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Abstract
In this paper we study colorings (or tilings) of the two-dimensional grid Z2. A color-
ing is said to be valid with respect to a set P of n×m rectangular patterns if all n×m

sub-patterns of the coloring are in P . A coloring c is said to be of low complexity
with respect to a rectangle if there exist m, n ∈ N and a set P of n × m rectangu-
lar patterns such that c is valid with respect to P and |P | ≤ nm. Open since it was
stated in 1997, Nivat’s conjecture states that such a coloring is necessarily periodic.
If Nivat’s conjecture is true, all valid colorings with respect to P such that |P | ≤ mn

must be periodic. We prove that there exists at least one periodic coloring among
the valid ones. We use this result to investigate the tiling problem, also known as the
domino problem, which is well known to be undecidable in its full generality. How-
ever, we show that it is decidable in the low-complexity setting. Then, we use our
result to show that Nivat’s conjecture holds for uniformly recurrent configurations.
These results also extend to other convex shapes in place of the rectangle. After that,
we prove that the nm bound is multiplicatively optimal for the decidability of the
domino problem, as for all ε > 0 it is undecidable to determine if there exists a valid
coloring for a givenm, n ∈ N and set of rectangular patterns P of size n×m such that
|P | ≤ (1+ ε)nm. We prove a slightly better bound in the case where m = n, as well
as constructing aperiodic SFTs of pretty low complexity. This paper is an extended
version of a paper published in STACS 2020 (Kari and Moutot 2020).
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1 Introduction

The tiling problem, also known as the domino problem, asks whether the two-
dimensional grid Z

2 can be colored in a way that avoids a given finite collection of
forbidden local patterns. The problem is undecidable in its full generality. The unde-
cidability relies on the fact that there are aperiodic systems of forbidden patterns that
enforce any valid coloring to be non-periodic [2].

An example of such systems are Wang tiles: square tiles with colored edges that
can be placed next to each other if their abutting edge are matching. In other words
the forbidden patterns are all pairs of tiles with non-matching edges. A set of tiles is
called aperiodic if all its valid tilings are non periodic. In this context, the minimum
size of the alphabet (or number of tiles) for a tileset to be aperiodic is know to be 11
[9]. However, if instead of the number of tiles we are interested in the number of local
patterns that can appear in the tilings, we do not know what is the minimal number
(or function) that gives an aperiodic SFT.

In this paper we first consider the low complexity setup where the number of
allowed local patterns is small. More precisely, suppose we are given at most nm

legal rectangular patterns of size n × m, and we want to know whether there exists a
coloring of Z2 containing only legal n × m patterns. We prove that if such a coloring
exists then also a periodic coloring exists (Corollary 6). This further implies, using
standard arguments, that in this setup there is an algorithm to determine if the given
patterns admit at least one coloring of the grid (Corollary 7). The results also extend
to other convex shapes in place of the rectangle (see Section 7).

Then, we investigate what can happen if the complexity slightly increases. In order
to better understand the boundaries of the undecidability of the domino problem in
terms of pattern complexity, we consider what we call the pretty low complexity
case, where we prove that the domino problem becomes undecidable again for sev-
eral bounds on the size of the set of allowed patterns. This pretty low complexity
setting was introduced in [10]. We show that the previous nm bound is multiplica-
tively optimal, that is that for all ε > 0, it is undecidable to determine whether it
is possible to color a bi-infinite grid only using patterns from a given set of at most
(1 + ε)nm allowed patterns of size n × m. In the case where m = n, we prove a
slightly better bound where (1+ ε)nm is replaced with n2 + f (n)n with f : N → N

any unbounded computable function (Corollary 11). We also obtain a construction of
pretty low aperiodic SFTs (Corollary 12).

We believe the low complexity setting has relevant applications. There are numer-
ous examples of processes in physics, chemistry and biology where macroscopic
patterns and regularities arise from simple microscopic interactions. Formation of
crystals and quasi-crystals is a good example where physical laws govern locally the
attachments of particles to each other. Predicting the structure of the crystal from its
chemical composition is a notoriously difficult problem (as already implied by the
undecidability of the tiling problem) but if the number of distinct local patterns of
particle attachments is sufficiently low, our results indicate that the situation may be
easier to handle. For a good reference on quasicrystal and aperiodic order, see [1].

Our work is also motivated by Nivat’s conjecture [14], an open problem concern-
ing periodicity in low complexity colorings of the grid. The conjecture claims the
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following: if a coloring of Z2 is such that, for some n, m ∈ N, the number of distinct
n × m patterns is at most nm, then the coloring is necessarily periodic in some direc-
tion. If true, this conjecture directly implies a strong form of our periodicity result: in
the low complexity setting, not only a coloring exists that is periodic, but in fact all
valid colorings are periodic. Our contribution to Nivat’s conjecture is that we show
that under the hypotheses of the conjecture, the coloring must contain arbitrarily large
periodic regions (Theorem 5).

2 Preliminaries

We denote �n, m� = {n, n+1, . . . , m} for integers n ≤ m, and for any positive integer
n we set �n� = �0, n − 1�. We index the columns and rows of the n × m rectangle
�n� × �m� by 0, . . . , n − 1 and 0, . . . , m − 1, respectively. The n × m rectangle at
position u ∈ Z

2 of the two-dimensional grid is u + �n� × �m� ⊆ Z
2.

LetA be a finite alphabet. A coloring c ∈ AZ
2
of the two-dimensional grid Z2 with

elements of A is called a (two-dimensional) configuration. We use the notation cn for
the color c(n) ∈ A of cell n ∈ Z

2. For any t ∈ Z
2, the translation τ t : AZ

2 −→ AZ
2

by t is defined by τ t(c)n = cn−t, for all c ∈ AZ
2
and all n ∈ Z

2. If τ t(c) = c for a
non-zero t ∈ Z

2, we say that c is periodic and that t is a vector of periodicity. If there
are two linearly independent vectors of periodicity then c is two-periodic, and in this
case there are horizontal and vertical vectors of periodicity (k, 0) and (0, k) for some
k > 0, and consequently a vector of periodicity in every rational direction.

A finite pattern is a coloring p ∈ AD of some finite domain D ⊂ Z
d . For a

fixed D, we call such p also a D-pattern. The set [p] = {c ∈ AZ
2 | c|D = p} of

configurations that contain pattern p in domain D is the cylinder determined by p.
We say that a pattern p appears in configuration c, or that c contains pattern p, if
some translate τ t(c) of c is in [p]. For a fixed finite D, the set of D-patterns that
appear in a configuration c is denoted by LD(c), that is,

LD(c) =
{
τ t(c)|D | t ∈ Z

2
}
.

We denote by L(c) the set of all finite patterns that appear in c, i.e., the union of
LD(c) over all finite D ⊆ Z

2.
We say that c has low complexity with respect to shape D if |LD(c)| ≤ |D|, and

we call c a low complexity configuration if it has low complexity with respect to some
finite D.

