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Abstract 14 

Empirical and process-based models are currently used to predict crop yield at field and regional 15 

levels. A mechanistic model named STICS (Multidisciplinary Simulator for Standard Crops) 16 

has been used to simulate soybean grain yield in several environments, including southern 17 

France. STICS simulates at a daily step the effects of climate, soil and management practices 18 

on plant growth, development and production. In spite of good performances to predict total 19 

aboveground biomass, poor results were obtained for final grain yield. In order to improve yield 20 

prediction, a surrogate model was developed from STICS dynamic simulations, feature 21 

selection techniques and regression learners. STICS was used to simulate functional variables 22 

at given growth stages and over selected phenological phases. The most representative variables 23 

were selected through feature selection techniques (filter, wrapper and embedded), and a subset 24 

of variables were used to train the regression learners Linear regression (LR), Support vector 25 

regression (SVR), Back propagation neural network (BPNN), Random forest (RF), Least 26 

Absolute Shrinkage and Selection Operator (LASSO) and M5 decision tree. The subset of 27 

variables selected by wrapper method combined with regression models SVR (R2 = 0. 7102; 28 

subset of variables = 6) and LR (R2 = 0. 6912; subset of variables = 14) provided the best results. 29 

SVR and LR models improved significantly the soybean yield predictions in southern France 30 

in comparison to STICS simulations (R2 = 0.040). 31 

Keywords: STICS; regression learners; filter; wrapper; embedded  32 

 33 

1- Introduction 34 

Soybean (Glycine max L.) is grown on 125 million ha worldwide, with a total average 35 

production of 340 million tons on the 2016-2020 period (Oil Word, 2020). On an absolute basis, 36 

soybean is the fourth most important grain crop after wheat, maize and rice. USA, Brazil, and 37 

Argentina are the three most producing countries, accounting collectively for 81 % of the global 38 

production (Grassini et al., 2021). EU-27 is a marginal producer (2.6 million tons, <0.8 % of 39 

world production), importing ca. 95 % of its soybean domestic needs as rich-protein GMO 40 

(Genetically Modified Organisms) and non-GMO meals for animal feed. In Europe, France is 41 

the second most important producer after Italy (186 500 ha in 2020), the two main producing 42 
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regions being South-West and Center-East parts with an increasing contribution of organically-43 

grown production. One main objective in France is to achieve self-sufficiency at least in non-44 

GMO soybean meals at 2025 horizon. Therefore, EU-27 members share a common objective: 45 

“reducing markedly the dependency upon soybean imports by developing European 46 

production”. Soybean crop requires few pesticides, no N-fertilizer and less irrigation than 47 

maize, results in low emissions of greenhouse gases, hence bringing environmental benefits. In 48 

addition, it could contribute as a summer crop to the diversification of winter cereal-based 49 

systems.  50 

Grain yield in France slightly increased since the 80s (Terres Univia, 2021). In 2019, yields 51 

were 2.61 t.ha-1 for France, 2.09 t.ha-1 for all Europe, but 3.19, 3.18, and 3.33 t.ha-1 for USA, 52 

Brazil and Argentina respectively (FAOSTAT, 2021). Climate change and its impacts on 53 

temperature, precipitation, and CO2 concentration, but also on water resources available for 54 

irrigation, will certainly impact the future production (Porter et al., 2014; Guilpart et al., 2020; 55 

Kothari et al., 2020). In addition, expanding soybean growing areas northward and introducing 56 

new cropping systems (e.g. double cropping with cereals, rainfed or irrigated soybean, etc.) will 57 

change the potential and attainable grain yields.    58 

Therefore predicting soybean yield in various environments and a range of cropping systems 59 

will be necessary to evaluate the ability of France and European countries to achieve their 60 

objectives in terms of protein self-sufficiency by growing more soybean in cropland. Modeling 61 

can be efficient in yield analysis and investigation of the limiting factors due to easy 62 

manufacturing, testing, applying, understanding and interpretation of results (Nehbandani et al., 63 

2020). 64 

Yield prediction models are based on historical or future climate data for evaluating production 65 

potentials; also, yield prediction models assimilate remote sensing information when applied to 66 

in-season prediction. Nowadays, both statistical and mechanistic approaches are used in 67 

agricultural modelling, especially for yield prediction. Statistical approaches search and explore 68 

the relations between data to explain the variables of interest whereas mechanistic models are 69 

based on the description of biophysical processes. Dynamic crop models simulate daily growth 70 

and development in relation with environmental resources and agricultural inputs; they allow 71 

the testing of functional hypotheses and the identification of potential constraints to crop growth 72 

and yield (Purcell & Roekel, 2019). However, mechanistic and statistical approaches can be 73 

combined in order to improve the crop modeling predictions (Casadebaig et al., 2011, 2020).  74 

Statistical models from traditional Artificial Neural Networks (ANN) and Deep Learning (DL) 75 

have been used for soybean yield prediction. ANN models were proposed by (Kaul et al., 2005) 76 

in order to predict Maryland soybean yield at state, regional, and local levels. ANN were 77 

developed using historical yield data (1978–1998). Field-specific rainfall data and Soil Rating 78 

for Plant Growth (SRPG) values were used for each location. The work developed in 79 

(Maimaitijiang et al., 2020) estimated the soybean grain yield through multispectral images 80 

(information type: canopy spectral, structure, thermal and texture features) and DLN in 81 

Columbia, Missouri. A Convolutional Neural Network (CNN) for soybean yield prediction in 82 

15 states of CONUS (United States) is proposed in (Sun et al., 2019). The model was trained 83 

by crop growth and environment variables, which include weather data, MODIS Land Surface 84 

Temperature data, and MODIS Surface Reflectance data. In Cachoeira do Sul, Brazil, a Multi-85 

Layer Perceptron (MLP) was used to adjust a predictive model for estimating the yield of 86 
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soybean crop based on 9 vegetation indices (Eugenio et al., 2020). A soybean yield model was 87 

created by deep learning framework using CNN and recurrent neural networks (Khaki et al., 88 

2020). Model was built based on environmental data and management practices from Corn Belt 89 

