
HAL Id: hal-03454640
https://hal.science/hal-03454640v1

Submitted on 29 Nov 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

There Is No Turning Back: A Self-Supervised Approach
for Reversibility-Aware Reinforcement Learning

Nathan Grinsztajn, Johan Ferret, Olivier Pietquin, Philippe Preux, Matthieu
Geist

To cite this version:
Nathan Grinsztajn, Johan Ferret, Olivier Pietquin, Philippe Preux, Matthieu Geist. There Is No
Turning Back: A Self-Supervised Approach for Reversibility-Aware Reinforcement Learning. Neural
Information Processing Systems (2021), Dec 2021, Virtual, France. �hal-03454640�

https://hal.science/hal-03454640v1
https://hal.archives-ouvertes.fr

There Is No Turning Back:
A Self-Supervised Approach for

Reversibility-Aware Reinforcement Learning

Nathan Grinsztajn∗
Inria, Scool Team

CRIStAL, CNRS, Université de Lille
nathan.grinsztajn@inria.fr

Johan Ferret∗
Google Research, Brain Team

Inria, Scool Team
CRIStAL, CNRS, Université de Lille

Olivier Pietquin
Google Research, Brain Team

Philippe Preux
Inria, Scool Team

CRIStAL, CNRS, Université de Lille

Matthieu Geist
Google Research, Brain Team

Abstract

We propose to learn to distinguish reversible from irreversible actions for better
informed decision-making in Reinforcement Learning (RL). From theoretical
considerations, we show that approximate reversibility can be learned through a
simple surrogate task: ranking randomly sampled trajectory events in chronological
order. Intuitively, pairs of events that are always observed in the same order are
likely to be separated by an irreversible sequence of actions. Conveniently, learning
the temporal order of events can be done in a fully self-supervised way, which we
use to estimate the reversibility of actions from experience, without any priors. We
propose two different strategies that incorporate reversibility in RL agents, one
strategy for exploration (RAE) and one strategy for control (RAC). We demonstrate
the potential of reversibility-aware agents in several environments, including the
challenging Sokoban game. In synthetic tasks, we show that we can learn control
policies that never fail and reduce to zero the side-effects of interactions, even
without access to the reward function.

1 Introduction

We address the problem of estimating if and how easily actions can be reversed in the Reinforcement
Learning (RL) context. Irreversible outcomes are often not to be taken lightly when making decisions.
As humans, we spend more time evaluating the outcomes of our actions when we know they are
irreversible [29]. As such, irreversibility can be positive (i.e. takes risk away for good) or negative (i.e.
leads to later regret). Also, decision-makers are more likely to anticipate regret for hard-to-reverse
decisions [50]. All in all, irreversibility seems to be a good prior to exploit for more principled
decision-making. In this work, we explore the option of using irreversibility to guide decision-making
and confirm the following assertion: by estimating and factoring reversibility in the action selection
process, safer behaviors emerge in environments with intrinsic risk factors. In addition to this, we

∗Equal contribution.

35th Conference on Neural Information Processing Systems (NeurIPS 2021), Sydney, Australia.

show that exploiting reversibility leads to more efficient exploration in environments with undesirable
irreversible behaviors, including the famously difficult Sokoban puzzle game.

However, estimating the reversibility of actions is no easy feat. It seemingly requires a combination
of planning and causal reasoning in large dimensional spaces. We instead opt for another, simpler
approach (see Fig. 1): we propose to learn in which direction time flows between two observations,
directly from the agents’ experience, and then consider irreversible the transitions that are assigned a
temporal direction with high confidence. In fine, we reduce reversibility to a simple classification
task that consists in predicting the temporal order of events.

Our contributions are the following: 1) we formalize the link between reversibility and precedence es-
timation, and show that reversibility can be approximated via temporal order, 2) we propose a practical
algorithm to learn temporal order in a self-supervised way, through simple binary classification using
sampled pairs of observations from trajectories, 3) we propose two novel exploration and control strate-
gies that incorporate reversibility, and study their practical use for directed exploration and safe RL,
illustrating their relative merits in synthetic as well as more involved tasks such as Sokoban puzzles.

2 Related Work

Is A → B reversible?

Yes, because
B → A does not

contradict the laws of
physics!

Is A → B reversible?

Easy, since
B → A is as likely

as A → B!

Figure 1: High-level illustration of how reversibil-
ity can be estimated. Left: from an understanding
of physics. Right: ours, from experience.

To the best of our knowledge, this work is the
first to explicitly model the reversibility of transi-
tions and actions in the context of RL, using tem-
poral ordering to learn from trajectories in a self-
supervised way, in order to guide exploration
and control. Yet, several aspects of the prob-
lem we tackle were studied in different contexts,
with other motivations; we review these here.

Leveraging reversibility in RL. Kruusmaa
et al. [26] estimate the reversibility of state-
action couples so that robots avoid performing
irreversible actions, since they are more likely
to damage the robot itself or its environment. A
shortcoming of their approach is that they need
to collect explicit state-action pairs and their reversal actions, which makes it hard to scale to large
environments. Several works [40, 5, 4] use reachability as a curiosity bonus for exploration: if the
current state has a large estimated distance to previous states, it means that it is novel and the agent
should be rewarded. Reachability and reversibility are related, in the sense that irreversible actions
lead to states from which previous states are unreachable. Nevertheless, their motivations and ours
diverge, and we learn reversibility through a less involved task than that of learning reachability.
Nair et al. [33] learn to reverse trajectories that start from a goal state so as to generate realistic
trajectories that reach similar goals. In contrast, we use reversibility to direct exploration and/or
control, not for generating learning data. Closest to our work, Rahaman et al. [37] propose to learn
a potential function of the states that increases with time, which can detect irreversibility to some
extent. A drawback of the approach is that the potential function is learned using trajectories sampled
from a random policy, which is a problem for many tasks where a random agent might fail to cover
interesting parts of the state space. In comparison, our method does not use a potential function and
learns jointly with the RL agent, which makes it a viable candidate for more complex tasks.

Safe exploration. Safe exploration aims at making sure that the actions of RL agents do not lead to
negative or unrecoverable effects that would outweigh the long-term value of exploration [2]. Notably,
previous works developed distinct approaches to avoid irreversible behavior: by incremental updates
to safe policies [23, 18], which requires knowing such a policy in advance; by restricting policy
search to ergodic policies [32] (i.e. that can always come back to any state visited), which is costly;
by active exploration [28], where the learner can ask for rollouts instead of exploring potentially
unsafe areas of the state space itself; and by computing regions of attraction [9] (the part of the state
space where a controller can bring the system back to an equilibrium point), which requires prior
knowledge of the environment dynamics.

2

Self-supervision from the arrow of time. Self-supervision has become a central component
of modern machine learning algorithms, be it for computer vision, natural language or signal
processing. In particular, using temporal consistency as a source of self-supervision is now ubiquitous,
be it to learn representations for downstream tasks [19, 38, 12], or to learn to detect temporal
inconsistencies [47]. The closest analogies to our work are methods that specifically estimate some
aspects of the arrow of time as self-supervision. Most are to be found in the video processing literature,
and self-supervised tasks include predicting which way the time flows [35, 47], verifying the temporal
order of a subset of frames [30], predicting which video clip has the wrong temporal order among a
subset [17] as well as reordering shuffled frames or clips from the video [16, 14, 48]. Bai et al. [6]
notably propose to combine several of these pretext tasks along with data augmentation for video
classification. Using time as a means of supervision was also explored for image sequencing [8],
audio [11] or EEG processing [39]. In RL, self-supervision also gained momentum in recent
years [22, 44, 49], with temporal information being featured [1]. Notably, several works [3, 13, 21, 43]
leverage temporal consistency to learn useful representations, effectively learning to discriminate
between observations that are temporally close and observations that are temporally distant. In
comparison to all these works, we estimate the arrow of time through temporal order prediction with
the explicit goal of finding irreversible transitions or actions.

3 Reversibility

Degree of Reversibility. We start by introducing formally the notion of reversibility. Intuitively, an
action is reversible if it can be undone, meaning that there is a sequence of actions that can bring us
back to the original state.
Definition 1. Given a state s, we call degree of reversibility within K steps of an action a

φK(s, a) := sup
π
pπ(s ∈ τt+1:t+K+1 | st = s, at = a),

and the degree of reversibility of an action is defined as

φ(s, a) := sup
π
pπ(s ∈ τt+1:∞ | st = s, at = a),

with τ = {si}i=1 ... T ∼ π corresponding to a trajectory, and τt:t′ the subset of the trajectory between
the timesteps t and t′ (excluded). We omit their dependency on π for the sake of conciseness. Given s ∈
S, the action a is reversible if and only if φ(s, a) = 1, and said irreversible if and only if φ(s, a) = 0.

In deterministic environments, an action is either reversible or irreversible: given a state-action couple
(s, a) and the unique resulting state s′, φK(s, a) is equal to 1 if there is a sequence of less than K
actions which brings the agent from s′ to s, and is otherwise equal to zero. In stochastic environments,
a given sequence of actions can only reverse a transition up to some probability, hence the need for
the notion of degree of reversibility.

Policy-Dependent Reversibility. In practice, it is useful to quantify the degree of reversibility of
an action as the agent acts according to a fixed policy π, for which we extend the notions introduced
above. We simply write :

φπ,K(s, a) := pπ(s ∈ τt+1:t+K+1 | st = s, at = a) and φπ(s, a) := pπ(s ∈ τt+1:∞ | st = s, at = a).

It immediately follows that φK(s, a) = supπ φπ,K(s, a) and φ(s, a) = supπ φπ(s, a).

4 Reversibility Estimation via Classification

Quantifying the exact degree of reversibility of actions is generally hard. In this section, we show
that reversibility can be approximated efficiently using simple binary classification.

4.1 Precedence Estimation

Supposing that a trajectory contains the states s and s′, we want to be able to establish precedence,
that is predicting whether s or s′ comes first on average. It is a binary classification problem, which

3

consists in estimating the quantity Est=s,st′=s′
[
1t′>t

]
. Accordingly, we introduce the precedence

estimator which, using a set of trajectories, learns to predict which state of an arbitrary pair is most
likely to come first.