Conjecture (Maurice Nivat 1997 [14]) Let c ∈ AZ
2
be a two-dimensional configu-

ration. If c has low complexity with respect to some rectangle D = �n� × �m� then c

is periodic.

The analogous claim in dimensions higher than two fails, as does an analogous
claim in two dimensions for many shapes other than rectangles [6].
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2.1 Algebraic Concepts

Kari and Szabados introduced in [13] an algebraic approach to study low complexity
configurations. The present paper heavily relies on this technique. In this approach
we replace the colors in A by distinct integers, so that we assume A ⊆ Z. We then
express a configuration c ∈ AZ

2
as a formal power series c(x, y) over two variables

x and y in which the coefficient of monomial xiyj is ci,j , for all i, j ∈ Z. Note that
the exponents of the variables range from −∞ to +∞. Note also that variables x and
y in our power series and polynomials are treated only as “position indicators”: in
this work we never plug in any values to the variables. In the following, polynomials
may have negative powers of variables, that is, the polynomials we consider here
and in the following are Laurent polynomials. Let us denote by Z

[
x±1, y±1

]
and

Z
[[

x±1, y±1
]]

the sets of such polynomials and power series, respectively. We call
a power series c ∈ Z

[[
x±1, y±1

]]
finitary if its coefficients take only finitely many

different values. Since we color the grid using finitely many colors, configurations
are identified with finitary power series.

Multiplying a configuration c ∈ Z
[[

x±1, y±1
]]

by a monomial corresponds to
translating it, and the periodicity of the configuration by vector t = (n, m) is then
equivalent to (xnym − 1) c = 0, the zero power series. More generally, we say that a
polynomial f ∈ Z

[
x±1, y±1

]
annihilates power series c if the formal product f c is

the zero power series.
The set of polynomials that annihilates a power series is a Laurent polynomial

ideal, and is denoted by

Ann(c) =
{
f ∈ Z

[
x±1, y±1

]
| f c = 0

}
.

It was observed in [13] that if a configuration has low complexity with respect to
some shape D then it is annihilated by some non-zero polynomial f �= 0.

Lemma 1 [13] Let c ∈ Z
[[

x±1, y±1
]]

be a low complexity configuration. Then
Ann(c) contains a non-zero polynomial.

One of the main results of [13] states that if a configuration c is annihilated by a
non-zero polynomial then it has annihilators of particularly nice form:

Theorem 2 [13] Let c ∈ Z
[[

x±1, y±1
]]

be a configuration (a finitary power
series) annihilated by some non-zero polynomial. Then there exist pairwise linearly
independent (i1, j1), . . . , (im, jm) ∈ Z

2 such that

(
xi1yj1 − 1

)
· · ·

(
ximyjm − 1

)
∈ Ann(c).

Note that both Lemma 1 and Theorem 2 were proved in [13] for configurations
c ∈ AZ

d
in arbitrary dimension d . In this work we only deal with two-dimensional

configurations, so above we stated these results for d = 2.
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If X ⊆ AZ
2
is a set of configurations, we denote by Ann(X) the set of Laurent

polynomials that annihilate all elements of X. We call Ann(X) the annihilator ideal
of X.

2.2 Dynamical Systems Concepts

Cylinders [p] are a base of a compact topology on AZ
2
, namely the product of dis-

crete topologies on A. See, for example, the first few pages of [7]. The topology is
equivalently defined by a metric on AZ

2
where two configurations are close to each

other if they agree with each other on a large region around cell 0.
A subset X of AZ

2
is a subshift if it is closed in the topology and closed under

translations. Equivalently, every configuration c that is not in X contains a finite
pattern p that prevents it from being in X: no configuration that contains p is in X.
We can then define subshifts using forbidden patterns as well: for a set F of finite
patterns, define

XF =
{
c ∈ AZ

2 | L(c) ∩ F = ∅
}

,

the set of configurations that avoid all patterns in F . A set XF is a subshift, and
every subshift is XF for some F . If X = XF for some finite F then X is a subshift
of finite type (SFT). For a subshift X ⊆ AZ

2
we denote by LD(X) = ∪c∈XLD(c)

and L(X) = ∪c∈XL(c) the sets of D-patterns and all finite patterns that appear in
elements of X, respectively. Set L(X) is called the language of the subshift.

Subshifts of finite type can be defined in terms of allowed patterns as well. To do
so we fix a finite domain D ⊆ Z

2, and take a set P ⊆ AD of allowed patterns with
domain D. Forbidding all other D-patterns yields the SFT

V(P ) = XAD\P =
{
c ∈ AZ

2 | LD(c) ⊆ P
}

,

the set of configurations whose D-patterns are among P . We call elements of V(P )

valid configurations for P .
We call an SFT aperiodic if it is non-empty but does not contain any periodic

configurations.
The tiling problem (aka the domino problem) is the decision problem that asks

whether a given SFT is empty, that is, whether there exists a configuration avoiding a
given finite collection P of forbidden finite patterns. Usually this question is asked in
terms of so-called Wang tiles, but our formulation is equivalent. The tiling problem
is undecidable [2]. An SFT is called aperiodic if it is non-empty but does not contain
any periodic configurations. It is significant that aperiodic SFTs exist [2], and in
fact they must exist because of the undecidability of the tiling problem [19]. We
recall the reason for this fact in the proof of Corollary 7. It is also worth noting that
a two-dimensional SFT that contains a periodic configuration must also contain a
two-periodic configuration [15].

Convergence of a sequence c(1), c(2), . . . of configurations to a configuration c in
our topology has the following simple meaning: For every cell n ∈ Z

2 we must have
c
(i)
n = cn for all sufficiently large i. As usual, we denote then c = limi→∞ c(i).
Note that if all c(i) are in a subshift X, so is the limit. Compactness of space AZ

2
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means that every sequence has a converging subsequence. In the proof of Theorem 4
in Section 4 we frequently use this fact and extract converging subsequences from
sequences of configurations.

The orbit of configuration c is the set O(c) = {
τ t(c) | t ∈ Z

2
}
that contains all

translates of c. The orbit closureO(c) of c is the topological closure of the orbitO(c).
It is a subshift, and in fact it is the intersection of all subshifts that contain c. The
orbit closure O(c) can hence be called the subshift generated by c. In terms of finite
patterns, c′ ∈ O(c) if and only if every finite pattern that appears in c′ appears also in
c. O(c) can be seen as the subshift containing all the translates of c (its orbit) and all
the limits of those translates. Thus it can be different ofO(c): if c is the configuration
that with a black cell at the origin and white everywhere else, all the configurations of
its orbit will contain a black cell, but at different positions; however its orbit closure
contains the configuration with only white cells, as it is a limit of translations of c.

A configuration c is called uniformly recurrent if for every c′ ∈ O(c) we have
O(c′) = O(c). This is equivalent toO(c) being a minimal subshift in the sense that it
has no proper non-empty subshifts inside it. A classical result by Birkhoff [4] implies
that every non-empty subshift contains a minimal subshift, so there is a uniformly
recurrent configuration in every non-empty subshift.