(including 13 states) in the United States. In southern Brazil different type of indices as 90 

Normalized Difference Vegetation Index (NVDI), Enhanced vegetation index (EVI), land 91 

surface temperature (LST) and precipitation were used to build a model using Long-Short Term 92 

Memory (LSTM), Neural Networks (Schwalbert et al., 2020). ANN was developed to evaluate 93 

the relative importance of predictor variables as vegetation indices (NDVI, red edge NDVI and 94 

simple ratio-SR) and elevation derived variables (slope, flow accumulation, aspect) for the 95 

prediction of soybean in Ontario, Canada (Kross et al., 2020).  96 

Traditional regression models/analysis were used with the same purpose. Authors in (Stepanov 97 

et al., 2020) used backward stepwise in order to build a regression model in Khabarovsk, 98 

Russia. Several data sources were used as Moderate Resolution Imaging Spectroradiometer 99 

(MODIS), arable land mask and meteorological stations. The NDVI was used to improve 100 

soybean yield predictions using the flexible Fourier transform model in United States (Xu & 101 

Katchova, 2019). The objective was to explore the relationships between soybean yield and 102 

number of grains (NG) and thousand grains weight (TGW), generate equations to estimate yield 103 

in several countries in the years 2010 and 2019 (Wei & Molin, 2020). A regression analysis 104 

was developed by (Ma et al., 2001) in order to study the correlations between plant canopy 105 

reflectance and aboveground biomass for early prediction of soybean yield in Canada. 106 

In addition, mechanistic models were calibrated in order to predict soybean yield. Authors in 107 

(Robertson & Carberry, 1998) used Agricultural Production Systems Simulator (APSIM) with 108 

aim to simulate the soybean yield. The model was tested on an independent set of experiments, 109 

from northern Australia, with factors such as cultivars, sowing date, irrigation, soil type, plant 110 

population density row spacing varying. The research proposed by (Jagtap & Jones, 2002) 111 

developed a procedure to simulate soybean yield and production by linking the CROPGRO-112 

soybean model with a regional resolution (about a 50 km grid cell) database of weather, soils, 113 

management, and varieties in the state of Georgia over the 1974–1995 time period. The 114 

CROPGRO-Soybean model was calibrated to estimate potential yields and yield gaps of 115 

soybean for 21 locations regions in India (Bhatia et al., 2008). Authors in (Ovando et al., 2018) 116 

simulated soybean yield using a DSSAT model through weather data from Clouds and 117 

Earth's Radiant Energy System (CERES) and Tropic Rainfall Measurement Mission (TRMM) 118 

for 2006 – 2016 in Oliveros, Argentina. In (Battisti et al., 2017), the model for Nitrogen and 119 

Carbon in Agroecosystems (MONICA) was used to simulate soybean grain yield for 14 sites 120 

in Southern Brazil. The models CSM-CROPGRO-Soybean and STICS (Multidisciplinary 121 

Simulator for Standard Crops) were used to simulate soybean yield responses under near (2041–122 

2070) and distant (2071–2100) future climate scenarios in eastern Canada (Jing et al., 2017).   123 

The AgMip initiative started an inter-comparison of 10 soybean crop models at 5 locations in 124 

major global production areas with high quality observed data for calibration (Kothari et al., 125 

2020). Among the tested models, STICS (Brisson et al., 2009), a widely used soil-plant crop 126 

model applied on a wide range of crops (305 papers in Web of Science), appeared as moderately 127 

performing with a prediction gap. Previous attempts to validate STICS on soybean concluded 128 

to good performance in aboveground biomass prediction but poor results on grain yield and 129 

protein concentration (Schoving, 2020). In eastern Canada, (Jégo et al., 2010) obtained 130 

scattered results for biomass, LAI and yield, with Root Mean Square Error (RMSE) from 23 to 131 
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38 %. Heretofore, this model has been used less in soybean crops, but encouraging results were 132 

recently obtained through proper calibration on pea and faba bean, two other grain legumes 133 

(Falconnier et al., 2019, 2020). In addition, STICS describes with a good accuracy the dynamics 134 

of water and nitrogen in soils and a module was introduced for considering explicitly N2-135 

fixation in legumes.  136 

Improving the STICS prediction for soybean could imply a thorough calibration of the model 137 

and/or a deep re-examination of the underlying biophysical processes. The experimental data 138 

required for such an improvement could be insufficient. The data-driven modeling approach 139 

has emerged as an alternative to model the biophysical system purely from the data available. 140 

A data-driven model, also known as a meta-model or surrogate model, is a “model of the model” 141 

(Cui et al., 2016). A surrogate model is a statistical model trained from simulations/variables 142 

difficult to measure in field (e.g. leaf area index, aboveground crop biomass, N crop uptake, 143 

crop transpiration, etc.). The surrogate model can be deployed to replace or support the original 144 

biophysical simulation module to accurately approximate the simulation output. Figure 1 145 

explains the interactions between surrogate and STICS model. 146 

 147 

Figure 1. Steps of STICS and surrogate model to predict the soybean yield. The red arrows show the process of soybean yield 148 
simulations generated by STICS. (1)  Parameters are calibrated and field observations are used to run STICS. (2) Soybean yield 149 
simulations 𝑌1, 𝑌2 … , 𝑌𝑛 generated by STICS. The blue arrows depict the steps to create the surrogate model. (3) The STICS 150 
simulations are used to select the relevant variables and train the surrogate model. (4) Soybean yield simulations 𝑌′1, 𝑌′2 … , 𝑌′𝑛 151 
generated by the surrogate model. 152 

In this sense, we proposed a surrogate model based on feature selection techniques and 153 

regression learners to predict soybean yield in southern France. The surrogate model is trained 154 

from the data produced by STICS simulations generated by (Schoving, 2020) (effects of 155 

climate, soil and management practices on dynamic variables of soybean crop functioning) to 156 

improve the prediction of final grain yield. This study progressed through three steps: 157 

a) Calculate crop variables at different phenological stages with STICS as evaluated by 158 

