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Abstract: Despite limiting the performance of multilayer optical thin-films, light scattering
properties are not as yet controllable by current design methods. These methods usually consider
only specular properties: transmittance and reflectance. Among other techniques, design of
thin-film components assisted by deep neural networks have seen growing interest over the
last few years. This paper presents an implementation of a deep neural network model for
light scattering design and proposes an optimization process for complex multilayer thin-film
components to comply with expectations on both specular and scattering spectral responses.

© 2021 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

1. Introduction

In the face of growing expectations in optical thin-film synthesis, several analytical and numerical
tools have been developed for designing multilayer structures optimized for their specular
properties, namely reflectance and transmittance. These techniques efficiently address the design
problem and generate complex coatings up to several hundreds of layers with extreme levels of
performance. Now well understood are classical optical responses such as narrow-band filters
[1], broad-band antireflective [2], high reflectivity mirrors, phase dispersion mirrors [3], notch
filters [4], etc. The thin-film community has also addressed design challenges which are not
dedicated to scientific applications but demonstrate the ability to synthetize any fully arbitrary
spectral response [5]. Nevertheless, design methods do not usually accurately take into account
the scattering losses of the components even though this is now one of the main limiting factors
for new generations of high-performance optical coatings. For example, for Space applications
[6–11] or interferometric detection of gravitational waves [12–26], scattering losses of 10−5 or
10−6 are already significant. The metrology and the modeling of these scattering losses has
been subject of several studies but none of them has been able to address the inverse problem
with satisfying results yet. One of the rare techniques that has been implemented is based on
anti-scattering layers to reduce and even eliminate scattering effects [27,28]. However, these
techniques only work for specific coatings at single wavelengths and may be highly complex,
e.g., using oblique deposition of fully correlated layers. As an alternative to classical design
techniques, this paper proposes the implementation of a model based on deep neural networks to
perform a first step toward an efficient design strategy based on light scattering. At this step,
our main objective is not to propose a new learning model, but to couple existing deep learning
tools with an electromagnetic model of scattering losses in optical coatings [29] that we have
developed. To our knowledge, it is the first time that such a design is made possible, and it offers
new perspectives for the design and manufacturing of high-performance optical coatings.
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2. Specular based thin-film design

The design of thin-film interference filters has been a key topic for years and has led to successful
and widely used techniques [30,31]. Among these, in 1982 Tikhonravov proposed a powerful
algorithm called needle [32,33]. Given a starting design and some fixed constraints on the
expected specular spectral response, the needle method converges reliably to good solutions. Even
very complicated optical responses can be synthesized with fine adjustments. This well-known
design problem involves many parameters: the thickness and the material properties of each layer
(refractive index, spectral dispersion), the number of layers, the total thickness, etc. The needle
algorithm is widely used in the thin-film community for both research and industrial applications.
As with any numerical computation, the increasingly available computational power has also
facilitated its implementation and use. The calculation of the specular spectral response of any
well-known multilayer structure is now very fast and requires little in the way of computational
resources using the complex admittance method, for example [29,31]. This computational step
lies at the core of the design process, where each intermediate or final solution and its goodness
of fit to the expected response is evaluated with a call to this function.

The needle technique is known as a non-global optimization method because it is unlikely to
reach the global optimum for the problem being solved. Over the last few decades, substitutes have
been proposed for optical thin-film design; among these are genetic algorithms [34,35], differential
evolution [36,37], particle swarm optimization [38], simulated annealing [39], clustering global
optimization [40] and more recently, deep neural networks [41,42]. Encouraging results have
been obtained in some cases but usually for very specific problems, with many fixed parameters
and a restricted number of layers (usually less than 40). The problems tackled are not always
representative of the state-of-the-art challenges. None of these methods has yet outperformed the
needle algorithm but they do present some promising features and perspectives.