We use the notation 〈x, y〉 for the inner product of vectors x, y ∈ Z
2. For a nonzero

vector u ∈ Z
2 \ {0} we denote

Hu =
{
x ∈ Z

2 | 〈x,u〉 < 0
}

for the discrete half plane in direction u. See Fig. 1(a) for an illustration. A subshift
X is deterministic in direction u if for all c, c′ ∈ X

c|Hu = c′|Hu =⇒ c = c′,

that is, if the contents of a configuration in the half plane Hu uniquely determines the
contents in the rest of the cells. Note that it is enough to verify that the value c0 on

Fig. 1 Discrete regions determined by vector u = (−1, 2)
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the boundary of the half plane is uniquely determined. Indeed, if c|Hu uniquely deter-
mines the line at its boundary, it is also true for all the translations of c, so the next
line is also uniquely determined. By repeating this process the whole configuration is
determined by c|Hu . Moreover, by compactness, determinism in direction u implies
that there is a finite number k such that already the contents of a configuration in the
discrete box

Bk
u =

{
x ∈ Z

2 | − k < 〈x,u〉 < 0 and − k < 〈x,u⊥〉 < k
}

are enough to uniquely determine the contents in cell 0, where we denote by u⊥ a
vector that is orthogonal to u and has the same length as u, e.g., (n, m)⊥ = (m, −n).
See Fig. 1(b) for an illustration.

If X is deterministic in directions u and −u we say that u is a direction of two-
sided determinism. If X is deterministic in direction u but not in direction −u we say
that u is a direction of one-sided determinism. Directions of two-sided determinism
correspond to directions of expansivity in the symbolic dynamics literature. If X is
not deterministic in direction u we call u a direction of non-determinism. Finally,
note that the concept of determinism in direction u only depends on the orientation
of vector u and not on its magnitude.

2.3 Wang Tiles

Two-dimensional SFTs are commonly studied in terms of Wang tiles, and the first
aperiodic SFTs were constructed and the undecidability of the domino problem was
originality proved in the Wang tile formalism. A Wang tile is a unit square tile with
colored edges, represented as a 4-tuple

a = (
a↑, a→, a↓, a←

) ∈ C4

of colors of the north, the east, the south and the west edges of the tile, respectively,
where C is a set of colors. (See Fig. 2.) A Wang tile set T is a finite set of Wang
tiles. A Wang tile set T defines a subshift of T Z

2
, where forbidden patterns are all

the dominoes of two tiles that do not have the same color on their abutting edges. We

Fig. 2 A Wang tile
a = (

a↑, a→, a↓, a←
)

a

a

a

a
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say that a configuration c ∈ T Z
2
is correctly tiled at position (i, j) ∈ Z

2 if c(i, j)

matches with its four neighbors on the abutting edges so that

c(i, j)↑ = c(i, j + 1)↓,

c(i, j)↓ = c(i, j − 1)↑,

c(i, j)→ = c(i + 1, j)←,

c(i, j)← = c(i − 1, j)→.

Otherwise there is a tiling error at position (i, j). We let

V(T ) =
{
c ∈ T Z

2 | c is correctly tiled at every position u ∈ Z
2

}

be the set of valid tilings by tile set T . Clearly V(T ) is an SFT, and in fact any
given set P ⊆ AD of allowed patterns can be effectively converted into an equivalent
Wang tile set T so that V(T ) and V(P ) are conjugate, i.e., homeomorphic under
a translation invariant homeomorphism. In this sense Wang tiles capture the entire
complexity of two-dimensional subshifts of finite type. Note that we use the same
notation V(T ) and V(P ) for the sets of valid tilings by a Wang tile set T and of
valid configurations under allowed patterns P , respectively. This should not cause
any confusion since it is always clear from the context whether we are talking about
Wang tiles or allowed patterns.

The cartesian product T1 × T2 ⊆ (C1 × C2)
4 of Wang tile sets T1 ⊆ C4

1
and T2 ⊆ C4

2 is the Wang tile set that contains for all (a↑, a→, a↓, a←) ∈ T1
and (b↑, b→, b↓, b←) ∈ T2 the tile ((a↑, b↑), (a→, b→), (a↓, b↓), (a←, b←)). The
“sandwich” tiles in T1 × T2 have hence two layers that tile the plane independently
according to T1 and T2, respectively.

The results reported below are based on Berger’s theorem, stating in the Wang
tile formalism the existence of aperiodic SFTs and the undecidability of the domino
problem.

Theorem 3 (R. Berger [2]) (a) There exists a Wang tile set T that is aperiodic,
that is, such that V(T ) is non-empty but does not contain any periodic
configurations.

(b) It is undecidable to determine for a given Wang tile set T whether V(T ) is empty
or not.

3 Our Results

In this section, we sum up our main results, and the proofs will be given in later
sections

Theorem 4 Let c be a two-dimensional configuration that has a non-trivial anni-
hilator. Then O(c) contains a configuration c′ such that O(c′) has no direction of
one-sided determinism.
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From this result, using a technique by Cyr and Kra [8], we then obtain the second
main result, stating that under the hypotheses of Nivat’s conjecture, a configuration
contains arbitrarily large periodic regions.

Theorem 5 Let c be a two-dimensional configuration that has low complexity with
respect to a rectangle. Then O(c) contains a periodic configuration.

These two theorems are proved in Sections 4 and 5, respectively. But let us first
demonstrate how these results imply relevant corollaries. First we consider SFTs
defined in terms of allowed rectangular patterns. Let D = �n�×�m� for some m, n ∈
N.

Corollary 6 Let P ⊆ AD be a set of D-patterns over alphabet A. If |P | ≤ nm and
V(P ) �= ∅ then V(P ) contains a periodic configuration.

Proof Let c ∈ V(P ) be arbitrary. By Theorem 5 then, O(c) ⊆ V(P ) contains a
periodic configuration.

Corollary 7 There is an algorithm that, given as input a set of D-patterns over a
finite alphabet, with |P | ≤ nm, determines whether V(P ) �= ∅.

Proof This is a classical argumentation by H. Wang [19]: there is a semi-algorithm
to test if a given SFT is empty, and there is a semi-algorithm to test if a given SFT
contains a periodic configuration. Let us denote P ⊆ AD the set of D-patterns given
as input. Since V(P ) is an SFT, we can execute both of these semi-algorithms on
V(P ). By Corollary 6, if V(P ) �= ∅ then V(P ) contains a periodic configuration.
Hence, exactly one of these two semi-algorithms will return a positive answer.

The next corollary solves Nivat’s conjecture for uniformly recurrent configura-
tions.

Corollary 8 A uniformly recurrent configuration c that has low complexity with
respect to a rectangle is periodic.