(Schoving, 2020) in southern France.  159 

b) Find the representative variables of soybean yield based on feature selection techniques.  160 

c) Build a regression model to predict soybean yield based on representative variables found 161 

by feature selection techniques. 162 
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2- Materials and methods 163 

Multidisciplinary Simulator for Standard Crops (STICS) 164 

The STICS model simulates at a daily step the effects of climate, soil and management practices 165 

on plant growth, development and production (quantity and quality) and environmental 166 

impacts. The combination of these input variables is termed a USM (Unit of SiMulation). Each 167 

USM corresponds to one execution of the STICS model (Brisson et al., 1998). STICS can be 168 

tuned to a single crop, two intercropped or several successive crop cycles. STICS has been 169 

evaluated over a large data set for 15 different crops and different conditions of soil and climate 170 

in France (Coucheney et al., 2015). 171 

In order to calibrate STICS, the crop files contain species parameters, ecophysiological options 172 

(e.g. effect of photoperiod and/or cold requirements on crop phenology, potential radiation use 173 

efficiency) and cultivar specific parameters (e.g. flowering precocity, maximum number of 174 

grains per m2). Crop temperature (calculated from weather variables) and photoperiod drive 175 

crop phenology. The model dynamically simulates (i) the development of the root system that 176 

takes up N and water according to root density over the whole soil profile and (ii) the 177 

establishment of the canopy that transpires water and intercepts light to produce the crop 178 

biomass (Brisson et al., 2009). 179 

Study area and datasets 180 

The data used in this work were collected by (Schoving, 2020). Seventeen experimental sites 181 

were conducted during 2010-2018 from six regions in the south of France: Mauguio (2010), 182 

Béziers (2010 - 2012), Mondonville (2010 - 2014), Rivières (2010 - 2014), En Crambade (2013 183 

- 2014) and Auzeville (2017 - 2018) as shown in Figure 2. 184 

 185 

Figure 2. Locations in Southern France where experimental sites were conducted. Locations are depicted by red markers 186 
(Mauguio, Béziers, Mondonville, Rivières, En Crambade and Auzeville). This figure was created by Google Earth. 187 
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The eleven tested soybean varieties belonged to four maturity groups corresponding to different 188 

crop durations and potential yields: 000 (very early-maturing), 0, I and II (late-maturing). Three 189 

late-maturing varieties were tested in all experiments since 2010 (Ecudor, Santana, Isidor and 190 

Sarema). Detailed information on varieties and maturity groups are presented in Table A1 191 

(Appendix A). Weather data were collected near to the experimental sites. Soil samples contain 192 

texture and physico-chemical analyzes. These data are essential to correctly initialize STICS 193 

with realistic values of soil moisture and mineral nitrogen (nitrate, ammonium). The water 194 

pressure of the soils was monitored in a micro-plot of Santana variety, at 30, 60 and 90 cm 195 

depth. 196 

The dataset contains 227 simulation units (USM) created from combination of experimental 197 

sites, years and cropping practices (cultivar, water management and sowing date); We used the 198 

same training (105 USMs) and test (122 USMs) datasets as defined by (Schoving, 2020). The 199 

train-test split was defined based on the number of variables measured in field by experimental 200 

sites (variables such as phenology, biomass, leaf area index, grain yield and seed protein 201 

content). Most complete observations measured in field were selected to train the surrogate 202 

model while data with less observations were retained for the test set. We preprocessed 87 203 

variables based on agronomist knowledge from a selection of 19 STICS state variables 204 

calculated daily by the model during its simulation (Table 1). The preprocessed variables 205 

concern either state variables at different crop phenology stages (Ilev: emergence, Idrp: grain 206 

filling onset, Iflo: flowering, Imat: physiological maturity), descriptive values (Cum: 207 

cumulative, Max: maximum, Avg: average) and thresholds set for variables as MinTemp (days 208 

MinTemp < 18°C), MaxTemp (days MaxTemp > 28°C), Swfac (days Swfac < 0.6) and Inn 209 

(days Inn < 0.6). The soybean grain yield is represented by variable Mafruit (Table 1; dependent 210 

variable). 211 

STICS variables Units Description 

Nbgrmax m-2 Maximal grain number 

Stlevdrp °C.days Heat sum from emergence to grain filling onset 

Stflodrp °C.days Heat sum from flowering to grain filling onset 

Stdrpmat °C.days Heat sum from grain filling onset to physiological 

maturity 

Masec(n) t.ha-1 Aboveground crop biomass 

Lai(n) m2.m-2 Leaf area index 

Qnplante kg.ha-1 Cumulative amount of N taken up by the crop 

Qfix kg.ha-1 Cumulative amount of N fixed by the crop 

Zrac m Water excess stress index on roots 

Jul Julian day Julian day 

Raint MJ.m-2 Photosynthetic active radiation intercepted by the 

canopy 

Etpp(n) mm.d-1 Daily potential evapotranspiration 

Precip mm.d-1 Precipitation 

Ep mm.d-1 Daily actual transpiration 

AvgTemp °C Average air temperature  

MinTemp °C Minimum air temperature 

MaxTemp °C Maximum air temperature  

Swfac 0-1 Stomatal water stress index 

Inn 0-2 Nitrogen nutrition index 

Mafruit t.ha-1 Biomass of harvested organs (grain yield) 
Table 1. Variables used from Multidisciplinary Simulator for Standard Crops (STICS). 212 
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For instance, preprocessed variables computed by phenology stages as Lai(n)_Iflo variable 213 

indicates the leaf area index Lai(n) at flowering (Iflo). Other variables are expressed over 214 

phenophases, for example Precip_cum_Iflo-Imat represents the cumulative precipitation 215 

(Precip) between two phenological stages: flowering (Iflo) and physiological maturity (Imat). 216 

In addition, we define variables by phenophases and thresholds as Days_MinTemp_18_Ilev-217 

Imat variable which indicates the number of days when minimum temperature was less than 218 

18°C between emergence and physiological maturity stages. Table 2 presents a summary of 219 

preprocessed variables from STICS by stages or phases, descriptive values and thresholds. 220 