Definition 2. Given a fixed policy π, we define the finite-horizon precedence estimator between two
states as follows:

ψπ,T (s, s′) = Eτ∼π Est=s,st′=s′
t,t′<T

[
1t′>t

]
.

Conceptually, given two states s and s′, the precedence estimator gives an approximate probability of
s′ being visited after s, given that both s and s′ are observed in a trajectory. The indices are sampled
uniformly within the specified horizon T ∈ N, so that this quantity is well-defined even for infinite
trajectories. Additional properties of ψ, regarding transitivity for instance, can be found in Appx. A.2.

Remark 1. The quantity ψπ,T (s, s′) is only defined for pairs of states which can be found in the
same trajectory, and is otherwise irrelevant. In what follows, we implicitly impose this condition
when considering state pairs.

Theorem 1. For every policy π and s, s′ ∈ S, ψπ,T (s, s′) converges when T goes to infinity. We
refer to the limit as the precedence estimator, written ψπ(s, s′).

The proof of this theorem is developed in Appendix A.3. This result is key to ground theoretically
the notion of empirical reversibility φ̄, which we introduce in the next definition. It simply consists in
extending the notion of precedence to a state-action pair.

Definition 3. We finally define the empirical reversibility using the precedence estimator:

φ̄π(s, a) = Es′∼P (s,a)

[
ψπ(s′, s)

]
.

In a nutshell, given that we start in s and take the action a, the empirical reversibility φ̄π(s, a)
measures the probability that we go back to s, starting from a state s′ that follows (s, a). We now
show that our empirical reversibility is linked with the notion of reversibility defined in the previous
section, and can behave as a useful proxy.

4.2 Estimating Reversibility from Precedence

We present here our main theoretical result which relates reversibility and empirical reversibility:

Theorem 2. Given a policy π, a state s and an action a, we have: φ̄π(s, a) ≥ φπ(s,a)
2 .

The full proof of the theorem is given in Appendix A.3.

This result theoretically justifies the name of empirical reversibility. From a practical perspective, it
provides a way of using φ̄ to detect actions which are irreversible or hardly reversible: φ̄π(s, a)� 1
implies φπ(s, a)� 1 and thus provides a sufficient condition to detect actions with low degrees of
reversibility. This result gives a way to detect actions that are irreversible given a specific policy
followed by the agent. Nevertheless, we are generally interested in knowing if these actions are
irreversible for any policy, meaning φ(s, a)� 1 with the definition of Section 3. The next proposition
makes an explicit connection between φ̄π and φ, under the assumption that the policy π is stochastic.

Proposition 1. We suppose that we are given a state s, an action a such that a is reversible in K
steps, and a policy π. Under the assumption that π is stochastic enough, meaning that there exists
ρ > 0 such that for every state and action s, a, π(a | s) > ρ, we have: φ̄π(s, a) ≥ ρK

2 . Moreover, we

have for all K ∈ N: φ̄π(s, a) ≥ ρK

2 φK(s, a).

The proof is given in Appendix A.4. As before, this proposition gives a practical way of detecting
irreversible moves. If for example φ̄π(s, a) < ρk/2 for some k ∈ N, we can be sure that action a is
not reversible in k steps. The quantity ρ can be understood as a minimal probability of taking any
action in any state. This condition is not very restrictive: ε-greedy strategies for example satisfy this
hypothesis with ρ = ε

|A| .

In practice, it can also be useful to limit the maximum number of time steps between two sampled
states. That is why we also define the windowed precedence estimator as follows:

4

Observation

Shuffle

Embedding

Concat

Joint
Embedding

Temporal
Order

Probability

= random order from shuffle, acts as target

Figure 2: The proposed self-supervised procedure for precedence estimation.

Definition 4. Given a fixed policy π, we define the windowed precedence estimator between two
states as follows:

ψπ,T,w(s, s′) = Eτ∼πEst=s,st′=s′
t,t′<T
|t−t′|≤w

[
1t′>t

]
.

Intuitively, compared to previous precedence estimators, ψπ,T,w is restricted to short-term dynamics,
which is a desirable property in tasks where distinguishing the far future from the present is either
trivial or impossible.

5 Reversibility-Aware Reinforcement Learning

Leveraging the theoretically-grounded bridge between precedence and reversibility established in the
previous section, we now explain how reversibility can be learned from the agent’s experience and
used in a practical setting.

Learning to rank events chronologically. Learning which observation comes first in a trajectory
is achieved by binary supervised classification, from pairs of observations sampled uniformly in
a sliding window on observed trajectories. This can be done fully offline, i.e. using a previously
collected dataset of trajectories for instance, or fully online, i.e. jointly with the learning of the RL
agent; but also anywhere on the spectrum by leveraging variable amounts of offline and online data.

This procedure is not without caveats. In particular, we want to avoid overfitting to the particularities
of the behavior of the agent, so that we can learn meaningful, generalizable statistics about the order
of events in the task at hand. Indeed, if an agent always visits the state sa before sb, the classifier
will probably assign a close-to-one probability that sa precedes sb. This might not be accurate with
other agents equipped with different policies, unless transitioning from sb to sa is hard due to the
dynamics of the environment, which is in fact exactly the cases we want to uncover. We make
several assumptions about the agents we apply our method to: 1) agents are learning and thus, have a
policy that changes through interactions in the environment, 2) agents have an incentive not to be too
deterministic. For this second assumption, we typically use an entropic regularization in the chosen
RL loss, which is a common design choice in modern RL methods. These assumptions, when put
together, alleviate the risk of overfitting to the idiosyncrasies of a single, non-representative policy.

We illustrate the precedence classification procedure in Fig. 2. A temporally-ordered pair of observa-
tions, distant of no more than w timesteps, is sampled from a trajectory and uniformly shuffled. The
result of the shuffling operation is memorized and used as a target for the binary classification task. A
Siamese network creates separate embeddings for the pair of observations, which are concatenated
and fed to a separate feed-forward network, whose output is passed through a sigmoid to obtain a
probability of precedence. This probability is updated via negative log-likelihood against the result of
the shuffle, so that it matches the actual temporal order.

Then, a transition (and its implicit sequence of actions) represented by a starting observation x and
a resulting observation x′ is deemed irreversible if the estimated precedence probability ψ(x, x′)
is superior to a chosen threshold β. Note that we do not have to take into account the temporal
proximity of these two observations here, which is a by-product of sampling observations uniformly

5

Degree
of

Reversibility
. Rejection

sampling

(a) RAE penalizes irreversible transitions

Concat

Temporal
Order

Probability

(b) RAC hijacks irreversible actions

Figure 3: Our proposed methods for reversibility-aware RL. (a): RAE encourages reversible behavior
via auxiliary rewards. (b): RAC avoids irreversible behavior by rejecting actions whose estimated
reversibility is inferior to a threshold.

in a window in trajectories. Also, depending on the threshold β, we cover a wide range of scenarios,
from pure irreversibility (β close to 1) to soft irreversibility (β > 0.5, the bigger β, the harder the
transition is to reverse). This is useful because different tasks call for different levels of tolerance
for irreversible behavior: while a robot getting stuck and leading to an early experiment failure is to
be avoided when possible, tasks involving human safety might call for absolute zero tolerance for
irreversible decision-making. We elaborate on these aspects in Sec. 6.

Reversibility-Aware Exploration and Control. We propose two different algorithms based on
reversibility estimation: Reversibility-Aware Exploration (RAE) and Reversibility-Aware Control
(RAC). We give a high-level representation of how the two methods operate in Fig. 3.

In a nutshell, RAE consists in using the estimated reversibility of a pair of consecutive observations
to create an auxiliary reward function. In our experiments, the reward function is a piecewise linear
function of the estimated reversibility and a fixed threshold, as in Fig. 3: it grants the agent a negative
reward if the transition is deemed too hard to reverse. The agent optimizes the sum of the extrinsic
and auxiliary rewards. Note that the specific function we use penalizes irreversible transitions but
could encourage such transitions instead, if the task calls for it.

RAC can be seen as the action-conditioned counterpart of RAE. From a single observation, RAC
estimates the degree of reversibility of all available actions, and “takes control” if the action sampled
from the policy is not reversible enough (i.e. has a reversibility inferior to a threshold β). “Taking
control” can have many forms. In practice, we opt for rejection sampling: we sample from the policy
until an action that is reversible enough is sampled. This strategy has the advantage of avoiding
irreversible actions entirely, while trading-off pure reversibility for performance when possible. RAC
is more involved than RAE, since the action-conditioned reversibility is learned from the supervision
of a standard, also learned precedence estimator. Nevertheless, our experiments show that it is
possible to learn both estimators jointly, at the cost of little overhead.

We now discuss the relative merits of the two methods. In terms of applications, we argue that
RAE is more suitable for directed exploration, as it only encourages reversible behavior. As a result,
irreversible behavior is permitted if the benefits (i.e. rewards) outweigh the costs (i.e. irreversibility
penalties). In contrast, RAC shines in safety-first, real-world scenarios, where irreversible behavior is
to be banned entirely. With an optimal precedence estimator and task-dependent threshold, RAC will
indeed hijack all irreversible sampled actions. RAC can be especially effective when pre-trained on
offline trajectories: it is then possible to generate fully-reversible, safe behavior from the very first
online interaction in the environment. We explore these possibilities experimentally in Sec. 6.2.

Both algorithms can be used online or offline with small modifications to their overall logic. The
pseudo-code for the online version of RAE and RAC can be found in Appendix B.2.

The self-supervised precedence classification task could have applications beyond estimating the
reversibility of actions: it could be used as a means of getting additional learning signal or repre-
sentational priors for the RL algorithm. Nevertheless, we opt for a clear separation between the

6

0 2 4
timesteps (1e5)

50

100

150

200

ep
iso

de
 le

ng
th

2

0

2

in
tri

ns
ic

re
wa

rd

(a) Training curves

0.2 0.0 0.2
x

0.97

0.98

0.99

1.00

y

 - 0.9
 - 0.7
 - 0.3
 - 0.1
 - 0.01
 - 0.001

(b) Relative pole coordinates

0.2 0.1 0.0 0.1 0.2
2

1

0

1

2

d
/d

t

(c) Random trajectories

Figure 4: (a): Training curves of a PPO+RAE agent in reward-free Cartpole. Blue: episode length.
Red: intrinsic reward. A 95% confidence interval over 10 random seeds is shown. (b): The x and y
axes are the coordinates of the end of the pole relatively to the cart position. The color denotes the
online reversibility estimation between two consecutive states (logit scale). (c): The representation of
three random trajectories according to θ (angle of the pole) and dθ

dt . Arrows are colored according to
the learned reversibility of the transitions they correspond to.

reversibility and the RL components so that we can precisely attribute improvements to the former,
and leave aforementioned studies for future work.