Proof Because c has low complexity with respect to a rectangle then by Theorem 5
there is a periodic configuration c′ ∈ O(c). Because O(c′) contains only translates
and limits of translates of c′, all configurations inO(c′) are periodic. Finally, because
c is uniformly recurrent we have O(c) = O(c′), which implies that all elements of
O(c), including c itself, are periodic.

In Section 7 we briefly argue that all of these results remain true if the n × m

rectangle is replaced by any convex discrete shape.
Our third main result shows that we are able to encode any set of Wang tiles into

a pretty low complexity SFT.



Theory of Computing Systems

Theorem 9 Let T be a given Wang tile set. One can effectively find positive integers
N and k such that for the given T and for any given n ≥ N and m ≥ 2 one can
effectively construct a set P of binary rectangular patterns of size n × m such that
the cardinality of P is at most nm + k(n + m) and V(P ) contains a (periodic) tiling
if and only if V(T ) contains a (periodic, resp.) configuration.

As a consequence, we are able to prove bounds on the complexity of SFTs for
which the domino problem is undecidable.

Corollary 10 Let f : N −→ N be a computable function, f �∈ O(1). The following
problem is undecidable for any fixed m ≥ 2: Given n and a set P of at most nm +
f (n)n binary rectangular patterns of size n × m, is V(P ) empty ?

Proof We many-one reduce the domino problem. Let T be any given set of Wang
tiles. Compute constants N and k of Theorem 9. For n = N, N + 1, N + 2, . . .
compute f (n) until number n ≥ N is found such that f (n) ≥ k + km/n. Because
f �∈ O(1) such n exists. Using Theorem 9 construct a set P of at most nm + k(n +
m) ≤ nm + f (n)n binary patterns of size n × m. By Theorem 9 tiles T admit a valid
tiling if and only if V(P ) is non-empty.

Corollary 10 is stated for thin blocks of constant height m. It is also worth to
consider fat blocks, e.g., of square shape. By the analogous proof, using m = n

instead of constant m we obtain the following result where the additive term is almost
linear in n.

Corollary 11 Let f : N −→ N be a computable function, f �∈ O(1). The following
problem is undecidable: Given n and a set P of at most n2 + f (n)n binary square
patterns of size n × n, is V(P ) empty ?

Proof We proceed as in the proof of Corollary 10, except that we choose n such
that f (n) ≥ 2k. By Theorem 9 we can effectively construct a set P of at most
n2+k(n+n) ≤ n2+f (n)n binary patterns of size n×n such that V(P ) is non-empty
if and only if T admits a valid tiling.

In particular, for any real number ε > 0 it is undecidable if a given set P of at
most (1 + ε)n2 square patterns of size n × n admit a valid configuration.

As usual, undecidability comes together with aperiodicity. We obtain pretty low
complexity aperiodic SFTs.

Corollary 12 Let f : N −→ N be a function, f �∈ O(1). There exists n and an
aperiodic SFT V(P ) where P consists of at most n2 + f (n)n binary square patterns
of size n × n. Also, for every fixed height m ≥ 2, there exists a width n and an
aperiodic SFT V(P ′) where P ′ consists of at most nm + f (n)n binary rectangular
patterns of size n × m.
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Proof Let T be an aperiodic Wang tile set. Let N and k be as in Theorem 9, and let
n ∈ N be such that f (n) ≥ 2k. By Theorem 9 there is a collection P of at most
n2 + k(n + n) ≤ n2 + f (n)n binary n × n patterns such that V(P ) is aperiodic. For
fixed m, choosing n such that f (n) ≥ k + km/n gives P ′ in the second claim.

4 Removing One-sided Determinism

In this section we prove Theorem 4 by showing how we can “remove” one-sided
directions of determinism from subshifts with annihilators.

Let c be a configuration over alphabet A ⊆ Z that has a non-trivial annihilator. By
Theorem 2 it has then an annihilator φ1 · · · φm where each φi is of the form

φi = xni ymi − 1 for some vi = (ni, mi) ∈ Z
2. (1)

Moreover, vectors vi can be chosen pairwise linearly independent, that is, in
different directions. If m = 0 it means that c = 0, therefore we may assume m ≥ 1.

Denote X = O(c), the subshift generated by c. A polynomial that annihilates
c annihilates all elements of X, because they only have local patterns that already
appear in c. It is easy to see that X can only be non-deterministic in a direction that
is perpendicular to one of the directions vi of the polynomials φi :

Proposition 13 Let c be a configuration annihilated by φ1 · · · φm where each φi is
of the form (1). Let u ∈ Z

2 be a direction that is not perpendicular to vi for any
i ∈ {1, . . . , m}. Then X = O(c) is deterministic in direction u.

Proof Suppose X is not deterministic in direction u. By definition, there exist d, e ∈
X such that d �= e but d|Hu = e|Hu . Denote � = d − e. Because � �= 0 but
φ1 · · · φm · � = 0, for some i we have φ1 · · · φi−1 · � �= 0 and φ1 · · · φi · � = 0.
Denote �′ = φ1 · · · φi−1 · �. Because φi · �′ = 0, configuration �′ is periodic in
direction vi . But because � is zero in the half plane Hu, also �′ is zero in some
translate H ′ = Hu − t of the half plane. Since the periodicity vector vi of �′ is not
perpendicular to u, the periodicity transmits the values 0 from the region H ′ to the
entire Z2. Hence �′ = 0, a contradiction.

Let u ∈ Z
2 be a one-sided direction of determinism of X. In other words, u is a

direction of determinism but −u is not. By the proposition above, u is perpendicular
to some vi . Without loss of generality, we may assume i = 1. We denote φ = φ1 and
v = v1.

Let k be such that the contents of the discrete box B = Bk
u determine the content

of cell 0, that is, for d, e ∈ X

d|B = e|B =⇒ d0 = e0. (2)

As pointed out in Section 2.2, any sufficiently large k can be used. We can choose
k so that k > |〈u⊥, v〉|. To shorten notations, let us also denote H = H−u.
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Lemma 14 For any d, e ∈ X such that φd = φe holds:

d|B = e|B =⇒ d|H = e|H .

Proof Let d, e ∈ X be such that φd = φe and d|B = e|B . Denote � = d − e. Then
φ� = 0 and �|B = 0. Property φ� = 0 means that � has periodicity vector v, so
this periodicity transmits values 0 from the region B to the stripe

S =
⋃
i∈Z

(B + iv) =
{
x ∈ Z

2 | − k < 〈x,u〉 < 0
}

,

See Fig. 3 for an illustration of the regions H , B and S. As �|S = 0, we have that
d|S = e|S . Applying (2) on suitable translates of d and e allows us to conclude that
d|H = e|H .

A reason to prove the lemma above is the following corollary, stating that X can
only contain a bounded number of configurations that have the same product with φ:

Corollary 15 Let c1, . . . , cn ∈ X be pairwise distinct. If φc1 = · · · = φcn then
n ≤ |A||B|.