Table A2 (Appendix A) lists all of the preprocessed variables. 221 

STICS 

variables 

Stages or phases Descriptive 

value 

Threshold Number 

of 

variables 

Nbgrmax - - - 1 

Stlevdrp - - - 1 

Stflodrp - - - 1 

Stdrpmat - - - 1 

Masec(n) Iflo, Idrp, Imat - - 3 

Lai(n) Iflo, Idrp, Imat - - 3 

Qnplante Iflo, Idrp, Imat - - 3 

Qfix Iflo, Idrp, Imat - - 3 

Zrac Iflo, Idrp, Imat - - 3 

Jul Ilev-Imat, Iflo-Imat, Idrp-Imat, Iflo-Idrp Cum - 4 

Raint Ilev-Imat, Iflo-Imat, Idrp-Imat, Iflo-Idrp Cum - 4 

Etpp(n) Ilev-Imat, Iflo-Imat, Idrp-Imat, Iflo-Idrp Cum - 4 

Precip Ilev-Imat, Iflo-Imat, Idrp-Imat, Iflo-Idrp Cum - 4 

Ep Ilev-Imat, Iflo-Imat, Idrp-Imat, Iflo-Idrp Cum - 4 

AvgTemp Ilev-Imat, Iflo-Imat, Idrp-Imat, Iflo-Idrp Avg - 4 

MinTemp Ilev-Imat, Iflo-Imat, Idrp-Imat, Iflo-Idrp Avg # days MinTemp < 18 8 

MaxTemp Ilev-Imat, Iflo-Imat, Idrp-Imat, Iflo-Idrp Avg, Max # days MaxTemp > 28  12 

Swfac Ilev-Imat, Iflo-Imat, Idrp-Imat, Iflo-Idrp Avg, Min # days Swfac < 0.6 12 

Inn Ilev-Imat, Iflo-Imat, Idrp-Imat, Iflo-Idrp Avg, Min # days Inn < 0.6 12 
Table 2. Preprocessed variables from Multidisciplinary Simulator for Standard Crops (STICS). STICS variables were 222 
preprocessed by crop phenology stages (Ilev: emergence, Idrp: grain filling onset, Iflo: flowering, Imat: physiological maturity), 223 
descriptive values (Cum: cumulative, Max: maximum, Avg: average) and thresholds (MinTemp, MaxTemp, Swfac and Inn). 224 
Last column (Var) corresponds to number of variables processed from a STICS, phenology stages, descriptive values and 225 
thresholds. Table A2 (Appendix A) lists all of the preprocessed variables. 226 

In order to create an interpretable soybean yield model with a minimum number of variables, 227 

we applied feature selection techniques to previous dataset based on three approaches: filter, 228 

embedded and wrapper.  229 

Feature selection techniques  230 

Feature selection is the process (automatic or manual) of selecting a subset of relevant variables 231 

which contribute most to learner (Corrales et al., 2018). Feature selection techniques can be 232 

grouped in three categories: 233 

 Filter methods are based only on the intrinsic properties of the data (Solorio-Fernández 234 

et al., 2020). Filter method computes an importance value between one independent 235 

variable and the dependent variable. Variables with highest importance values are 236 

selected based on user criteria. Filter methods are usually computationally less 237 

expensive than embedded and wrapper methods. We used classical feature selection 238 
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methods based on Pearson (Pearson, 1920) and Spearman (Spearman, 1961) 239 

coefficients and Information Gain (Shannon, 1948). In order to explain the statistical 240 

coefficients, independent variable is named X and dependent variable Y. 241 

 242 

o Pearson coefficient measures the linear correlation between two variables. If 243 
both variables are linearly dependent, then their correlation coefficient is close 244 
to ±1. If the variables are uncorrelated, the correlation coefficient is 0 (Pearson, 245 
1920). When Pearson coefficient is used as filter method only positive values 246 
are considered following the equation (1): 247 

 248 

𝑟 =  |
∑ 𝑐𝑜𝑣(𝑥𝑖, 𝑦𝑖)

𝑛
𝑖=1

∑ 𝜎𝑥𝑖 𝜎𝑦𝑖
𝑛
𝑖=1

| 
(1) 

 249 

Where 𝑥𝑖 and 𝑦𝑖 are the ith observations of independent and dependent variable 250 

respectively; 𝑐𝑜𝑣 corresponds to covariance and 𝜎 indicates the standard 251 

deviation of 𝑥 and 𝑦. 252 

 253 

o Spearman coefficient through a monotonic function measures the correlation 254 

between two variables (Spearman, 1961). A monotonic function is defined as 255 
function which is either entirely increasing or decreasing. It is similar to Pearson 256 

coefficient except that it operates on the ranks of the data rather than the raw 257 
data (Gauthier, 2001). The Spearman correlation rank is defined by equation (2): 258 

 259 

𝜌 = 1 −
6 ∑ 𝑑𝑖

2𝑛
𝑖=1

𝑛(𝑛2 − 1)
 

(2) 

 260 

Where 𝑑𝑖 is the difference between ranks for each 𝑥𝑖 , 𝑦𝑖 data pair and 𝑛 is the 261 

number of data pairs. 262 

o Entropy-based information gain discretizes the independent variable and 263 

subsequently the entropy is computed between 𝑥 and continuous 𝑦 variable 264 

(Yang et al., 2010) by equation (3): 265 

 266 

𝐼𝑛𝑓𝑜𝐺𝑎𝑖𝑛 = 𝐻(𝑦) + 𝐻(𝑥) − 𝐻(𝑦, 𝑥) (3) 

 267 

Where 𝐻(𝑥) and 𝐻(𝑦) correspond to Shannon's Entropy for 𝑥 and 𝑦 variables. 268 

𝐻(𝑦, 𝑥) is a joint Shannon's Entropy for a variable 𝑦 with a condition to 𝑥. 269 

Detailed explanation of Shannon's Entropy  is explained in (Shannon, 1948). 270 

 271 

 Embedded methods integrate the variables selection as part of training process into 272 

learner (Guyon & Elisseeff, 2003). We used as embedded methods the learners Random 273 

