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1. Introduction
Rivers are key features of ecosystems, transferring water, dissolved, and particulate matter across the Earth's 
surface. Driven by the power of moving water, sediment helps rivers to shape landscapes and contribute to 
the evolution of river morphology (Leopold et al., 1964). Sediment in rivers is either carried as suspended 
load or as bedload (rolling, sliding, or saltating on the bed). Bedload contributes to channel changes, such 
as creating micro- and macroforms, narrowing, widening, shifting, aggrading, and degrading. It also affects 
riverbed and bank stability (Little & Mayer, 1976). From an engineering perspective, bedload transport and 
the channel changes that it causes can damage infrastructure and threaten near channel human activities 
(Badoux et al., 2014; Kondolf et al., 2002). Predictive models are needed to correctly constrain and under-
stand the evolution of river morphology.

The construction of predictive models of river morpho-dynamics requires high quality time-resolved quan-
titative data on bedload flux. In-stream monitoring has been developed to obtain these data, relying on de-
vices such as basket samplers (i.e., portable traps, fixed basket), geophones, hydrophones, and underwater 
microphones (Ergenzinger & De Jong, 2003). However, these methods remain challenging. Basket samplers 
require manual maintenance and resolve only parts of an event (Vericat et al., 2006). In addition, they can 
also introduce a bias because they alter stream flow and transport patterns around them, thereby affecting 
local transport rates. Acoustic measurements of bedload can be achieved with geophones and hydrophones 
(Geay et al., 2017, 2020; Habersack et al., 2017; Rickenmann, 2017) calibrated by direct measurements. In 
addition, geophones require a stable cross section in the streambed. As a result, they are mostly used in 
small mountain streams. Because in-stream monitoring requires specific channel conditions (basket sam-
plers, geophones, hydrophones), has low temporal resolution (basket samplers), or cannot be deployed dur-
ing flood conditions (portable traps, e.g., Helley-Smith samplers or small boats carrying acoustic doppler 
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current profiler (ADCP) and hydrophones, Le Guern et al., 2020), comprehensive high-quality data sets are 
rare.

The advent of seismic monitoring techniques, a stream-side monitoring method (Burtin et al., 2016), may 
allow monitoring bedload flux under conditions that have been previously inaccessible. In this method, the 
target process is monitored via the elastic waves generated by sediment particle impacts on the river bed. 
Because the seismic sensors are deployed on river banks, they are neither affected by nor do they affect the 
flow (Burtin et al., 2008; Govi et al., 1993). The method is noninvasive, provides high temporal resolution, is 
relatively low-cost, and can be deployed on nearly any river bank. On the contrary, the seismic approach is 
very sensitive to human activities in the frequency band of interest, which is an important drawback espe-
cially in urban or rural areas. Seismic river monitoring has been used at a variety of scales and river systems, 
from small torrents (e.g., Bakker et al., 2020; Barrière et al., 2015; Burtin et al., 2008; Roth et al., 2016) to low 
gradient gravel and sand bed rivers (Dietze et al., 2019; Polvi et al., 2020; Schmandt et al., 2017) and large 
streams (Burtin et al., 2011; Schmandt et al., 2013).

Several processing steps are required to convert an indirect time series of seismic ground motion into an 
estimate of bedload flux. One frequently used approach relies on the assumption that sediment transport is 
the dominant process causing seismic waves during a flood, or that it can be clearly isolated from other seis-
mic sources, in particular the turbulent flow of water. Indeed, previous studies have suggested that, if the 
seismic station is located at an appropriate distance from the river, the signal generated by turbulent flow 
occurs at lower frequencies than the one generated by bedload (Gimbert et al., 2014; Schmandt et al., 2013). 
The appropriate distance depends on many parameters (mainly bed material grain size distribution, river 
gradient, phase wave velocity, and ground quality factor, see Table 1), but is dictated by the ability to record 
both signatures with sufficient power above background, but also with the least overlap in the frequency 
domain (Dietze et al., 2019). Under such circumstances, the seismic energy within a chosen frequency band 
is expected to be proportional to bedload flux (Gimbert et al., 2016; Roth et al., 2014; Tsai et al., 2012). Thus, 
bedload flux may be related to seismic power by fitting linear mixing models (Roth et al., 2014), regress-
ing in-stream sampling derived bedload flux values (Bakker et al., 2020) or proxy time series of bedload 
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Parameter Symbol Unit Value Uncertainty Application

Flow depth H m ∗ 0.01 –

Channel width W m ∗ 0.2 –

Channel bed slope angle θ radians 0.0075 0.0004 –

Rock density ρs kg/m3 2,650 130 –

Water density ρw kg/m3 1,000 50 –

Station-to-river distance r0 m 5.75 0.01 GF

Rayleigh wave phase velocity vc m/s ∗∗ 100 GF

Rayleigh wave group velocity vu m/s ∗∗ 100 GF

Phase speed of the Rayleigh wave at frequency of 1 Hz (Equation 2) vc0 m/s 3,190 280 GF

Exponent of the power law variation of Rayleigh wave velocities with frequency [Equation (2)] ξ – 0.59 0.03 GF

Quality factor Q† – 10 0.1 GF

Amplitude coefficient of the displacement Green's function for a force applied along a given 
direction and a displacement evaluated along this same direction

N11 – ∗∗ 0.2 GF

Median grain size D50 m 0.012 0.004 GSD

GSD standard deviation σg – 1.35 0.35 GSD

Bedload flux per unit grain size D per unit channel width qbd m2/s ∗ ND –

Note. Values that are not constant through time (see Figure 2a) are denoted by ∗. Quantities that are not constant through frequency (see Figure 5 for entire 
range) are denoted by ∗∗. GF denotes parameters relevant for estimating the Green's function, GSD denotes parameters relevant for estimating the grain size 
distribution. – denotes others parameters. † The active seismic survey implies that Q is independent of frequency. Thus, η equals 0 in equation Q Q f f 0 0( / )

  
from Tsai et al. (2012).

Table 1 
Parameter Values Used for Modeling the Bedload Event With the Bedload Model by Tsai et al.(2012)
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flux (Cook et al., 2018), by scaling analysis (Bakker et al., 2020; Burtin et al., 2011), by dedicated physical 
model inversion (Bakker et al., 2020), or by inversion of combined physical models (Dietze et al., 2019; 
Polvi et al., 2020). Tsai et al. (2012) has developed a model to predict the seismic spectrum generated by 
the impact of bedload particles moving along the channel bed. The model requires knowledge of stream 
and sediment characteristics to constrain the source terms, for example, the channel geometry and grain 
size distribution, and ground properties affecting the wave propagation, that is, frequency-dependent wave 
velocity or attenuation characteristics. To date, this model has been tested in a flume experiment (Gimbert 
et al., 2019) and dedicated field studies (Bakker et al., 2020; Dietze et al., 2019), but with limited attention 
given to the effects of the grain size distribution, neither in terms of model representation nor impact of the 
tails on model results.

