solution.

In 2019, Telkki and co-workers have shown that non-linear spacing could be used in the spatially encoded (SPEN) dimension of UF NMR experiments [START_REF] Zhivonitko | Nonlinear sampling in ultrafast Laplace NMR[END_REF]. Specifically, they described a frequency swept pulse, the frequency of which varies logarithmically with time, and that results in exponentially spaced delays in the spatially encoded dimension. This is closer to what would typically be used in conventional experiments, and it led to a better sampling of the rapidly varying part of the inversion recovery curves.

In diffusion NMR experiments (DNMR), the translational diffusion coefficients of molecules in a sample are encoded through the attenuation of their NMR signal, as a function of the area of a pair of diffusion-encoding gradients [START_REF] Pagès | Pulsed-field gradient nuclear magnetic resonance measurements (PFG NMR) for diffusion ordered spectroscopy (DOSY) mapping[END_REF]. Diffusion NMR is widely used for mixture analysis in high-resolution NMR (the diffusion-ordered spectroscopy, DOSY approach). It is also central in Laplace NMR, that provides information on microstructure as well as chemical information [START_REF] Ville-Veikkotelkki | Chapter Two -Ultrafast NMR diffusion and relaxation studies[END_REF]. In conventional DNMR experiments, a list of values of the area of the diffusion encoding gradient is used, typically with linear, quadratic, or exponential spacing. For mixture analysis applications, quadratic spacing has been recommended [START_REF] Guest | Signal-to-noise ratio in diffusion-ordered spectroscopy: how good is good enough?[END_REF].

Importantly, several algorithms for the fast analysis of diffusion NMR data require quadratic spacing of the gradient area. This is the case for Direct Exponential Curve Resolution Algorithm (DECRA) [START_REF] Antalek | Accounting for spin relaxation in quantitative pulse gradient spin echo NMR mixture analysis[END_REF][START_REF] Windig | Direct exponential curve resolution algorithm (DECRA): A novel application of the generalized rank annihilation method for a single spectral mixture data set with exponentially decaying contribution profiles[END_REF][START_REF] Antalek | Generalized rank annihilation method applied to a single multicomponent pulsed gradient spin echo NMR data set[END_REF][START_REF] Antalek | Using pulsed gradient spin echo NMR for chemical mixture analysis: How to obtain optimum results[END_REF], which is a multivariate processing method designed to separate the spectra of a mixture's components, as well as the Matrix Pencil Method (MPM) [START_REF] Fricke | Data processing in NMR relaxometry using the matrix pencil[END_REF], that has been introduced for 2D Laplace NMR and univariate processing of high-resolution DOSY data.

In this article, we describe the design of a frequency swept pulse that achieves quadratic spacing of the gradient area in spatially encoded DNMR experiments. This RF pulse was first introduced in our recent work on DECRA processing of SPEN DOSY data [START_REF] Mishra | Ultrafast diffusion-based unmixing of1H NMR spectra[END_REF]. Here we give a complete derivation of the design of the pulse, and validate its mechanism through numerical spin simulations. We also show that this new pulse makes it possible to use a recently reported method for diffusion NMR, the Matrix Pencil Method. Using numerical simulations, we describe the results obtained with the MPM and DECRA methods to process SPEN DNMR data. These results open several opportunities to broaden the use of UF NMR for mixture analysis and microstructure studies.

