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Abstract

Using simplified hydrodynamic model, we theoretically in-
vestigate resonant inverse Faraday effect within individual
plasmonic nanostructures. Upon illumination with circu-
larly polarized light, resonant nanostructures are shown to
develop an optomagnetic field that is controllable by the he-
licity of the light. Given their submicron footprint, individ-
ual plasmonic nanostructures open new prospects towards
ultrafast and polarization-controlled tunable magnetism on
the nanoscale, thus potentially impacting large panel of ap-
plication and techniques including all optical magnetization
switching, spin-wave excitation and optomagnetic tweezing
of nano-objects.

1. Introduction
Optically-induced magnetism has drawn considerable inter-
est in the past years for its ability to speed up magnetic
processes[1]. For example, static magnetic fields have been
demonstrated to be generated in non-magnetic plasmonic
(gold) nanoparticles and nano-apertures [2, 3]. Such a phe-
nomenon has been analyzed as the result of the inverse
Faraday effect [4, 5, 6]. Inverse Faraday effect in plasmonic
structures can been predicted with a hydrodynamic descrip-
tion of the free electron gas of a metal [5, 7]. More gener-
ally, the hydrodynamic model provides reference equations
for describing optical nonlinearities in plasmonic nanos-
tructures [8, 9, 10, 11].

In the context of the hydrodynamic model, the electron
fluid density n(r,t) and the electron velocity field v(r,t) sat-
isfy Euler’s equation
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And the continuity equation reads as:

∇ · jω = −e∂n
∂t
, (2)

where jω = γωEω , γω is conductivity, Eω and Hω are ap-
plied fields, m is the effective electron mass, τ is the elec-
tron collision time, n is electron fluid density, v is electron
velocity. The last term in the equation 1 is due to the elec-
tron gas pressure, with β proportional to the Fermi velocity
vF . This term describes nonlocal effects. The 3D numeri-
cal solvers of such a hydrodynamic model require compu-
tational power and are time consuming [12].

In case of smooth and slowly varying n it is possible
to neglect nonlocal effects (β → 0) and take into account
only local responce [11]. This local response approxima-
tion avoids the resolution of a complex nonlocal equation
[5, 6], however this approximation limits the model predic-
tions to bulk. Prediction of surface effects become inac-
curate and ambiguous due to strong variation of electron
fluid density [9, 11, 13, 14]. We have developed a sim-
plified hydrodynamic model which enables to stay within
the local approximation and overcome the ambiguity at the
interfaces.[15, 16]. Simplifying the hydrodynamic model
required to rigorously describe optomagnetism in noble
metals [17] helps leaving basic nanoparticle geometries and
addressing optomagnetism in more complex 3D nanostruc-
tures usually obtained from top-down nanofabrication tech-
niques.

2. Simplified hydrodynamic model

This method consists of defining a thin metal layer be-
neath interfaces, whose thickness matches Thomas-Fermi
length (λTF ' 0.1 nm for nobel metals). This layer is
considered to be a surface/interface layer, where the elec-
tron gas pressure is considered to be high. Out of this
layer, in the metal bulk, the local model applies (β → 0).
Within the interface layer, the parallel component of the
linear current density jTω preserves whereas the normal
component jNω decays to zero. This additional boundary
condition on jNω , which is required to solve the nonlocal
problem, is attributed to a neglected electron ”spill-out”
at interfaces [11]. The new boundary condition enables
to solve the simplified hydrodynamic model in perturba-
tion approach and find the expression for bulk and surface
DC currents. It has been demonstrated that the main con-
tributors to the optomagnetic responce are sufrace currents
[2, 4, 5, 7, 15, 16, 17, 18]. The azimutal component of the
surface current reads as:
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Defining ξ as the spatial coordinate normal to surfaces so
that the metal bulk is located at ξ < 0 and the surface layer
corresponds to 0 < ξ < λTF , we have jTω (ξ) ≈ jTω (0−)
and jNω = jNω (0−)σ(ξ), where σ is a decaying function
defined by

∫ λTF

0
σ′(ξ)dξ = −1 where σ′ is the derivative

with respect to ξ [11].



3. Results
Using our simplified hydrodynamic model we have pre-
dicted the optomagnetic responce of a 50 nm-diameter and
12 nm high silver cylinder in a medium of refractive index
equal to 1.45 (Fig. 1) and 70nm- inner diameter and 50nm
high coaxial nanoaperture of gap size equal to 10 nm (Fig.
2). Both nanostructures are illuminated with a right-handed
circularly polarized gaussian beam propagating along the
axis of symmetry (Oz) of the structures.
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Figure 1: (a) and (b) Distributions of amplitude of the
optically-induced static magnetic field in a longitudinal
cross-section (x0z) of the cylyndrical plasmonic nanostruc-
ture in oil. Illumination is realized with a circularly po-
larized light of intensity 3.2 · 108 W.cm−2 at λ = 649nm.
The local optomagnetic field orientation is represented with
white arrows.
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Figure 2: Distributions of amplitude of the optically-
induced static magnetic field in a longitudinal cross-section
(x0z) (a) linear scale (b) log scale. The nanostructure is an-
nular nanoaperture in gold laying on glass substrate. Illumi-
nation is realized with a circularly polarized light of maxi-
mum intensity 0.5 1011W.cm−2 at λ = 800nm. The local
optomagnetic field orientation is represented with white ar-
rows.

4. Conclusions
On the basis of the simplified hydrodynamic model of the
free electron gas of a metal, we investigate the generation
of an optomagnetic field (generated from the inverse Fara-
day effect) in plasmonic coaxial structures upon illumina-
tion with a circularly polarized light. We also show that
the substrate introduces an important asymmetry of the op-
tomagnetic response of the plasmonic nanostructure. The
optomagnetism is mainly localized within the substrate,
which appears to be advantageous for many applications.
Optomagnetism in plasmonic nanoapertures may impact a
broad field of applications and techniques including spin-
tronics, magnonics and data storage via the development of
on-chip nanoscale plasmonic-magnetic architectures. Op-
tomagnetism may also provide new degrees of freedom in
nano-object tweezing based on the combination of opto-
magnetic and pure optical forces.
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