Forest (Breiman, 2001), M5 decision tree (Quinlan, 1992) and Least Absolute 274 

Shrinkage and Selection Operator (Tibshirani, 1996).  275 

 Wrapper methods selects a subset of variables according to performance criteria 276 

(regression tasks, measure of errors as mean absolute error, mean square error, root 277 

square mean error; classification tasks measures as accuracy, precision, overall, recall, 278 
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etc.) of a learner (Guyon & Elisseeff, 2003). In this paper, we use the method Recursive 279 

Feature Elimination (Guyon et al., 2002). 280 

 281 

Regression learners 282 

In order to predict soybean yield in southern France crops, we used regression learners from 283 

different families of algorithms. They are explained briefly below. 284 

 Linear regression (LR) explains the relationship between dependent variable and one 285 

or more independent variables by fitting a linear equation to observed data (Prion & 286 

Haerling, 2020). Coefficients multiply the values of dependent values; the coefficient 287 

signs represent the direction of the relationship between a dependent variable and the 288 

independent variable. 289 

 290 

 Support vector regression (SVR) is based on same principles as Support Vector 291 

Machine (Vapnik, 1995). SVR determines a regression function in the feature space 292 

considering only data points within the decision boundary lines called support vectors. 293 

In nonlinear data, a kernel function is used in order to transform the feature space into 294 

a linear hyperplane (Brereton & Lloyd, 2010). 295 

 296 

 Back propagation neural network (BPNN) calculates the gradient of the error 297 

function with respect to the weights of the neural network  (Rumelhart et al., 1986). The 298 

computed error is propagated in a backward manner from one layer to the other until 299 

the minimum Mean Squared Error (MSE) is attained and weights can be modified 300 

accordingly (Deshwal et al., 2020). 301 

In addition, we used each of Random forest, Least Absolute Shrinkage and Selection Operator 302 

and M5 decision tree as both an embedded method and a wrapper. 303 

 Random forest (RF) builds several decision trees using a different bootstrap sample of 304 

data training set (Breiman, 2001). The decision trees are built using CART learner 305 

(Breiman et al., 1984). In regression tasks, RF final prediction is obtained by averaging 306 

the results of all the CART trees.  307 

 308 

 Least Absolute Shrinkage and Selection Operator (LASSO) is a linear regression 309 

method which imposes a bound on the L1-norm of the regression coefficients, resulting 310 

in coefficient shrinkage (Tibshirani, 1996). LASSO adds a L1 penalty equal to the 311 

absolute value of the magnitude of coefficients (Equation 1). Variables are discarded 312 

when the coefficients take values equal to zero. Larger penalties are expressed by 313 

coefficient values closer to zero. The objective function for finding the minimum is  314 

shown by Equation (4): 315 

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒𝛽0, 𝛽(
1

2𝑁
∑ (𝑦𝑖 − 𝛽0 − 𝑥𝑖

𝑇𝛽)2
𝑁

𝑖=1
+ 𝜆 ∑ |𝛽𝑗|

𝑝

𝑗=1
) 

(4) 

 316 

Where 𝑁 is the total number of observations, 𝜆 is a nonnegative regularization 317 

parameter corresponding to one value of Lambda, 𝑦𝑖 is the dependent variable, 𝑝 is the 318 
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number of independent variables  𝑥𝑖 = (𝑥𝑖1, … , 𝑥𝑖𝑝)𝑇, 𝛽0 is the intercept, and 𝛽𝑗 are the 319 

coefficients (Shi et al., 2020). 320 

 321 

 M5 is a conventional decision tree composed by different nodes such as root, 322 

intermediates and leaves (Quinlan, 1992). Root and intermediate nodes are chosen over 323 

the dependent variable that maximizes the expected error reduction as a function of the 324 

standard deviation of output parameter (Wang & Witten, 1996). Leaves nodes predict 325 

the dependent variable through linear regression functions; they are fitted from data that 326 

follows one branch between root and leaf node.  327 

3- Results 328 

This section reports the subset of variables selected by feature selection methods and the 329 

evaluation of soybean yield models built from selected variables. 330 

3.1 Feature selection 331 

3.1.1 Filter methods 332 

Filter methods were computed through R 'mlr' package (Bischl et al., 2016). With aim to create 333 

simple models with great explanatory predictive power with a minimum number of features, 334 

we defined two criteria to select the variables: (i) top-15 of variables with highest importance 335 

values for each filter method; (ii) variables selection by threshold based on importance values 336 

of top-15. Regarding to Pearson and Spearman coefficients, we selected the features with 337 

importance value greater than or equal to 0.6. Concerning to entropy-based information gain, 338 

we selected the features with importance value greater than or equal to 0.4. We defined these 339 

thresholds following the “conventional interpretation of the correlation coefficients” proposed 340 

in (Schober et al., 2018). Values between 0.60 - 0.79 are defined as “moderately correlated” 341 

and coefficient values between 0.70 – 0.89 are interpreted as “strongly correlated”. Table 3 342 

shows Top-15 of soybean variables selected by filter methods (Appendix B contains the entire 343 