Design of the non-linear frequency sweep

In spatially encoded diffusion NMR experiments, [START_REF] Thrippleton | A fast method for the measurement of diffusion coefficients: One-dimensional DOSY[END_REF][START_REF] Jacquemmoz | Optimisation of spatially-encoded diffusion-ordered NMR spectroscopy for the analysis of mixtures[END_REF][START_REF] Guduff | Spatially encoded 2D and 3D diffusion-ordered NMR spectroscopy[END_REF][START_REF] Shrot | Single-scan 2D DOSY NMR spectroscopy[END_REF] the contribution of a given chemical species to the signal is described by a modified Stejskal-Tanner (ST) equation [START_REF] Thrippleton | A fast method for the measurement of diffusion coefficients: One-dimensional DOSY[END_REF][START_REF] Guduff | Spatially encoded 2D and 3D diffusion-ordered NMR spectroscopy[END_REF][START_REF] Shrot | Single-scan 2D DOSY NMR spectroscopy[END_REF][START_REF] Guduff | Efficient simulation of ultrafast magnetic resonance experiments[END_REF][START_REF] Frydman | The acquisition of multidimensional NMR spectra within a single scan[END_REF]:
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where D is the diffusion coefficient, superscript j represents the j th component in a mixture, ∆′ is the effective diffusion delay and is position-independent, and
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where 𝜙 is the phase of the magnetisation during the diffusion delay. 𝐾(𝑧) is the phase variation along the spatial-encoding dimension, and corresponds to the position-dependent effective gradient area multiplied by the gyromagnetic ratio. It is assumed here for simplicity that spatial encoding is achieved along the z axis, but other directions can also be used.

Figure 1a shows a stimulated-echo based pulse sequence for spatially encoded DOSY (the detected coherence order is indicated as 1, as this is the convention used in the SPINACH simulation package). Spatial encoding is achieved by the combined application, for a duration 𝑇 ( ; of a 180° frequency swept pulse of frequency 𝜔 )* (𝑡) and a magnetic-field gradient pulse of amplitude 𝐺, followed by a gradient pulse of equal amplitude and duration. Consider an ensemble of uncoupled nuclear spins 𝐼 = + $ with a total offset 𝜔 , . In order to calculate the phase variation after the first RF+gradient block, one assumes that spins flip instantaneously at a time 𝑡 *-,. (𝑧) when their resonance frequency matches with the offset of the pulse, defined by the relation:

𝜔 )* 5𝑡 *-,. (𝑧)6 = 𝜔 , (3) 
Under this assumption, the effective precession time at the end of the RF+gradient block is given by

𝜏(𝑧) = 2𝑇 ( -2𝑡 *-,. (𝑧) (4) 
Assuming that the spins are on-resonance, one has 𝜔 , = -𝛾𝐺𝑧, and this gives for the phase at the end of the spatial encoding block:

𝜙(𝑧) = -𝛾𝐺𝜏(𝑧)𝑧. (5) 
This leads us to an expression for 𝐾(𝑧),
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which is valid for arbitrary forms of the flip time 𝑡 *-,. (𝑧).

Consider first a linear frequency sweep at a rate 𝐵𝑊/𝑇 ( , where 𝐵𝑊 is the bandwidth of the pulse. The time dependent offset is then

𝜔 )* -(𝑡) = $/01 2 ! 5𝑡 - 2( $ 6. (7) 
In this case, the flip time is a linear function of position, with
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This in turn imparts linear variation of phase after the RF+gradient block:
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where 𝐿 = -2𝜋𝐵𝑊/(𝛾𝐺) is the length of the region swept by the pulse. Eq. 9 is the usual expression for SPEN DOSY experiment that rely on chirp pulses, and is illustrated in Fig. 1b.

Here we are seeking for a spatial encoding block that would give a linear variation of K 2 as a function of z, as illustrated in Fig. 1c. A possibility is to find a swept pulse that results in a linear variation of the squared effective precession time. One could also consider the use of a time-dependent gradient amplitude, but it was found to be simpler and sufficient to just modify the RF sweep. Linear variation of the squared effective precession time may be expressed as:
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where c is a constant, which gives
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where c0 is another constant, and
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The values of c and c0 can be found by imposing the fact that the effective precession time ranges from 0 to 2𝑇 ( over the spatial region of length 𝐿 swept by the pulse: 
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Comparing Eqs. 2 and 7, the requirement to achieve the desired spatial variation is to have a flip time given by:
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The corresponding frequency-sweep function can be obtained by considering the relation between the RF offset and position at the time of flip:
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Replacing 𝑧 by -𝜔 )* (𝑡 *-,. ) /𝛾𝐺 in Eq. 8 gives
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where BW = -𝛾𝐺𝐿/2𝜋 is the bandwidth of the pulse.