6 Experiments

The following experiments aim at demonstrating that the estimated precedence ψ is a good proxy
for reversibility, and at illustrating how beneficial reversibility can be in various practical cases. We
benchmark RAE and RAC on a diverse set of environments, with various types of observations
(tabular, pixel-based), using neural networks for function approximation. See Appendix C for details.

6.1 Reward-Free Reinforcement Learning

We illustrate the ability of RAE to learn sensible policies without access to rewards. We use the
classic pole balancing task Cartpole [7], using the OpenAI Gym [10] implementation. In the usual
setting, the agent gets a reward of 1 at every time step, such that the total undiscounted episode reward
is equal to the episode length, and incentivizes the agent to learn a policy that stabilizes the pole.
Here, instead, we remove this reward signal and give a PPO agent [42] an intrinsic reward based
on the estimated reversibility, which is learned online from agent trajectories. The reward function
penalizes irreversibility, as shown in Fig. 3. Note that creating insightful rewards is quite difficult: too
frequent negative rewards could lead the agent to try and terminate the episode as soon as possible.

We display our results in Fig. 4. Fig. 4a confirms the claim that RAE can be used to learn meaningful
rewards. Looking at the intrinsic reward, we discern three phases. Initially, both the policy and the
reversibility classifier are untrained (and intrinsic rewards are 0). In the second phase, the classifier is
fully trained but the agent still explores randomly (intrinsic rewards become negative). Finally, the
agent adapts its behavior to avoid penalties (intrinsic rewards go to 0, and the length of trajectories
increases). Our reward-free agent reaches the score of 200, which is the highest possible score.

To further assess the quality of the learned reversibility, we freeze the classifier after 300k timesteps
and display its predicted probabilities according to the relative coordinates of the end of the pole
(Fig. 4b) and the dynamics of the angle of the pole θ (Fig. 4c). In both cases, the empirical reversibility
matches our intuition: the reversibility should decrease as the angle or angular momentum increase,
since these coincide with an increasing difficulty to go back to the equilibrium.

6.2 Learning Reversible Policies

In this section, we investigate how RAE can be used to learn reversible policies. When we train
an agent to achieve a goal, we usually want it to achieve that goal following implicit safety con-
straints. Handcrafting such safety constraints would be time-consuming, difficult to scale for complex
problems, and might lead to reward hacking; so a reasonable proxy consists in limiting irreversible
side-effects in the environment [27].

7

(a) Initial state (b) A trajectory (c) PPO (500k) (d) PPO+RAE (500k)

Figure 5: (a): The Turf environment. The agent can walk on grass, but the grass then turns brown.
(b): An illustrative trajectory where the agent stepped on grass pixels. (c): State visitation heatmap
for PPO. (d): State visitation heatmap for PPO+RAE. It coincides with the stone path (red).

push

move

move

push

move

➀

➁
➂

➃
➄

Figure 6: (a): Non-trivial reversibility: pushing the box against the wall can be reversed by pushing
it to the left, going around, pushing it down and going back to start. A minimum of 17 moves is
required to go back to the starting state. (b): Performances of IMPALA and IMPALA+RAE on 1k
levels of Sokoban (5 seeds average). (c): Evolution of the estimated reversibility along one episode.

To quantify side-effects, we propose Turf, a new synthetic environment. As depicted in Fig. 5a,5b,
the agent (blue) is rewarded when reaching the goal (pink). Stepping on grass (green) will spoil it,
causing it to turn brown. Stepping on the stone path (grey) does not induce any side-effect.

In Fig. 5c,5d, we compare the behaviors of a trained PPO agent with and without RAE. The baseline
agent is indifferent to the path to the goal, while the agent benefitting from RAE learns to follow the
road, avoiding irreversible consequences.

6.3 Sokoban

Sokoban is a popular puzzle game where a warehouse keeper (controlled by the player) must move
boxes around and place them in dedicated places. Each level is unique and involves planning, since
there are many ways to get stuck. For instance, pushing a box against a wall is often un-undoable,
and prevents the completion of the level unless actually required to place the box on a specific
target. Sokoban is a challenge to current model-free RL algorithms, as advanced agents require
millions of interactions to reliably solve a fraction of levels [46, 20]. One of the reasons for this is
tied to exploration: since agents learn from scratch, there is a long preliminary phase where they
act randomly in order to explore the different levels. During this phase, the agent will lock itself
in unrecoverable states many times, and further exploration is wasted. It is worth recalling that
contrary to human players, the agent does not have the option to reset the game when stuck. In these
regards, Sokoban is a great testbed for reversibility-aware approaches, as we expect them to make
the exploration phase more efficient, by incorporating the prior that irreversible transitions are to be
avoided if possible, and by providing tools to identify such transitions.

We benchmark performance on a set of 1k levels. Results are displayed in Fig. 6. Equipping an
IMPALA agent [15] with RAE leads to a visible performance increase, and the resulting agent
consistently solves all levels from the set. We take a closer look at the reversibility estimates and show
that they match the ground truth with high accuracy, despite the high imbalance of the distribution
(i.e. few irreversible transitions, see Fig. 6c) and complex reversibility estim ation (see Fig. 6a).

8

0.1 0.15 0.2 0.25 0.3 0.35 0.4
 threshold

102

103

104

sc
or

e

(a) Trajectory lengths

0.2 0.0 0.2
x

0.97

0.98

0.99

1.00

y

 - 0.5
 - 0.1
 - 0.01
 - 0.001

(b) Coordinates: action 0

0.2 0.0 0.2
x

0.97

0.98

0.99

1.00

y

 - 0.5
 - 0.1
 - 0.01
 - 0.001

(c) Coordinates: action 1

Figure 7: (a): Mean score of a random policy augmented with RAC on Cartpole+ for several threshold
values, with 95% confidence intervals over 10 random seeds (log scale). (b) and (c): The x and y
axes are the coordinates of the end of the pole relatively to the cart position. The color indicates the
estimated reversibility values.

6.4 Safe Control

In this section, we put an emphasis on RAC, which is particularly suited for safety related tasks.

Cartpole+. We use the standard Cartpole environment, except that we change the maximum
number of steps from 200 to 50k to study long-term policy stability. We name this new environment
Cartpole+. It is substantially more difficult than the initial setting. We learn reversibility offline, using
trajectories collected from a random policy. Fig. 7a shows that a random policy augmented with RAC
achieves seemingly infinite scores. For the sake of comparison, we indicate that a DQN [31] and
the state-of-the-art M-DQN [45] achieve a maximum score of respectively 1152 and 2801 under a
standard training procedure, described in Appendix C.5. This can be surprising, since RAC was only
trained on random thus short trajectories (mean length of 20). We illustrate the predictions of our
learned estimator in Fig. 7b,7c. When the pole leans to the left (x < 0), we can see that moving the
cart to the left is perceived as more reversible than moving it to the right. This is key to the good
performance of RAC and perfectly on par with our understanding of physics: when the pole is leaning
in a direction, agents must move the cart in the same direction to stabilize it.

0 2 4 6 8
timesteps (1e4)

0

5

10

15

sp
oi

le
d

gr
as

s

PPO + RAC
PPO 0.5

0.6

0.7

0.8

0.9

1.0

re
wa

rd

Figure 8: PPO and RAC (solid
lines) vs PPO (dashed lines).
At the cost of slower learning
(brown), our approach prevents
the agent from producing a single
irreversible side-effect (green)
during the learning phase. Curves
are averaged over 10 runs.

Turf. We now illustrate how RAC can be used for safe online
learning: the implicitly safe constraints provided by RAC
prevent policies from deviating from safe trajectories. This
ensures for example that agents stay in recoverable zones
during exploration.

We learn the reversibility estimator offline, using the trajectories
of a random policy. We reject actions whose reversibility is
deemed inferior to β = 0.2, and train a PPO agent with RAC.
As displayed in Fig. 8, PPO with RAC learns to reach the goal
without causing any irreversible side-effect (i.e. stepping on
grass) during the whole training process.

The threshold β is a very important parameter of the algo-
rithm. Too low a threshold could lead to overlooking some
irreversible actions, while a high threshold could prevent the
agent from learning the new task at hand. We discuss this
performance/safety trade-off in more details in Appendix. C.7.

7 Conclusion

In this work, we formalized the link between the reversibility of transitions and their temporal order,
which inspired a self-supervised procedure to learn the reversibility of actions from experience. In
combination with two novel reversibility-aware exploration strategies, RAE for directed exploration
and RAC for directed control, we showed the empirical benefits of our approach in various scenarios,
ranging from safe RL to risk-averse exploration. Notably, we demonstrated increased performance in
procedurally-generated Sokoban puzzles, which we tied to more efficient exploration.

9

Broader impact and ethical considerations. The presented work aims at estimating and con-
trolling potentially irreversible behaviors in RL agents. We think it has interesting applications in
safety-first scenarios, where irreversible behavior or side-effects are to be avoided. The societal
implication of these effects would be safer interactions with RL-powered components (e.g. robots,
virtual assistants, recommender systems) which, though rare today, could become the norm. We
argue that further research and applications should verify that the induced reversible behavior holds
in almost all situations and does not lead to unintended effects. Our method could be deflected from
its goal and used to identify and encourage actions with irreversible effects. In this case, a counter
measure consists in using our method to flag and replace irreversible actions. Hence, while the
method provides information that could be used to deal irreversible harm, we argue that it provides
equal capabilities for detection and prevention.

Acknowledgments and Disclosure of Funding

Experiments presented in this paper were partially carried out using the Grid’5000 testbed, supported
by a scientific interest group hosted by Inria and including CNRS, RENATER and several Universities
as well as other organizations. NG is a recipient of PhD funding from the AMX program, Ecole
Polytechnique. The authors would like to thank Edouard Leurent, Antoine Moulin, Odalric-Ambrym
Maillard, Léonard Hussenot, Nino Vieillard, Alexis Jacq, Théophane Weber and Bobak Shahriari for
helpful comments and suggestions.

