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Abstract
We present an experimental and theoretical study of Rayleigh-Bénard convection in shear-

thinning fluids with temperature dependent properties. Experiments were performed using a cylin-

drical cell of radius R̂ = 60mm and height adjustable at d̂ = 15mm and 20mm giving a radius-to-

height ratio L = 4 and 3 respectively. The fluids used are glycerol (Newtonian fluid) and aqueous

xanthan gum solutions (shear-thinning fluids) at 1000 ppm and 1200 ppm. Convection patterns are

visualized by the shadowgraph method. In the theoretical part of this study, the weakly nonlinear

analysis performed by Thomas Varé et al. [J. Fluid Mech. 905, A33(2020)] is extended to take

into account the variation of the thermal expansion coefficient with temperature.

For the xanthan gum solutions used, the temperature dependence of the fluid parameters is

sufficiently strong to obtain hexagonal cells at the onset of convection. It has been observed that

their size decreases with increasing the temperature difference across the fluid layer, above the

critical value. This result provides an experimental support to our theoretical study where it is

shown that for hexagons, the band of stable wavenumbers is bent towards higher wavenumbers.

For the glycerol, Newtonian fluid with a large Prandtl number, a slight increase of the wavelength

of rolls is observed in agreement with the literature.

∗ cherif.nouar@univ-lorraine.fr

1



I. INTRODUCTION

Rayleigh-Bénard convection has served as an excellent paradigm to study competition

between different patterns with different symmetries in non equilibrium nonlinear systems.

From theoretical point of view, the interest has been mainly in the competition between the

roll, square and hexagonal planforms (see for instance [1]). The main control parameter is

the Rayleigh number Ra which represents the dimensionless temperature across the fluid

layer and is a measure of the external stress applied to the system. Under Boussinesq

approximations, the physical properties of the fluid are considered independent of the tem-

perature except the density in the buoyancy term. In addition, the density is assumed to

vary linearly as a function of temperature, i.e. the thermal coefficient expansion is assumed

constant. With these assumptions, the pattern which forms at onset, Ra = Rac consists

of rolls and the bifurcation from a quiescent state to rolls is stationary and continuous, i.e.

supercritical [2]. The first theoretical investigation of supercritical convection was made

by Busse [3] for infinite Prandtl number and by Busse & Clever [4] for moderate Prandtl

number. It is shown that when Ra does not exceed a certain value (22600 for an infinite

Prandtl number) there exists a finite band of k values at which two dimensional rolls are

stable. Very near the critical Rayleigh number, the band of stable wavenumbers shrinks

and k tends to kc. When k is outside this band, secondary disturbances grow such that

the flow readjusts its wavenumber to enter into the stable band. Although a large number

of periodicities are mathematically allowed, experiments started from uncontrolled initial

conditions have shown that a much more narrow range of wavenumbers are observed in

practice.

In the experiments of Krishnamurti [5], it was observed that the size of rolls increases with

increasing Ra and this increase is more sensitive for fluids with low Pr. Further evidence of

an increasing wavelength (decreasing wavenumber) has been provided by Koschmieder [6],

Koshmieder & Pallas [7] and Willis et al. [8]. Thus, the domain k > kc of Busse’s stability

diagram is not selected by the nonlinear effects.

When the variation of the fluid properties (density, viscosity, thermal conductivity, ther-

mal expansion, specific heat) vary sufficiently with the temperature, i.e. when non-Oberbeck-

Boussinesq (NOB) effects become substantial, the up-down reflection symmetry with respect
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to the midplane of the fluid layer is strongly broken, leading to the formation of hexagons

at Ra = Raa via a transcritical bifurcation. Hexagons are preferred to rolls in the vicin-

ity of onset. When Ra increases by a sufficient amount, say Ra > Rar, the weakly non

linear analysis based on amplitude equations [9] predicts that convection rolls become a

stable solution. Increasing further the Rayleigh number, hexagons lose their stability after

some threshold Rah and only rolls remain stable. Thus in the range of Rayleigh numbers,

Rar ≤ Ra ≤ Rah, both rolls and hexagons are expected to be stable. The threshold values

Raa, Rar and Rah have been calculated by Busse [9] for a system of infinite lateral extent.

Using the conventional distance from the onset

ε = (Ra−Rac)/Rac , (1)

the theoretical predictions of Busse [9] indicate that εa, εr and εh are proportional to Q2,

where Q =
∑i=4

i=0 γiPi is a nondimensional parameter introduced by Busse [9] to characterize

the departure from Boussinesq approximations. The non-Boussinesq coefficients γi are the

nondimensional variations of density ρ̂, thermal expansion χ̂, kinematic viscosity ν̂, ther-

mal conductivity k̂ and specific heat Ĉp with respect to the top and bottom temperatures

normalized by some reference value:

γ0 =
ρ̂2 − ρ̂1

ρ̂0

, γ1 =
χ̂1 − χ̂2

χ̂0

, γ2 =
ν̂1 − ν̂2

ν̂0

, (2)

γ3 =
k̂1 − k̂2

2k̂0

, γ4 =
Ĉp1 − Ĉp2

Ĉp0

.

The subscripts 1,2 and 0 indicate fluid properties evaluated at bottom, top and mean tem-

perature of the cell respectively. The coefficients Pi are linear functions of Pr−1 where Pr is

the Prandtl number. They were first given by Busse [9] and recalculated after by Bodenshatz

[1]. The following expressions are reported:

P0 = 2.676− 0.361

Pr
, P1 = −6.631− 0.772

Pr
, P2 = 2.765, (3)

P3 = 9.54, P4 = −6.225 +
0.386

Pr
.

Note that in the study of Busse [9], the coefficients γi and Q are evaluated at the onset

of convection (ε = 0). Correlations for the thresholds εa, εr and εh as a function of Q2

proposed by Busse [9] are given in Appendix A. Although the theory of Busse applies for

a weak (linear) temperature dependency of the fluid properties and an infinite aspect of
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experimental cell, number of experimental investigations [10–16] confirm qualitatively some

of the theoretical predictions. Differences between theory and experiments in the transition

between hexagons and rolls arise as a consequence on one hand of a finite aspect ratio

of the experimental system and on the other hand, away from the onset of convection the

non-Boussinesq effects become stronger. A finite aspect ratio modifies the critical conditions

[17], the wavenumber selection and the dynamics of hexagons rolls transition [16]. When

the non-Boussinesq effects become stronger, the stability range of hexagons extends further

in the strongly nonlinear regime [11, 18].

Another bifurcation sequence hexagons → rolls → hexagons was observed experimentally

by Roy and Steinberg [19] using sulfur hexafluoride (SF6) near the thermodynamic criti-

cal point. The restabilization of hexagons was termed ‘reentrance’. The phenomenon of

reentrant hexagons was predicted theoretically by Madruga, Riecke and Pesch [18], using

an extension of the weakly nonlinear analysis of Busse [9]. However, this theoretical work

predicts a smaller wavenumber than that observed experimentally.

Compared with the Newtonian fluids, very few experimental studies were devoted to

non-Newtonian fluids. Here, we focus on shear-thinning fluids, i.e. fluids for which the

viscosity decreases non linearly with the shear rate. This feature, when it is sufficiently

strong leads to a subcritical bifurcation [20], [21],[22], [23].

The first experimental investigation of convection in a shear-thinning fluid confined be-

tween two horizontal plates was carried out by Pierre & Tien [24]. The experimental cell is

cylindrical with an aspect ratio L = 2 where L is the ratio of radius of the cylinder to the

height of the fluid layer. The fluids used are aqueous solutions of Methocel (1wt %) and

Carbopol 934 (0.5, 0.75 and 1wt%). The rheological behavior of these fluids was described

by a power-law model, with a shear-thinning index ranging between 0.4 and 1. The results

were presented in terms of a correlation relating the Nusselt number Nu to Rayleigh and

Prandtl numbers, for 105 ≤ Ra ≤ 106. Later on, Tsiei & Tien [25] extended this correlation

to a wider range, 103 ≤ Ra ≤ 106. For power-law fluids, Rayleigh and Prandtl numbers are

defined with a viscosity calculated at a characteristic shear rate, which is the inverse of the

thermal diffusion time. At the same period, Liang & Acrivos [26] conducted an experimental

study of the buoyancy-driven convection in horizontal layers of dilute aqueous solutions of

polyacrylamide (Separan AP 30 at 0.5 and 1 wt 1%). These fluids are shear-thinning with

4



approximately constant viscosity at low shear-rate. The experimental setup consists of a

rectangular cavity with the length to the height aspect ratio L ≈ 25. The temperature

difference between the top and bottom walls was kept smaller than 10◦C to minimize the

Boussinesq effects. Liang & Acrivos [26] found that the critical Rayleigh number is the same

as for a Newtonian fluid and that the shear-thinning behavior tends to increase the heat

transfer.