3. Light scattering in optical thin-film coatings

Due to their numerous physical interfaces and their roughness, thin-film coatings present scattering
losses which can drastically alter their performance for demanding applications such as illustrated
in section 1. Hence, the computation of light scattering properties has been intensively studied
over the last two decades. The spectral and angular responses of the field scattered by any optical
coating can be successfully predicted under nominal conditions [29] but the inverse problem has
remained unresolved until now. In a few words, the scattered light is induced by the coupling
of the illumination field and the microroughness of the interfaces between each layer. Each of
them is represented as a surface courant which is propagated in the far field through the coating,
in every propagative direction and for every wavelength. Numerical results show an excellent
agreement with metrology even for hundreds of layers [11,43]. The calculation considers the
structural features of the multilayer (thickness of each layer, materials and roughness of each
interface), the conditions of illumination (angle of incidence, wavelength and polarization) and
the measurement conditions (scattering angle). It outputs the values of the scattering function
ARS (Angle Resolved Scattering). This calculation is far more complex than the specular case.
As an illustration, consider a structure with N layers of respective thicknesses ep∈[[1;N]] and
materials np∈[[1;N]], where np can be extracted from a database of at least two materials. The
algorithms described in [29] for the computation of the specular spectral transmittance T(λ, i),
reflectance R(λ, i) and ARS functions in transmission ARST (θ, λ, i) and in reflection ARSR(θ, λ, i)
require the following numbers of numerical operations:

Nspecular = [N + 2] × Nλ × Ni

Nscattering = [[7 × N + 2] × Nθ + N] × Nλ × Ni



Research Article Vol. 29, No. 20 / 27 Sep 2021 / Optics Express 32629

where Nλ is the number of wavelengths λ, Ni the number of angles of incidence i and Nθ the
number of scattering angles θ. The calculation of the scattering responses includes calculation of
the specular ones. All these properties are intrinsically connected, meaning that it is not possible
to control them independently. Any change made to the main parameters of the optical coating
will affect both specular and scattering properties in some way. As a numerical example, let us
evaluate the number of operations required for the computation of the optical responses of a
60-layer filter (N = 60) in the visible range (from 400 nm to 1 µm every nanometer, Nλ = 600),
at one angle of incidence (Ni = 1) and for a scattered intensity sampled every degree from 0° to
180° (Nθ = 90, due to the parallel calculation in reflection and transmission). Computation of
the specular coefficients requires NSpecular = 37, 200 operations and the scattering computation
needs NScattering = 22, 824, 000 operations, i.e., 600 times larger in this case. The evaluation
of scattering properties requires significantly more computational power and involves more
variables than for the specular case. The ARS function is angularly and spectrally dependent and
therefore involves many more parameters.

4. Design using deep neural networks

There are no analytical solutions for both specular and scattering inverse design problems. The
proven techniques developed for specular based design rely on a simplex linear optimization
of a target criterion, leading to the identification of local optima. This approach is no longer
realistically possible for the scattering response due to the heavy computation required and
the large number of variables involved. Hence, we propose a numerical inverse problem
solution based on deep neural networks: these are non-linear models and able to handle large
multidimensional problems.

Promising results have been obtained in photonic design over the last five years, benefiting from
developments in artificial intelligence and machine learning. There is a growing interest in deep
neural networks (DNN) due to their ability to solve many problems and approximate any function
[44]. Using a large set of examples describing the problem to be tackled, the program learns to
generalize the features and make accurate predictions. The design of thin-film structures based
on their specular properties has been widely studied and is a so-called one-to-many problem. For
one given spectral response there are many possible multilayer thin-films that could be suitable
solutions. This issue prevents the training of a DNN in proposing a design in a forward manner.
In this context, solution of the inverse problem usually requires several networks or a few tricks
to circumvent this issue, e.g. the back-calculation approach developed by Peurifoy [45] or the
tandem network method introduced by Liu [41]. To our knowledge, only an implementation
of a Mixture Density Network was successful in designing thin-films in the forward sense
[42] because this specific model is not deterministic but provides probability distributions as
output. Moreover, suitable and well-designed machine learning programs offer huge increases in
computational speed compared with analytical calculations. Very simple design problems can
even be solved by computing all possible solutions [46]. It is also worth mentioning that many
other machine learning and deep learning techniques have been reported and reviewed for general
photonic inverse problem solution [47–51]. These techniques involve different implementations
and frameworks: generative adversarial networks [52,53], autoencoders [54], metasystems which
combine several networks and optimization tools in a single process [55], etc. But they are
not always suitable for the design of optical thin-films. Finally, Trubetskov has proposed a
method called deep search to help convergence of the needle algorithm and avoid some local
optima; the author has tested it on very complex design problems, but without much detail on its
implementation or operational process [56].