The aim of this study is to constrain the Tsai et al. (2012) seismic model with dedicated field experiments 
and to test it against independent bedload measurements. This approach is similar to that adopted in Bakker 
et al. (2020), although (i) we target a quite different river, the Nahal Eshtemoa in Israel, that has a different 
geometry (e.g., smaller slope and grain sizes) and experiences different flow conditions, since it is located in 
a semi-arid region in which water flow only occurs during episodic flash floods, (ii) we make use of a newly 
implemented code to run the model with discrete, measured grain-size classes, and (iii) we constrain ground 
seismic properties relevant for the description of wave propagation in the model, using array-based active 
seismics, as opposed to performing empirical calibration from simpler rock impacts. We exploit hydraulic 
and bedload flux time series, recorded by a state-of-the-art stream observatory, to invert the seismic data 
and reconstruct bedload flux, and then compare the results against high-quality independent observations.

2. Materials and Methods
2.1. Study Site and Monitoring Station

The Nahal (river) Eshtemoa is a gravel-bed river draining 119 km2 of the Southern Hebron Mountains and 
the Northern Negev, northeast of Beer Sheva, Israel (Figure 1). The climate in the catchment is semi-arid, 
with a mean annual precipitation of 286 mm. Rainfall mainly occurs between October and May. The river 
is ephemeral with flash floods occurring on average five times per year (Alexandrov et al., 2009). The recur-
rence interval of the bankfull discharge of 26 m3 s−1 has been estimated to be 1.25 years (Powell et al., 2012). 
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Figure 1. Aerial image of the Nahal Eshtemoa study site instrumentation. The white arrow indicates that the 
seismometer (number 9) is located in this direction, 23 m upstream. Inset on the left corner: Map of the region. The 
Eshtemoa catchment is shown by the yellow circle.
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Bedload fluxes are high by worldwide standards with sediment transport as much as 400 times more effi-
cient than in a typical perennial humid river (Laronne & Reid, 1993; Reid & Laronne, 1995).

The river is equipped with a monitoring station in a straight channel section with a trapezoidal cross sec-
tion. The banks are nearly vertical, 1.2 m high, and comprise loess-derived aeolian fines and interbedded 
gravel. The mean channel slope is 0.0075 radians, which is generally mirrored by the water surface slope, 
with exception during the arrival of a flashflood bore (Meirovich et al., 1998). At the monitoring site, the 
surface layer of the channel bed is composed of pebbles and cobbles with a 5%–10% sand-granule matrix. 
The Eshtemoa bed (Powell et al., 2012) is characterized by bars featuring coarse sediment with a median 
diameter D50 of 38 mm alternating with “flats” with a D50 of 27 mm. Values of D95 exceed 100 mm on the 
bar surface and are activated at contemporary nondimensional shear stresses above 4 (Powell et al., 2001). 
Particles with a diameter approaching 150 mm may be mobilized during supra-bankfull floods (Bergman 
et al., 2007).

The monitoring station features five Reid-type bedload slot samplers, pipe, and plate microphones (Laronne 
et al., 1992; Rickenmann et al., 2014) to monitor bedload flux, as well as vented pressure transmitters to 
monitor water depth. Water depth is also monitored at five longitudinal locations to determine water surface 
slope and its variation during arrival of flash flood bores (Meirovich et al., 1998). Of the five slot samplers, 
only the three central ones are presently operating, because the channel has narrowed due to deposition of 
silt on the banks and in the channel bed, thereby causing a considerable increase in the shear stress required 
for initiation of motion (Barzilai et al., 2013). The samplers are equipped with pressure-pillows, allowing for 
time-resolved bedload flux quantification. The slots are 11 cm wide. Thus, bedload particles with diameters 
close to these sizes or larger are not sampled (Bergman et al., 2007). The bedload samplers are emptied after 
each bedload transporting event to determine the temporal and cross sectional evolution of bedload grain 
size (Powell et al., 1999, 2001). Due to the restricted capacity of the samplers (0.48 and 0.34 m3 for the cen-
tral and lateral devices, respectively), they usually fill before the cessation of bedload flux. Thus, to provide 
material flux information for an entire event, a calibrated pipe microphone and plate microphone are used 
(Gray et al., 2010; Mizuyama et al., 2010). Since 2016, there is also a broadband seismometer (Nanometrics 
Trillium Compact 120s) installed 5.75 m from the river centerline, which is sampled by a Nanometrics Cen-
taur data logger at 200 Hz. The station is fully automatic; the seismometer records data continuously, and 
the other sensors are activated when a flood approaches.

2.2. Methods

2.2.1. Theoretical Background

The mechanistic model by Tsai et al. (2012) predicts the vertical power spectral density (PSD) due to Ray-
leigh waves caused by impacts of saltating particles on the river bed. Rayleigh waves are the only surface 
waves that have a vertical ground motion component, and body waves are assumed to play a negligible role. 
The model is based on classic wave source and propagation physics, in which ground motion is the result 
of the combined action of the forces applied and the medium's response. The coarsest particles (D > D90) 
of the bedload grain size distribution (GSD) are expected to cause the most powerful impacts on the bed, 
generating the largest seismic signals. The ground properties are described using the Green's function. The 
model requires 13 input parameters (Table 1).

In the model, the final PSD corresponds to:

 *
final bdPSD PSD q (1)

Here, PSD* is a PSD per unit bedload flux (dimension Hz−1s−1), taking into account all parameters (Sec-
tion 2.2.2) apart from bedload flux (qbd). If the model adequately describes the physical processes and if 
other signal sources are negligeable compared to bedload transport, PSDfinal equals the observed seismic 
data PSDseismic. Thus, it is possible to calculate the bedload flux qbd, as qbd = PSDseismic/PSD*.

The mechanical model by Gimbert et al. (2014) predicts the vertical PSD of Rayleigh waves generated by 
water flow interacting with roughness elements along the riverbed. We use this model to investigate the 
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potential impact of water turbulence on the seismic signal. We use the 
same parameters for this model as used for the bedload model (Table 1), 
except for the bedload flux, which is not required, and the bedload GSD. 
For the water flow model by Gimbert et al. (2014), we used the GSD meas-
ured on the riverbed instead of the bedload GSD (see Section 2.2.2.2).