Proof Let H ′ = H − t, for t ∈ Z
2, be a translate of the half plane H = H−u such

that c1, . . . , cn are pairwise different on H ′. Consider the translated configurations
di = τ t(ci). We have that di ∈ X are pairwise different on H and φd1 = · · · = φdn.

Fig. 3 Discrete regions H = H−u, B = Bk
u and S in the proof of Lemma 14. In the illustration u =

(−1, 2) and k = 10
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By Lemma 14, configurations di must be pairwise different on domain B. There are
only |A||B| different patterns in domain B.

Let c1, . . . , cn ∈ X be pairwise distinct such that φc1 = · · · = φcn, with n

as large as possible. By Corollary 15 such a maximal n exists. Let us repeatedly
translate the configurations ci by τu and take a limit: by compactness there exists
n1 < n2 < n3 . . . such that

di = lim
j→∞ τnju(ci)

exists for all i ∈ {1, . . . , n}. Configurations di ∈ X inherit the following properties
from ci :

Lemma 16 Let d1, . . . , dn be defined as above. Then

(a) φd1 = · · · = φdn, and
(b) Configurations di are pairwise different on translated discrete boxesB ′ = B−t

for all t ∈ Z
2.

Proof Let i1, i2 ∈ {1, . . . , n} be arbitrary, i1 �= i2.

(a) Because φci1 = φci2 we have, for any n ∈ N,

φτnu(ci1) = τnu(φci1) = τnu(φci2) = φτnu(ci2).

Function c �→ φc is continuous in the topology so

φdi1 = φ lim
j→∞ τnju(ci1 ) = lim

j→∞ φτnju(ci1 ) = lim
j→∞ φτnju(ci2 ) = φ lim

j→∞ τnju(ci2 ) = φdi2 .

(b) Let B ′ = B − t for some t ∈ Z
2. Suppose di1 |B ′ = di2 |B ′ . By the definition

of convergence, for all sufficiently large j we have τnju(ci1)|B ′ = τnju(ci2)|B ′ .
This is equivalent to τnju+t(ci1)|B = τnju+t(ci2)|B . By Lemma 14 then also
τnju+t(ci1)|H = τnju+t(ci2)|H where H = H−u. This means that for all suf-
ficiently large j the configurations ci1 and ci2 are identical on the domain
H − nju − t. But these domains cover the whole Z

2 as j −→ ∞ so that
ci1 = ci2 , a contradiction.

Now we pick one of the configurations di and consider its orbit closure. Choose
d = d1 and set Y = O(d). Then Y ⊆ X. Any direction of determinism in X is also a
direction of determinism in Y . Indeed, this is trivially true for any subset of X. But,
in addition, we have the following:

Lemma 17 Subshift Y is deterministic in direction −u.

Proof Suppose the contrary: there exist configurations x, y ∈ Y such that x �= y

but x|H = y|H where, as usual, H = H−u. In the following we construct n + 1
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configurations in X that have the same product with φ, which contradicts the choice
of n as the maximum number of such configurations.

By the definition of Y all elements of Y are limits of sequences of translates
of d = d1, that is, there are translations τ1, τ2, . . . such that x = limi→∞ τi(d),
and translations σ1, σ2, . . . such that y = limi→∞ σi(d). Apply the translations
τ1, τ2, . . . on configurations d1, . . . , dn, and take jointly converging subsequences:
by compactness there are k1 < k2 < . . . such that

ei = lim
j→∞ τkj

(di)

exists for all i ∈ {1, . . . , n}. Here, clearly, e1 = x.
Let us prove that e1, . . . , en and y are n + 1 configurations that (i) have the same

product with φ, and (ii) are pairwise distinct. This contradicts the choice of n as the
maximum number of such configurations, and thus completes the proof.

(i) First, φx = φy: Because x|H = y|H we have φx|H−t = φy|H−t for some t ∈
Z
2. Consider c′ = τ t(φx − φy), so that c′|H = 0. As φ2 · · · φm annihilates φx

and φy, it also annihilates c′. An application of Proposition 13 on configuration
c′ in place of c shows that O(c′) is deterministic in direction −u. (Note that
−u is not perpendicular to vj for any j �= 1, because v1 and vj are not parallel
and −u is perpendicular to v1.) Due to the determinism, c′|H = 0 implies that
c′ = 0, that is, φx = φy.

Second, φei1 = φei2 for all i1, i2 ∈ {1, . . . , n}: By Lemma 16 we know that
φdi1 = φdi2 . By continuity of the function c �→ φc we then have

φei1 = φ lim
j→∞ τkj

(di1) = lim
j→∞ φτkj

(di1) = lim
j→∞ τkj

(φdi1)

||
φei2 = φ lim

j→∞ τkj
(di2) = lim

j→∞ φτkj
(di2) = lim

j→∞ τkj
(φdi2)

Because e1 = x, we have shown that e1, . . . , en and y all have the same product
with φ.

(ii) Pairwise distinctness: First, y and e1 = x are distinct by the initial choice of x

and y. Next, let i1, i2 ∈ {1, . . . , n} be such that i1 �= i2. Let t ∈ Z
2 be arbitrary

and consider the translated discrete box B ′ = B − t. By Lemma 16(b) we have
τkj

(di1)|B ′ �= τkj
(di2)|B ′ for all j ∈ N, so taking the limit as j −→ ∞ gives

ei1 |B ′ �= ei2 |B ′ . This proves that ei1 �= ei2 . Moreover, by taking t such that
B ′ ⊆ H we see that y|B ′ = x|B ′ = e1|B ′ �= ei |B ′ for i ≥ 2, so that y is also
distinct from all ei with i ≥ 2.

The following proposition captures the result established above.

Proposition 18 Let c be a configuration with a non-trivial annihilator. If u is a one-
sided direction of determinism in O(c) then there is a configuration d ∈ O(c) such
that u is a two-sided direction of determinism in O(d).
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Proof Let c be a configuration with a non-trivial annihilator and u a one-sided direc-
tion of determinism in O(c). Then, consider c1, . . . , cn as in Corollary 15 and n as
large as possible. Then, by taking

d = lim
j→∞ τnju(c1),

Lemma 17 ensures that Y = O(d) is deterministic both in directions u and −u, as
none of the limits used change the determinism along u.

Now we are ready to prove Theorem 4.

Proof of Theorem 4 Let c be a two-dimensional configuration that has a non-trivial
annihilator. Every non-empty subshift contains a minimal subshift [4], and hence
there is a uniformly recurrent configuration c′ ∈ O(c). IfO(c′) has a one-sided direc-
tion of determinism u, we can apply Proposition 18 on c′ and find d ∈ O(c′) such
that u is a two-sided direction of determinism in O(d). But because c′ is uniformly
recurrent, O(d) = O(c′), a contradiction.

5 Periodicity in Low Complexity Subshifts

In this section we prove Theorem 5. Every non-empty subshift contains a uniformly
recurrent configuration, so we can safely assume that c is uniformly recurrent.