The design problem based on light scattering is formulated in the same way and faces the
same one-to-many problem. For a sake of simplicity and to minimize the number of variables,
the spectral response that we consider is that of Total Integrated Scattering in transmission
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(TIST ), defined as the angular integration of the ARST function. The TIST sums all the angular
contributions of the scattered fields in the transmitted half-space:

TIST (λ, i) = 2π
∫ 90◦

θ=1◦
ARST (θ, λ, i)sin(θ)dθ (1)

For a fixed angle of incidence i, the function counts only one variable λ whereas its calculation
requires knowledge of the angular variations of the ARS function in transmission. The spectral
response under investigation is therefore 1-dimensional, just as for the specular case. A similar
analysis can of course be done in the reflected half-space. In the next sections, the angle of
incidence is fixed to the value of 5°, the illumination is unpolarized and the scattering functions
are sampled every degree from 1° to 90° in the transmitted half-space. The materials are specified
for each implementation (SiO2 and Nb2O5) and their dispersive refractive index values are taken
from the literature [57,58]. At last, to minimize the number of variables, the microroughness
is considered unchanged whatever the design. In this context, the only input of the model is a
vector of layers thickness values of the component under investigation, the output is a vector of
the TIST values sampled over a specified wavelength range.

5. Design framework

The framework of our design technique is inspired by that presented by Chen and Gu [59] and
illustrated at Fig. 1. The process uses two DNNs: a predictor and a designer. The predictor is a
forward DNN trained to predict the spectral response (output) of a given multilayer thin-film
structure (input). The number of layers of the multilayer structure is fixed and the input features
are the layer thickness values. The optical refractive indices are also fixed.
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Fig. 1. predictor & designer design framework. The predictor is trained to predict spectral
responses of given designs. The designer is a frozen copy of the predictor (fixed weights
and biases); the training only modifies the input values.

The learning variables of the predictor are the weights and biases of its hidden layers. Once
the predictor is trained, the network is copied to form the designer. The weights and biases of
the hidden layers of the designer are frozen, and the learning variables are the input values. The
training of the designer requires only one example: a random input vector and a hand-picked
target output spectral response. The training process finely adjusts the input thicknesses and
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tends to minimize the error between the prediction of the network and the given target response.
All the layers are fully connected (their number and size vary according to the problem to be
solved), separated by ReLU (Rectified Linear Unit) or leaky ReLU activation functions; the
parameters are updated with the Adam optimizer. The loss function is a Mean Squared Error
(MSE) function. The input data is standardized so that the values lie between 0 and a few units,
e.g., 2 or 3. The spectral responses lie between 0 and 1 but the scattering levels are usually less
than 10−2, which is difficult to evaluate on a linear scale. Logarithm (−log10(y)) is taken on the
output label data y to help the model to differentiate between low output values; the resulting
output labels typically sit between 0 and n, with 10−n the lowest level for the TIS. Typically, n = 5
or 6 for classical filtering applications. The whole model is implemented in MATLAB.

6. Application: designing a coating under light scattering control

For our first implementation, we consider structures of 20 alternating layers of SiO2 and Nb2O5.
The alternation is fixed and the layer on the top (interfacing the superstrate and illuminated by
the incident field) is always of high index material (i.e., Nb2O5). The 20 input features are the 20
thickness values of the layers, varying from 60 nm to 120 nm. The training of the predictor uses
a dataset of 50,000 examples, the input vectors are randomly generated and the corresponding
scattering response output values are uniformly sampled over 201 points between 400 nm and
800 nm. Generating this dataset takes about 4 hours on a 24-core Intel Xeon Silver processor.
The set is split into a training set (80% of the examples) and a validation set (20%). The predictor
network has 5 fully connected hidden layers (with respectively 500, 500, 500, 201 and 201 units)
separated by ReLU layers. The 128-epoch training on an Intel Core i5 processor lasts about
40 minutes. The Root Mean Squared Error (RMSE) at the final iteration is close to 0.84 on
the training set and 1.09 on the validation set. The architecture of the designer is the same as
the predictor, and the weights and biases are copied from the predictor. The design process
uses a hand-picked target spectral response y (from the validation set) which is associated with
a randomly initialized input vector x(0). The training of the network only modifies the values