2.2.2. Model Parameters

The bedload model requires constraints on 13 parameters (Table  1). 
These parameters can be grouped into three classes: the GSD parameters, 
the Green's function parameters obtained from the active seismic survey 
(GF in application column of Table 1, except r0), and the river morpholog-
ical parameters (parameters without reference (−) in application column 
of Table 1).

In the bedload seismic model, some of the required parameters are ap-
proximated using auxiliary functions. In order to make the distinction 
between the parameter values obtained empirically and the parameter 
values computed using the auxiliary functions, these latter are indicated 
by a subset aux. For example, N11 is considered frequency-independent 

( 11auxN ), and the Green's function parameters vc and vu are described 
using empirical functions:


 

   
 

0
0

( )c caux
fv f v
f
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Here, vc0 is the phase velocity of the Rayleigh wave at a reference frequency f0 = 1 Hz, and ξ is an exponent.

Typically, the GSD of rivers is measured in a few, discrete classes instead of by continuous parametric func-
tions (e.g., Parker, 2008). Thus, in order to allow application of the bedload model to such cases, we have 
implemented the support of empirical GSD to the model (Dietze 2018a, v.0.5.0). Thus, the input GSD can 
be defined by discrete measurement classes rather than being defined by the parametric log-raised cosine 
function. All calculations were done in the statistic programming language R v. 3.6 (R Core Team, 2020), 
using the package eseis v. 0.5.0 (Dietze, 2018b).

2.2.2.1. Directly Measured Parameters

The depth of the river H was obtained using the vented pressure transmitters, with a temporal resolution 
of 1 min. The channel width W is indirectly inferred using H and the cross section geometry. Field obser-
vations suggest that the section of the channel can be approximated by a trapezoid shape. The base and top 
length were measured with tape. Knowing H, current channel width W is then obtained with a temporal 
resolution of 1 min. As the channel does not have a perfect trapezoid shape, the uncertainty in W is set to 
0.2 m, corresponding to 10% of the difference between the trapezium base length and the trapezium top 
length. We determined the distance between the seismometer and the channel center line r0 by measuring 
tape (uncertainty 0.01 m), and the channel bed slope θ by a total station (uncertainty 0.0004 radians).

Bedload flux qbd was monitored by the bedload slot samplers and the plate microphone, at 1-min interval. 
As the sampler boxes were progressively filled, and sampler data were available only for parts of the event, 
three different methods were used to compute qbd. During a first phase (Phase 1 in Figure 2a), qbd corre-
sponds to an average of the fluxes of the three slot samplers, with the flux from the central sampler multi-
plied by 1.5 to correct for its 150% wider cross section. In a second phase (Phase 2 in Figure 2a), the right and 
central slot samplers were full, but the left slot sampler was still operating: its bedload flux is multiplied by 
1.3 to represent the entire section. The product derives from the average bedload flux in the center relative 
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Figure 2. Measurement data for the bedload event (February 22, 2016) 
used in this study. (a) Hydrograph and temporal variation of bedload flux. 
Blue line: hydrograph, brown line: bedload flux recorded with method 1, 
green line: bedload flux recorded with method 2, black line: bedload flux 
recorded with method 3. Bold parts of the lines depict the bedload flux 
values used to compare to seismic data. (b) Seismic spectrogram of the 
flood event as recorded by the seismic sensor on the right bank (Figure 1).
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to the side samplers. Finally, in the third phase (Phase 3 in Figure 2a), all of the samplers were full, and qbd 
was determined using the calibrated plate microphone located immediately upstream of the left sampler 
(R2 = 0.76). The calibration was done using a mass aggregation method (Halfi et al., 2020), with the con-
stant mass interval of 4 kg. This mass corresponds to the sensitivity of the sensor and allows to discriminate 
noise from the real bedload flux measurement. The difference in terms of values between each computation 
method are compared (Figure 2a).

2.2.2.2. Grain Size distribution

After the flood, the sampler boxes were emptied, and their contents were sieved, giving nine different class-in-
tervals. For each class-interval, the total mass was measured. However, for the largest class (D ≥ 76 mm), 
information may be incomplete, because we do not know the maximum transported grain size Dmax. For 
each class, the geometric mean of the limits was used as the representative size. For the largest measured 
class, in the interval between 51 to 76 mm, the representative size is equal to 62 mm.

Since the slot samplers cannot resolve particles larger than 110 mm, the maximum mobile grain size Dmax 
is unlikely to be caught by the samplers (Bergman et al., 2007). To estimate the impact of this observational 
limit, we extrapolate the measured GSD by fitting the log-raised cosine function to the empirical GSD using 
least-square regression. Model predictions were made with six different GSDs (Table 2, thin lines), truncat-
ed at three different values. The lowest cut-off value of 62 mm is representative of the largest class mid-point 
of the empirical data. The second cut-off value of 110 mm is the slot width of the sampler. The largest cut-
off value of 250 mm corresponds to the largest clasts found on the channel bed and is used to explore the 
effect of particles that are too large to be directly sampled. Each of the three limits was used to cut either the 
fitted log-raised cosine function or the measured discrete GSD (Table 2). Model PSDs were calculated using 
these six different approaches (Table 2), keeping all other model parameters constant (Table 1). In order to 
compare the grain-size effect in a time-resolved manner throughout the flood event, we also inspected the 
differences between modeled and measured spectrograms for 62

samplerGSD , 110
mixGSD  and 250

mixGSD  (see Table 2 for 
the definitions of abbreviations), using qbd from the bedload samplers (Figure 4).

In addition, we explored the sensitivity of the model to the log-raised cosine function prediction GSDfunct on 
the largest grain sizes. Within the Tsai et al. (2012) model, the grain size approximately affects the PSD by 
power 3, that is, PSD ∼ D3. Thus, the largest moving grains have a strong impact on the predicted PSD. How-
ever, because the bedload samplers could capture grains with a maximum diameter of 110 mm, the largest 
grains may not have been sampled. Thus, we extrapolated the empirical GSD using the log-raised cosine 
function to describe the largest grain size fractions. To explore potential effects of the extrapolation on the 
PSD, we used a Monte Carlo approach. We randomly sampled the log-raised cosine function one hundred 
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GSD Description

GSDfunct GSD using log-raised cosine function fitted on measured GSD …

62
functGSD …truncated at 62 mm

110
functGSD …truncated at 110 mm

250
functGSD …truncated at 250 mm

GSDsampler GSD obtained from weighing sediments in the sampler boxes …

62
samplerGSD …truncated at 62 mm

GSDmix
62
samplerGSD  elongated using GSDfunct …

110
mixGSD …up to 110 mm

250
mixGSD …up to 250 mm

Table 2 
Summary of the Different Abbreviations Used to Describe the GSD
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times, with D50 ranging between 8 and 16 mm and σg ranging between 1 and 1.7 (Figure 9, Section 4.5), gen-
erating a uniform distribution within the parameter range. For each test, the empirical GSD was extended 
between 62 and 110 mm, and the corresponding PSD was computed.