Our proof of Theorem 5 splits in two cases based on Theorem 4: either O(c) is
deterministic in all directions or for some u it is non-deterministic in both directions
u and −u. The first case is handled by the following well-known corollary from a
theorem of Boyle and Lind [5]:

Proposition 19 A configuration c is two-periodic if and only ifO(c) is deterministic
in all directions.

For the second case we apply the technique by Cyr and Kra [8]. This technique
was also used in [17] to address Nivat’s conjecture. It is possible to use a direct
combination of lemmas from [8] or [17] to prove the following:

Proposition 20 Let c be a two-dimensional uniformly recurrent configuration that
has low complexity with respect to a rectangle. If for some u both u and −u are
directions of non-determinism inO(c) then c is periodic in a direction perpendicular
to u.

We will prove this proposition below using lemmas from [17]. We first recall
some definitions, adjusted to our terminology. Let D ⊆ Z

2 be non-empty and let
u ∈ Z

2 \ {0}. The edge Eu(D) of D in direction u consists of the cells in D that are
extremal in the direction u:

Eu(D) = {v ∈ D | ∀x ∈ D 〈x,u〉 ≤ 〈v,u〉}.
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We call D convex if D = C ∩ Z
2 for a convex subset C ⊆ R

2 of the real plane.
For D, E ⊆ Z

2 we say that D fits in E if D + t ⊆ E for some t ∈ Z
2.

The (closed) stripe of width k perpendicular to u is the set

Sk
u =

{
x ∈ Z

2 | − k < 〈x,u〉 ≤ 0
}
.

Consider the stripe S = Sk
u. The reader can refer to Fig. 3 for an illustration of

a closed stripe, the only difference being the inclusion of the upper boundary of S.
Clearly its edge Eu(S) in direction u is the discrete line Z2 ∩ L where L ⊆ R

2 is the
real line through 0 that is perpendicular to u. The interior S◦ of S is S \ Eu(S), that
is, S◦ = {x ∈ Z

2 | − k < 〈x,u〉 < 0}.
A central concept from [8, 17] is the following. Let c be a configuration and let

u ∈ Z
2 \ {0} be a direction. Recall that LD(c) denotes the set of D-patterns that

appear in c. A finite discrete convex set D ⊆ Z
2 is called u-balanced in c if the

following three conditions are satisfied, where we denote E = Eu(D) for the edge
of D in direction u:

(i) |LD(c)| ≤ |D|,
(ii) |LD(c)| < |LD\E(c)| + |E|, and
(iii) |D ∩ L| ≥ |E| − 1 for every line L perpendicular to u such that D ∩ L �= ∅.

The first condition states that c has low complexity with respect to shape D. The
second condition implies that there are fewer than |E| different (D \ E)-patterns in c

that can be extended in more than one way into a D-pattern of c. The last condition
states that the edge E is nearly the shortest among the parallel cuts across D.

Lemma 21 (Lemma 2 in [17]) Let c be a two-dimensional configuration that has low
complexity with respect to a rectangle, and let u ∈ Z

2 \ {0}. Then c has a u-balanced
or a (−u)-balanced set D ⊆ Z

2.

A crucial observation in [8] connects balanced sets and non-determinism to
periodicity. This leads to the following statement.

Lemma 22 (Lemma 4 in [17]) Let d be a two-dimensional configuration and let
u ∈ Z

2 \ {0} be such that d admits a u-balanced set D ⊆ Z
2. Assume there is a

configuration e ∈ O(d) and a stripe S = Sk
u perpendicular to u such that D fits in S

and d|S◦ = e|S◦ but d|S �= e|S . Then d is periodic in direction perpendicular to u.

With these we can prove Proposition 20.

Proof of Proposition 20 Let c be a two-dimensional uniformly recurrent configura-
tion that has low complexity with respect to a rectangle. Let u be such that both u and
−u are directions of non-determinism inO(c). By Lemma 21 configuration c admits
a u-balanced or a (−u)-balanced set D ⊆ Z

2. Without loss of generality, assume that
D is u-balanced in c. As O(c) is non-deterministic in direction u, there are configu-
rations d, e ∈ O(c) such that d|Hu = e|Hu but d(0,0) �= e(0,0). Because c is uniformly
recurrent, exactly the same finite patterns appear in d as in c. This means that D is
u-balanced also in d . From the uniform recurrence of c we also get that e ∈ O(d).
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Pick any k large enough so that D fits in the stripe S = Sk
u. Because 0 ∈ S and

S◦ ⊆ Hu, the conditions in Lemma 22 are met. By the lemma, configuration d is
p-periodic for some p that is perpendicular to u. Because d has the same finite pat-
terns as c, it follows that c cannot contain a pattern that breaks period p. So c is also
p-periodic.

Now Theorem 5 follows from Propositions 19 and 20, using Theorem 4 and the
fact that every subshift contains a uniformly recurrent configuration.

Proof of Theorem 5 Let c be a two-dimensional configuration that has low complex-
ity with respect to a rectangle. Replacing c by a uniformly recurrent element ofO(c),
we may assume that c is uniformly recurrent. Since c is a low-complexity configura-
tion, by Lemma 1 it has a non-trivial annihilator. By Theorem 4 there exists c′ ∈ O(c)

such that O(c′) has no direction of one-sided determinism. If all directions are deter-
ministic in O(c′), it follows from Proposition 19 that c′ is two-periodic. Otherwise
there is a direction u such that both u and −u are directions of non-determinism in
O(c′). Now it follows from Proposition 20 that c′ is periodic.

6 RecodingWang Tiles

In this section we prove Theorem 9. We convert an arbitrary Wang tile set T into a
pretty small set P of binary rectangular allowed patterns that is equivalent to T in
the sense that P admits a (periodic) configuration if and only if T admits a (resp.
periodic) configuration. Configurations valid for P have bits 1 sparsely positioned so
that each bit 1 represents a single Wang tile of a valid tiling, and the relative positions
of bits 1 uniquely identify the corresponding Wang tiles. Allowed patterns in P are
restricted so that only matching Wang tiles are allowed next to each other. We detail
this construction in the next pages.

So let T be a given finite set ofWang tiles. We first modify the set to make sure that
no tile matches itself as its neighbor. This is easy to enforce by making two copies of
T and forcing the copies be used alternatingly on even and odd cells. More precisely,
we replace T by the cartesian product T × {EVEN, ODD} where EVEN has color 0 on
its north and east sides and color 1 on south and west, while in ODD the colors are
reversed. The EVEN/ODD -components of tiles form an infinite checkerboard tiling
of the plane. The new tile set admits a (periodic) tiling if and only if T admits a
(periodic, resp.) tiling.

From now on we assume that no tile of T matches in color with itself. Let t = |T |
be the number of tiles, and denote

S =
{
2j − 1 | j = 0, 1, . . . , t − 1

}

and s = 2t−1. The set S ⊆ �s� has the property that for a, b ∈ S, a �= b, the
difference a − b uniquely identifies both a and b. The proof of this fact is easy.