Eq. 17 is valid for any value of the flip time in the [0 2𝑇 ( ] interval. The flip time acts as a dummy variable in this equation. It can be rearranged to give the frequency-sweep function that yields a linear variation of the squared effective precession time:
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Quadratic spacing as a function of position require a quadratic variation of the RF pulse offset as a function of time.

In practice, the pulse is implemented as a list of phases and amplitude as a function of time. In order to achieve an approximately uniform flip angle over the swept region, the amplitude of the pulse should be proportional to the derivative of its frequency offset: [START_REF] Zhivonitko | Nonlinear sampling in ultrafast Laplace NMR[END_REF] 𝐴 )* (𝑡) ∝
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while the phase is obtained by integration of the frequency offset:
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In practice the pulse amplitude is smoothed for the first and last 10% by multiplication with a sine envelope. The pulse shape can be generated using Eq. 19 and 20, for a given duration and bandwidth. An example is shown in Figure .2(a), for 𝐵𝑊 = 110 kHz and 𝑇 ( = 1.5 ms.

The expression of 𝐾(𝑧) for this pulse is obtained by replacing 𝑡 *-,. according to Eq. 14 in Eq. 6:
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Comparison of Eq. 9 and Eq. 21 highlights the difference between linear variation of 𝐾and linear variation of 𝐾 $ . When combined with an MRI acquisition that yields N discrete and equally sized and spaced pixels along the z axis, at positions:
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the proposed RF pulse gives, for the n-th pixel
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which corresponds to the targeted quadratic spacing of the spatially parallelised gradient area.

This derivation relies on the assumption of an instantaneous flip of the magnetisation during the frequency swept-pulse. While this approximation was found to give excellent results for the predicted phase variation in the case of a linearly swept pulse, [START_REF] Dumez | Frequency-swept pulses for ultrafast spatially encoded NMR[END_REF][START_REF] Ville-Veikkotelkki | Chapter Two -Ultrafast NMR diffusion and relaxation studies[END_REF] the result deserves to be investigated, with the help of numerical simulation that are free from this approximation.

Numerical methods

All the simulations were performed with the SPINACH library, implemented in MATLAB. Version 2.3.4934 was used. SPINACH is based on Fokker-Planck formalism that integrates spin and spatial variables, and makes it possible to describe spatially encoded NMR experiments efficiently [START_REF] Guduff | Efficient simulation of ultrafast magnetic resonance experiments[END_REF][START_REF] Hogben | Spinach -A software library for simulation of spin dynamics in large spin systems[END_REF][START_REF] Kuprov | Fokker-Planck formalism in magnetic resonance simulations[END_REF].

Ensembles of uncoupled homonuclear spins 𝐼 = + $ were considered in the simulation. The SPEN STE DOSY sequence shown in Fig. 1a was simulated, using either a chirp pulse of nutation rate 8.56 kHz or a quadratic spacing pulse of nutation rate 11.51 kHz. In the two cases, the pulses swept over a bandwidth of 110 kHz over a duration of 1.5 ms. A gradient of 0.2535 T/m was applied during encoding, resulting in a size of 10 mm for the swept region.

The additional gradient pulse after the frequency swept pulse also had a duration of 1.5 ms.

The selection of the desired coherence transfer pathway was enforced by zeroing unwanted terms. A spatial grid of 3000 points distributed linearly over a length of 15 mm was used.

Translational diffusion was taken into account throughout the simulation, while the relaxation was not. Note that the magnetisation for each point of the grid corresponds to the volume element around that point. Translational diffusion is taken into account through the corresponding term in the Fokker-Planck equation of motion [START_REF] Guduff | Efficient simulation of ultrafast magnetic resonance experiments[END_REF], not by explicitly moving spin packets. With this approach, 3000 grid points are sufficient for converged simulations.

For the simulations carried out to characterise the spatial encoding block (section 4), a single species was considered, without chemical shift offset, and the value of the diffusion coefficient was set to 8 × 10 9+" 𝑚 $ /𝑠. The amplitude and the phase of the transverse magnetisation were saved after the first and after the second RF+gradient block, and the acquisition part was not simulated.