For the turbulence model (Gimbert et al., 2014), we used the GSD of the bed. In 2015, pebbles were sampled 
randomly on the bed and sieved, giving nine different class-intervals. We fitted the empirical bed GSD with 
the log-raised cosine function mentioned above using least-square regression.

2.2.2.3. Green's Function Parameters From Active Seismic Survey

To obtain the Green's function parameter values N11, Q, vc, and vu (Table 1), we determined local seismic 
ground properties by an active seismic survey in November 2017. A total of seven geophone transects were 
deployed on both sides of the river, both parallel and perpendicular to the channel. The total geophone 
transect length was between 20 and 100 m. For each line, 23 one-component and 6 three-component PE6/B 
4.5  Hz geophones were placed at different distances, with Digos DataCube loggers sampling at 400  Hz 
with a gain of 32. Signals were produced by 10 sledge hammer blows onto a 40 × 50 × 5 cm iron plate for 
each transect configuration, with the plate placed at one extremity of the transect. Sensor locations were 
determined by measurement tape and total station surveys. Rayleigh wave dispersion curves vary broadly 
depending on the selected line and could induce an inversion bias. As we are interested in the attenuation of 
the waves traveling from the river to the seismometer, and the sensor integrates signals of a linearly exten-
sive source over a certain length along the stream, the line parallel to the channel on the seismometer bank 
was selected for the subsequent detailed analyses (see section Appendix B for comparison with dispersion 
patterns from the other transects).

The obtained signals were processed with the “COMPUTER PROGRAMS IN SEISMOLOGY” software 
(Herrmann, 2013). Processing consisted of two stages. In stage one, the hammer blow signals were used 
to obtain the shear wave velocity vs as a function of depth, from the inversion of Rayleigh wave dispersion 
curves (Xia, 2014). This shear-wave velocity profile vs is further called “ground model”. In stage two, the 
ground model was used to obtain N11, Q, vc, and vu as a function of frequency.

In stage one, hammer blow signals were stacked on the selected line. Then, the stacked signals were pro-
cessed to extract Rayleigh wave dispersion curves, that is, relationships of phase velocity and frequency, 
using the p-omega stacking of McMechan and Yedlin (1981). To build the ground model, the maximum 
depth of the model was fixed at 15 m corresponding to 1/3 wavelength, a common assumption in classical 
wave physics (Shearer, 2009). A prior assumption for the shear wave velocity vs within the ground model 
was set to 0.53 km/s, corresponding to the mean of the Rayleigh wave velocity computed previously (Fig-
ure 5b). The ground model was obtained by using iterative linearized least square inversion code of Herr-
mann (2013) to fit the observed dispersion by a stepwise model of increasing shear wave velocity. Once the 
ground model is obtained, it can be used for stage two, that is, to compute and display the anelastic attenu-
ation coefficient, the eigenfunctions and theoretical dispersion as a function of depth and frequency, thus 
obtaining the parameters of interest Q, N11, vc, and vu (Figures 5c and 5d).

In contrast to these empirically based parameter characteristics, the bedload model by Tsai et al. (2012) uses 
a simpler implementation (Section 2.2.2, Equations (2) and (3)). We therefore simplified the active seismic 
survey results to match the model inputs: vc and vu values, obtained from the model derived from the seismic 
active survey, were used to constrain values of vc0 and ξ, giving cauxv  and uauxv . The values of cauxv  and uauxv  
were estimated by fitting Equation 2 to the 10–50 Hz band data with a nonlinear least-squares minimiza-
tion, giving vc0 = 3,190(±280)m/s and ξ = 0.59(±0.03). In line with model assumptions, 11auxN  was set to be 
a constant equal to the mean of the measured N11 values.

For both versions of the Green's function parameter sets—(a) based on the empirical model function (Equa-
tions 2 and 3) and (b) based on the seismic active survey— the resulting spectrum of the seismic model was 
calculated, with GSD set as 110

mixGSD  (Table 2) and keeping all other model parameters constant (Table 1). To 
compare the effect of Green's function formulations in a time-resolved manner during the flood event, we 
inspected the differences between modeled and measured spectrograms (Figure 6), using 110

mixGSD , qbd from 
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the samplers, and keeping all other model parameters constant, except for flow depth and channel width 
that changed with time (Table 1).

2.2.3. Bedload Flux Reconstruction

The measured seismic data were deconvolved to remove the amplitude and phase of the seismic signal 
linked to sensor characteristics. The signal was also detrended and the mean was removed to avoid artifacts 
in the application of the Fourier transform. The spectrogram of the seismic data from the continuously re-
cording T120s sensor (Figure 2b) was calculated with 20 s resolution using the Welch method (Welch, 1967) 
with 15 s sub-windows, each overlapping by 90%.

For the same minute-long time intervals as the hydraulic data sets, PSDseismic was obtained using the autore-
gressive option of the function with default values (eseis v. 0.5.0, Dietze, 2018b). The autoregressive method 
implies that the output is based on its own previous values, leading to a smoothing process. For each min-
ute, PSD* (Equation (1)) was computed with GSD set as 110

mixGSD  and keeping all other model parameters 
constant, except for flow depth and channel width that vary with time (Table 1) and using empirical Green's 
function parameters vc, vu, and N11. Each value of PSDseismic was divided by the corresponding value of PSD*. 
The average of this ratio in the 20–60 Hz band (river activity band, as has been determined in the previous 
study of Dietze et al., 2019) gives the reconstructed bedload flux qbd. The reconstructed bedload flux was 
visually compared with the bedload flux measured by the bedload samplers.