10

References
[1] A. Amiranashvili, A. Dosovitskiy, V. Koltun, and T. Brox. Motion perception in reinforcement

learning with dynamic objects. In Conference on Robot Learning, 2018.
[2] D. Amodei, C. Olah, J. Steinhardt, P. F. Christiano, J. Schulman, and D. Mané. Concrete

problems in AI safety. arXiv preprint arXiv:1606.06565, 2016.
[3] Y. Aytar, T. Pfaff, D. Budden, T. L. Paine, Z. Wang, and N. de Freitas. Playing hard exploration

games by watching youtube. In Advances in Neural Information Processing Systems, 2018.
[4] A. P. Badia, B. Piot, S. Kapturowski, P. Sprechmann, A. Vitvitskyi, Z. D. Guo, and C. Blundell.

Agent57: Outperforming the atari human benchmark. In International Conference on Machine
Learning, 2020.

[5] A. P. Badia, P. Sprechmann, A. Vitvitskyi, D. Guo, B. Piot, S. Kapturowski, O. Tieleman,
M. Arjovsky, A. Pritzel, A. Bolt, et al. Never give up: Learning directed exploration strategies.
In International Conference on Learning Representations, 2020.

[6] Y. Bai, H. Fan, I. Misra, G. Venkatesh, Y. Lu, Y. Zhou, Q. Yu, V. Chandra, and A. Yuille.
Can temporal information help with contrastive self-supervised learning? arXiv preprint
arXiv:2011.13046, 2020.

[7] A. G. Barto, R. S. Sutton, and C. W. Anderson. Neuronlike adaptive elements that can solve
difficult learning control problems. In IEEE Transactions on Systems, Man, and Cybernetics,
1983.

[8] T. Basha, Y. Moses, and S. Avidan. Photo sequencing. In European Conference on Computer
Vision, 2012.

[9] F. Berkenkamp, R. Moriconi, A. Schoellig, and A. Krause. Safe learning of regions of attraction
for uncertain, nonlinear systems with gaussian processes. In Conference on Decision and
Control, 2016.

[10] G. Brockman, V. Cheung, L. Pettersson, J. Schneider, J. Schulman, J. Tang, and W. Zaremba.
Openai gym, 2016. URL http://arxiv.org/abs/1606.01540.

[11] A. N. Carr, Q. Berthet, M. Blondel, O. Teboul, and N. Zeghidour. Self-supervised learning of
audio representations from permutations with differentiable ranking. In IEEE Signal Processing
Letters, 2021.

[12] R. Dadashi, L. Hussenot, M. Geist, and O. Pietquin. Primal wasserstein imitation learning. In
International Conference on Learning Representations, 2020.

[13] D. Dwibedi, J. Tompson, C. Lynch, and P. Sermanet. Learning actionable representations from
visual observations. In International Conference on Intelligent Robots and Systems, 2018.

[14] A. El-Nouby, S. Zhai, G. W. Taylor, and J. M. Susskind. Skip-clip: Self-supervised spatiotem-
poral representation learning by future clip order ranking. arXiv preprint arXiv:1910.12770,
2019.

[15] L. Espeholt, H. Soyer, R. Munos, K. Simonyan, V. Mnih, T. Ward, Y. Doron, V. Firoiu, T. Harley,
I. Dunning, et al. Impala: Scalable distributed deep-rl with importance weighted actor-learner
architectures. In International Conference on Machine Learning, 2018.

[16] B. Fernando, E. Gavves, J. M. Oramas, A. Ghodrati, and T. Tuytelaars. Modeling video
evolution for action recognition. In Conference on Computer Vision and Pattern Recognition,
2015.

[17] B. Fernando, H. Bilen, E. Gavves, and S. Gould. Self-supervised video representation learning
with odd-one-out networks. In Conference on Computer Vision and Pattern Recognition, 2017.

[18] J. García and F. Fernández. Safe exploration of state and action spaces in reinforcement learning.
Journal of Artificial Intelligence Research, 2012.

[19] R. Goroshin, J. Bruna, J. Tompson, D. Eigen, and Y. LeCun. Unsupervised learning of
spatiotemporally coherent metrics. In International Conference on Computer Vision, 2015.

[20] A. Guez, M. Mirza, K. Gregor, et al. An investigation of model-free planning. In International
Conference on Machine Learning, 2019.

[21] Z. D. Guo, M. G. Azar, B. Piot, B. A. Pires, and R. Munos. Neural predictive belief representa-
tions. arXiv preprint arXiv:1811.06407, 2018.

11

http://arxiv.org/abs/1606.01540

[22] Z. D. Guo, B. A. Pires, B. Piot, J.-B. Grill, F. Altché, R. Munos, and M. G. Azar. Bootstrap latent-
predictive representations for multitask reinforcement learning. In International Conference on
Machine Learning, 2020.

[23] A. Hans, D. Schneegaß, A. M. Schäfer, and S. Udluft. Safe exploration for reinforcement
learning. In European Symposium on Artificial Neural Networks, 2008.

[24] M. Hoffman, B. Shahriari, J. Aslanides, G. Barth-Maron, et al. Acme: A research framework
for distributed reinforcement learning. arXiv preprint arXiv:2006.00979, 2020.

[25] D. P. Kingma and J. Ba. Adam: A method for stochastic optimization. In International
Conference on Learning Representations, 2015.

[26] M. Kruusmaa, Y. Gavshin, and A. Eppendahl. Don’t do things you can’t undo: Reversibility
models for generating safe behaviours. In International Conference on Robotics and Automation,
2007.

[27] J. Leike, M. Martic, V. Krakovna, P. A. Ortega, T. Everitt, A. Lefrancq, L. Orseau, and S. Legg.
AI safety gridworlds. arXiv preprint arXiv:1711.09883, 2017.

[28] O.-A. Maillard, T. Mann, R. Ortner, and S. Mannor. Active Rollouts in MDP with Irreversible
Dynamics. Hal preprint hal-02177808, 2019.

[29] D. W. McAllister, T. R. Mitchell, and L. R. Beach. The contingency model for the selection
of decision strategies: An empirical test of the effects of significance, accountability, and
reversibility. In Organizational Behavior and Human Performance, 1979.

[30] I. Misra, C. L. Zitnick, and M. Hebert. Shuffle and learn: unsupervised learning using temporal
order verification. In European Conference on Computer Vision, 2016.

[31] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G. Bellemare, A. Graves,
M. Riedmiller, A. K. Fidjeland, G. Ostrovski, S. Petersen, C. Beattie, A. Sadik, I. Antonoglou,
H. King, D. Kumaran, D. Wierstra, S. Legg, and D. Hassabis. Human-level control through
deep reinforcement learning. Nature, 2015.

[32] T. M. Moldovan and P. Abbeel. Safe exploration in markov decision processes. In International
Conference on Machine Learning, 2012.

[33] S. Nair, M. Babaeizadeh, C. Finn, S. Levine, and V. Kumar. Time reversal as self-supervision.
In International Conference on Robotics and Automation, 2020.

[34] J. R. Norris. Markov chains. Cambridge series in statistical and probabilistic mathematics.
Cambridge University Press, 1998. ISBN 978-0-521-48181-6.

[35] L. C. Pickup, Z. Pan, D. Wei, Y. C. Shih, C. Zhang, A. Zisserman, B. Scholkopf, and W. T.
Freeman. Seeing the arrow of time. In Conference on Computer Vision and Pattern Recognition,
2014.

[36] A. Raffin, A. Hill, M. Ernestus, A. Gleave, A. Kanervisto, and N. Dormann. Stable baselines3.
https://github.com/DLR-RM/stable-baselines3, 2019.

[37] N. Rahaman, S. Wolf, A. Goyal, R. Remme, and Y. Bengio. Learning the arrow of time for
problems in reinforcement learning. In International Conference on Learning Representations,
2020.

[38] V. Ramanathan, K. Tang, G. Mori, and L. Fei-Fei. Learning temporal embeddings for complex
video analysis. In International Conference on Computer Vision, 2015.

[39] A. Saeed, D. Grangier, O. Pietquin, and N. Zeghidour. Learning from heterogeneous eeg signals
with differentiable channel reordering. In International Conference on Acoustics, Speech and
Signal Processing, 2020.

[40] N. Savinov, A. Raichuk, R. Marinier, D. Vincent, M. Pollefeys, T. Lillicrap, and S. Gelly.
Episodic curiosity through reachability. In International Conference on Learning Representa-
tions, 2019.

[41] M.-P. B. Schrader. gym-sokoban. https://github.com/mpSchrader/gym-sokoban, 2018.

[42] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov. Proximal policy optimization
algorithms. arXiv preprint arXiv:1707.06347, 2017.

12

https://github.com/DLR-RM/stable-baselines3
https://github.com/mpSchrader/gym-sokoban

[43] P. Sermanet, C. Lynch, Y. Chebotar, J. Hsu, E. Jang, S. Schaal, S. Levine, and G. Brain. Time-
contrastive networks: Self-supervised learning from video. In International Conference on
Robotics and Automation, 2018.

[44] A. Srinivas, M. Laskin, and P. Abbeel. Curl: Contrastive unsupervised representations for
reinforcement learning. In International Conference on Machine Learning, 2020.

[45] N. Vieillard, O. Pietquin, and M. Geist. Munchausen reinforcement learning. In Advances in
Neural Information Processing Systems, 2020.

[46] T. Weber, S. Racanière, D. P. Reichert, L. Buesing, A. Guez, D. J. Rezende, A. P. Badia,
O. Vinyals, N. Heess, Y. Li, et al. Imagination-augmented agents for deep reinforcement
learning. In Advances in Neural Information Processing Systems, 2017.

[47] D. Wei, J. J. Lim, A. Zisserman, and W. T. Freeman. Learning and using the arrow of time. In
Conference on Computer Vision and Pattern Recognition, 2018.

[48] D. Xu, J. Xiao, Z. Zhao, J. Shao, D. Xie, and Y. Zhuang. Self-supervised spatiotemporal learning
via video clip order prediction. In Conference on Computer Vision and Pattern Recognition,
2019.