ranking). 344 

Pos Pearson coefficient Spearman coefficient Entropy-based information gain 

Variable  Importance  Variable  Importance Variable Importance 

1 Masec(n)_Imat 0.7923 Lai(n)_Imat 0.7699 Lai(n)_Imat 0.5929 

2 Lai(n)_Imat 0.7726 Masec(n)_Imat 0.7311 Masec(n)_Imat 0.5875 

3 Qnplante_Idrp 0.7710 Qnplante_Idrp 0.7137 Qnplante_Imat 0.5515 

4 Qnplante_Imat 0.7523 Masec(n)_Idrp 0.7003 Ep_cum_Idrp-Imat 0.4223 

5 Masec(n)_Idrp 0.7334 Ep_cum_Iflo-Imat 0.6886 Qfix_Imat 0.4072 

6 Ep_cum_Idrp-Imat 0.6819 Ep_cum_Idrp-Imat 0.6734 Inn_min_Iflo-Idrp 0.3799 

7 Qfix_Imat 0.6805 Qnplante_Imat 0.6714 Inn_avg_Iflo-Idrp 0.3652 

8 Ep_cum_Iflo-Imat 0.6650 Ep_cum_Ilev-Imat 0.6456 Ep_cum_Iflo-Imat 0.3486 

9 

Raint_cum_Idrp-Imat 0.6326 

Lai(n)_Idrp 0.6439 Days_Swfac_0.6_Iflo-

Imat 

0.3443 

10 Lai(n)_Idrp 0.6292 Raint_cum_Idrp-Imat 0.6288 Inn_avg_Ilev-Imat 0.3400 

11 AvgTemp_avg_Idrp-Imat 0.6157 Swfac_min_Idrp-Imat 0.6160 Inn_avg_Iflo-Imat 0.3380 

12 Swfac_avg_Iflo-Imat 0.6088 Swfac_min_Iflo-Imat 0.6136 Masec(n)_Idrp 0.3300 

13 

MinTemp_avg_Idrp-Imat 0.5937 

AvgTemp_avg_Idrp-

Imat 

0.6081 Qnplante_Idrp 0.3285 

14 Ep_cum_Ilev-Imat 0.5842 Swfac_min_Ilev-Imat 0.6009 Raint_cum_Idrp-Imat 0.3080 

15 Days_Swfac_0.6_Iflo-

Imat 0.5811 

MinTemp_avg_Idrp-

Imat 

0.5977 Days_Swfac_0.6_Iflo-

Idrp 

0.3025 

Table 3. Top-15 of variables selected by filter methods: Pearson, Spearman and entropy-based information gain. 345 
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In this sense, 12 and 14 variables were selected by Pearson and Spearman respectively. The 346 

variables Lai(n)_Imat, Masec(n)_Imat, Qnplante_Imat, Ep_cum_Idrp-Imat and Qfix_Imat were 347 

selected by entropy-based information gain. The subdatasets with the selected variables by filter 348 

methods were used to train the regression learners presented in Section 2. Besides, RF, LASSO 349 

and M5 decision tree act as regression learners and feature selection techniques due these 350 

learners are considered embedded methods. In other words, RF, LASSO and M5 are trained 351 

with subset of variables selected by filter methods and subsequently the embedded 352 

methods/learners select a new subset of variables in the training process into learner. The results 353 

are presented in Table 5. 354 

3.1.2 Embedded methods 355 

We used as embedded methods the learners: Random forest, Least Absolute Shrinkage and 356 

Selection Operator and M5 decision tree. The variable selection process for each one is 357 

explained below. 358 

Random Forest 359 

Random Forest (RF) gathers a set of CART trees in order to obtain the soybean yield prediction 360 

by averaging the results of all of trees. We used R packages 'randomForest'  to create RF model 361 

and 'randomForestExplainer' (Liaw & Wiener, 2002) to design multi-way plot shown in Figure 362 

3. Five hundred CART trees were built (ntree parameter) as result, 42 variables were sampled 363 

as candidates at each split. The multi-way plot focuses on three importance measures that derive 364 

from the structure of trees in the forest: (i) the mean_min_depth variable refers to the depth of 365 

first split on the variable to the top of the tree; (ii) the times_a_root variable measures the 366 

number of times a variable is set as top of a decision tree.  Figure 3 presents multi-way plot for 367 

first 15 relevant variables. 368 

Lai(n)_Imat was the most used variable as top split criterion (148 times) followed by 369 

Masec(n)_Imat (67 times) and Ep_cum_Iflo-Imat (58 times). Variables as Qfix_Iflo and 370 

Precip_cum_Idrp-Imat were never used as top of decision trees and they have the longest 371 

distance (mean minimum depth of 6.728 and 6.398 respectively) to the top of decision trees 372 

considered less associated with the dependent variable Mafruit. Other variables as Qfix_Idrp, 373 

Lai(n)_Iflo and Precip_cum_Iflo-Idrp can be considered as intermediate nodes of the trees 374 

(times_a_root = 0) with mean minimum depth less than Precip_cum_Idrp-Imat and Qfix_Iflo 375 

(mean_min_depth = 4.856, 5.045 and 5.297 respectively). 376 
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 377 

Figure 3. Multi-way plot between two measures of importance: mean_min_depth (x-axis) and times_a_root (y-axis). First 15 378 
relevant variables are depicted. X-axis correspond to mean depth of first split on the variable, y-axis the number of trees in 379 
which the root is split on the variable. 380 

Least Absolute Shrinkage and Selection Operator  381 

We used the R package 'caret' to build LASSO model (Kuhn, 2008). Root Mean Square Error 382 

(RMSE) was used to select the optimal model using the smallest value. LASSO model was run 383 
with parameters fraction = 0.1 and lambda = 0.01 (Equation 1). The LASSO model set the 384 

regression coefficients of 21 variables to zero by imposing the L1 penalty. Table C1 (Appendix 385 

C) contains the regression coefficients of 66 variables calculated by LASSO. 386 
 387 

M5 decision tree 388 

M5 was built by R package 'RWeka' (Hornik et al., 2009). The construction of M5 tree is based 389 

on recursive splitting of the standard deviation of Mafruit (dependent variable) that reach a node 390 

as a measure of the error at the node. The variable that maximizes the expected error reduction 391 

is selected for splitting at the node. The expected reduction of the error is obtained as a result 392 

of testing each variable at that node. To remove the problem of over fitting, M5 uses a method 393 

to prune back the over grown tree. Figure 4 shows the structure of the pruned M5 tree to predict 394 

the soybean yield (Mafruit) regarding the thirteen selected variables (Table 4). Left branches 395 

show conditions below the node threshold, for example, if the top node Lai(n)_Imat ≤ 1.103 396 

and if Inn_avg_Iflo-Idrp ≤ 0.769, the linear model LM 1 must be selected. Thirty-seven nodes 397 

were created including nineteen linear models as decision rules. We defined 3 observations as 398 

minimum number at the leaf node. Appendix C contains the linear models generated by M5. 399 
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 400 

Figure 4. M5 pruned decision tree. Thirteen variables were selected and 19 decision rules (linear regressions) were created. At 401 
the leaf node, the number in parenthesis corresponds to observations for each linear regression. 402 