3. Results
3.1. Characteristics of the Monitored Flood

We chose a flood event that occurred on February 22, 2016 because of its high bedload flux with peaks 
exceeding 1 kg/sm and water level between 0.5 and 0.8 m (Figure 2a, Dietze et al., 2019; Halfi et al., 2018). 
The beginning of the event is defined as the onset of bedload flux recorded by the samplers at 05.40 UTC, 
considered to be minute 0 in this study. The following 112 min of the event (05:40-07:32 UTC), during which 
bedload transport occurred continuously was analyzed although the recession continued during the follow-
ing 13 h, in a typical logarithmic fashion. In addition to an increase in bedload flux as water depth initially 
increased, and a decrease when stage decreased toward the end of the monitored part of the event, bedload 
flux showed an undulating rising and falling pattern, with four peaks in the first 50 min (Phase 1), and two 
peaks in the following 40 min (Phase 2). The methods used to compute the bedload flux during phases 1 
and 2 gave similar results, with an average difference of 47%. However, the method used in Phase 3 steadily 
recorded higher bedload fluxes in comparison to the measurements in the other two phases, by an average 
of 79% compared with method two during Phase 2. Thus, the bedload flux measured after minute 87 is likely 
overestimated by ca. 1 kg/sm.

Seismic power in the 20–60 Hz band increases between minutes 0 and 60 (Figure 2b). A pattern similar to 
this can be observed at frequencies above 70 Hz. However, since there is no physical representation of such 
a repeated frequency pattern in any of the models we used, we exclude the >70 Hz frequency part from 
the subsequent analysis (Dietze et al., 2019). Variations in bedload flux coincide visually with the variation 
in seismic signal, considering that bedload flux recorded in Phase 3 is very likely overestimated. In the 
20–60 Hz band, the signal is mainly above −120 dB during Phases 1 and 2. However, there are also periods 
when both times series deviate. For example, there is a decrease in the seismic signal between minutes 12 
and 20, whereas the bedload flux is roughly constant during this period. Machines operating at the obser-
vatory generate narrow seismic bands, predominantly at 22 and 44 Hz. The two broadband seismic spikes 
(vertical lines in the PSD of Figure 2b) at minutes 5 and 9 were caused by people working at the observatory 
to collect data and conduct station maintenance duties.
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3.2. Impact of Grain Size Characteristics

The best fit of the log-raised cosine function to the bed GSD, while keeping a physical meaning, is obtained 
with 50bedD  = 74 mm and  gbed  = 2. The associated coefficient of determination (R2) is 0.88.

The best and physically meaningful fit of the log-raised cosine function to the bedload GSD from the sam-
plers is obtained with D50 = 12 mm and σg = 1.35. The associated root mean square deviation is 23.7 m−1. 
With these parameters, the function deviates from the empirical data in several cases (Figure 3). At 0.63 mm, 
the GSDsampler is more than twice as high as the GSDfunct. GSDfunct misses the double-peaked shapes of GSD-
sampler. The coarse tails are also different: GSDsampler ends at 62 mm, whereas if not truncated, GSDfunct ends 
above 250 mm.

The comparison of PSDs generated by 62
functGSD  or 62

samplerGSD  shows an average deviation of 2 dB (Figure 4a). 
However, when 62

samplerGSD  is extended with the log-raised cosine function, the spectral difference between 
the non-extended ( 62

samplerGSD ) and the extended GSD (GSDmix) rises, to 9 dB for Dmax = 110 mm and 18 dB 
for Dmax = 250 mm.

When the spectrogram is modeled using 62
samplerGSD , the absolute difference to the measured spectrogram 

is mostly above 20 dB in the 20–60 Hz band (Figure 4b), whereas when 110
mixGSD  (which corresponds to the 

largest grain sizes expected to travel in the channel, based on analyses of grain size distribution of bedload 
in prior events Bergman et al., 2007) is used (Figure 4c), the difference between both spectrograms is almost 
always below 20 dB on the 20–60 Hz band, with an absolute average difference of 11 dB. Between minutes 
60 and 80, there are three areas where the difference (vertical blue bar) is marked on the whole frequency 
domain. These areas correspond to the time where qbd dropped to almost 0 (Figures 2a and 2b). After min-
ute 80, for all the GSD formulations, the difference between the spectrograms extracted from the data and 
reconstructed from the bedload model tends to become positive. This period corresponds to Phase 3, during 
which the qbd value is likely overestimated.

3.3. Green's Function Parameters

Evaluation of the active seismic survey data from the transect along the right bank of the river shows that 
the Rayleigh wave velocity (Figure 5a) increases from 400 m/s at 24.4 Hz to 670 m/s at 12.6 Hz. The ob-
served dispersion can be fit by a stepwise model of increasing shear wave velocity, ranging from 200 m/s at 
the surface to 850 m/s at 16 m depth. The average step size of 43 m/s (Figure 5b) corresponds adequately to 
this dispersion. Using the shear wave velocity model (Figure 5b), we computed the theoretical dispersion 
from 1 to 90 Hz for the phase velocity vc, the group velocity vu, as well as the eigenfunctions to obtain param-
eter N11 and the anelastic attenuation coefficient to obtain parameter Q. The phase velocity vc (Figure 5c) 
decreases from 760 to 672 m/s between 1 and 18.2 Hz with an average step of 1 m/s per 0.1 Hz, decreases 
sharply between 18.2 and 40 Hz with a concave form, and from 40 to 90 Hz stabilizes around 320 m/s. The 
group velocity vu (Figure 5c) decreases quicker, from 750 m/s at 1 Hz to 190 m/s at 23.8 Hz, then increases 
almost constantly up to 257 m/s at 90 Hz. The parameter N11 is around 0.3 up to about 15 Hz, increases 
sharply to 1.4 until 20 Hz and falls asymptotically toward 0.6 for higher frequencies. The quality factor Q 
shows a constant value of 10.

The phase wave velocity cauxv  (Figure 5c) falls from 900 m/s at 6.3 Hz to 464 m/s at 25 Hz, and at higher 
frequencies, wave velocity values are similar to vc from the model derived from the active seismic survey 
(Figure 5c). uauxv , has a similar shape to cauxv , and is on average 120 m/s below it for frequencies above 
10 Hz (Figure 5c). The parameter N11 is roughly constant for frequencies above 50 Hz, and varies for lower 
frequencies (Figure 5d). The mean value of N11, set equal to the constant model parameter 11auxN , is 0.6.

The PSD computed using empirical Green's function parameters (Figure 6a) shows a two-step-like shape, 
with a first plateau at 10 Hz and a second starting at 22 Hz, whereas the PSD computed with the mod-
el functions monotonically rises (Figure  6a). Within the 20–60  Hz band, there are on average 10  dB of 

LAGARDE ET AL.