To explore the possibility of using DECRA and MPM processing, simulations were carried out with two species A and B. Species A had two resonances, at 4.5 and 5.5 ppm, and a diffusion coefficient of 6 × 10 9+" m 2 /s, and species B had one resonance, at 5.5 ppm, and a diffusion coefficient of 12 × 10 9+" m 2 /s. The acquisition consisted of a train of bipolar gradient pulses, with an amplitude of ±0.52 T/m and a duration of 192 µs for each gradient pulse, resulting in a spectral width of 4.34 ppm. 256 loops of echo planar spectroscopic imaging (EPSI) were acquired. The diffusion delay was 300 ms for MPM processing and 100 ms for DECRA. The simulated (k, t) space data were apodized in both dimensions. A Hann window was used in the k dimension, and a sine window was used in the time dimension.

Both dimensions were zero-filled with 2048 points. Note that while diffusion was also taken into account during acquisition, its effect is then simply a position-independent global attenuation, and it has no effect on the processing, other than through the SNR.

2D Fourier transform of the data would yield spectroscopic imaging data in (z, w) space.

However, several prior steps are required to account for: i/ the effect of chemical shift offsets during acquisition and encoding, ii/ the spatial profile of the probe's sensitivity and of the frequency swept pulse.

To compensate for the effect of chemical-shift offsets during acquisition, the data in (k-t) space is Fourier transformed along the second dimension, multiplied by exp(-𝑖𝑘∆𝜔/ (𝛾𝐺 F )) (where 𝐺 𝑎 is the acquisition gradient, and ∆𝜔 = 𝜔 -𝜔 H , with 𝜔 𝑅 the carrier frequency), and inverse Fourier transformed along the first dimension. After this step, the nominal value of z for a pixel corresponds to its physical position. The data is then divided by the probe's sensitivity reference profile.

To compensate for the effect of chemical-shift offsets during encoding, the data in (z, w) was Fourier transformed along the first dimension, multiplied by exp(-𝑖𝑘∆𝜔/(𝛾𝐺 ( )), where 𝐺 𝑒 is the encoding gradient, and inverse Fourier transformed along the first dimension.

After this step, the nominal value of z for a pixel is such that the effective gradient area given by Eq. 21 is correct. The data was then divided by the RF selectivity profile.

The resulting, pre-processed (z, w) is used for univariate or multivariate processing.

Complex random noise was added to the 2D Fourier transformed data to simulate different levels of sensitivity.

Validation of quadratic spacing pulse

Numerical simulations can be used to assess the results derived using the instantaneous flip approximation. Figure 3 shows the result of the simulation of the spatial encoding scheme shown in Fig. 1, using a linearly swept pulse. Fig. 3a shows the comparison of the magnitude of the transverse magnetisation at the end of the second spatial encoding block, with and without diffusion attenuation -the spatial profile without diffusion attenuation was obtained by simply setting the diffusion coefficient to zero in the simulation. The position-dependent attenuation observed in Fig. 1a is due to the position dependent phase derivative imparted by the first spatial encoding block. The phase and its derivative are shown in Fig. 3b and3c, and the latter is well described by Eq. 9.

The results obtained for the quadratic spacing pulse are shown in Fig. 4. First, it can be seen that the pulse provides a virtually constant amplitude of the magnetisation over the central 80%, thus validating the choice of amplitude function given in Eq. 19. The phase and its derivative after the first spatial encoding block are shown in Fig. 4c. It can be seen that, in contrast to the case of the chirp pulse, the derivative of the phase is not linear anymore. The results of the simulation are in very good agreement with the expression for given in Eq. 21, thus validating the design of the quadratic spacing pulse. An important feature of this pulse is that, as can be seen in Fig. 4a, it provides a signal that decays exponentially as a function of z. This makes it possible to use fast methods for diffusion analysis, such as DECRA and MPM.

Note that, while the frequency-swept pulse introduced here could in principle also be used for inversion recovery experiments, it is not particularly relevant for that purpose, because it provides fewer points for short recovery delay than either chirp pulses or the nonlinear pulse of Telkki and co-workers.