Lemma 23 For a1, a2, b1, b2 ∈ S, if a1 − b1 = a2 − b2 �= 0 then a1 = a2 and
b1 = b2.
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Fix a bijection α : T −→ S. In our coding tile t will be represented as a horizontal
sequence of s bits where bit number α(t) is set to 1 and all other bits are 0’s.

Choose N = 3s and fix m ≥ 2 and n ≥ N , the dimensions of the rectangular
patterns considered, and define

D = �n� × �m�.

Denote n′ = n − s and m′ = m − 1. In our coding of a Wang tiling we paste
to position (i · n′, j · m′) the bit sequence representing the Wang tile in position
(i, j). A configuration c ∈ T Z

2
is then represented as a binary configuration β(c) ∈

{0, 1}Z2
where for all (i, j) ∈ Z

2, tile c(i, j) contributes symbol 1 in position (in′ +
α(c(i, j)), jm′). All positions without a contribution from any tile of c have value 0.

In β(c) all symbols 1 appear in the intersections of vertical strips

Vi = (
in′ + �s�

) × Z

and horizontal strips
Hj = Z × {jm′},

for i, j ∈ Z. There is exactly one symbol 1 in each intersection Ii,j = Vi ∩ Hj ,
representing the Wang tile in position (i, j). See Fig. 4 for an illustration.

Let us first count all rectangular n × m patterns that may appear in β(c) for some
c ∈ T Z

2
, that is, find an upper bound on the cardinality of the set

Q =
⋃

c∈T Z2

LD(β(c)).

Fig. 4 The positioning of the horizontal s-bit encodings of Wang tiles in coding β. The given coordinates
indicate the positions in the Wang tiling that are encoded in the corresponding bit sequences. A sample
rectangle of size n × m is depicted in dark shading. Three consecutive vertical Vi strips are highlighted
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As n = n′+s we have that for all j ∈ Z there is i ∈ Z such that in′+�s� ⊆ j+�n�,
that is, every n × m rectangle on the grid fully intercepts one of the vertical strips
Vi . Analogously, the rectangle intercepts a horizontal strip Hj and hence some Ii,j is
fully contained in the rectangle. This implies that every pattern in Q contains at least
one symbol 1. On the other hand, n ≤ 2n′ − s so that an n × m rectangle can not
intersect with more than two strips Vi , and analogously it cannot intersect more than
two horizontal strips Hj . This means that there are at most four symbols 1 in each
pattern of Q.

Let p ∈ Q and let c ∈ T Z
2
be such that p ∈ LD(β(c)). Let E = u + D be a

rectangle containing pattern p in β(c). We have the following four possibilities.

– Suppose that E has a non-empty intersection with two consecutive vertical strips
Vi and Vi+1 and with two consecutive horizontal strips Hj and Hj+1. Rectangle
E can be positioned in at most 2s positions relative to these strips, and there at
most t4 choices of the Wang tiles encoded in the intersections of the two hori-
zontal and two vertical strips. This means that there are at most 2st4 patterns p

that can be extracted this way.
– Suppose that E has non-empty intersection with two consecutive vertical strips

Vi and Vi+1 and with only one horizontal strip Hj . There are at most 2sm ways
to position the rectangle and at most t2 choices for the two tiles encoded within
the block. There are hence at most 2smt2 patterns p of this type.

– Symmetrically, if E has non-empty intersection with two consecutive horizon-
tal strips Hj and Hj+1 and with only one vertical strip Vj then the number of
extracted patterns is bounded by nt2.

– Finally, if E only intersects a single vertical and horizontal strip then E contains
a single symbol 1. There are at most nm positions for this 1 inside the n × m

rectangle.

Adding up the four cases above gives the upper bound

nm + 2st4 + 2st2m + t2n ≤ nm + k(n + m)

for the cardinality of Q, where we can choose k = 2st4, assuming t ≥ 1. This choice
of k works by a direct calculation due to t2 ≥ 1, st2 ≥ 1 and n ≥ 2: subtracting the
left-hand-side from the right-hand-side yields

2st4(n+m)−
(
2st4 + 2st2m + t2n

)
= 2st2

(
t2 − 1

)
m+ t2

(
2st2 − 1

)
(n− 1)− t2 ≥ 0.

Note that constant k = 2st4 = |T |4 ·2|T | does not depend on n orm but only on the
number of tiles in T . Note also that the patterns in Q can be effectively constructed.
We have established the following result.

Lemma 24 The number of different n × m patterns that appear in β(c) over all
c ∈ T Z

2
is at most nm+k(n+m) for k = |T |4 ·2|T |. These patterns can be effectively

constructed for a given T .
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Remark A smaller constant k can be obtained by using a more succinct represen-
tation α of tiles T as numbers. One just needs to encode tiles as natural numbers
whose differences a − b identify uniquely a and b, so that Lemma 23 is satisfied.
Instead of the exponentially growing sequence of representatives 0, 1, 3, 7, 15, . . .
that we use here one can use, for example, numbers of the Mian-Chowla sequence
1, 2, 4, 8, 13, 21, 31, . . . (sequence A005282 in [16]) that only grows polynomially.
Then constant k will be bounded by a polynomial of |T |.

Let us further limit the allowed patterns by removing from Q patterns that contain
two 1’s whose relative positions indicate neighboring Wang tiles whose colors do not
match. More precisely, let p ∈ Q.

(H) Suppose p contains on some row two symbols 1, in columns i and j , for i < j .
In order for p to appear in β(c) for some valid tiling c we necessarily must
have that the two symbols 1 are the contributions of two matching horizontally
neighboring tiles in c, so that i = k + α(a) and j = k + n′ + α(b) for some
integer k and tiles a, b ∈ T such that the east color of a is the same as the west
color of b. Hence we remove p from Q if no matching a, b exist such that
j − i = n′ + α(b) − α(a).

(V) Suppose p contains symbol 1 in some column i of the bottom row and some
column j of the top row where i − s < j < i + s. Now p can appear in β(c)

only if the two symbols 1 are the contributions of two vertically neighboring
tiles in c, so that i = k + α(a) and j = k + α(b) for some integer k and tiles
a, b ∈ T such that the north color of a is the same as the south color of b. We
remove p from Q if no matching a, b exist such that j − i = α(b) − α(a).

Let P be the set of patterns in Q that are not removed by the conditions (H) and
(V) above. Set P can be effectively constructed and, since P ⊆ Q, the upper bound
|P | ≤ nm + k(n + m) from Lemma 24 holds.

Let us next prove that allowing the patterns in P admits precisely the con-
figurations β(c) and all their translates, for all c ∈ T Z

2
that are valid Wang

tilings.

Lemma 25 With the notations above,

V(P ) =
{
τ t(β(c)) | t ∈ Z

2 and c ∈ V(T )
}
.

Proof By the definition of P it is clear that for every valid tiling c ∈ V(T ) the
encoded configuration β(c) only contains allowed patterns in P . Hence the inclusion
“⊇” holds.