10.1029/2020WR028700

9 of 20



Water Resources Research

difference between both approaches. When using the Green's function parameterization as implemented in 
the bedload model, the absolute average difference between the spectrograms is of 20 dB between 20 and 
60 Hz (Figure 6c), whereas when the Green's function parameters are based on the active seismic survey, 
the difference between the spectrograms is almost always below 20 dB on the 20–60 Hz band, with an ab-
solute average difference of 11 dB (Figure 6d). Between minute 60 and 80, there are three areas where the 
difference (vertical blue bar) is marked on the whole frequency domain. These areas correspond to the time 
where qbd dropped to almost zero (Figures 2a and 2b).
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Figure 3. (a) GSDs used for model exploration. The gray histogram depicts empirical, sieved GSD ( 62
samplerGSD ). The 

red line shows the interpolation of the empirical, sieved GSD. The blue line shows the best fit version of the log-raised 
cosine function (Tsai et al., 2012). The inset shows details of the fitted function for the coarse tail of the distribution, 
note that y-axis is in log scale. Dashed vertical lines depict extrapolated limits of the fitted distribution at 62, 110, and 
250 mm. (b) Cumulative sieved GSD extended to 110 mm using the log-raised cosine function.
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3.4. Reconstruction of Bedload Flux

The RMSE between the modeled and measured bedload flux, ignoring 
the maintenance caused spikes at minute 5 and 9, is 47.5 kg/sm for the 
entire event, and more specifically 67.4 kg/sm for Phase 1, 23.3 kg/sm for 
Phase 2, and 4.3 kg/sm for Phase 3.

The predicted bedload flux range overestimates measured bedload flux 
(Figure 7) by about two orders of magnitude during Phases 1 and 2. For 
Phase 3, the discrepancy reduces to one order. However, in Phase 3, there 
is a systematic error in the bedload measurement, which leads to an over-
estimation of the values by ∼1 kg/sm. The wavy temporal variation of 
the bedload flux demonstrates pulses of bedload (e.g., Dhont and An-
cey, 2018); it is not visible in the reconstructed seismic data.

4. Discussion
Previous studies on along-stream seismic bedload quantification have 
revealed different limitations, each related to the specific method. Roth 
et  al.  (2014) discussed issues of nonlinear effects and the drawback of 
overlapping signals due to discharge and bedload movement. Bakker 
et al. (2020) found inversion uncertainties of less than an order of mag-
nitude when using an updated version of the Tsai et al.  (2012) model, 
which accounts for nonideal particle impact mechanics quantified ex-
perimentally in Gimbert et al.  (2019). Dietze et al.,  (2019) found much 
smaller model deviations for a combined bedload and water turbulence 
inversion approach, but this was due to not using empirically constrained 
model parameters and considering those as free parameters, as opposed 
to in Bakker et al. (2020) and presently, where these are constrained in-
dependently. Since Dietze et al. (2019) tested their approach at the same 
site and on the same flood as in the present paper, it provides an ideal 
case to compare with the fully constrained case. The Monte Carlo-based 
inversion routine Dietze et al. (2019) used for the joint inversion of wa-
ter turbulence and bedload movement found the most likely parameter 
combinations to match the measured seismic spectra, but these combi-
nations were not based on observations. Specifically, Dietze et al. (2019) 
conducted sensitivity tests to constrain the Green's function parameters 
rather than using empirical values from an active seismic survey. This 
approach yielded results that were in much better agreement with the 
independent measurements for bedload flux, but did not describe the 
ground properties well when compared to the results from the active seis-
mic survey (Figure 5; Table 1 from Dietze et al., 2019). Consequently, the 
model parameters resulting from the active seismic survey analysis dif-
fer from those of Dietze et al. (2019) (Figure 5). Moreover, while in both 

studies, GSD parameters are the same (D50 = 10 mm, σg = 1.35), Dietze et al., (2019) used the whole range 
of the log-raised cosine function, whereas here we truncated it at a maximum value of 250 mm (Figure 3). 
As shown in Figure 4, Dmax impacts the resulting PSD. Due to these differences in approach, there are two 
important outcomes from the results of our study. First, the temporal evolution of measured bedload flux 
was not always reflected in the variation of seismic power (Figure 2), and, second, there is a discrepancy of 
one to two orders of magnitude between the reconstructed and the measured bedload flux (Figure 7). These 
effects can be due to a variety of reasons. Below, we discuss the potential effects within five broad areas: (i) 
potential near-field effects on Rayleigh wave propagation, (ii) seismic signal due to water turbulence, (iii) 
effects specific to seismic monitoring of bedload, (iv) the sensitivity to the parametrization of the Green's 
function, and (v) sensitivity to the GSD of moving bedload.
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Figure 4. (a) PSD from synthetic data, changing the GSD formulation 
(Table 2). (b)–(d) Differences between empirical and modeled PSDs using 
different GSDs, using qbd from the bedload samplers and empirical Green's 
function parameters. Areas outside the river activity band are in gray.
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4.1. Near-Field Effects

A “near-field” situation occurs when r0k < 1, with k = 2πf/vc the wave number of the Rayleigh wave (Gim-
bert et al., 2014). In our study we find r0k < 1 when f < 18.4 Hz. As the river activity band is within 20–60 Hz 
(Section  2.2.3), we did not take in account the Rayleigh wave attenuation due to near-field geometrical 
spreading.

4.2. Water Turbulence

Seismic power could be primarily caused by turbulent flow instead of by bedload. To test that, we used a 
model that predicts seismic power due to turbulent river flow (Gimbert et al., 2014). We use the same pa-
rameters for this model as used for the bedload model (Table 1), but replaced the bedload GSD by the river-
bed GSD. During the flood, this model predicted the highest spectral power in the 20–30 Hz band (Figure 8), 
whereas the highest spectral power of the measured seismic data were in the 30–50 Hz band (Figure 2b). 
Moreover, seismic power predictions using the turbulence model were on average 35 dB lower than the 
measured seismic power in the 20–60 Hz band (Figures 2b and 8). In contrast, seismic power predictions 
using the bedload model showed an absolute average difference of 11 dB compared to the measured seismic 
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Figure 5. (a) Rayleigh wave velocity as a function of the period. Black dots: data extracted from the active seismic 
experiment. Red line: Dispersion predicted after 100 iterations using the iterative linearized least square inversion code 
of Herrmann (2013) to fit the observed dispersion by a stepwise model of increasing shear wave velocity. (b) Shear wave 
velocity as a function of depth. Dashed black line: initial model. Red line: final model obtained after fitting the Rayleigh 
wave dispersion (red line in Figure 5a). (c) Velocity as a function of frequency. Continuous lines: predicted vc (red) 
and vu (blue) from the model derived from the seismic active survey. Dashed lines: cauxv  (red) and uauxv  (blue) using 
empirical formula given in the model (Section 2.2.2, Equations (2) and (3)). Dotted lines: cauxv  (red) and uauxv  (blue) 
using empirical formula given in the model with values from Dietze et al. (2019). (d) N11 as a function of frequency. 
Continuous line: N11 from the seismic active survey. Dashed line: empirical 11auxN  values from the model. Dotted line: 