Processing of exponentially decaying data

In order to assess the compatibility of processing algorithms for diffusion NMR data that require quadratic gradient spacing with the RF pulse described here, a simulated data set was generated. The corresponding simulated spectroscopic imaging data is shown in Fig. 5. It was submitted to a univariate (MPM) and a multivariate (DECRA) method that have complementary features for applications. What these two methods have in common is that they require as an input the number of components 𝑟 in the signal.

Matrix Pencil Method

The matrix pencil method is part of a broad family of methods to analyse exponentially decaying signals, which derive from Prony's method, first described in the XVIII th century [START_REF] Huang | Matrix pencil method for estimating parameters of exponentially damped/undamped sinusoids in noise[END_REF] Here we are using the implementation that has been introduced as a way to process diffusion NMR data by Augustine and co-workers. [START_REF] Fricke | Data processing in NMR relaxometry using the matrix pencil[END_REF] The MPM works on solving a generalised eigenvalue problem from a signal that is decaying exponentially and sampled uniformly. This is the case of diffusion NMR data with quadratic spacing of the diffusion-encoding gradient area. The MPM method can be used as a univariate processing method for a DOSY type analysis, in which each peak is analysed separately, and this is the approach that we use here for the simulated SPEN DNMR data.

Consider the 𝑚 × 1 1D array formed, e.g., by a slice of the 2D data set shown in Fig. 5, restricted to the region of uniform and complete refocusing by the RF pulse. The elements of this vector can be written as

K(-) K ( = ∑ 𝐴 ! H𝑒 9L ) M * NO(') " I -9+ ) !P+ , ( 24 
)
where 𝐴 ! , 𝐷 ! is the amplitude and diffusion coefficient of the 𝑗 <Q component, 𝛥 # is the effective diffusion delay, 𝜉𝐾(𝑧) $ is the difference between two consecutive 𝐾(𝑧) $ values, and 𝑙 is the index running over the gradient increments, which varies from 1 to 𝑚. The goal of univariate processing methods is to find the values of 𝐴 ! and 𝐷 ! for all the components. In the MPM approach, the data is processed as follows. The 𝑚 × 𝑚 matrix 𝑌′ is divided into two (𝑚 -1) × (𝑚 -1) sub-matrices, 𝑌 + and 𝑌 $ , by removing last row and last column, and last row and first column respectively. The 𝑌 + and 𝑌 $ submatrices relates with each-other via following equation
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where 𝑝 is an eigenvector matrix and 𝛽 is a (𝑚 -1) × (𝑚 -1) eigenvalue matrix. This equation can be rearranged as

(𝑌 + 9+ 𝑌 $ -𝛽𝐸)𝑝 = 0 (26)
and is solved numerically to yield 𝛽. Only the largest magnitude eigenvalues corresponding to number of components are kept and the rest are discarded in the further calculation.

From the eigenvalue matrix, the diffusion coefficient are obtained as
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The signal amplitudes 𝐴 ! are obtained as the diagonal elements of

𝐴 = 𝑈 TF-T 2 𝑌 + 𝑉 TF-T (28) 
where 𝑈 and 𝑉 TF-T are left and right eigenvectors, and are generated by the vandermonde matrix method as

Λ 5 [𝑘, 𝑙] = 𝛽 U -9+ ∝ 𝑈 TF-T 2 [𝑘, 𝑙] and Λ H [𝑙, 𝑘] = 𝛽 U -9+ ∝ 𝑉 TF-T [𝑙, 𝑘]. 𝑈 TF-T and
𝑉 TF-T are (𝑚 -1) × 1 vector for single component and (𝑚 -1) × 𝑟 matrix for 𝑟 components.

We note that several variants of the MPM have been reported and may have different numerical properties. Here we describe and use the implementation of Augustine and coworkers.