3.1.3 Wrapper methods 403 

A greedy algorithm named Recursive Feature Elimination (RFE) was used as wrapper method 404 

(Kohavi & John, 1997; Guyon et al., 2002). RFE selects a subset of variables to improve a 405 

learner performance by removing the least important features. This process is repeated 406 

recursively (based on backward elimination) until the optimal number of features is obtained. 407 

The recursive step plays a key role due the relative importance of each variable can change 408 

substantially over a different subset of variables during the backward elimination process 409 

(particularly for highly correlated variables) (Granitto et al., 2006). We used the RFE version 410 

coded in R package 'caret' (Kuhn, 2008). Six learners were selected (explained in section 2) to 411 

determine the performance of subsets of variables selected by RFE shown in Table 4. The 412 

variables subset selection were conducted through lowest Mean Absolute Error obtained by 413 

learners. Recursive Feature Elimination selected all of the variables for RF model. The variables 414 

subset for remaining models are less than 17. 415 

Learner Variables Selected 

variables 

RMSE 

LR MaxTemp_avg_Idrp-Imat, Qnplante_Idrp, Masec(n)_Imat, 

Ep_cum_Idrp-Imat, Lai(n)_Imat, Raint_cum_Idrp-Imat 

6 0.5865 

SVR Lai(n)_Imat, Masec(n)_Imat, Qnplante_Idrp, Qnplante_Imat, 

Masec(n)_Idrp, Ep_cum_Iflo-Imat, Ep_cum_Idrp-Imat, 

14 0.6750 
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Ep_cum_Ilev-Imat, Qfix_Imat, Zrac_Imat, Zrac_Idrp, 

Lai(n)_Idrp, Raint_cum_Idrp-Imat, MaxTemp_avg_Idrp-Imat 

BPNN Lai(n)_Imat, Masec(n)_Imat, Qnplante_Idrp, Qnplante_Imat, 

Masec(n)_Idrp, Ep_cum_Iflo-Imat, Ep_cum_Idrp-Imat, 

Qfix_Imat, Zrac_Imat, Zrac_Idrp, Ep_cum_Ilev-Imat, 

Lai(n)_Idrp, Raint_cum_Idrp-Imat, MaxTemp_avg_Idrp-Imat, 

Swfac_min_Ilev-Imat, Swfac_min_Iflo-Imat 

16 1.294 

RF All variables were selected 87 0.4639 

LASSO Lai(n)_Imat, Masec(n)_Imat, Qnplante_Idrp, Qnplante_Imat, 

Masec(n)_Idrp, Ep_cum_Iflo-Imat, Ep_cum_Idrp-Imat, 

Qfix_Imat, Ep_cum_Ilev-Imat, Zrac_Idrp, Zrac_Imat, 

Raint_cum_Idrp-Imat, Lai(n)_Idrp, MinTemp_avg_Idrp-Imat, 

MaxTemp_avg_Idrp-Imat, Swfac_min_Iflo-Imat 

16 6.141e-01 

M5 Lai(n)_Imat, Inn_avg_Idrp-Iflo, Ep_cum_Idrp-Imat, 

MaxTemp_avg_Ilev-Imat, Masec(n)_Iflo, Qfix_Iflo, Qfix_Imat, 

Inn_min_Iflo-Idrp, Lai(n)_Idrp, Swfac_avg_Iflo-Imat, 

Lai(n)_Iflo, Precip_cum_Iflo-Imat, Masec(n)_Idrp 

13 0.5465 

Table 4. Subset of variables selected by Recursive Feature Elimination (RFE) and base learners: Linear Regression (LR), 416 
Support Vector Regression (SVR), M5 decision tree, Random Forest (RF) and Backpropagation Neural Network (BPNN). 417 
Learner performance is based on Root Mean Square Error (RMSE). 418 

Concerning time complexity, RFE is slower than filter and embedded methods, since RFE 419 

needs to evaluate performance criteria for each iteration besides the computational cost of the 420 

model training. In this sense, learners based on linear models as LR and LASSO obtained much 421 

less computational cost (59.42 and 137.53 seconds) than BPNN, RF and M5 (1421.25, 1268.27 422 

and 1033.52 seconds). In contrast to Support Vector Regression which imposed considerable 423 

computational cost (5271.56 seconds) due to margin maximization to find the support vectors 424 

and nonlinear transformations of the feature space (Yu et al., 2003). Figure 5 presents the time 425 

complexity of the variables subset selection by Recursive Feature Elimination and base 426 

learners. Wrapper methods were run on Windows 10 comprised of Intel Core i5-774HQ CPU 427 

2.80GHz – 16GB RAM based on sequential computing. 428 

 429 

Figure 5. Time complexity to select subset of variables by Recursive Feature Elimination (RFE) and base learners: Linear 430 
Regression (LR), Support Vector Regression (SVR), M5 decision tree, Random Forest (RF) and Backpropagation Neural 431 
Network (BPNN). 432 
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3.2 Regression models 433 

In order to examine the performance of subset of variables selected by feature selection 434 

methods, we used traditional statistical criteria to estimate the prediction accuracy of regression 435 

learners as Coefficient of determination (R2), Mean Square Error (MSE), Root Mean Square 436 

Error (RMSE) and Mean Absolute Error (MAE). The metric R2 was adopted to measure the 437 

correlation of the observed and predicted values.  438 

Regression learners were trained with 105 observations and evaluated with 122 examples 439 

(explained in section 2). Table 5 presents the results of regression learners trained with subset 440 

of variables selected by feature selection methods. The underlined values correspond to 441 

statistical criteria obtained by best two learners and feature selection method. 442 

Feature 

selection 

approach 

Feature 

selection 

method 

 

SC 

Learners 

LR SVR BPNN RF LASSO M5 

 

 

 

 

 

 

Filter 

 

Pearson 

correlation 

R2 0.6185 0.6389 0.1837 0.3487 0.6274 0.6193 

MSE 0.9085 0.6539 2.1301 1.0325 0.7250 0.9211 

RMSE 0.9531 0.8086 1.4595 1.0161 0.8514 0.9597 

MAE 0.7227 0.6267 1.2375 0.8422 0.6552 0.7258 

No. Selected 

Variables 

12 12 12 12 12 12 

 