Since Liang & Acrivos in the early of 70’s, there have been no experimental studies until

2016, where Darbouli et al. [27] investigated experimentally, using the MRI technique, the

Rayleigh-Bénard convection for shear-thinning fluids. The experimental cell is cylindrical

with an aspect ratio L = 3. The fluids used are aqueous solutions of xanthan gum at

different concentrations. These fluids are shear-thinning, weakly elastic and their viscosity

varies weakly with the temperature. At low concentration of xanthan gum, the temperature

difference at the onset of convection is small, the departure from Boussinesq approxima-

tions is weak and the convection takes place in the form of rolls for all the range of Ra

examined (1750 < Ra < 3500). Note that Bouteraa et al. [28] have demonstrated in the

framework of Boussinesq approximations, that near the threshold of convection, only rolls

are stable and their stability is reinforced by the shear-thinning behavior. By increasing

the concentration of xanthan gum, the zero shear viscosity increases and therefore a larger

temperature difference is needed to start the convection. The departure from Boussinesq

approximations becomes more significant and hexagons with upward motion in the centre

are selected past the onset of convection. For larger Rayleigh number, hexagons become

unstable with respect to rolls. For the highest concentration of xanthan gum, only hexagons

are observed in all the range of Ra considered. However, in the paper of Darbouli et al.

[27], the evolution of the wavenumber of the convective motions, that is of prime interest for

the nonlinear theory of instabilities, has not been addressed. Furthermore, the hexagonal

patterns are not clearly identified and the deviations from Boussinesq approximations have

not been quantified.

From theoretical point of view, using a weakly nonlinear analysis, Vare et al. [29]

demonstrated in the case of a a shear-thinning fluid with a thermodependent viscosity that

the band of stable wavenumbers of hexagons is open and decentered to the right, i.e. to
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wavenumbers larger than the critical one. It thus appears that for sufficiently large Rayleigh

number (depending on the viscosity contrast between the top and bottom), only wavenum-

bers larger than the critical one are allowed. To our best knowledge, there is no experimental

data about the variation of the size of the hexagonal convection cells in Rayleigh-Bénard

convection, when the temperature difference is increased above critical.

The objective of the present work is to provide an experimental support of the theoretical

analysis of Vare et al. [29] that we have extended here to take into account the variation of

the thermal expansion coefficient with temperature. We will show experimentally that the

size of the hexagons decreases with increasing the temperature difference. Physical mech-

anisms underlying this variation will be discussed. Besides this, additional experimental

data dealing with Rayleigh-Bénard convection in non-Newtonian fluids are provided. In

particular, we show the possibility of obtaining what might be called “re-entrant” hexagons.

This paper is organized as follows. In Sec. 2, an extension of the theoretical analysis of

Vare et al. [29] taking into account the temperature-dependence of the thermal expansion

coefficient which plays a significant role in the experimental work is given. In Sec. 3 we

describe the experimental set-up, the visualization method used, the rheological behavior

of the fluids used and the dependence of their properties on temperature. In Sec. 4, the

experimental results are presented and discussed mainly focusing on the evolution of the

wavenumber. Finally, conclusions are presented in Sec. 5.

II. THEORETICAL TOOLS

We consider a layer of a shear-thinning fluid of thickness d̂ confined between two imper-

meable horizontal plates, infinite in extent, which are perfect heat conductors. The fluid is

heated from below at temperature T̂1 = T̂0 + ∆T̂ /2 and cooled from above at temperature

T̂2 = T̂0 − ∆T̂ /2 with ∆T̂ > 0. The fluid has a thermal diffusivity κ̂ and viscosity µ̂0 at

zero-shear-rate. As in [9], the temperature dependency of the density

ρ̂ = ρ̂0

[
1− χ̂

(
T̂ − T̂0

)]
with χ̂ = α̂ + β̂

(
T̂ − T̂0

)
(4)
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will be taken into account only in the gravity term of the momentum equations. In the

absence of convection, the heat conducting state is described by

û = 0 and T̂c − T̂0 =
∆T̂

2

(
1− 2ẑ

d̂

)
, (5)

where û is the fluid velocity and T̂c the conductive temperature profile. The z-axis is directed

upwards with its origin located at the bottom plate. Using the units d̂2/κ̂, d̂, κ̂/d̂ and ∆T̂

for time, length, velocity and temperature, the dimensionless perturbation equations are:

∇ · u = 0, (6)
1

Pr

[
∂u

∂t
+ (u ·∇)u

]
= −∇p+Ra θ ez + 2Raγ1 (Tc − T0) θez + (7)

Raγ1 θ
2ez + ∇ · τ

∂θ

∂t
+ u ·∇θ = u · ez + ∇2θ, (8)

where

γ1 =
β̂∆T̂

α̂
. (9)

Here, ez denotes the unit vector in the vertical direction, p (x, t) and θ (x, t) represent the

pressure and temperature deviations from their values in the conductive state. The quantities

defined with a hat (̂.) are dimensional, while quantities without (̂.) are dimensionless. The

Rayleigh number, Ra, and the Prandtl number Pr are

Ra =
α̂ρ̂0 ĝ∆T̂ d̂3

κ̂ ˆ̄µ0

; Pr =
ˆ̄µ0

ρ̂0κ̂
(10)

The reference viscosity ˆ̄µ0 is the zero-shear-rate viscosity evaluated at T̂0. The fluid is

assumed to be purely viscous and shear-thinning. The non-dimensionalized deviatoric stress-

tensor τ is related to the strain-rate tensor:

γ̇ = ∇u+ (∇u)T (11)

by the relation

τ = µ(Γ)γ̇ where Γ =
1

2
γ̇ij γ̇ij (12)

is the second invariant of the strain-rate tensor. The viscosity µ is modeled by the Carreau

model and we assume that µ depends exponentially on temperature:

µ− µ∞
µ0 − µ∞

= exp
[
−b̂
(
T̂ − T̂0

)](
1 + λ̂2Γ̂

)(nc−1)/2

, (13)
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where µ0 = µ̂0/ ˆ̄µ0 and µ∞ = µ̂∞/ ˆ̄µ0 are the dimensionless dynamic viscosity at low and high

shear rate, nc < 1, the shear-thinning index and λ̂ the characteristic time of the fluid. The

charecteristic shear-rate for the transition from the Newtonian plateau to the shear-thinning

regime is determined by 1/λ̂. The infinite shear-viscosity µ∞ is generally associated with

the breakdown of the fluid and is frequently significantly smaller, (103 − 104) times smaller

than µ0 see Bird et al. [30]. This leaves three rheological parameters µ0, λ and nc and the

nondimensional viscosity in (13) writes

µ

µ0

= µb(z) exp (−cθ)
(
1 + λ2Γ

)(nc−1)/2
, (14)

where µb(z) = exp (c (z − 1/2)) is the viscosity profile at quiescent state, c = b̂∆T̂ a measure

of the viscosity contrast and λ = λ̂ d̂2/κ̂0 a dimensionless characteristic time of the fluid.

The viscosity ratio across the fluid layer is given by

r =
µb(z = 1)

µb(z = 0)
= exp(c) . (15)

For a small amplitude disturbance, the viscosity can be expanded about the hydrostatic

solution

µ = µb(z) [1− cθ + ...]

[
1 +

(
nc − 1

2

)
λ2Γ + ...