In order to obtain the standard error in diffusion coefficient, the experimental (or in this case, simulated) signal decay needs to be compared to the calculated signal decay. The latter is obtained from the calculated amplitudes and diffusion coefficients as

𝑌 VWV [1, 𝑙] = ∑ 𝐴[𝑘, 𝑘] ) UP+ 𝛽 U -9+ (29) 
Giving the residual norm
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The standard error for the 𝑘 <Q component is then
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𝐶𝑀 is the covariance matrix and is calculated by (𝐽 2 𝐽) 9+ , where 𝐽 is jacobian matrix. Since there are two unknowns, amplitude 𝐴 and diffusion coefficient 𝐷, 𝐽 is the (𝑚 × 2) jacobian matrix whose first and second column are calculated by % %\ 𝐴 𝑒 9]S * NO(') " (-9+) and % %L 𝐴 𝑒 9]S * NO(') " (-9+) respectively.

Figure 6b shows the result of the MPM method when applied to the simulated data shown in Fig. 5, for a slice taken at 5.5 ppm, which corresponds to two different components with diffusion coefficients of 6 × 10 9+" m 2 /s and 12 × 10 9+" m 2 /s. The signal-to-noise ratio in the (z, w) domain was set to be 5 × 10 ^. It can be seen that the two components are well separated, thus validating the compatibility of the quadratic-spacing approach with MPM processing. The values of the estimated diffusion coefficients differ from the expected value by about 3 to 5 %. This results from the fact that the model described in section 2 is only approximately valid. The non-instantaneous flip of the magnetisation during spatial encoding results in a phase variation that is not exactly described by Eq. 21. [START_REF] Guduff | Spatially encoded 2D and 3D diffusion-ordered NMR spectroscopy[END_REF] It may be possible to correct for this systematic error by calibration. Importantly, the error in the value of the diffusion coefficients does not prevent the separation of the two components by the MPM, despite the slight breach of the requirement of pure exponential decay. This is confirmed by analysing the same data a non-linear least square fit, which yields virtually identical coefficients to those obtained with the MPM (within less than 0.5%).

The requirement of exponential decay for the MPM to work is also illustrated in Fig. 6.

When a linearly swept pulse is used for spatial encoding, the least-square fit procedure is successful, as shown in Fig. 6c, while the MPM fails, as shown in Fig. 6d. The MPM can be considered as an alternative method to least-square fitting, which provides a complementary way to assess the number of components in a decaying signal, and which may have further advantages when applied to multidimensional Laplace data sets.

DECRA

The purpose of multivariate analyses of diffusion NMR data is to decompose a data set, represented as an 𝑚 × 𝑛 matrix 𝑋 of 𝑚 spectra each having 𝑛 points, into a set of component spectra and component decays. Ideally,

𝑋 = 𝐶𝑃 2
where 𝐶 is an 𝑚 × 𝑟 matrix of component decays, 𝑃 is an 𝑛 × 𝑟 matrix of component spectra, and 𝑟 is the number of components. The DECRA approach is the fastest method to achieve this decomposition, provided that the data is obtained with quadratic gradient spacing.

The DECRA approach is summarised here. Following the work of Kubista, Scarminio [START_REF] Kubista | A new method for the analysis of correlated data using procrustes rotation which is suitable for spectral analysis[END_REF][START_REF] Scarminio | Analysis of Correlated Spectral Data[END_REF] and Windig, Antalek, [START_REF] Windig | Direct exponential curve resolution algorithm (DECRA): A novel application of the generalized rank annihilation method for a single spectral mixture data set with exponentially decaying contribution profiles[END_REF][START_REF] Antalek | Using pulsed gradient spin echo NMR for chemical mixture analysis: How to obtain optimum results[END_REF] the data set 𝑋, obtained after sampling the data with constant quadratic spacing in k-dimension, i.e., 𝐾 E_+ $ -𝐾 E $ = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡, is divided into two reduced data sets, 𝑋 + and 𝑋 $ , by deleting the first and the last row respectively from 𝑋.