11auxN  values from Dietze et al. (2019).
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power in the 20–60 Hz band (using 110
mixGSD  and empirical Green's func-

tion parameters vc, vu, and N11). Thus, according to this turbulence model, 
water flow does not appear to be a first order factor for the generation of 
seismic signal in the studied flood event. The turbulence model (Gim-
bert et al., 2014) predicts the vertical PSD of Rayleigh waves generated by 
water flow interacting with roughness elements along the riverbed. It is 
based on simplified physical assumptions, including steady and uniform 
flow, and spherical grains that are fully exposed to the flow. More realistic 
assumptions of asymmetrical and angular grains that are partially hidden 
in the bed would likely increase the seismic energy due to turbulent flow 
predicted by the model. However, it is unlikely that this increase would be 
sufficient to account for the remaining difference to the measurements: 
the roughness length of the riverbed, the parameter most impactful here 
(Figure 4, Gimbert et al., 2014), computed as ks = 3D50, would need to 
decrease by a factor of more than 100 to match the observations, which is 
physically unreasonable.

4.3. Specifics of the Method

The seismic signal integrates over the width of the river and a certain 
distance upstream and downstream, not only a single cross section as is 
the case for direct measurements with slot samplers. Moreover, the seis-
mometer is located 23 meters upstream of the samplers, introducing a 
time shift between the instruments due to the finite velocity of bedload 
particles. Both of these effects, and particularly so the averaging of the 
seismic signal over a channel reach, cause a spatial averaging of the seis-
mic signal that leads to a smoothing of the pulsating bedload pattern, 
rather than a large systematic bias. Thus, it cannot explain the discrep-
ancy of one to two orders of magnitude between the reconstructed and 
the measured bedload flux (Figure  7). Direct measurements from the 
bedload samplers were consistent between phases 1 and 2, but in Phase 
3, the indirect bedload measurements by the plate microphone overes-
timated the bedload flux. Because in Phase 3 indirect rather than direct 
measurements were used, we judge them to be less reliable than the slot 
measurements used during phases 1 and 2. The large difference between 
the sampling methods and the seismic data illustrates the importance of 
high-quality measurements as benchmarks for seismic techniques.

4.4. Green's Function Parametrization

The use of measured Green's function parameter values, based on the active seismic survey, reduces the 
absolute average difference between the modeled spectrogram and the spectrogram calculated from the 
measured seismic data in comparison to the calculations based on the generic model by 9 dB (Figures 6b 
and 6c). However, a discrepancy of one to two orders of magnitude between the reconstructed and the 
measured bedload flux remained even when Green's function parameter values based on the active seismic 
survey were used (Figure  7). Discrepancies between the Green's function parameter values used in the 
bedload model ( 11 , ,c uaux aux auxN v v ) and those from our active seismic survey (N11, vc, vu) were highest in the 
15–30 Hz band (Figures 5c and 5d). This band overlapped with the 20–60 Hz band that is typically domi-
nated by bedload-related seismic signals (Figure 2b). It remains unclear whether or not this is particular to 
this site. Active seismic surveys to constrain the Green's function in parallel with high-quality hydraulic and 
bedload data from other sites with a range of substrates would be necessary for a systematic investigation 
of this issue.
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Figure 6. (a) PSD from synthetic data, changing for different Green's 
function formulations and using 110

mixGSD  (b) and (c) Differences between 
empirical and modeled PSDs using 110

mixGSD , qbd from the bedload samplers 
and different Green's function parameter values. Areas outside the river 
activity band are in gray.
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4.5. Parametrization of Grain Size Distribution

We obtained the GSD from the bedload samplers (Section 2.2.2.2), and 
used a constant GSD for the whole event. As such, we were able to iden-
tify three potential GSD-related effects: (i) the model sensitivity to the 
choice of the hiding exponent, (ii) the role of the largest moving grain 
sizes, and (iii) the effect of physical processes not explicitly described by 
the Tsai et al. (2012) model.

In the mobile bed layer, not all particles are equally mobile due to hid-
ing effects. The relative particle mobility as a function of their size is 
described by the hiding exponent. In the Tsai et  al.  (2012) model, the 
hiding exponent is implemented with a default value of 0.9. Although 
we did not constrain this parameter with our field experiment, we test-
ed its influence on the model results. Varying the exponent between the 
physical limits of 0–1, we obtained a maximum PSD spread of 3.8 dB (see 
Appendix A). Thus, calibration of the hiding function cannot explain the 
observed discrepancy (Figure 7).

In the calculations including grains with D > 110 mm ( 250
mixGSD ), the larg-

est grain size class contributed less than 0.15% of the total bedload mass, 
but decreased the absolute average difference between model and data spectrograms at frequencies between 
20 and 60 Hz by 8 dB compared to the spectrograms obtained for 110

mixGSD , and by 12 dB compared to the 
spectrograms obtained for 62

mixGSD  (Figures 4b–4d). This implies that the maximum grain size has a dis-
proportionately large impact on the PSD, and thus on the quality of the bedload inversion. The grain size 
percentile yielding the largest PSD is D99 for all the GSDs investigated in this article. Hence, we conclude 
that the approximations in the GSD, that is, the need to estimate the largest mobile grain size Dmax, and an 
uncertain extrapolation of the GSD beyond the measured values, can account for most of the observed dif-
ferences between reconstructed and measured bedload flux.