[49] D. Yarats, R. Fergus, A. Lazaric, and L. Pinto. Reinforcement learning with prototypical
representations. In International Conference on Machine Learning, 2021.

[50] M. Zeelenberg. Anticipated regret, expected feedback and behavioral decision making. In
Journal of Behavioral Decision Making, 1999.

13

Checklist

1. For all authors...
(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s

contributions and scope? [Yes]
(b) Did you describe the limitations of your work? [Yes] Practical caveats and limitations

are discussed at the beginning of Sec. 5 and in Sec. 7.
(c) Did you discuss any potential negative societal impacts of your work? [Yes] See Sec. 7.
(d) Have you read the ethics review guidelines and ensured that your paper conforms to

them? [Yes]
2. If you are including theoretical results...

(a) Did you state the full set of assumptions of all theoretical results? [Yes] Theoretical
assumptions are described along the propositions and theorems in Sec. 4.

(b) Did you include complete proofs of all theoretical results? [Yes] Complete proofs are
given in Appendix A.

3. If you ran experiments...
(a) Did you include the code, data, and instructions needed to reproduce the main experi-

mental results (either in the supplemental material or as a URL)? [Yes] We released the
code for every experiments except Sokoban (Sec. 6.3) as some components are propri-
etary. Additionally, the pseudo-code for the proposed methods is given in Appendix B.

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they
were chosen)? [Yes] See Appendix C.

(c) Did you report error bars (e.g., with respect to the random seed after running experi-
ments multiple times)? [Yes]

(d) Did you include the total amount of compute and the type of resources used (e.g., type
of GPUs, internal cluster, or cloud provider)? [No]

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...
(a) If your work uses existing assets, did you cite the creators? [Yes]
(b) Did you mention the license of the assets? [No]
(c) Did you include any new assets either in the supplemental material or as a URL? [Yes]
(d) Did you discuss whether and how consent was obtained from people whose data you’re

using/curating? [N/A]
(e) Did you discuss whether the data you are using/curating contains personally identifiable

information or offensive content? [N/A]
5. If you used crowdsourcing or conducted research with human subjects...

(a) Did you include the full text of instructions given to participants and screenshots, if
applicable? [N/A]

(b) Did you describe any potential participant risks, with links to Institutional Review
Board (IRB) approvals, if applicable? [N/A]

(c) Did you include the estimated hourly wage paid to participants and the total amount
spent on participant compensation? [N/A]

14

We organize the supplementary material as follows: in Appendix A, we include the proofs of results
from the main text, as well as additional formalism; in Appendix B, we provide additional details
about the proposed algorithms, including pseudo-code and figures that did not fit in the main text; and
in Appendix C, we detail our experimental procedure, including hyperparameters for all methods/

A Mathematical Elements and Proofs

A.1 Possible Definitions of Reversibility

In this section, we present several intuitive definitions of reversibility in MDPs. We chose the third
definition as our reference, which we argue presents several advantages over the others, although
they can be interesting in specific contexts. Indeed, Eq. (3) is simpler than Eq. (1), as it does not
depend on the discount factor, and more general than Eq. (2), as it does not enforce a fixed number of
timesteps for going back to the starting state.

Discounted Reward.

φπ,K(s, a) :=

K∑
k>t

γk−tpπ(st+k = s | st = s, at = a) , (1)

φπ(s, a) :=

∞∑
k>t

γk−tpπ(st+k = s | st = s, at = a).

Fixed Time Step.
φπ,K(s, a) := sup

k≤K
pπ(st+k = s | st = s, at = a) , (2)

φπ(s, a) := sup
k∈N

pπ(st+k = s | st = s, at = a).

Undiscounted Reward.

φπ,K(s, a) :=

K∑
k=1

pπ(st+k = s, st+k−1 6= s, . . . , st+1 6= s | st = s, at = a) ,

= pπ(s ∈ τt+1:t+K+1 | st = s, at = a) . (3)

φπ(s, a) :=

∞∑
k=1

pπ(st+k = s, st+k−1 6= s, . . . , st+1 6= s | st = s, at = a) ,

= pπ(s ∈ τt+1:∞ | st = s, at = a).

A.2 Additional Properties

1

2

3

0.1
0.1

0.1
0.9

0.9

0.9

Figure 9: Counter-
example for addi-
tional property 4.
The initial state is
sampled uniformly
amongst {0, 1, 2}.

We write s→ s′ if ψπ(s, s′) ≥ 0.5 ("it is more likely to go from s to s′ than
to go from s′ to s") and s ⇒ s′ if ψπ(s, s′) = 1 ("it is possible to go from s
to s′, but it is not possible to come back to s from s′").

1. ψπ(s, s′) + ψπ(s′, s) = 1

2. if s0 ⇒ s1 ⇒ s2 then s0 ⇒ s2 (transitivity for⇒)
3. if s0 → s1 → · · · → si ⇒ si+1 → · · · → st then s0 ⇒ st

4. in general s1 → s2 and s2 → s3 doesn’t imply s1 → s3

Proofs:

(1) ψπ(s, s′) + ψπ(s′, s) = Eτ∼πEt 6=t′|st=s,st′=s′
[
1t′>t + 1t′<t

]
=

Eτ∼πEt6=t′|st=s,st′=s′
[
1
]

= 1.

(2) and (3): As (3) is stronger than (2), we only prove (3). If it is possible to have s0 after st in a
trajectory, then it is possible to have si after st. As we have a positive probability of seeing st after
si+1, we have a positive probability of seeing si after si+1, which contradicts si ⇒ si+1.

15

(4) A counter example can be found in Fig. 9. In this case we clearly have s1 → s2, s2 → s3 and
s3 → s1.

A.3 Proofs of Theorem 1 and Theorem 2

In the following, we prove simultaneously Theorem 1 and Theorem 2. We begin by two lemmas.
Lemma 1. Given a trajectory τ , we denote by #T (s→ s′) the number of pairs (s, s′) in τ1:T such
that s appears before s′. We present a simple formula for ψ(s′, s) according to the structure of the
state trajectory:

ψπ,T (s, s′) =
Eτ∼π

[
#T (s→ s′)

]
Eτ∼π

[
#T (s→ s′) + #T (s′ → s)

] .
Proof. In order to simplify the notations, we leave implicit the fact that indices are always sampled
within [0, T].

ψπ,T (s, s′) = EπEt6=t′|st=s,st′=s′
[
1t′>t

]
,

=
EπEt 6=t′

[
1t′>t1st=s1st′=s′

]
EπEt6=t′

[
1st=s1st′=s′

] .

Similarly, we have:

EπEt′>t
[
1st=s1st′=s′

]
=

EπEt 6=t′
[
1t′>t1st=s1st′=s′

]
Et6=t′

[
1t′>t

] .

Combining it with our previous equation:

ψπ,T (s, s′) =
EπEt′>t

[
1st=s1st′=s′

]
Et6=t′

[
1t′>t

]
EπEt6=t′ ,

[
1st=s1st′=s′

] ,

=
1

2

EπEt′>t
[
1st=s1st′=s′

]
EπEt 6=t′

[
1st=s1st′=s′

] .
Looking at the denominator, we can notice:

EπEt 6=t′
[
1st=s1st′=s′

]
=

1

2
EπEt<t′

[
1st=s1st′=s′

]
+

1

2
EπEt′<t

[
1st=s1st′=s′

]
,

=
1

2
EπEt<t′

[
1st=s1st′=s′ + 1st=s′1st′=s

]
,

which comes from the fact that t and t′ play a symmetrical role. Thus,

ψπ,T (s, s′) =
Eτ∼πEtEt′>t

[
1st=s1st′=s′

]
Eτ∼πEtEt′>t

[
1st=s1st′=s′ + 1st=s′1st′=s

] .
Since

Eτ∼π
[
#T (s→ s′)

]
=
∑
i<j≤T

1si=s1sj=s′ ,

=

(
T

2

) ∑
i<j≤T

1(
T
2

)1si=s1sj=s′ ,

=

(
T

2

)
Eτ∼πEtEt′>t

[
1st=s1st′=s′

]
,

16

we get:

ψπ,T (s, s′) =

(
T
2

)
Eτ∼π

[
#T (s→ s′)

](
T
2

)
Eτ∼π

[
#T (s→ s′) + #T (s′ → s)

] ,
ψπ,T (s, s′) =

Eτ∼π
[
#T (s→ s′)

]
Eτ∼π

[
#T (s→ s′) + #T (s′ → s)

] .

Lemma 2. Assume that we are given a fixed trajectory where s appears k ∈ N times, in the form of :

s0 −→︸︷︷︸
n0(s′)

s −→︸︷︷︸
n1(s′)

s −→︸︷︷︸
n2(s′)

s −→︸︷︷︸
n3(s′)

. . . −→︸︷︷︸
nk−1(s′)

s −→︸︷︷︸
nk(s′)

,

where ni(s′) denotes the number of times s′ appears between the ith and the (i + 1)th occurrence
of s. In this case,

#T (s→ s′) =

k∑
i=0

i× ni(s′) . (4)

If we suppose that n1(s′) = n2(s′) = · · · = nk−1(s′), we also have

#T (s→ s′)−#T (s′ → s) = k
(
nk(s′)− n0(s′)

)
. (5)

Proof. Eq. (4) comes directly from #T (s→ s′) =
∑k
i=1

∑k
j=i nj(s

′) =
∑k
i=0 i×ni(s′). To prove

Equ. (5), we first notice that #T (s→ s′) + #T (s′ → s) = k ×
∑k
i=0 ni(s

′). Thus

#T (s→ s′)−#T (s′ → s) = 2×#T (s→ s′)−
(
#T (s→ s′) + #T (s′ → s)

)
,

= 2

(
k nk(s′) + n1(s′)

k−1∑
i=0

i

)
−
(
k nk(s′) + k n0(s′) + k (k − 1)n1(s′)

)
,

= k nk(s′)− k n0(s′) .

Theorem 1. For every policy π and s, s′ ∈ S, ψπ,T (s, s′) converges when T goes to infinity.
Theorem 2. Given a policy π, a state s, and an action a, we can link reversibility and empirical
reversibility with the inequality: φ̄π(s, a) ≥ φπ(s,a)

2 .