The dataset 𝐴 and 𝐵 can be mathematically represented as

𝑋 + = 𝐶𝑃 2 (32) 
𝑋 $ = 𝐶𝛽𝑃 2 ( 33 
)
where 𝐶 is now an (𝑚 -1) × 𝑟 matrix of component decays, 𝑃 is an (𝑛 × 𝑟) matrix of component spectra, 𝑋 + and 𝑋 $ are (𝑚 -1) × 𝑛 matrices and 𝛽 (an 𝑟 × 𝑟 diagonal matrix), is a scaling factor between data set 𝑋 + and 𝑋 $ . Eqs. 32 and 33 leads to an eigenvalue equation

𝑍 * 𝛽 = (𝑈 t 2 𝑋 $ 𝑉𝑆 9+ )𝑍 * (34) 
where 𝑍 * = 𝑆𝑉 2 𝑍, 𝑍 = (𝑃 2 ) a . 𝑈, 𝑉, and 𝑆 are left eigenvector matrix, right eigenvector matrix, and diagonal matrix respectively, obtained after singular value decomposition of dataset 𝑋 + . Before solving Eq. ( 34), the size of 𝑈, 𝑉, and 𝑆 is reduced to (𝑚 -1) × 𝑟, (𝑛 -1) × 𝑟, and 𝑟 × 𝑟 respectively, after retaining only the r largest eigenvalues. Solving Eq. ( 34)

provides eigenvalue matrix 𝛽 and eigenvector matrix 𝑍 * . The pure spectral components and their concentration profiles are obtained by 𝑃 2 = (𝑉 𝑆 9+ 𝑍 * ) a and 𝐶 = 𝑈𝑍 * . The eigenvalue matrix 𝛽 is utilized to obtain the diffusion coefficient of the pure components with Eq. ( 27).

We note that there exists a strong similarity between the MPM and DECRA, in the way submatrices are defined, in the eigenvalue equations ( 26) and (34), and in the filtering of just r components. A full comparison to determine the relative benefits of each implementation is out of the scope of this work, and here we use the version originally proposed for NMR.

From an application perspective, the main difference is between a univariate method, working on a single frequency or peak at a time, and a multivariate method, working on the whole spectrum.

Figure 7a shows the results of DECRA processing of the simulated data shown in Fig. It is interesting to analyse the role of the normalisation step described in section 3 that accounts for the spatial selectivity profile of the frequency-swept pulse. This is illustrated in Fig. 7 with results obtained for two sizes of the spatial regions used for DECRA, with and without normalisation. If the spatial region used for DECRA is chosen to be smaller than the plateau of the spatial selectivity profile of the frequency-swept pulse (compare the magenta range and the green curve in Fig. 5), then the normalisation step is unnecessary and the separation is successful even without normalisation, as shown in Fig 7c andd. On the other hand, if the spatial region is chosen to be larger than the plateau, DECRA fails completely to separate the two spectra, and it yields complex and unphysical values for the diffusion coefficients, as shown in Fig. 7b. This is because the decay in the processed data is not purely exponential anymore. However, the separation become successful again on normalising. Here the signal intensity in the absence of diffusion attenuation and selective pulse is uniform (we did not use a virtual phantom in the simulation). In experiments, the sensitivity profile of the probe also has to be accounted for.

The role of the normalisation has consequences for experimental implementation of the method, as the possibility to use a larger region can help to optimise the sensitivity of the method.

Conclusions

We have shown that the use of a tailored pulse for quadratic spacing of the effective gradient area in spatially encoded diffusion NMR makes it possible to use an alternative and efficient processing method for data analysis. This Matrix Pencil Method, together with DECRA, will be useful for future developments and applications of SPEN DNMR. A detailed analysis of the pulse's effect, with the help of numerical simulations, also helped to illustrate its design and validate its mechanism. The approach presented here could be generalised to other sampling schemes, which can have different advantages depending on the type of sample analysed by diffusion NMR.

Figures

Figure 1 ( 

  A symmetric 𝑚 × 𝑚 Hankel matrix 𝑌 is generated as follows: the 𝑚 × 1 1D array forms the first column; the 𝑖-th column, where 𝑖 = 2 to 𝑚, is obtained by upward circular shift by one element of the (𝑖 -1)-th column and replacing the last element by zero. The Hankel matrix formed in this manner has every element below the main skew diagonal equal to zero. The Hankel matrix 𝑌 is then decomposed by singular value decomposition (SVD) to find out the eigenvalue matrix 𝑆 and left and right eigenvectors 𝑈 and 𝑉 (𝑌 = 𝑈 2 𝑆𝑉), all of size 𝑚 × 𝑚. The dimensionality of eigenvalue matrix 𝑆 and eigenvector matrices, 𝑈 and 𝑉 is then reduced to the number of components 𝑟, which results into reduced eigenvalue matrix 𝑆′ (𝑟 × 𝑟) and reduced rectangular left and right eigenvector matrix, 𝑈 # (𝑟 × 𝑚) and 𝑉 # (𝑟 × 𝑚). With these sets of eigenvalue and eigenvector matrices, a new matrix 𝑌′ is formed by using the relation 𝑌 # = 𝑈 #2 𝑆′𝑉′.