Fig. 2. Design process on a 20-layer thin-film structure. Good agreement between the target
spectral response (red line) and the corrected predicted solution (green dashed line) which
is shifted from the uncorrected solution (blue points). The correction coefficient is 0.96,
meaning that the design process made a 4% error on the solution prediction.
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of the input vector parameters to minimize the MSE of the prediction compared with the target
and converges to the solution xsol. This design approach benefits from the high computational
speed of the DNN and the gradients computed by backpropagation. A training of 1024 epochs is
usually enough to converge to a suitable solution. Finally, the solution is assessed using an exact
analytical computation of the spectral response, called ground truth, to ensure that it complies
with the prediction of the designer. As the designer is trained on only one example, the process
is repeated for every new target. The optimized structures differ from the expected one but the
requirements are generally respected. This confirms that several structures could have similar
spectral responses.

In some cases, there is a slight spectral shift between the target and the ground-truth. This can
be explained by a minor prediction error made by the predictor. Then the designer reproduces
this discrepancy into a constant error over all thickness value predictions. It could be corrected
by a further training of the predictor on more examples, but it is also possible to remedy this by
multiplying all the thickness values of the solution xsol by a correction coefficient αcorr close to 1.
Tuning αcorr transforms the problem into a 1-dimensional optimization. Figure 2 presents an
example of inverse problem solution with the aforementioned framework.

7. Application: refining a complex coating under light scattering control

There are a few caveats about the method mentioned above because it is dedicated to a single
configuration (fixed number of layers and materials) with a few layers and a very narrow thickness
variance, often less than the well-known λ/4 threshold value used in many thin-film structures.
However, the more layers there are, the more complex is the optical response. Designing from
scratch a complex multilayer structure, with several dozens of layers, very large thickness variance
and under light scattering control, seems impossible in this context. Even the needle algorithm
usually exploits starting designs and makes use of well-known efficient structures for designing
complex specular functions. Our model has no knowledge of these reliable structures and outputs
unconventional solutions to be refined or adjusted. This first simple implementation is unlikely to
lead to the solution of complex design problems. Finally, the specular and scattering properties
are intrinsically connected and adjustments made on one will necessarily affect the other. It

Fig. 3. Transmittance T and TIST values of the dedicated F1 band-pass filter in the near
infrared.
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is absolutely essential to control both specular and scattering properties at one and the same
time. In this context, we propose here a hybrid approach which consists in using a DNN to refine
and locally optimize existing complex multilayer structures. Starting from a design solution
with respect to a specular constraint would be even more appropriate since the specular spectral
response remains the key feature of most thin-film components. For this purpose, we have chosen
a complex infrared bandpass filter F1 centered at 1273 nm, see Fig. 3.

This component has 60 layers of SiO2 and Nb2O5, with thicknesses varying from around
140 nm to 1.14 µm. It is made of 6 superposed Fabry-Perot cavities. These cavities are
composed of two λ/4 Bragg mirrors separated by a spacer, a layer of low index and thickness
proportional to λ/2, where λ is the central wavelength of the Fabry-Perot. Figure 3 presents the
specular transmission T and the transmitted TIST of this dedicated filter. Figure 4 presents the
quarter-wavelength optical thickness (QWOT) of the layers at 1273 nm, namely the ratio between
the effective thickness and the λ/4 value. The six cavities are clearly distinguishable from the
layers composing the mirrors. The scattering levels are negligible compared to the transmittance,
except for high rejection bands (around 1175 and 1385 nm) where the scattering level is higher
than transmittance and could potentially alter the overall performance of the filter. We seek to
optimize the structure such as to reduce the scattered light for these specific wavelength bands.

Fig. 4. Quarter Wavelength Optical Thickness of the F1 design at 1273 nm. The filter is
made of 6 Fabry-Perot cavities, each one is composed of a spacer surrounded with Bragg
mirrors.