Proof. For a policy π and s, s′ ∈ S, we define φ̂π(s, s′) the quantity pπ(s ∈ τt+1:∞ | st = s′) such
that φπ(s, a) = Es′∼P (s,a)

[
φ̂π(s, s′)

]
In order to prove the theorem, we first prove that ψT (s′, s)

converges to a quantity denoted by ψ(s′, s), and that:

∀s, s′ ∈ S, φ̂
π(s, s′)

2
≤ ψ(s′, s) . (6)

We subdivide our problem into four cases, depending on whether s and s′ are recurrent or transient.

Case 1: pπ(s ∈ τt+1:∞ | st = s) < 1 and pπ(s′ ∈ τt+1:∞ | st = s′) = 1 (s is transient and s′
is recurrent for the Markov chain induced by π). Informally, this means that if a trajectory contains
the state s′ we tend to see s′ an infinite number of times, and we only see s a finite number of times
in a given trajectory.

This implies φ̂π(s, s′) = pπ(s ∈ τt+1:∞ | st = s′) = 0, as recurrent states can only be linked
to other recurrent states [34]. It is not possible to find trajectories where s appears after s′, thus
ψT (s′, s) = 0 = ψ(s′, s). Equ. (6) becomes "0 ≤ 0".

17

Case 2: pπ(s ∈ τt+1:∞ | st = s) = 1 and pπ(s′ ∈ τt+1:∞ | st = s′) < 1 (s is recurrent and s′
is transient for the Markov chain induced by π).

As before, this implies φ̂π(s′, s) = pπ(s′ ∈ τt+1:∞ | st = s) = 0, and thus it is not possible to see
in a trajectory s after s′. It implies ψT (s′, s) = 1 = ψ(s′, s), so Equ. (6) is verified.

Case 3: pπ(s ∈ τt+1:∞ | st = s) = 1 and pπ(s′ ∈ τt+1:∞ | st = s′) = 1 (s is recurrent and s′ is
recurrent for the Markov chain induced by π). We denote by Tk the random variable corresponding
to the time of the kth visit to s. A trajectory can be represented as follows:

s0 −→︸︷︷︸
n1(s′)

s −→︸︷︷︸
n2(s′)

s −→︸︷︷︸
n3(s′)

s −→︸︷︷︸
n4(s′)

. . . −→︸︷︷︸
nk(s′)

s = sTk −→︸︷︷︸
nk+1(s′)

,

where, writing ∼ the equality in distribution, n2(s′) ∼ n3(s′) ∼ · · · ∼ nk(s′) and
Eτn2(s′) = Eτn3(s′) = · · · = Eτnk(s′) using the strong Markov property. From Lemma 1 we get:

ψπ,T (s, s′) =
Eτ∼π

[
#T (s→ s′)

]
Eτ∼π

[
#T (s→ s′) + #T (s′ → s)

] ,
=

1

2

Eτ∼π
[
#T (s→ s′) + #T (s′ → s) + #T (s→ s′)−#T (s′ → s)

]
Eτ∼π

[
#T (s→ s′) + #T (s′ → s)

] ,

=
1

2
+

Eτ∼π
[
#T (s→ s′)−#T (s′ → s)

]
2 Eτ∼π

[
#T (s→ s′) + #T (s′ → s)

] .
We can see from Lemma 2 :

Eτ
[
#Tk(s→ s′)−#Tk(s′ → s)

]
= −k Eτn1(s′) .

Thus,

Eτ
[
#Tk(s→ s′)−#Tk(s′ → s)

]
Eτ∼π

[
#Tk(s→ s′) + #Tk(s′ → s)

] =
−k Eτn1(s′)

k Eτn1(s′) + k2 Eτn2(s′)
(7)

−−−−→
k→∞

0.

Given t ∈ N and a trajectory τ , we denote #T (s) the random variable corresponding to the number
of times when s appear before t, such that a trajectory has the following structure :

s0 −→︸︷︷︸
n1(s′)

s −→︸︷︷︸
n2(s′)

s −→︸︷︷︸
n3(s′)

s −→︸︷︷︸
n4(s′)

. . . −→︸︷︷︸
nk(s′)

s = sT#T (s)
−→ st −→︸ ︷︷ ︸
nk+1(s′)

s = sT#T (s)+1
.

Eτ
[
#T (s→ s′)−#T (s′ → s)

]
Eτ
[
#T (s→ s′) + #T (s′ → s)

] ≤ Eτ
[
##T (s)(s→ s′)−##T (s)(s

′ → s)
]

+ Eτ#T (s)nk+1(s′)

Eτ##T (s)(s→ s′) + Eτ##T (s)(s
′ → s)

,

−−−−→
T→∞

0 as in Equ. (7).

And,

Eτ
[
#T (s→ s′)−#T (s′ → s)

]
Eτ
[
#T (s→ s′) + #T (s′ → s)

] ≥ Eτ
[
##T (s)(s→ s′)−##T (s)(s

′ → s)
]
− Eτ

∑#T (s)+1
i=1 ni(s

′)

Eτ
[
##T (s)(s→ s′) + ##T (s)(s

′ → s)
] ,

−−−−→
T→∞

0

18

Therefore,

Eτ
[
#T (s→ s′)−#T (s′ → s)

]
Eτ
[
#T (s→ s′) + #T (s′ → s)

] −−−−→
T→∞

0 , and finally,

ψπ,T (s, s′) =
1

2
+

Eτ
[
#T (s→ s′)−#T (s′ → s)

]
2Eτ∼π

[
#T (s→ s′) + #T (s′ → s)

] −−−−→
T→∞

1

2
.

As φ̂π(s, s′) = 1 here, we immediately have φ̂π(s,s
′)

2 = ψ(s′, s). We can notice that the inequality
is tight in this case.

Case 4: pπ(s ∈ τt+1:∞ | st = s) < 1 and pπ(s′ ∈ τt+1:∞ | st = s′) < 1 (s is transient and s′
is transient for the Markov chain induced by π). To simplify the following formulas, we will write
α = pπ(s ∈ τt+1:∞ | st = s′). Here, we denote by #(s) the random variable corresponding to the
total number of visits of the state s, and #(s→ s′) the number of pairs such that s appears before
s′. #(s) follows the geometric distribution G (1− pπ(s ∈ τt+1:∞ | st = s)).

#T (s→ s′) converges almost surely to #(s→ s′), and we have #T (s→ s′) ≤ #(s→ s′). There-
fore, using the dominated convergence theorem, Eτ

[
#T (s→ s′)

]
−−−−→
T→∞

Eτ
[
#(s→ s′)

]
, and thus:

ψπ,T (s′, s) =
Eτ
[
#T (s′ → s)

]
Eτ
[
#T (s→ s′) + #T (s′ → s)

] −−−−→
T→∞

Eτ#(s′ → s)

Eτ
[
#(s→ s′) + #(s′ → s)

] = ψπ(s′, s) .

This time, we consider a trajectory τ where s appears k times after s′, such that it is of the form:

s′ . . . s′

n0(s′)≥0

−→ s . . . s
n1(s)>0

−→ s′ . . . s′

n1(s′)>0

−→ s . . . s
n2(s)>0

−→ · · · −→ s′ . . . s′

nk−1(s′)>0

−→ s . . . s
nk(s)>0

−→ s′ . . . s′

nk(s′)≥0

−→

Here, n0(s′) is the number of times when s′ appears in the trajectory before the first appearance
of s′, ni(s) is the number of times when s appears between two occurrences of s′, and nk(s′) the
number of times when s′ appears after the last appearance of s. From the strong Markov property,
n1(s′) ∼ n2(s′) ∼ · · · ∼ nk−1(s′) and n1(s) ∼ n2(s) ∼ · · · ∼ nk(s). Note also that these variables
are all independent. Here k is a random variable following the geometric distributionG(α) where α =
p(s ∈ τt:∞ | st = s′). Notice that when nk(s′) > 0, we have nk(s) ∼ n1(s) and nk(s′) ∼ n1(s′).

Using these two simplifications, one can write:

Eτ
[
#(s′ → s)−#(s→ s′)

∣∣∣k] ≥ Eτ
[
#(s′ → s)−#(s→ s′)

∣∣∣k, nk(s′) > 0
]
,

≥ Eτ
[
n0(s′)

[
n1(s) + (k − 1)n1(s) + nk(s)

]
− n1(s)

[
kn1(s′) + nk(s′)

]
+

nk(s)
[
kn1(s′)− nk(s′)

]
− nk(s′)(k − 1)n1(s)

∣∣∣k, nk(s′) > 0
]
,

≥ −kEτ
[
n1(s)

∣∣∣k]Eτ[nk(s′)
∣∣∣k, nk(s′) > 0

]
as in Lemma 2 ,

≥ −kEτ (n1(s))Eτ (n1(s′)) .

Likewise,

Eτ
[
#(s′ → s) + #(s→ s′)

∣∣ k] = Eτ
[
k n1(s)nk(s′) + k n0(s′)n1(s) + k (k − 1)n1(s)n1(s′)

∣∣∣k] ,
= k

[
Eτ
[
n1(s)

]
Eτ
[
n1(s′)

]
+ Eτ

[
n1(s)

]
Eτ
[
n0(s′)

]]
+ k(k − 1)Eτ

[
n1(s)

]
Eτ
[
n1(s′)

]
.

19

Thus,

Eτ
[
#(s′ → s)−#(s→ s′)

]
Eτ
[
#(s→ s′) + #(s′ → s)

] =

∑∞
i=1 p(k = i)Eτ [#(s′ → s)−#(s→ s′) | k = i]∑∞
i=1 p(k = i)Eτ [#(s→ s′) + #(s′ → s) | k = i]

,

≥ −
∑∞
i=1 α

i−1(1− α) iEτ
[
n1(s)

]
Eτ
[
n1(s′)

]∑∞
i=1 α

i−1(1− α)
[
i
(
Eτ
[
n1(s)

]
Eτ
[
n1(s′)

]
+ Eτ

[
n1(s)

]
Eτ
[
n0(s′)

])
+ i (i− 1)Eτ

[
n1(s)

]
Eτ
[
n1(s′)

]] ,

≥ −
∑∞
i=1 α

i−1(1− α)iEτ
[
n1(s)

]
Eτ
[
n1(s′)

]∑∞
i=1 α

i−1(1− α)
[
iEτ

[
n1(s)

]
Eτ
[
n1(s′)

]
+ i (i− 1)Eτ

[
n1(s)

]
Eτ
[
n1(s′)

]] ,
≥ −

∑∞
i=1 α

i−1(1− α) i∑∞
i=1 α

i−1(1− α)
[
i+ i (i− 1)

] ,
≥ −

∑∞
i=1 α

i−1(1− α) i∑∞
i=1 α

i−1(1− α) i2
,

≥ −
1

1−α
1+α

(1−α)2
,

≥ −1− α
1 + α

.