]
. (16)

At nonlinear order Taylor expansion of (1 + λ2Γ)
nc−1

2 , a relevant rheological parameter ap-

pears, i.e. the degree of shear-thinning at the onset of convection:

Sth =
1− nc

2
λ2 =

∣∣∣∣∂µ∂Γ

∣∣∣∣
Γ=0,z=1/2

. (17)

Equations (6) - (8), (12) and (14) have to be completed by appropriate boundary conditions.

For the velocity field, no-slip boundary conditions are considered. For the temperature

deviation, the thermal conductivity of the boundaries is assumed much larger than that of

the fluid, so that their temperature remains fixed. The boundary conditions are then

u = v = w = θ = 0 on z = 0, 1 . (18)

A. Linear stability analysis: critical Rayleigh number and wavenumber

In the linear theory u and θ are assumed infinitesimal and the nonlinear terms in the

perturbation equations are neglected.“ At this stage, non-Newtonian effects do not come
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FIG. 1. Variation of the critical Rayleigh number (a) and the critical wavenumber (b) as a function

of the viscosity ratio for different values of the parameter γ1 defined in equation (9). (1) γ1 = 0,

(2) γ1 = 0.1, (3) γ1 = 0.2, (4) γ1 = 0.3, (5) γ1 = 0.4, (6) γ1 = 0.5 .

into play”. We seek a normal mode solution

(u, v, w, θ) = (U11, V11,W11, G11) f(x, y) exp(σ t) , (19)

where f(x, y) = exp (ikxx+ ikyy) is the planform function, k = (kx, ky, 0) the horizontal

wave vector and σ = σr + iσi a complex number. Substituting (19) into the linearized

perturbation equations, lead to an eigenvalue problem which is solved by a Chebyshev

collocation method. It is easy to show that all eigenvalues of the linearized problem are real

(σi = 0), i.e. the convection occurring initially is stationary. By setting σr = 0, one obtains

the marginal stability curve Ra(k), where k is the norm of the eigenvector k. The minimum

of Ra(k) gives the critical Rayleigh number Rac and the corresponding wavenumber kc. The

critical conditions Rac and kc are the same as those for a Newtonian fluid. Figure 1 displays

the variation of the critical number Rac for the onset of convection as well kc the critical

wavenumber as a function of the viscosity ratio r for different values of the parameter γ1.

For an exponential law of the viscosity as a function of temperature and for the range of the

parameters considered, it is observed that Rac increases with increasing the viscosity ratio

between the top and the bottom walls. This is accompanied by a very weak decrease of the

critical wavenumber as the viscosity ratio increases. In contrast, an increase of γ1 tends to

reduce Rac and increases slightly kc.
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B. Weakly nonlinear analysis

As it is known, linear stability analysis gives the critical Rayleigh number for instability

onset and determines the modulus kc of the critical wave vector k. However, the direction

of k is arbitrary because of the isotropy of the extended horizontal plane. In addition any

linear combination of normal modes Ap exp (ikp · r) (U11(z), V11(z),W11(z), G11(z)) where

r = (x, y), kp = (kpx, kpy, |kp| = kc) and Ap are constant coefficients is a solution of the

linear problem, i.e. there is also a pattern degeneracy. The pattern selection is determined

by the nonlinear terms. A weakly nonlinear analysis can be adopted as a first approach to

investigate nonlinear effects in the competition, existence and stability of rolls and hexagons.

Hereafter, we consider the case where the wavevectors lie on a hexagonal lattice

(u, v, w, θ) =

p=3∑
p=1

Ap (U11, V11,W11, G11) exp ikp · r + c.c.+ h.o.t. , (20)

where “c.c.” denotes the complex conjugate of the prior expression and “h.o.t.” stands for

higher order terms. The hexagon patterns are made of three pairs of wavevectors at 2π/3 an-

gles apart : k1 = kcex, k2 = kc
(
−(1/2)ex +

(√
3/2
)
ey
)
and k3 = kc

(
−(1/2)ex −

(√
3/2
)
ey
)
.

As the Rayleigh number is increased above the onset Rac, the growth-rate of the perturba-

tion is positive for any wavenumber within a band O (
√
ε) around the critical wavenumber.

The effect of the small band of unstable wavenumbers around kc, is to modulate the envelope

of the carrier wave, exp (ikp · r), so that the amplitude Ap varies slowly in time and space.

The slow time variable T = εt and the slow variables space X =
√
ε x and Y =

√
ε y are

introduced. We then write

(u, v, w, θ) =

p=3∑
p=1

Ap(X, Y, T ) (U11, V11,W11, G11) exp (ikp · r) + c.c.+ h.o.t . (21)

A multiple scale perturbation theory developed in the vicinity of the onset allows to deter-

mine the evolution equation for Ap(X, Y, T ). Details can be found in [29] and references

therein. Up to third order in perturbation equations, the spatio-temporal evolution of the

amplitude Ap is described through the equations
∂A1

∂t
=

ε

τ0

A1 +
ξ2

0

τ0

(n1 ·∇Hx)2 + ζA∗2A
∗
3 − (22)

g1|A1|2A1 − g2

(
|A2|2 + |A3|2

)
A1 +

iα1 [A∗2 (n3 ·∇Hx) + A∗3 (n2 ·∇Hx)A∗2] +

iα2 [A∗2 (τ3 ·∇Hx)A∗3 + A∗3 (τ2 ·∇Hx)A∗2] ,

10



where, A∗i is the complex conjugate of Ai, ∇Hx the horizontal gradient for the fast variables,

τ0 the characteristic time for the instability to grow, ξ0 the coherence length, ζ the coefficient

of quadratic nonlinearity describing non-Boussinesq effects, g1 refers to the self-saturation

coefficient and g2 coefficient of cubic interaction of rolls of different orientation. The terms

with α1 account for distortions in the direction of rolls and therefore corresponds physically

to wavenumber dilatation. The coefficient α1 is positive and increases with increasing r and

γ1. The terms with α2 account for distortion in the hexagonal form. It is smaller than α1.

The equations for A2, A3 are obtained by cyclic permutation of the indices. Here ni is the

unit vector oriented along the wavevector ki, and τi orthogonal to ni. Coefficients of Eq.

(22) have been calculated and correlations are proposed in Appendix B. Note that the the

terms with α1 and α2 render the system (22) nonpotential [31].

The homogeneous and stationary solutions of equation (22), including slightly off-critical

wavenumber in the amplitude (Ap = Ap exp (iqp · r)) are: (a) rolls A1 6= 0, A2 = A3 = 0,

hexagons with A1 = A2 = A3 and mixed states with A1 6= 0,A2 = A3 6= 0. A linear

stability analysis of these stationary and homogeneous solutions with respect to homogeneous

perturbations shows that the mixed state is always unstable, the hexagons are stable in the

range εa ≤ ε ≤ εh, while the rolls are stable when g2 > g1 and ε ≥ εr, where the transition

thresholds εa, εh, εr are given by:

εa = −(ζ + 2α1q)
2 τ0

4 (g1 + 2g2)
+ ξ2

0q
2 , (23)

εh =
τ0 (ζ + 2α1q)

2 (2g1 + g2)

(g1 − g2)2 + ξ2
0q

2 , (24)

εr =
τ0g1 (ζ + 2α1q)

2

(g2 − g1)2 + ξ2
0q

2 (25)

An example of the bifurcation diagram is shown in figure 2. It is obtained for a Carreau

fluid with a shear-thinning degree Sth = 5 × 10−5, k = kc (q = 0), γ1 = 0.2 and a viscosity

ratio r = 2. Hexagons bifurcate transcritically from the conductive state where they are

unstable. Both hexagons and the conductive state are stable in the range εa ≤ ε ≤ 0 and

both hexagons and rolls are stable in the range εr ≤ ε ≤ εh. In this range, rolls and hexagons

solutions are linked via a branch of mixed modes.