We used a Monte Carlo approach on GSDfunct to explore how the different maximum particle sizes may 
impact the PSD. With increasing maximum particle size, the range of pD/D decreased. For example, at 
D = 34 mm the pD/D range was 30 m−1, whereas at D = 60 mm, the pD/D range was 2 m−1 (Figure 9). 
Extending the GSD to up to 110 mm, which corresponds to the largest grain sizes expected to travel in the 
channel (Bergman et al., 2007), using the log-raised cosine function with the different values for D50 and σg 
had a maximal impact of 5.4 dB on the PSD. Thus, caution needs to be applied when using the log-raised 
cosine function. However, in most practical situations, measured GSDs of the transported bedload will not 
be available. In these cases, the mobile GSD should be predicted from state-of-the-art bedload models (e.g., 
Wilcock & Crowe, 2003).
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Figure 7. Sampler-based bedload flux and flux predicted using the 
bedload-induced noise model. Red line: bedload flux reconstructed from 
the model, using 110

mixGSD  and empirical Green's function parameters vc, vu, 
and N11. Blue line: water depth. Yellow/green/black line: Bedload flux from 
the samplers.

Figure 8. Spectrogram simulated using the water turbulence model, applied to the hydrograph data of the studied 
flood event.
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The model by Tsai et al. (2012) accounts only for saltating grains. However, sliding and rolling particles also 
emit seismic waves. Particles tend to roll if the fluid shear stress is close to the threshold of motion (Auel 
et al., 2017), which can be expected for the largest moving grains. Laboratory experiments indicate that roll-
ing particles deliver more seismic energy per distance traveled than saltating particles under the same flow 
conditions (Tsakiris et al., 2014; Turowski & Rickenmann, 2009). This seems to be related to the frequent 
contacts with the bed in comparison to saltating, even though a single contact delivers less energy on aver-
age. Moreover, field observations by Turowski et al. (2015) indicate that the largest grain sizes deliver more 
energy than what would be expected by the linear scaling with mass implemented in the Tsai et al. (2012) 
model, corresponding to a scaling of PSD ∼ D3, independent of grain size. The strong sensitivity to large 
grains that emerged from our comparison of model predictions, together with the observations of Turowski 
et al. (2015), suggests that a more complete description of the physics of motion of the largest bedload grains 
is the most important next step to improve the accuracy of model inversion.

5. Conclusion
Inverting seismic data using a physical model of bedload transport (Tsai et al., 2012) to estimate bedload 
flux provides a promising approach in river monitoring with several advantages over in-stream monitoring 
concepts, including cost, accessibility and small demands on infrastructure and staff. The quality of bedload 
flux measurements from seismic data strongly depends on the quality of the input data for the model. Direct 
measurements of these parameters, chiefly seismic ground properties needed for the Green's function and 
the GSD of the moving bedload, considerably improved the quality over generic approaches using empirical 
or theoretical functions.

When using the best approximation ( 110
mixGSD , Green's function parameter values based on the seismic active 

survey), the absolute average difference between empirical and modeled PSD is equal to 11 dB for frequen-
cies between 20 and 60 Hz. However, this still results in a bedload flux overestimation by two orders of mag-
nitude. The Tsai et al. (2012) model demonstrates strong sensitivity to the coarse tail of the imposed GSD, 
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Figure 9. Monte Carlo distribution applied to the log-raised cosine function GSD. Red points depict the sampler's 
GSD data used to obtain the log-raised cosine function GSD. Gray lines correspond to the log-raised cosine function 
with D50∈[5; 16]mm and σg∈[1; 1.70]. The red line corresponds to the parameters used in this study (D50 = 12 mm, 
σg = 1.35).
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which is most difficult to measure (e.g., Bakker et al., 2020). From an observational perspective, this may 
pose a challenge. The largest grain size class is, by definition, at the upper most end of the GSD. As such, the 
largest grains move less often and over shorter distances than grains of more common sizes (Wilcock, 1997). 
Data or estimates of the size of the largest moving grains are thus associated with large uncertainties, and 
may be only locally applicable. However, seismic methods may also offer an opportunity. Precisely because 
they are most sensitive to the motion of the largest mobile bedload grains, they can be used as a comple-
mentary method to provide constraints on the motion of these grains. To achieve this, the effects of sliding 
and rolling grains on the delivery of seismic energy needs to be included in the model. High-quality field 
data from a range of sites, including accurate information on the largest mobile bedload grains, for example 
using tracer methods, will be necessary for calibrating and validating such a model.

Appendix A: Hiding Effects
In the Tsai et al. (2012) model, the threshold for mobility of a grain of diameter D is accounted by the critical 
value of Shield stress   * *

50 50( / )c c D D .  *
50c  is the critical value of Shield stress for the median grain size 

diameter D50 and γ is the hiding exponent. In the Tsai et al. (2012) model, the hiding exponent is imple-
mented with a default value of 0.9. Although we did not constrain this parameter with our field experiment, 
we tested its influence on the model results. Varying the exponent between the physical limits of 0–1, we 
obtained a maximum PSD spread of 3.8 dB (Figure A1).

Appendix B: Rayleigh Wave Dispersion Curves
To obtain the Green's function parameter, seismic ground properties were investigated by an active seismic 
survey. A total of seven geophone transects were deployed on both sides of the river, both parallel and 
perpendicular to the channel. Rayleigh wave dispersion curves vary broadly depending on the selected 
line (Figure B1). We show here some of the dispersion curves obtained from the transects for comparison. 
Dispersion in line B1 and B2 shows a similar trend, with two main modes: a first mode with a 0.55 km/s to 
0.4 km/s decrease of the Rayleigh wave phase velocity from 15 to 25 Hz and a second mode between 30 to 
50 Hz. For this second mode, the dispersion starts with higher values at 30 Hz on line B2. The lines perpen-
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Figure A1. PSD from synthetic data, using 110
mixGSD  and empirical Green's function parameters for different values of 

the hiding exponent γ.
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Figure B1. (a) Sketch of the seismic lines deployed during the active seismic survey. (b)–(e) Rayleigh wave dispersion 
curves obtained for altogether four of the seismic lines deployed. We used line B1 in Section 2.2.2.3.
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dicular to the channel do not show a similar trend: on line C1 a mode is clearly identifiable between 10 to 
70 Hz; and on line D no mode is clearly identifiable above 20 Hz. As we are interested in the attenuation of 
the waves traveling from the river to the seismometer, and the sensor integrates signals of a linearly exten-
sive source over a certain length along stream, line B1, parallel to the channel on the seismometer bank was 
selected for the subsequent detailed analyses.

Data Availability Statement
The raw seismic data are available at Lagarde et  al.  (2020b). The supporting information (Lagarde 
et al., 2020a) contains the information necessary to reproduce the results of this study. All other codes are 
available through R Core Team (2020); Dietze (2018a, 2018b).
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