5 .

 5 The signal-to-ratio in the (z, w) domain was set at 1.5 × 10 D . The spectra of the two components are well separated, despite the fact that two peaks are exactly overlapped in the original data. The estimated diffusion coefficients are again slightly different from the expected value, by about 7 to 11 %. Unsurprisingly, the estimated values are similar to the ones obtained with the MPM.
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 2 Figure 1 (a) Stimulated echo pulse sequence for spatially encoded diffusion-ordered NMR spectroscopy (SPEN DOSY). Hard pulses are shown as black rectangles. Frequency-swept pulse are shown as black rectangles with an arrow. Gradient pulses are shown as white rectangles. Gradients for spatial encoding (spen) and coherence-transfer-pathway (ctp) selection are shown on separate lines. Schematic diagram of spatial parallelization with linear sampling pulse, (b) and quadratic sampling pulse, (c)

Figure 3 (

 3 Figure 3 (a) Normalized simulated magnetization profile after spatial encoding block of pulse sequence, Fig.1a with linear frequency swept chirp pulse with (magenta) and without (blue) diffusion coefficient. (b) Comparison between analytical (red) and simulated (green) phase acquired by the ensembles of magnetizations along sample co-ordinate. (c) Comparison between analytical (red) and simulated (green) linear variation of phase's derivative with sample co-ordinate 𝑧, 𝐾(𝑧).

Figure 4 (

 4 Figure 4 (a) Normalized simulated magnetization profile after spatial encoding block of pulse sequence, Fig.1a with quadratic spacing pulse with (magenta) and without (blue) diffusion coefficient. (b) Comparison between analytical (red) and simulated (green) phase acquired by the ensembles of magnetizations along sample co-ordinate. (c) Comparison between analytical (red) and simulated (green) non-linear (quadratic) variation of phase's derivative with sample co-ordinate 𝑧, 𝐾(𝑧).

Figure 5 .

 5 Figure 5. Simulated Fourier transformed 2D spectroscopic imaging data, i.e., diffusion decay along the spatial axis for two peaks at 4.5 ppm and 5.5 ppm. The peak at 4.5 ppm consists of single component of diffusion coefficient 6 × 10 9+" 𝑚 $ /𝑠 while the peak at 5.5 ppm is the overlap of two components of diffusion constant 6 × 10 9+" 𝑚 $ /𝑠 and 12 × 10 9+" 𝑚 $ /𝑠. Reference profile shown in black and green represents probe's sensitivity and RF pulse profile.

Figure 6 .

 6 Figure 6. 1D representation of diffusion coefficients with amplitudes, obtained after processing the SPEN DOSY data recorded with quadratic (top panel) and linear spacing (bottom panel) pulse, with least square fitting(a, c) and with matrix pencil method (b, d).The width of the lines is the measurement of error in the diffusion coefficients. Separation of two components obtained after processing simulated data generated with diffusion coefficient 6 × 10 9+" 𝑚 $ /𝑠 and 12 × 10 9+" 𝑚 $ /𝑠.

Figure 7 .

 7 Figure 7. DECRA processing of simulated SPEN DOSY data. In (a, b) the data before DECRA processing corresponds to the spatial range between -4.36 𝑚𝑚 to 4.587 𝑚𝑚, shown in Fig. 5. In(c, d), the data before DECRA processing correspond to the spatial range between -4 𝑚𝑚 to 4 𝑚𝑚. In (a, c), the data before DECRA processing is corrected for the frequencyswept pulse spatial-selection profil, while in (b, d) it is not.
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