Variations of εa, εr and εh as a function of the viscosities ratios r for different values of the

shear-thinning degree Sth and two values of the parameter γ1 are depicted in figure 3. Overall,
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FIG. 2. Bifurcation diagram for hexagons in the case where g2 > g1 with the parameters r = 2, q =

0(k = kc), γ1 = 0.2 and Sth = 5× 10−5. The amplitude |A1| is plotted against the distance to the

threshold ε, for the roll-solution (labelled R), for the mixed mode branch (labelled M) and for the

hexagon solution labelled (H). Thick lines indicate stable solutions and thin lines represent unstable

solutions.

the thermodependency of the viscosity and the parameter γ1 (equation 9) favor convection in

form of hexagons and their stability whereas shear-thinning effects favor convection in form

of rolls and their stability. In other words, the domain of stability of hexagons increase with

increasing r and γ1 and decreases with increasing shear-thinning effects. One can also note

in figures 3(a) and 3(b) that |εa| increases with increasing Sth as shear-thinning effects favor

a subcritical bifurcation [28]. The correlations proposed by Busse [9] for a Newtonian fluid

assuming a linear variation of the viscosity with temperature (see Appendix E) are displayed

for comparison. As it can be observed, the difference between the linear and the exponential

models increases with increasing r. Another kind of destabilizing perturbations are those

involving spatial modulations over distances much larger than the basic wavelength. The

amplitude of a slightly distorted hexagons is written as

Ap = (Ap+ rp) exp [i (qxp + φp)] , p = 1, 2, 3 (26)

where xp = np · r, |rp (x1, x2, x3, t) | << 1 is the amplitude of the perturbation, and

|φp (x1, x2, x3, t) | << 1 is the phase of the perturbation respectively. Substituting Ap by

its expression 26 in the amplitude equations leads after linearization to six equations in rp

and φp. In the case of long wave length limit of the perturbation, it is shown [31–34] that

the amplitudes rp and the total phase Φ = φ1 +φ2 +φ3 are fastly relaxing and therefore can

be eliminated adiabatically. That leaves φ2 and φ3 which are used to express a vector phase

12



1 1.5 2 2.5 3
-3

-2

-1

0
10

3  
  

a 

(1)

(2)

(3)

1 1.5 2 2.5 3
-10

-8

-6

-4

-2

0

(3)

(2)

(1)

(a) (b)

1 1.5 2 2.5 3
0

0.05

0.1

0.15

(3)

(2)

(1)

1 1.5 2 2.5 3
0

0.2

0.4

0.6

(1)

(2)

(3)

(c) (d)

1 1.5 2 2.5 3
0

0.2

0.4

0.6

(1)

(2)

(3)

1 1.5 2 2.5 3
0

0.5

1

1.5

2

(3)

(2)

(1)

(e) (f)

FIG. 3. Variations of εa, εr and εh as a function of r for three values of the shear-thinning degree

Sth. The Prandtl number is fixed Pr = 100. (a) γ1 = 0, (b) γ1 = 0.3, (c) γ1 = 0, (d) γ1 = 0.3,

(e) γ1 = 0, (f) γ1 = 0.3. Curve (1) Sth = 0, i.e. Newtonian fluid; curve (2) Sth = 5 × 10−5 and

curve (3) Sth = 10−4. The dashed line is the correlation proposed by Busse [9].

Φ =
[
−(φ2 + φ3), (φ2 − φ3) /

√
3
]
. The following phase diffusion equation is then obtained:

∂Φ

∂t
= D⊥∇2Φ +

(
D‖ −D⊥

)
∇ (∇ ·Φ) , (27)

where D⊥ and D‖ are the transverse and longitudinal diffusion equations. Their expressions

13



(a) (b)

FIG. 4. Hexagon stability diagram for a shear-thinning fluid with Sth = 5 × 10−5 at Pr = 100

and two different values of the parameter γ1. The viscosity ratio is fixed, r = 2. (a) γ1 = 0, (b)

γ1 = 0.2. Curve (1) D⊥ = 0, curve (2) D‖ = 0, curve (3) bifurcation from the conductive state to

convection with hexagons, curve (4) bifurcation from hexagons to rolls.

as a function of ξ0, τ0, α1, α2, g1 and g2 are given in Appendix C. Following [31–35], the

phase Φ can be split into a transverse part Φt that satisfies ∇ ·Φt = 0 and a longitudinal

part that satisfies ∇×Φ` = 0. This leads to the uncoupled phase diffusion equations:

∂Φ`

∂t
= D‖Φ` ,

∂Φt

∂t
= D⊥Φt . (28)

The hexagonal patterns are stable to phase perturbations provided that D⊥ > 0 and D‖ > 0.

In figure 4 we show the phase stability diagrams for two values of the parameter γ1. The

curves D⊥ = 0 and D‖ = 0 determine the boundary instability to transverse and longitudi-

nal phase perturbations respectively. We have also included the amplitude stability curves

εh (curve 4) and εa (curve 3). Hexagons are stable in the shaded region. For Carreau fluid

with Sth = 5× 10−5, r = 2 and γ1 = 0, the region of stability to amplitude and phase modes

is closed and bent to the right mainly owing to the positive sign of α1. With increasing

the parameter γ1, the stability domain of hexagons increases significantly and it is more

decentered towards the right. For the two cases, the domain of hexagons stability is mainly

delimited by the amplitude stability curves and the transverse phase instability boundary.

In the domain where the hexagons are stable, the variation of their amplitude as a func-

tion of the shear-thinning degree and the thermodependency of the fluid properties can be

illustrated through the convective heat transport. The Nusselt number, Nu, the ratio of

the total heat flux to the purely conductive heat flux in the absence of fluid flow can be

14
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FIG. 5. Variation of Nusselt as a function of the distance to the onset of convection ε for Newtonian

and Carreau fluids with r = 2.5 and γ1 = 0.36. (1) α = 0 (Newtonian fluid), (2) α = 1.25× 10−5,

(3) α = 2.5× 10−5.

calculated at the lower plate, as

Nu = 1−
(
∂θ̄

∂z

)
z=0

= 1−
(
dT1(z)

dz

)
z=0

(
|A1|2 + |A2|2 + |A3|2

)
, (29)

where the overbar denotes the horizontal average over one wavelength and T1(z) is the

correction at the second order of the conductive temperature profile. It arises from the

interaction of the fundamental mode with its complex conjugate. Note that (dT1/dz)z=0 < 0.

In the case of homogeneous hexagons, with k = kc, the amplitude is given by

|A1| = |A2| = |A3| =
ζ +

√
ζ2 + 4ε (g1 + 2g2) /τ0

2 (g1 + 2g2)
. (30)

Figure 5 shows the variation of the Nusselt number as a function of the distance to the onset

of convection, ε, for Newtonian and Carreau fluids with fixed r and γ1. As expected, the

Nusselt number increases with increasing shear-thinning effects.

Concerning the influence of non-Boussinesq effects on heat transfer, it is illustrated in figure

6. We have represented Nu as a function of ε either for increasing the viscosity ratio (figure

6(a)) or increasing γ1 (figure 6(b)). The heat transfer is enhanced by non-Boussinesq effects.

Actually, ζ in equation (30) is a coefficient describing non-Boussinesq effects. For moderate

departures from Boussinesq approximation (say |Q| ≤ 5) and for Pr ≥ 100, ζ can be related

to the parameter Q introduced by Busse [9] by the following correlation:

ζ = 3.57 |Q|. (31)
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FIG. 6. Variation of Nusselt number as a function of the distance to the onset of convection ε for

a Carreau fluid with Sth = 5× 10−5 and Pr = 100. (a) γ1 = 0.36, (1) r = 1, (2) r = 1.5, (3) r = 2

and (4) r = 2.5. (b) r = 2, (1) γ1 = 0, (2) γ1 = 0.1, (3) γ1 = 0.2, (4) γ1 = 0.3 and (5) γ1 = 0.4.

Equations (29)-(31) show that near the onset, the deviation of Nu from the Boussinesq

value is of order Q2. The heat transfer enhancement is related to the increase in convection

amplitude with the strength of non-Boussinesq effects. Solomatov & Jain [36] have shown

numerically that this trend remains valid even for viscosity contrasts up to 1010 which can

occur in the interior of planets.

III. APPARATUS, FLUIDS USED AND EXPERIMENTAL PROCEDURE

A. Experimental set-up

The fluid is confined in a cylindrical container of radius R̂ = 60 mm and height adjustable

at d̂ = 15 mm and d̂ = 20 mm. The aspect ratio L = R̂/d̂ is 4 and 3 respectively.