The same predictor and designer framework is implemented but in this case the models do not
deal with the exact thickness values of the layers but with thickness variations from the initial
structure. Therefore, instead of working on thicknesses varying over a 1000 nm wide range, the
thickness variations from the initial solution are smaller, so helping the learning process. The
predictor has 6 hidden layers (respectively with 750, 750, 750, 500, 500 and 343 units), separated
by leaky ReLU activations (leaky coefficient of 0.01). 75,000 examples are generated by altering
the initial design structure with random noise (+/- 25 nm for each layer) and the associated
spectral responses are computed. The whole generation process takes about 18 hours on our
24-core processor. The label output data sample both the scattering levels in the 1116-1478 nm
band every 2 nm (182 points) and the transmittance in the 1256-1288 nm band every 0.2 nm
(161 points). The model then learns scattering and transmittance responses at the same time with
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output label data of 343 elements (182+ 161). The training is performed for 128 epochs, the
final RMSE are 2.64 for the training set and 2.68 for the validation set.

The specular and light scattering properties are connected in such a way that it is impossible to
modify only one of the two properties without affecting the other. Thus, reducing the scattering
level might also affect the transmittance within the bandwidth. The target fixed for the refinement
is the initial solution divided by 10 in the left-hand side rejection band (1125-1225 nm) and
divided by 15 in the right-hand side rejection band (1300-1475 nm). This optimization criterion
seeks to lower scattering values close to 10−6 in the two rejection bands. On the other hand, the
transmittance target value is set to the initial value as the expectation is the same for this property.
Figure 5 and Fig. 6 illustrate a compromise reached by the designer where the scattering level is
reduced by half a decade in the left-hand side rejection band and one decade in the right-hand
side rejection band. The out-of-band transmittance remains at acceptable levels and the in-band
values are above 0.7 but show some critical oscillations that are not entirely acceptable for high
performance filters.

Fig. 5. Reduction of the TIST in the two rejection bands 1125-1225 nm and 1300-1475 nm.

The constraint is not fully satisfied. Table 1 compares the TIST values of the initial solution,
the target, and the final solution at two wavelengths. The ratio between the target and the initial
solution is 1/10 at 1150 nm and 1/15 at 1350 nm. At the end of the optimization process, the
ratio between the final solution and the initial solution are respectively around 1/3 and 1/9. The
reduction of the TIST is less than a decade but still shows some improvements.

Figure 7 presents the Quarter Wavelength Optical Thickness of the solution obtained after
optimization, where we observe that the regular quarter wavelength structure is lost but the
general pattern and the cavities remain. Further refinements of the optimized structure have
not been successful. For that purpose, we have used a standard refinement procedure using the
Optilayer software and have tried to correct the spectral oscillations on the specular response
in the bandwidth. However, as our solution is unconventional, the classical means used to
refine thin-film structures were inefficient. This whole approach is local and does not allow the
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Fig. 6. Transmittance of the final solution. Left: bandwidth on a linear scale; only
the wavelengths in the grey area are considered during the optimization process. Right:
transmittance of the final solution on a broader wavelength range.

Table 1. Comparison of the TIS values of the initial solution, the target, and the final solution at 2
wavelengths

@ 1150 nm @1350 nm

initial solution 2.89.10−6 1.21.10−5

target 2.89.10−7 8.09.10−7

ratio target/initial 1/10 1/15

final solution 8.54.10−7 1.38.10−6

ratio final/initial ∼ 1/3 ∼ 1/9

solution to be a global optimal because the parameters are adjusted closely around their initial
values. It does, however, provide a good compromise between the overall specular and scattering
performance of the component.

Fig. 7. Quarter Wavelength Optical Thickness (QWOT) of the final solution at 1273 nm.
The final pattern looks like the initial one with a few variations on the layer thicknesses.
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8. Conclusion

In this paper we have presented an optical thin-film design method based on light scattering
properties and using deep neural networks. A first implementation handles simple 20-layer
coatings and seeks to design optical responses from scratch. This approach is unlikely to lead to
successful complex design and will probably fail to overcome current challenges. It also highlights
the limitations in solving the inverse problem with this approach. A second implementation
proposes the optimization of a far more complex component. The result of this local optimization
is promising since we are able to reduce the scattering levels while allowing the transmittance to
remain at acceptable values. However, the optimization still needs some improvements in order
to explore further the scattering properties of multilayer thin-film components.
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