To prove the converse inclusion, consider an arbitrary configuration e ∈ V(P ),
that is, e ∈ {0, 1}Z2

such that LD(e) ⊆ P . Every pattern in P contains a symbol 1 so
configuration e must contain a symbol 1 in every n × m block.

Let us denote, for any x, y, z, w ∈ T , by Bin

(
z w

x y

)
the n × m binary pattern

with exactly four 1’s, two of which are on the bottom row in columns α(x) and
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n′ + α(y), and two are on the topmost row in columns α(z) and n′ + α(w). In other
words, the bit sequences that encode tiles x, y, z and w are in the four corners of the

pattern, as in the dark grey block in Fig. 4. Let us call Bin

(
z w

x y

)
a standard block

if the Wang tiles x, y, z, w match each other in colors as a 2 × 2 pattern with x, y, z

and w at the lower left, lower right, upper left and upper right position of the 2 × 2
pattern, respectively.

Consider now any occurrence of a symbol 1 in e, that is, u ∈ Z
2 such that e(u) =

1. Let us prove that there is a standard block Bin

(
z w

x y

)
in e with this occurrence

of 1 representing Wang tile x. Let p = τu(e)|D be the n × m pattern with lower left
corner at cell u, so there is a symbol 1 at the lower left corner of p. By the definition
of P , pattern p appears in β(f ) for some f ∈ T Z

2
. The structure of β(f ) implies

that there is another symbol 1 in pattern p on the same horizontal row, say i position
to the right of the lower left corner. By condition (H) above, i = n′ + α(y) − α(x)

for some tiles x, y ∈ T such that the east color of x is the same as the west color of
y. Because no tile in T matches with itself in color, we have x �= y and hence x and
y are unique by Lemma 23.

Let v = u − (α(x), 0), and extract the n × m pattern q = τ v(e)|D located α(x)

positions to the left of p in e. Pattern q contains symbol 1 on the bottom row at
columns α(x) and n′ + α(y). Pattern q appears in β(f ′) for some f ′ ∈ T Z

2
and

therefore, due to the structure of encoded configurations, q must be Bin

(
z w

x y

)
for

some z, w ∈ T . Conditions (H) and (V) then ensure that x, y, z and w match in color

with each other to form a valid 2 × 2 pattern of Wang tiles, so q = Bin

(
z w

x y

)
is a

standard block.
We have seen that any occurrence of 1 in e represents aWang tile x in the lower left

corner of some standard block q = Bin

(
z w

x y

)
in e. With an analogous reasoning

we see that the same occurrence of bit 1 is also encoding the tile z′ at the upper left

corner of a standard block q ′ = Bin

(
z′ w′
x′ y′

)
in e. In q ′ the symbol 1 that represents

the Wang tile w′ at the upper right corner is the same as the one that represents tile y

at the lower right corner in q, so that α(x) − α(y) = α(z′) − α(w′). By Lemma 23
the tiles are unique so that x = z′ and y = w′. (See Fig. 5 for an illustration.) We
have that q ′ = τ v

′
(e)|D for v′ = v − (0, m′).

Analogously, symbol 1 in position u is also in the lower right and upper right
corners of standard blocks in e that overlap with q and q ′ in two encoded Wang
tiles that by Lemma 23 are uniquely identified as x and z and as x′ and z′ = x,
respectively. So also the n × m blocks in e with lower left corners at cells v− (n′, 0)
and v − (n′, m′) are standard blocks.

As cell u is any position containing bit 1 in configuration e, we can repeat the
reasoning on the other corners of the standard blocks. By easy induction we see that
τ vi,j (e)|D is a standard block for all i, j ∈ Z where vi,j = v + (in′, jm′). We now

take c ∈ T Z
2
such that c(i, j) is the Wang tile encoded in e position vi,j , for all
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Fig. 5 Two standard blocks sharing an encoded tile at their lower left and upper left corners, respectively.
The positions of the blocks are uniquely identified by their common row, as discussed in the proof of
Lemma 25. The circled cell is the position v in configuration e in that proof

i, j ∈ Z, that is, the unique t ∈ T such that τ vi,j (e)(α(t)) = 1. Clearly τ v(e) = β(c).
Because standard blocks correspond to correctly tiled 2 × 2 blocks of Wang tiles we
have that c ∈ V(T ).

We are now ready to prove Theorem 9.

Proof of Theorem 9 We first construct an equivalent tile set T ′ where no tile matches
in color with itself, as shown in the beginning of the section. We then set t = |T ′|,
s = 2t−1, N = 3s and k = 2st4. Let n ≥ N and m ≥ 2 be arbitrary, and let us
construct P as above. By Lemma 24 set P contains at most nm + k(n + m) patterns.
By Lemma 25 we have that V(P ) = ∅ if and only if V(T ) = ∅. Encoding β maps
periodic configurations to periodic configurations so also by Lemma 25 there is a
periodic configuration in V(P ) if and only if there is a periodic configuration in
V(T ).

7 Conclusions

We have demonstrated how the low local complexity assumption enforces global
regularities in the valid configurations, yielding algorithmic decidability results. The
results were proved in full detail for low complexity configurations with respect to an
arbitrary rectangle. The reader can easily verify that the fact that the considered shape
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is a rectangle is not used in any proofs presented here, and the only quoted result that
uses this fact is Lemma 21. Aminor modification in the proof of Lemma 21 presented
in [17] yields that the lemma remains true for any two-dimensional configuration
that has low complexity with respect to any convex shape. We conclude that also
Theorem 5, Corollaries 6, 7 and 8 remain true if we use any convex discrete shape in
place of a rectangle.

If the considered shape is not convex the situation becomes more difficult. The-
orem 5 is not true for an arbitrary shape in place of the rectangle but all counter
examples we know are based on periodic sublattices [6, 11]. For example, even lat-
tice cells may form a configuration that is horizontally but not vertically periodic
while the odd cells may have a vertical but no horizontal period. Such a non-periodic
configuration may be uniformly recurrent and have low complexity with respect to
a scattered shape D that only sees cells of equal parity. It remains an interesting
direction of future study to determine if a sublattice structure is the only way to con-
tradict Theorem 5 for arbitrary shapes. We conjecture that Corollaries 6 and 7 hold
for arbitrary shapes, that is, that there does not exist a two-dimensional low complex-
ity aperiodic SFT. A special case of this is the recently solved periodic cluster tiling
problem [3, 18].

Corollary 10 naturally raises the question whether the additive term f (n)n can be
replaced by some constant, or can at least f (n) in it be replaced by a constant. By
Corollary 7 we know that constant c = 0 does not work, but some other constant
might work.

Naturally, there exists m, n, c and a set P of nm + c allowed patterns such that
V(P ) is aperiodic (take for example any aperiodic SFT and choose c accordingly).
It is not known what might be the smallest such c, and this constitutes an interesting
open problem. We just know that c > 0 by Corollary 6.
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