The lateral walls are made of polymethyl methacrylate (PMMA) of 10 mm thick which is

an insulated thermoplastic material. To allow shadowgraph visualizations of the thermo-

convective pattern, the top and bottom horizontal plates are transparent. The plates used

of thickness 3 mm are made of sapphire. This material has excellent optical properties and a

large thermal conductivity, k̂p = 35W.m−1.K−1, as compared to that of the fluids used. The

top and bottom plates are surrounded by a cylindrical chamber, made of PMMA, containing

circulating water at temperature T̂t and T̂b respectively. The schematic of the experimental

setup is displayed in figure 7. The circulating water is provided by two thermostatic baths.
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TABLE I. Characteristics of the optical arrangement

Focal length of the focusing lens (mm) 400

Lens diameter (mm) 200

pinhole diameter (mm) 0.3

Camera model Lw115M

Camera Lens: Focal range (mm) 13-130

: Iris F5.6-F32C

The water bath temperatures are set constant to within ±0.01 ◦C. The temperatures of

the top and bottom plates are measured with Pt-100 sensors potted at outlet and inlet of

circulating water. Heat losses are limited by fixing the mean temperature of the fluid layer

to T̂0 = 24 ◦C, which corresponds to the average temperature of the handling room. It

can be shown straightforwardly that more than 99 percent of the measured temperature

difference T̂b − T̂t was across the fluid layer, ∆T̂ . In order to avoid possible consequences

of time dependence of the variation of temperature, ∆T̂ was varied extremely slowly. The

temperature difference, across the fluid layer was varied by step of 0.1 ◦C and was held at

each step during 180 minutes. Hence, during one day, the increase of ∆T̂ was of 0.8 ◦C.

That means that the experiments had to run continously for a couple of weeks in order to

reach the maximal temperature difference required. Note that the vertical diffusion time

t̂v ≡ d̂2/κ̂ ≈ 28 and 50minutes for d̂ = 15 and 20mm respectively (κ̂ is the thermal diffusivity

of the fluid used).

Observation of the convective patterns is realized by using standard shadowgraph technique

(figure 8). This technique relies upon the variation of the refractive index of a fluid with its

density and hence its temperature. A parallel light beam crossing the fluid layer is focused

where the the refractive index is large (cold stream) and diverges where the refractive index

is low (warm stream). The modulation of the light intensity reveals the structure of the

convection pattern. In order to avoid chromatic aberrations in the optical system and

the fluid layer and to avoid also the production of interference fringes that obscure the

shadowgraph effect, the light source should be monochromatic and incoherent. Therefore

Light Emitting Diode LED was found to be a good compromise. To get a pseudo-point

source, a 0.3 mm diameter pinhole was glued above the LED surface. This technique is
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FIG. 7. Cross-section of the experimental apparatus: the fluid layer lies between two sapphire

plates.

not perfect and has some drawbacks [37], however, it helps to have good results. For the

characteristics of the optical arrangement see table I.

B. Physical properties of the fluid

Two types of fluids are used. The first one is a glycerol solution. It is used as a Newtonian

fluid for the validation of the experimental set-up. The second one corresponds to aqueous

xanthan gum solutions at different concentrations; these are shear-thinning fluids.

To study the rheological behavior of each fluid, an AR2000 rheometer is used with a

cone and plate geometry characterized by a diameter of 60 mm and an angle of 1.036 ◦.

The rheograms are measured at different temperatures to account for the variation of the

viscosity with temperature.

1. Newtonian fluid

The Newtonian fluid used in this study is an anhydrous glycerol solution, whose thermo-

physical properties can be found in [38]. Based on the data given in [38], Stengel et al. [39]

proposed the following relations for the thermal capacity Ĉp, the density ρ̂ and the thermal
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CCD camera

FIG. 8. Optical arrangement for shadowgraph visualizations.

conductivity k̂ in the temperature range T̂ = 0− 50◦C :

Ĉp = 41.866× (54 + 0.15× T ) [J/(kg.◦C)], (32)

ρ̂ = 1257

[
1− α̂

(
T̂ − 24

)
− β̂

(
T̂ − 24

)2
]

[kg/m3] (33)

α̂ = 47.8× 10−5 [1/◦C] and β̂ = 0.2× 10−5 [1/◦C]2 (34)

k̂ = 0.286 [W/(m.◦C)] . (35)

The viscosity of glyerol was measured at different temperatures between 10◦C and 40◦C. In

this temperature range, µ̂(T̂ ) can be fitted by an exponential law:

µ̂(T̂ ) = µ̂(T̂0)× exp(−b̂× (T̂ − T̂0)) , (36)

with

b̂ = 0.083 ◦C−1 and µ̂(T̂0) = 0.956Pa.s (37)

Note that for each rheological measurement, it is important to change the fluid sample in

order to prevent that glycerol absorbs moisture from the atmosphere, since it is hygroscopic.

The Prandtl number evaluated at the mean temperature T̂0 is very large: Pr = 8064.
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FIG. 9. Variation of the viscosity of the anhydrous glycerol viscosity with temperature T̂ . The

stars are our measurements. The dashed line is the exponential fit Eq.(36)

2. Shear-thinning fluids

The shear-thinning fluids used in our experiments are aqueous polymeric solutions of

Xanthan gum solutions obeying to the Carreau rheological model. Aqueous solutions were

prepared at two concentrations, 1000 ppm and 1200 ppm, by adding Xanthan powder in

small amounts, which were measured by an electronic high precision weighing scale, into

deionized water. A transparent and homogeneous solution is obtained after few hours of

gentle stirring.

The thermo-physical properties of xanthan gum solution 1000 ppm have been measured by

means of a calorimeter (µ dsc3 − SETARAM). In the range of temperature [20◦C, 60◦C],

the following relations can be obtained :

Ĉp = 4225.2 + 0.895× T [J/(kg.◦C)], (38)

k̂ = 0.5153 + 0.0022× T [W/(m.◦C)]. (39)

As the thermo-physical properties of xanthan solutions vary little in the range of concen-

trations aforementioned, we have only measured these properties for the concentration of

0.1%. The density and the thermal expansion coefficient were supposed identical with that

of pure water. Based on the data compiled by Mess in (http:/www.thermexcel.com), our
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FIG. 10. Flow curves of the xanthan gum solutions at T̂ = 24 ◦C. The dashed lines correspond to

the Carreau model given by Eq.42. � : 1200 ppm xanthan concentration and �: 1000 ppm xanthan

concentration

best estimate of the density of water in the temperature range T̂ = 0− 100◦C is

ρ̂ = 997.2965

[
1− α̂

(
T̂ − T̂0

)
− β̂

(
T̂ − T̂0

)2
]

[kg/m3], (40)

α̂ = 2.48× 10−4 [1/◦C], β̂ = 5.01× 10−6 [1/◦C]2 (41)

Flow curves are displayed in figure 10 for the two xanthan gum concentrations at T̂ =

T̂0 = 24◦C. The shear viscosity µ̂ decreases with increasing the shear rate γ̇. Xanthan gum

solutions can be fitted by the Carreau model

µ̂ = µ̂0

(
1 + (λ γ̇)2

)nc−1
2 . (42)

The Carreau rheological parameters are given in Table II. The variation of the viscosity

with temperature has been also investigated. It is found at low and moderate shear-rates,

the thermodependency of the viscosity can be described by an exponential model:

µ̂0(T̂ ) = µ̂0(T̂0) exp
[
−b̂
(
T̂ − T̂0

)]
. (43)

The coefficient b̂ (Table II) is practically four times smaller than that of the Glycerol. As

for the Newtonian fluid considered, the Prandtl number for the shear-thinning fluids used

is very large, we have Pr = 3214 and 6129 for xanthan gum at 1000 ppm and 1200 ppm,

respectively.
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FIG. 11. Xanthan gum at 1200 ppm. Variation of µ̂0 as a function of temperature. (�) Experi-

mental data. (—) Exponential fit.

concentration nc λ̂(s) µ̂0(Pa.s) b̂(◦C−1) Sth(AR = 4) Sth(L = 3)

1000 ppm 0.38 9.9 0.43 2.2× 10−2 1.1× 10−5 0.35× 10−5

1200 ppm 0.36 17.2 0.82 2.25× 10−2 3.4× 10−5 1.05× 10−5

TABLE II. Carreau rheological parameters for xanthan gum solutions.