From Lemma 1,

ψπ(s′, s) =
1

2

(
1 +

Eτ
[
#(s′ → s)−#(s→ s′)

]
Eτ∼π

[
#(s→ s′) + #(s′ → s)

]) ,

≥ 1

2

(
1− 1− α

1 + α

)
,

≥ α

1 + α
,

≥ α

2
=
φ̂π(s, s′)

2
.

As a quick summary, we divided our problem in 4 cases, and proved that in each case, for every
pair of states s, s′, we have ψπ(s′, s) ≥ φ̂π(s,s

′)
2 .

To end the proof, we simply take the expectation over the distribution of the next states:

Es′∼P (s,a)ψπ(s′, s) ≥ 1

2
Es′∼P (s,a)φ̂π(s, s′) ,

φ̄π(s, a) ≥ φπ(s, a)

2
.

A.4 Proof of proposition 1

Proposition 1. We suppose that we are given a state s, an action a such that a is reversible in K
steps, a policy π and ρ > 0. Then, φ̄π(s, a) ≥ ρK

2 , where A denotes the number of actions. Moreover,

we have for all K ∈ N: φ̄π(s, a) ≥ ρK

2 φK(s, a).

Proof. We first prove the second part of the proposition, which is more general. From Definition 1,
and as the set of policies is closed, there is a policy π∗ such that φK(s, a) = pπ∗(s ∈ τt+1:t+K+1 |

20

Observation
Embedding

Concat

Joint
Embedding

Degree of
Reversibility

Temporal Order
Probability

Figure 10: The training procedure for the reversibility estimator used in RAC.

st = s, at = a). We begin by noticing that π has a probability at least equal to ρ to copy the policy
π∗ in every state.

It can be stated more formally:

∀s ∈ S,Ea∼π(s),a∗∼π∗(s)(1a=a′) =
∑
a∈A

pπ(a | s)pπ∗(a | s) ≥ ρ
(∑
a∈A

pπ∗(a | s)
)

= ρ .

Then, we have:

φπ,K(s, a) = pπ(s ∈ τt+1:t+K+1 | st = s, at = a) ,

= Eπ
[
1s∈τt+1:t+K+1

| st = s, at = a
]
,

= Est+2,...,st+K+1∼πEst+1∼p(st,at)
[
1s∈τt+1:t+K+1

| st = s, at = a
]
,

= Est+3,...,st+K+1∼πE at+1∼π(st+1)
st+2∼p(st+1,at+1)

Est+1∼p(st,at)
[
1s∈τt+1:t+K+1

| st = s, at = a
]
,

= Est+3,...,st+K+1∼πEat+1∼π(st+1),a
′
t+1∼π

∗(st+1)

st+2∼p(st+1,at+1)

Est+1∼p(st,at)
[
1s∈τt+1:t+K+1

| st = s, at = a
]
,

≥ Est+3,...,st+K+1∼πEat+1∼π(st+1),a
∗
t+1∼π

∗(st+1)

st+2∼p(st+1,at+1)
st+1∼p(st,at)

[
1s∈τt+1:t+K+1

| st = s, at = a, at+1 = a∗t+1

]
1at+1=a∗t+1

,

≥ ρEst+3,...,st+K+1∼πEst+1,st+2∼π∗
[
1s∈τt+1:t+K+1

| st = s, at = a
]

, and iterating the same process, ,

≥ ρKEst+1,st+2,...,st+K+1∼π∗
[
1s∈τt+1:t+K+1

| st = s, at = a
]
,

≥ ρKφK(s, a) .

We can conclude using Theorem 2: φ̄π(s, a) ≥ φπ(s,a)
2 ≥ φπ,K(s,a)

2 ≥ ρK

2 φK(s, a).

B Additional Details About Reversibility-Aware RL

B.1 Learning a reversibility estimator

We illustrate how the reversibility estimator is trained in Fig. 10. We remind the reader that it is a
component that is specific to RAC. See Algorithm 2 for the detailed procedure of how to train it
jointly with the standard precedence estimator and the RL agent.

21

Algorithm 1: RAE: Reversibility-Aware Exploration (online)
Initialize the agent weights Θ and number of RL updates per trajectory k;
Initialize the precedence classifier weights θ, ξ, window size w, threshold β and learning rate η;
Initialize the replay buffer B;
for each iteration do

/* Collect interaction data and train the agent. */
Sample a trajectory τ = {xi, ai, ri}i=1...T with the current policy;
Incorporate irreversibility penalties τ ′ =

{
xi, ai, ri + rβ

(
ψθ,ξ(xi, xi+1)

)}
i=1...T

;
Store the trajectory in the replay buffer B ← B ∪ τ ;
Do k RL steps and update Θ;
/* Update the precedence classifier. */
for each training step do

Sample a minibatch Dbatch from B;
/* Self-supervised precedence classification, loss in Eq.(9). */
θ ← θ − η∇θLSSL(Dbatch);
ξ ← ξ − η∇ξLSSL(Dbatch);

end
end

Algorithm 2: RAC: Reversibility-Aware Control (online)
Initialize the agent weights Θ and number of RL updates per trajectory k;
Initialize the precedence classifier weights θ, ξ, window size w, threshold β and learning rate η;
Initialize the reversibility estimator weights ζ;
Initialize the replay buffer B;
for each iteration do

/* Collect interaction data with the modified control policy and train
the agent. */

Sample a trajectory τ under the rejection sampling policy π̄ from eq.(8) ;
Store the trajectory in the replay buffer B ← B ∪ τ ;
Do k RL steps and update Θ;
/* Update the precedence classifier. */
for each training step do

Sample a minibatch Dbatch from B;
/* Self-supervised precedence classification, loss in Eq.(9). */
θ ← θ − η∇θLSSL(Dbatch);
ξ ← ξ − η∇ξLSSL(Dbatch);

end
/* Update the reversibility estimator, loss in Eq.(10). */
for each training step do

Sample a minibatch Dbatch from B;
/* Regression of the precedence classifier probabilities. */
ζ ← ζ − η∇ζLL2(Dbatch, ψθ,ξ);

end
end

22

B.2 Pseudo-code for RAE and RAC

We give the pseudo-code for the online versions of RAE (Algorithm 1) and RAC (Algorithm 2).
The rejection sampling policy π̄ under approximate reversibility φ and threshold β is expressed as
follows:

π̄(a|x) =

{
0 if φ(x, a) < β

π(a|x)/Z otherwise, with Z =
∑
a′∈A 1{φ(x, a′) ≥ β}π(a′|x)

. (8)

This is equivalent, on average, to sampling from the policy π until an action that is reversible enough
is found.

The loss we use to train the precedence estimator has the expression:

LSSL(Dbatch) =
1

|Dbatch|
∑

(x,x′,y)∈Dbatch

−y log
(
ψθ,ξ(x, x

′)
)

+(1−y) log
(
1−ψθ,ξ(x, x′)

)
, (9)

where y is the binary result of the shuffle, with value 1 if observations were not shuffled (thus in the
correct temporal order), and 0 otherwise. Pairs of observations (x, x′) can be separated by up to w
timesteps.

The loss we use to train the reversibility estimator (in RAC only) has the expression:

LL2(Dbatch, ψθ,ξ) =
1

2 |Dbatch|
∑

(x,a,x′)∈Dbatch

(
ψθ,ξ(x, x

′)− φζ(x, a)
)2
, (10)

where (x, a, x′) are triples of state, action and next state sampled from the collected trajectories.

The offline versions of both RAE and RAC can be derived by separating each online algorithm into
two parts: 1) training the precedence classifier (and the reversibility estimator for RAC), which is
achieved by removing the data collection and RL steps and by using a fixed replay buffer; and 2)
training the RL agent, which is the standard RL procedure augmented with modified rewards for
RAE, and modified control for RAC, using the classifiers learned in the first part without fine-tuning.

C Experimental Details

C.1 Reward-Free Reinforcement Learning

Cartpole. The observation space is a tabular 4-dimensional vector: (cart position x, cart velocity ẋ,
pole angle θ, pole velocity θ̇). The discrete action space consists of applying a force left or right. The
episode terminates if the pole angle is more than ±12° (|θ| ≤ 0.209 radians), if the cart position is
more than ±2.4, or after 200 time-steps. It is considered solved when the average return is greater
than or equal to 195.0 over 100 consecutive trials.

Architecture and hyperparameters. The reversibility network inputs a pair of observations and
produces an embedding by passing each one into 2 fully connected layers of size 64 followed by ReLU.
The two embeddings are concatenated, and projected into a scalar followed by a sigmoid activation.
We trained this network doing 1 gradient step every 500 time steps, using the Adam optimizer [25]
and a learning rate of 0.01. We used batches of 128 samples, that we collected from a replay buffer
of size 1 million. The penalization threshold β was fine-tuned over the set [0.5, 0.6, 0.7, 0.8, 0.9]
and eventually set to 0.7. We notice informally that it was an important parameter. A low threshold
could lead to over penalizing the agent leading the agent to terminate the episode as soon as possible,
whereas a high threshold could slow down the learning.

Regarding PPO, both the policy network and the value network are composed of two hidden layers
of size 64. Training was done using Adam and a learning rate of 0.01. Other PPO hyperparameters
were defaults in Raffin et al. [36], except that we add an entropy cost of 0.05.

C.2 Learning Reversible Policies

Environment. The environment consists of a 10 × 10 pixel grid. It contains an agent, represented
by a single blue pixel, which can move in four directions: up, down, left, right. The pink pixel

23

represents the goal, green pixels grass and grey pixels a stone path. Stepping on grass spoils it and
the corresponding pixel turns brown, as shown in Fig. 5b. A level terminates after getting to the goal,
or after 120 timesteps. Upon reaching the goal, the agent receives a reward of +1, every other action
being associated with 0 reward.