IV. EXPERIMENTAL RESULTS

In our experiments, the temperature difference ∆T̂ between the top and bottom walls is

increased by keeping constant the mean temperature T̂0.

A. Newtonian fluid

Experiments were made using an anhydrous glycerol solution. The thickness of the fluid

layer is d̂ = 15mm giving an aspect ratio L = 4. At the onset of convection, the temperature

difference between the top and the bottom walls is ∆T̂c,exp = 7.9 ± 0.1 ◦C, and the critical

Rayleigh number Rac,exp = 1742 ± 20. The viscosity ratio r, the coefficients γi and the

Busse parameter are: rc = 1.92, γ0c = 3.84 × 10−3, γ1c = 0.033, γ2c = −0.67, γ4c = 0.02

and Qc = −2.18, respectively. The extent of departure from Boussinesq approximations is

caused mainly by the variation of the viscosity with temperature.

For an infinitely extended fluid layer with r = 1.92 and γ1 = 0.033, the linear theory gives
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Rac(∞) = 1717. For a cylindrical geometry with insulated lateral walls, Charlson& Sani

[17] have shown that Rac(L) is given by

Rac(L) =
π2ζ2

0

4L2
Rac(∞) +Rac(∞), (44)

with ζ2
0 = 0.149. In our case, we obtain Rac(L = 4) = 1756. An additional correction due

to the finite thermal conductivity of the top and bottom plates: the ratio of conductivi-

ties of sapphire and water is σ ≈ 120. Using figure 1 given in [23], we obtain a correction

∆Rac = −6. Therefore, taking into account the corrections due to the finite aspect ratio

and finite thermal conductivity of the top and bottom walls we obtain Rac,th = 1750. The

relative difference between Rac,th and Rac,exp is less than 1%.

Figure 12 shows shadowgraph pictures obtained for different values of the temperature dif-

ference across the fluid layer. Close to the onset at Ra = 1809, irregular convection patterns

are observed (figure 12(2)). One may distinguish rolls and squares. In the case of an infinite

aspect ratio with the assumption that the viscosity varies linearly with temperature, Busse

& Frick [40] found that near the critical conditions, rolls are preferred for low values of r,

but squares are preferred for large values of r. The change from rolls to squares occurs at

r ≈ 2, which is close our experimental value. It might explain the occurence of irregular

patterns. For larger Ra, figure 12(3)-(4) convection occurs in form of rolls. Note that the

rolls has a tendency to form an "arch", they terminate with their axis perpendicular to the

side wall. This configuration is well known in the literature [41, 42] and observed in different

geometries when the ratio between the thermal conductivities of the sidewalls and that of

the fluid is close to 1 [42]. We have also noticed a slight decrease of the wavenumber with

increasing Ra in agreement with the literature [6], [7] [5] and [8]. For instance, we have

obtained k = 3.4± 0.1 at Ra = 2440 and k = 3.2± 0.1 at Ra = 2670.

B. Shear-thinning fluid

1. Xanthan gum solution at 1200 ppm with a fluid layer depth 15 mm (L = 4)

For the xanthan gum solution at 1200 ppm with d̂ = 15mm, the shear-thinning degree

is Sth = 3.4 × 10−5. The onset of convection is observed at ∆T̂ = 23.0 ± 0.1◦C leading

to Rac,exp = 1704 ± 8. The viscosity ratio, the coefficients γi and the Busse parameter

are: rc = 1.68, γ0c = 5.86 × 10−3, γ1c = 0.46, γ2c = −0.55, γ3c = 0.09, γ4c = 5 × 10−3
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FIG. 12. Glycerol with d̂ = 15mm. Shadowgraph pattern in the 15mm deep layer at different values

of the temperature difference between the top and bottom walls. (1) ∆T̂ = 7.8◦C, Ra = 1720; (2)

∆T̂ = 8.2◦C, Ra = 1809, Q = −2.26; (3) ∆T̂ = 12.0◦C, Ra = 2646, Q = −3.38; (4): ∆T̂ = 16.3◦C,

Ra = 3594, Q = −4.73.

and Qc = −3.90 respectively. The departure from the Boussinesq approximation is mainly

induced by the variation of the viscosity and thermal expansion with temperature.

From theoretical point of view, the critical Rayleigh number for an infinite extended fluid

layer, with r = 1.68 and γ1 = 0.49, is Rac(∞) = 1694. Taking into account the corrections

due to the finite size of the experimental cell and the finite thermal conductivity of the

top and bottom walls, we obtain Rac,th = 1720. The relative difference between Rac,th and

Rac,exp is about 1%.

Figure 13 shows shadowgraph pictures obtained when the temperature difference across

the fluid layer increases above threshold. The central dark spot corresponds to ascending

hot fluid. The white contours outlining the hexagonal cells correspond to descending cold
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fluid. They are brighter with increasing ∆T̂ , i.e. with increasing the intensity of convec-

tion. Hexagons are observed for all the range of ∆T̂ considered, 23◦C < ∆T̂ < 40◦C, wich

corresponds to 1704 ≤ Ra ≤ 2960. This is consistent with the large Q values, i.e. strong

deviations from Boussinesq approximations. For a fluid layer of infinite horizontal extent

with parameters r and γ1 taken at the critical conditions, r = rc = 1.68, γ1 = γ1c = 0.46

and assumed constant, the weakly nonlinear analysis predicts that hexagons with k = kc

(q = 0) are stable up to Rah,th = 3642, whereas the solution in the form of rolls is stable

from Ra ≥ Rar,th = 2264.

It is worthy to observe the increase of the number of the cells when the temperature differ-

ence increases. An increase of the number of cells is equivalent to a decrease of the cell size

or an incease of the wavenumber. The main mechanism whereby the size of the hexagonal

cells decreases as ∆T̂ is increased is the nucleation of new cells at the periphery of the fluid

layer, where probably the largest non conformity of the vertical temperature gradient occurs.

Another mechanism observed is the cellular division (mitosis).

In figure 14, we have reported in the plane (q = k − kc, ε = (Ra−Rac)/Rac) the measured

wavenumber for different values of the distance to the threshold of convection. The exper-

imental data are inside the domain of stable wavenumbers calculated using the parameters

r = 1.68, γ1 = 0.46 and Sth = 3.3 × 10−5. It seems that q = (k − kc) varies linearly with ε

between ε = 0 and ε ≈ 0.8. The average slope which is indicated by a dashed line on figure

14 is q = 0.47 ε. It is worthy to note that a wide range of theoretical stable wavenumbers

are not selected in practice.

2. Xanthan gum solution at 1200 ppm with a fluid layer depth d̂ = 20mm, L = 3

With increasing the thickness of the fluid layer, the temperature difference needed for the

onset of convection decreases and consequently the departure from Boussinesq approxima-

tion is reduced. Hence, for the xanthan gum solution at 1200 ppm with d̂ = 20mm, the onset

of convection was observed at ∆T̂ = 11.0± 0.1◦C which corresponds to Rac,exp = 1930± 20.

The shear-thinning degree of the fluid is Sth = 1.05 × 10−5. The viscosity ratio, the coeffi-

cients γi and the Busse parameter are: rc = 1.28, γ0c ≈ 3.0× 10−3, γ1c = 0.25, γ2c = −0.27,

γ3c = 0.046, γ4c = 2.5× 10−3 and Qc = −1.95 respectively.

For an infinite aspect ratio, with r = rc = 1.28 and γ1 = γ1c = 0.25, the critical Rayleigh
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FIG. 13. Xanthan gum solution at 1200 ppm. Shadowgraph pattern in the 15mm deep layer at

different values of the temperature difference between the top and bottom walls. (1)∆T̂ = 26.0 ◦C,

Ra = 1926, Q = −4.21; (2) ∆T̂ = 31.5 ◦C, Ra = 2336, Q = −5.26; (3) ∆T̂ = 38.25 ◦C, Ra = 2837,

Q = −6.37; (4) ∆T̂ = 39.0 ◦C, Ra = 2890, Q = −6.75.

number is Rac(∞) = 1706. Taking into account the corrections due to the finite size of the

experimental cell and the finite thermal conductivity of the top and bottom walls, we obtain

Rac,th = 1769. The relative difference between Rac,th and Rac,exp is about 9%.

Shadowgraph pictures obtained when the temperature difference across the fluid layer in-

creases are shown in figure 15. In the range Rac,exp = 1930 ≤ Ra ≤ 5047 convection takes

place only in form of hexagons. An illustration is given in figure 15(1). Then further in

the range 5047 ≤ Ra ≤ 5400, hexagons and rolls coexist as it is shown in figures 15(2)-(4).

At Ra > 5400 only hexagons are observed. An illustration is given in figure 15(6). Such

a sequence: hexagons → rolls + hexagons → hexagons was never observed in the case of

liquids. This restabilization of hexagons which can be termed as “reentrant hexagons”, [19]
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FIG. 14. Xanthan gum solution at 1200 ppm with d̂ = 15mm. Hexagon stability diagram for

r = 1.68, γ1 = 0.46 and Sth = 3.3×10−5. Curve (1) D⊥ = 0, curve (2) D‖ = 0, curve (3) bifurcation

from the conductive state to convection with hexagons, curve (4) bifurcation from hexagons to rolls.

(+) Experimental data: variation of q = (k − kc) in the range of ε values considered.

is a consequence of the increase of the strength of non-Boussinesq effects with increasing the

temperature difference, i.e. with increasing Rayleigh number [18]. In figure 16(a) we have

represented in the plane (q, ε) the domain of stable wavenumbers predicted by the weakly

nonlinear theory using the parameters r and γ1 evaluated at the critical conditions. We

have reported our experimental results. Stable hexagons are observed outside the domain

of stability predicted by the theory. This discrepancy is a consequence on one hand of the

finite aspect ratio of the experimental setup and on the other hand, in the weakly nonlinear

analysis, the stability domain of hexagons is determined using the viscosity ratio and the

coefficient γ1 evaluated at the critical conditions, i.e. the increase of these parameters with

increasing ∆T̂ is not taken into account.

In figure 16(b), we have reported our experimental data for all the range of the values of

ε considered. It seems that for ε between ε = 0 and ε ≈ 1.5, the difference q = k − kc in-

creases linearly with ε as q = 0.15 ε. This increase is weaker than that found in the previous

case, because the strength of non-Boussinesq effects is smaller. However, for 1.8 < ε < 2.4

(5400 < Ra < 6700), the size of hexagonal cells remains practically constant.
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FIG. 15. Xanthan gum solution at 1200 ppm. Shadowgraph patterns in the 20mm deep layer

(L = 3) at different values of the temperature difference between the top and bottom walls. (1)

∆T̂ = 24.5◦C, Ra = 4302, Q = −3.90; (2) ∆T̂ = 29 ◦C, Ra = 5092, Q = −4.95; (3) ∆T̂ = 29.5 ◦C,

Ra = 5181, Q = −4.95; (4) ∆T̂ = 30.5 ◦C, Ra = 5356, Q = −4.95; (5) ∆T̂ = 31 ◦C, Ra = 5443.7,

Q = −5.31; (6) ∆T̂ = 38 ◦C, Ra = 6673, Q = −6.42.

3. Xanthan gum solution at 1000 ppm with a fluid layer depth d̂ = 15mm, L = 4

In the case of xanthan gum solution at 1000 ppm with d̂ = 15mm, the onset of con-

vection was observed at ∆T̂c,exp = (12.4± 0.1)◦C, leading to Rac,exp = 1752 ± 14. The
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FIG. 16. Xanthan gum solution at 1200 ppm with d̂ = 20mm. (a) Hexagon stability diagram

for r = 1.28, γ1 = 0.25 and Sth = 1.05 × 10−5. Curve (1) D⊥ = 0, curve (2) D‖ = 0, curve

(3) bifurcation from the conductive state to convection with hexagons, curve (4) bifurcation from

hexagons to rolls. (+) Experimental data: (q = (k − kc)) as a function of the distance to the

threshold of convection. (b) Experimental variation of q in all the range of ε considered.

viscosity ratio, the coefficients γi and the Busse parameter are: rc = 1.31, γ0c ≈ 3.0× 10−3,

γ1c = 0.25, γ2c = −0.265, γ3c = 0.046, γ4c = 2.5 × 10−3 and Qc ≈ −1.94, respectively. The

shear-thinning degree evaluated at the onset of convection is Sth = 1.1× 10−5.

For an infinite aspect ratio, with r = 1.31 and γ1 = 0.25, the linear theory givesRac(∞) = 1703.

Taking into account the corrections due to the finite aspect ratio and finite thermal conduc-

tivity of the top and bottom wall, we obtain Rac,th = 1729. The relative difference between

Rac,th and Rac,exp is about 1%.

Figure 17 shows shadowgraph pictures obtained when the temperature difference across the

fluid layer increases above threshold. In figure 17(1) (Ra = 2331), hexagonal patterns are

observed. From Ra = Rar,exp ≈ 2910 and with increasing Ra, rolls invade progressively the

cell as it is shown in figures 17(2)-(3). It is observed that the rolls develop from the lateral

wall. In a quite small range of Rayleigh numbers, Rar,exp = 2910 < Ra < Rah,exp ≈ 3376,

stable coexistence of hexagons and rolls is observed. From Ra = Rah,exp, only rolls are ob-

served as it is illustrated in figure 17(4). As indicated previously, the rolls end with their axis

perpendiculat to to the lateral wall. The values of Rar, Rah as well as the ratio Rah/Rar

are reported in Table III. The theoretical values of the thresholds Rar and Rah are smaller
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Method Rac Rar Rah (Rah −Rar) /Rac

Theory 1729 1905 2338 0.25

Experiment 1752 2910 3376 0.26

TABLE III. Xanthan gum solution at 1000 pppm with d̂ = 15mm. Theoretical and experimental

values of Rac, Rar, Rah and (Rah −Rar) /Rac.

than the experimental ones. This is probably a consequence of the finite aspect ratio of the

experimental cell. Surprisingly, the theoretical and experimental values of (Rah˘Rar) /Rac

which represent the domain where rolls and hexagons compete are quite close.

The stability diagram of hexagons for the corresponding parameters is shown in figure 18

and we have reported our experimental data. Stable hexagons are observed outside the

theoretical domain of stability. As in the previous case, this discrepancy could be related

to the finite aspect ratio of the experimental setup and to the fact that the increase of

non-Boussinesq effects as the temperature difference increases above the onset is not taken

in the theoretical study. For ε between ε = 0 and ε = 0.6, the difference q = k − kc varies

as: q = 0.07 ε.

To summarize, we have represented in figure 19 the variation of the wavenumber (k− kc)

as a function of the distance to the onset of convection ε for the three cases considered. The

wavenumber increases with increasing ε and this increase is all the more significant as non-

Boussinesq effects are stronger. Comparison of curve (2) and (3) indicate that for similar

non-Boussinesq effects at the onset of convection, the variation of the wavenumber is more

significant when the shear-thinning behavior of the fluid is more pronounced, i.e. smaller

nc and smaller the characteristic shear-rate (1/λ) for the transition from the Newtonian

plateau to the shear-thinning regime.

V. CONCLUSION

Rayleigh-Bénard convection in shear-thinning fluids with temperature-dependent physi-

cal properties is studied.