Architecture and hyperparameters. The reversibility network takes a pair of observations as
input and produces an embedding by passing each observation through 3 identical convolutional
layers of kernel size 3, with respectively 32, 64 and 64 channels. The convolutional outputs are
flattened, linearly projected onto 64 dimensional vectors and concatenated. The resulting vector is
projected into a scalar, which goes through a final sigmoid activation.

As done for Cartpole, we trained this network doing 1 gradient step every 500 time steps, using the
Adam optimizer with a learning rate of 0.01. We used minibatches of 128 samples, that we collected
from a replay buffer of size 1M. The penalization threshold β was set to 0.8, and the intrinsic reward
was weighted by 0.1, such that the intrinsic reward was equal to −0.1 1ψ(st,st+1)>0.8 ψ(st, st+1).

For PPO, both the policy network and the value network are composed of 3 convolutional layers of
size 32, 64, 64. The output is flattened and passed through a hidden layer of size 512. Each layers are
followed by a ReLU activation. Policy logits (size 4) and baseline function (size 1) were produced by
a linear projection. Other PPO hyperparameters were defaults in Raffin et al. [36], except that we add
an entropy cost of 0.05.

C.3 Sokoban

We use the Sokoban implementation from Schrader [41]. The environment is a 10x10 grid with a
unique layout for each level. The agent receives a -0.1 reward at each timestep, a +1 reward when
placing a box on a target, a -1 reward when removing a box from a target, and a +10 reward when
completing a level. Observations are of size (10, 10, 3). Episodes have a maximal length of 120, and
terminate upon placing the last box on the remaining target. At the beginning of each episode, a
level is sampled uniformly from a set of 1000 levels, which prevents agents from memorizing puzzle
solutions. The set is obtained by applying random permutations to the positions of the boxes and the
position of the agent, and is pre-computed for efficiency. All levels feature four boxes and targets.

We use the distributed IMPALA implementation from the Acme framework [24] as our baseline
agent in these experiments. The architecture and hyperparameters were obtained by optimizing for
sample-efficiency on a single held-out level. Specifically, the agent network consists of three 3x3
convolutional layers with 8, 16 and 16 filters and strides 2, 1, and 1 respectively; each followed by a
ReLU nonlinearity except the last one. The outputs are flattened and fed to a 2-layer feed-forward
network with 64 hidden units and ReLU nonlinearities. The policy and the value network share
all previous layers, and each have a separate final one-layer feed-forward network with 64 hidden
units and ReLU nonlinearities as well. Regarding agent hyperparameters, we use 64 actors running
in parallel, a batch size of 256, an unroll length of 20, and a maximum gradient norm of 40. The
coefficient of the loss on the value is 0.5, and that of the entropic regularization 0.01. We use the
Adam optimizer with a learning rate of 0.0005, a momentum decay of 0 and a variance decay of 0.99.

The precedence estimator network is quite similar: it consists of two 3x3 convolutional layers with 8
filters each and strides 2 and 1 respectively; each followed by a ReLU nonlinearity except the last
one. The outputs are flattened and fed to a 3-layer feed-forward network with 64 hidden units and
ReLU nonlinearities, and a final layer with a single neuron. We use dropout in the feed-forward
network, with a probability of 0.1. Precedence probabilities are obtained by applying the sigmoid
function to the outputs of the last feed-forward layer. The precedence estimator is trained offline on
100k trajectories collected from a random agent. It is trained on a total of 20M pairs of observations
sampled with a window of size 15, although we observed identical performance with larger sizes (up
to 120, which is the maximal window size). We use the Adam optimizer with a learning rate of 0.0005,
a momentum decay of 0.9, a variance decay of 0.999. We also use weight decay, with a coefficient
of 0.0001. We use a threshold β of 0.9. We selected hyperparameters based on performance on
validation data.

24

C.4 Reversibility-Aware Control in Cartpole+

Learning ψ. The model architecture is the same as described in Appendix C.1. The training is
done offline using a buffer of 100k trajectories collected using a random policy. State pairs are fed
to the classifier in batches of size 128, for a total of 3M pairs. We use the Adam optimizer with a
learning rate of 0.01. We use a window w equal to 200, which is the maximum number of timesteps
in our environment.

Learning φ. We use a shallow feed-forward network with a single hidden layer of size 64 followed
by a ReLU activation. From the same buffer of trajectories used for ψ, we sample 100k transitions
and feed them to φ in batches of size 128. As before, training is done using Adam and a learning
rate of 0.01.

C.5 DQN and M-DQN in Cartpole+

We use the same architecture for DQN and M-DQN. The network is a feed-forward network composed
of two hidden layers of size 512 followed by ReLU activation. In both cases, we update the online
network every 4 timesteps, and the target network every 400 timesteps. We use a replay buffer of size
50k, and sample batches of size 128. We use the Adam optimizer with a learning rate of 0.001.

We train both algorithms for 2M timesteps. We run an evaluation episode every 1000 timesteps, and
report the maximum performance encountered during the training process. We perform a grid search
for the discount factor γ ∈ [0.99, 0.999, 0.9997], and for M-DQN parameters α ∈ [0.7, 0.9, 0.99] and
τ ∈ [0.008, 0.03, 0.1]. The best performances were obtained for α = 0.9, τ = 0.03, and γ = 0.99.

C.6 Reversibility-Aware Control in Turf

Learning ψ. We use the same model architecture as in RAE (Appendix C.2), and the same offline
training procedure that was used for Cartpole+ (Appendix C.4). The window w was set to 120, which
is the maximum number of steps in Turf.

Learning φ. The architecture is similar to ψ, except for the last linear layers: the output of the
convolutional layers is flattened and fed to a feed-forward network with one hidden layer of size 64
followed by a ReLU. Again, we used the exact same training procedure as in the case of Cartpole+
(Appendix C.4).

C.7 Safety and Performance Trade-off in Turf

We investigate the performance-to-safety trade-off induced by reversibility-awareness in Turf. In
Fig. 11a, we see that the agent is not able to reach the goal when the threshold is greater than 0.4:
with too high a threshold, every action leading to the goal could be rejected. We also see that it
solves the task under lower threshold values, and that lowering β results in faster learning. On the
other hand, Fig. 11b shows that achieving zero irreversible side-effects during the learning is only
possible when β is greater than 0.2. In this setting, the optimal thresholds are thus between 0.2 and
0.3, allowing the agent to learn the new task while eradicating every side-effect.

This experiment gives some insights on how to tune β in new environments. It should be initialized
at 0.5 and decreased progressively, until the desired agent behaviour is reached. This would ensure
that the chosen threshold is the maximal threshold such that the environment can be solved, while
having the greatest safety guarantees.

D Performance in Stochastic MDPs

To study how reversibility-awareness helps in stochastic MDPs, we use a 2D cliff-walking gridworld
where stochasticity comes from the wind: additionally to its move, the agent is pushed towards the
cliff with a fixed probability. The agent gets a +1 reward for each timestep it stays alive, with a
maximum of 250 timesteps. A reversibility-aware agent with a well calibrated threshold should avoid
most moves that push it towards the cliff. We use a 6x8 grid, with a maximum of 250 timesteps per
episode, and report results averaged over 5000 runs. We provide two tables: Table 1 with the average

25

0 2 4 6 8
timesteps (1e4)

0.0

0.2

0.4

0.6

0.8

1.0

re
wa

rd 0.0
0.1
0.2
0.3
0.4

(a)

0 2 4 6 8
timesteps (1e4)

0

5

10

15

20

gr
as

s s
po

ile
d

(b)

Figure 11: (a): Reward learning curve for PPO+RAC and several thresholds β (average over 10
random seeds). A threshold of 0 means actions are never rejected, and corresponds to the standard
PPO. (b): Number of irreversible side-effects (grass pixels stepped on). For β between 0.2 and 0.4, 0
side-effects are induced during the whole learning.

scores of a random policy and Table 2 with the average scores of a random policy equipped with
RAC. Rows correspond to varying stochasticity and columns to varying threshold values.

Table 1: Scores for a random policy in the 2D cliff-walking gridworld, where p is the probability of
being pushed by the wind. Higher is better.

p \ Threshold 0. 0.1 0.2 0.3 0.4

0. 57.5 57.7 61.2 58.2 57.7
0.1 29.8 28.8 29.5 30.2 29.6
0.2 18.6 18.5 19.3 18.9 18.8
0.3 13.4 13.3 13.9 13.6 13.4
0.4 10.5 10.7 10.4 10.2 10.2

Table 2: Scores for a random policy with RAC in the 2D cliff-walking gridworld, where p is the
probability of being pushed by the wind. Higher is better.

p \ Threshold 0. 0.1 0.2 0.3 0.4

0. 59.1 250.0 250.0 250.0 250.0
0.1 29.2 56.0 56.3 80.2 248.5
0.2 18.7 26.7 29.2 85.8 238.6
0.3 13.2 16.8 19.6 77.6 250.0
0.4 10.4 12.5 24.9 152.2 250.0

We can notice that:

• RAC significantly improves performance (reaching maximum or near-maximum score),
• a well-tuned threshold value is crucial to get decent performance with RAC,
• the optimal threshold increases with the stochasticity of the environment (but seems to

quickly converge).

26

	Introduction
	Related Work
	Reversibility
	Reversibility Estimation via Classification
	Precedence Estimation
	Estimating Reversibility from Precedence

	Reversibility-Aware Reinforcement Learning
	Experiments
	Reward-Free Reinforcement Learning
	Learning Reversible Policies
	Sokoban
	Safe Control

	Conclusion
	Mathematical Elements and Proofs
	Possible Definitions of Reversibility
	Additional Properties
	Proofs of Theorem 1 and Theorem 2
	Proof of proposition 1

	Additional Details About Reversibility-Aware RL
	Learning a reversibility estimator
	Pseudo-code for RAE and RAC

	Experimental Details
	Reward-Free Reinforcement Learning
	Learning Reversible Policies
	Sokoban
	Reversibility-Aware Control in Cartpole+
	DQN and M-DQN in Cartpole+
	Reversibility-Aware Control in Turf
	Safety and Performance Trade-off in Turf

	Performance in Stochastic MDPs