- The principal result of this study is the experimental evidence of the increase of the
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FIG. 17. Xanthan gum solution at 1000 ppm with d̂ = 15mm. Shadowgraph pattern in the 15mm

deep layer at different values of the temperature difference between the top and bottom walls. (1)

∆T̂ = 16.5◦C, Ra = 2331, Q = −2.55; (2) ∆T̂ = 21.1◦C, Ra = 2980, Q = −3.53; (3) ∆T̂ = 22.9◦C,

Ra = 3235, Q = −3.53 ; (4) ∆T̂ = 25.8◦C, Ra = 3645, Q = −4.21.

wavenumber of the hexagonal cells as the Rayleigh number is increased above the critical

value. Furthermore, the increase of the wavenumber with Ra is all the more significant as

non-Boussinesq effects are stronger. These results provide an experimental support to the

theoretical study of Vare et al. [29] that we have extended here to take into account the

variation of the thermal expansion coefficient with temperature in addition to that of vis-

cosity. It is demonstrated theoretically that the band of stable wavenumbers is asymmetric

and bent towards large wavenumbers.

- The experimental results seem to indicate that q = (k − kc) increases linearly with ε. It

appears also that for similar non-Boussinesq effects at the onset of convection, the slope of

the variation of q is larger when the shear-thinning behavior is more pronounced, i.e. lower
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FIG. 18. Xanthan gum solution 1000 ppm with d̂ = 15mm. Hexagon stability diagram for r =

1.31, γ1 = 0.25 and Sth = 1.1 × 10−5. Curve (1) D⊥ = 0, curve (2) D‖ = 0, curve (3) bifurcation

from the conductive state to convection with hexagons, curve (4) bifurcation from hexagons to rolls.

(+) Experimental data: (k − kc) as a function of the distance to the onset of convection.

nc and larger λ.

- The main mechanism whereby the size of the hexagonal cells decreases as the temperature

difference increases is the nucleation of new hexagonal cells at the periphery of the fluid

layer. Another mechanism observed experimentally is the cellular division.

- One can note that the increase of the wavenumber of hexagons is in contrast to the well-

established decrease of the wavenumber of rolls in the supercritical convection [5–7]. This

decrease is nevertheless quite weak for fluids with large Prandtl number.

Although, we have been able to make a number of interesting experimental observations,

we feel that there is a need for a long series of investigations for various shear-thinning fluids,

aspect ratios and Prandtl number. Additional experiments are also needed to investigate

the phenomena of “re-entrant hexagons” and the coexistence of rolls and hexagons observed

experimentally as well as the uniqueness of the wavenumber. It might also be interesting to

analyze how the balance between the kinetic energy dissipated by viscosity and the energy

released by buoyancy is altered with increasing the temperature difference. This analysis

might provide information to explain why the number of hexagonal cells increases.
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FIG. 19. Variation of (k − kc) as a function of ε. (1) Xanthan gum at 1200 ppm, d̂ = 15mm,

Qc = −3.90; (2) xanthan gum at 1200 ppm, d̂ = 20mm, Qc = −1.95; (3) xanthan gum at 1000

ppm, d̂ = 15mm, Qc = −1.94 .

Finally, from practical point of view, it is interesting to note that Rayleigh-Bénard con-

vection in thin polymer films with thermodependent properties can be harnessed in elegant

ways to pattern surfaces [43]. The determination of the wavelength selected by the system

is of paramount importance in the control of thin film patterning process.
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Appendix A: Correlations proposed by Busse [9] for a Newtonian fluid

Assuming a linear variation of the viscosity with temperature, the following correlations

for εa, εr and εh are proposed by Busse [9]. The revised version of these correlations given

by Bodenschatz et al. [1] is used here:

εa = −Q2/(4RhRac), εr = 3Q2Rr/(F
2Rac), εh = (9Rh − 3F )Q2/(F 2Rac), (A1)

with

Rh = 0.89360 + 0.04959/Pr + 0.06787/Pr2 (A2)

Rr = 0.69942− 0.00472/Pr + 0.00832/Pr2 (A3)

F = 0.29127 + 0.08147/Pr + 0.08933/Pr2 . (A4)

Appendix B: Correlations for the coefficients of equation (22)

The characteristic time for the instability to grow τ0 and the coherence length ξ0 are

shown in figure 20 as a function of r and for different values of the parameter γ1. The

Prandtl number is fixed to Pr = 100. As it can be observed τ0 varies slightly with r and

γ1, for the ranges considered. The coefficient ζ arises from non-Oberbeck-Boussinesq effects.

It increases with increasing the viscosity ratio, since ζ ∝ ln(r), and with increasing the

parameter γ1 as it is shown in figure 21. The following correlations are proposed for the

coefficients of equation (22):

τ0 = 0.0511− 1.53× 10−3 × γ1 ln(r) , (B1)

ξ0 = 0.3855− (3.77 + 34.3 γ1)× 10−4r − (1.688− 4.17 γ1)× 10−4r2 , (B2)

ζ = 23.9 γ1 + 9.5 ln(r) , (B3)

g1N = (257.6 + 12.05γ1)− (1.0 + 22.6γ1) r − (0.67− 2.63γ1) r2 , (B4)

g1NN = (1.15− 0.15γ1) 106 + (0.136− 2.3γ1) 105r + (1.14− 2.56γ1) 104r2 , (B5)

g2N = (367.0 + 24.0γ1)− (2.0 + 49.3γ1) r + (−1.45 + 5.65γ1) r2 , (B6)

g2NN = (1.31− 0.16γ1)× 106 + (1.4 + 24.5γ1)× 104r + (1.18− 2.74γ1)× 104r2 , (B7)

α1 = 16.17γ1 + (11.28− 2.58γ1) ln(r) , (B8)

α2 = 11.17γ1 − (2.5 + 1.75γ1) ln(r) . (B9)
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(a) (b)

FIG. 20. Variation of the characteristic time τ0 (a) and the coherence length ξ0 (b) as a function of

the viscosities ratio, for different values of the parameter γ1. (1) γ1 = 0; (2) γ1 = 0.1; (3) γ1 = 0.2;

(4) γ1 = 0.3; (5) γ1 = 0.4; (6) γ1 = 0.5.

FIG. 21. Variation of ζ with the viscosity ratio r for different values of the parameter γ1. The

Prandtl number is fixed to Pr = 100. (1) γ1 = 0; (2) γ1 = 0.1; (3) γ1 = 0.2; (4) γ1 = 0.3; (5)

γ1 = 0.4; (6) γ1 = 0.5 .

Appendix C: Longitudinal and transverse phase diffusion equations

The diffusion coefficients D‖ and D⊥ [29, 31, 32] are given by :

D⊥ =
1

4

ξ2
0

τ0

− q2

2ũ

(
ξ2

0

τ0

)2

+
H2

0

8ũ

(
α1 −

√
3α2

)2

(C1)

D‖ =
3

4

ξ2
0

τ0

− q2 (4ũ+ ṽ)

2ũṽ

(
ξ2

0

τ0

)2

+
H2

0

8ũ

(
α1 −

√
3α2

)2

− (C2)

H2
0 α1

ṽ

(
α1 +

√
3α2

)
+
H0q

ṽ

ξ2
0

τ0

(
3α1 +

√
3α2

)
,
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FIG. 22. (a) “Newtonian” and (b) non-Newtonian contribution to the first Landau coefficient and

to the cross-saturation coefficient respectively (c) and (d) as a function of the viscosity ratio r for

different values of the parameter γ1. The Prandtl number is fixed to Pr = 100. (1) γ1 = 0, (2)

γ1 = 0.1, (3) γ1 = 0.2, (4) γ1 = 0.3, (5) γ1 = 0.4, (6) γ1 = 0.5.
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FIG. 23. Coefficients α1 (a) and α2 (b) as a function of r for different values of γ1, with Pr = 100.

(1) γ1 = 0, (2) γ1 = 0.1, (3) γ1 = 0.2, (4) γ1 = 0.3, (5) γ1 = 0.4, (6) γ1 = 0.5.
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with

ũ = H2
0 (g1 − g2) + (ζ + 2α1q)H0 , (C3)

ṽ = 2H2
0 (g1 + 2g2)− (ζ + 2α1q)H0 (C4)

where, H0 is the stationary homogeneous solution of the amplitude equations (22) for

hexagons,

H0 =
(ζ + 2α1q) +

√
(ζ + 2α1q)

2 + 4 (g1 + 2g2) (ε− ξ2
0q

2)/τ0

2 (g1 + 2g2)
, (C5)
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