Spearman 

correlation 

R2 0.5890 0.6394 0.1841 0.3463 0.6101 0.6276 

MSE 1.0418 0.6948 1.4388 1.0818 0.8167 0.6776 

RMSE 1.0207 0.8335 1.1995 1.0401 0.9037 0.8231 

MAE 0.7889 0.6551 1.0158 0.8505 0.6862 0.6397 

No. Selected 

Variables 

14 14 14 14 14 14 

 

Entropy-based 

information 

gain 

R2 0.3974 0.3916 0.2701 0.2622 0.3961 0.2502 

MSE 0.9479 1.0085 4.0698 1.1859 0.9554 1.2713 

RMSE 0.9736 1.0042 2.0173 1.0890 0.9774 1.1275 

MAE 0.7951 0.8215 1.7373 0.8815 0.7975 0.9212 

No. Selected 

Variables 

5 5 5 5 5 5 

 

Embedded 

 

Learners: 

RF, LASSO 

and M5 

R2 - - - 0.5020 0.1249 0.4010 

MSE - - - 0.8300 6.1841 0.9466 

RMSE - - - 0.9110 2.4867 0.9729 

MAE - - - 0.7258 1.9206 0.7802 

No. Selected 

Variables 

- - - 42 66 87 

 

Wrapper 

 

Recursive 

Feature 

Elimination 

(RFE) 

R2 0.6912 0.7102 0.1829 0.5020 0.6718 0.4010 

MSE 0.4807 0.4170 1.4916 0.8300 0.4760 0.9466 

RMSE 0.6933 0.6458 1.2213 0.9110 0.6899 0.9729 

MAE 0.5469 0.5230 0.9746 0.7258 0.5747 0.7802 

No. Selected 

Variables 

6 14 16 87 16 13 

Table 5. Results of regression learners trained with subset of variables selected by feature selection methods. Validation dataset 443 
(Section 2) was used to evaluate the regression learners. Statistical criteria (SC) used to estimate the performance of regression 444 
learners: Coefficient of determination (R2), Mean Square Error (MSE), Root Mean Square Error (RMSE) and Mean Absolute 445 
Error (MAE). The underlined values correspond to statistical criteria obtained by best two learners and feature selection method. 446 

According to filter methods, Pearson, Spearman and Entropy coefficients selected 12, 14 and 5 447 

variables respectively (Section 3). The regression learners LR, SVR and BPNN were trained 448 

with subset of variables selected by filter methods; SVR obtained the best results with subset 449 

of feature selected by Pearson coefficient (R2 = 0.6389, MSE = 0.6539, RMSE = 0.8086 and 450 

MAE = 0.6267). Regression learners RF, LASSO and M5 decision tree act as ensemble 451 
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approaches for feature selection due these learners are considered embedded methods as well. 452 

In other words, embedded methods were trained with subset of variables selected by filter 453 

methods. Subsequently, embedded methods select a new subset of variables in the training 454 

process into learner. However, the ensemble of filter and embedded methods do not improve 455 

the performance obtained by SVR trained with subset of variables chosen by Pearson 456 

coefficient. 457 

The number of variables selected by two embedded methods were higher respecting to others 458 

feature selection approaches. Random Forest and LASSO selected 87 and 66 variables 459 

respectively, whereas M5 decision Tree 13 variables (Section 3). Random Forest reached the 460 

best performance in the ensemble methods (R2 = 0. 5020, MSE = 0. 8300, RMSE = 0. 9110 and 461 

MAE = 0.7258), however RF does not overcome the performance obtained by SVR and Pearson 462 

coefficient in the filter methods. 463 

Concerning to wrapper method, Recursive Feature Elimination selected 6, 14 and 16 variables 464 

for LR, SVR and BPNN. SVR achieved the best results compared to all of combination of 465 

feature selection approaches and learners (R2 = 0. 7102, MSE = 0. 4170, RMSE = 0. 6458 and 466 

MAE = 0. 5230). Remain of learners that work as ensemble feature selection among wrapper 467 

and embedded methods (RF, LASSO and M5 decision tree), RFE proposes different subset of 468 

variables created in the backward elimination process. The embedded methods are tested with 469 

subset of variables proposed by wrapper method and they select a new subset of variables in 470 

the training process into learner. The best subset of variables are selected regarding to 471 

performance criteria of the embedded method. LASSO trained with 16 variables selected by 472 

RFE (Table 4) reached the best results (R2 = 0. 6718, MSE = 0. 4760, RMSE = 0. 6899 and 473 

MAE = 0. 5747) compared to RF and M5 of the wrapper method. Besides, RFE improve the 474 

performance of LASSO compared to LASSO’s version of filter and embedded.  475 

In summary, the wrapper methods RFE-SVR (R2 = 0. 7102, MSE = 0. 4170, RMSE = 0. 6458 476 

and MAE = 0. 5230) and RFE-LR (R2 = 0. 6912, MSE = 0. 4807, RMSE = 0. 6933 and MAE 477 

= 0. 5469) achieved the best results from validation dataset. Figure 6 depicts the scatter plots of 478 

observed vs simulated soybean yield values by RFE-SVR and RFE-LR. 479 

  
a. Observed Mafruit values vs Simulated Mafruit values by 

RFE-SVR 

b. Observed Mafruit values vs Simulated Mafruit values by 

RFE-LR 

Figure 6. Scatter plot of observed (x-axis) vs simulated (y-axis) Mafruit values by RFE-SVR (14 variables) and RFE-LR (6 480 
variables) 481 



17 

 

For real values of soybean yield equal to zero, RFE-SVR and RFE-LR predict negative soybean 482 

values or close to zero. RFE-SVR simulates Mafruit values equal to 0.066, -0.086 and -0.085 483 

for 3 observations where Mafruit = 0 of the validation dataset (Béziers in 2011 with maturity 484 

group I in varieties Isidor, Santana and maturity group II in Ecudor variety). Similarly, LR-RFE 485 

predicts -0.227, -0.379 and -0.378 for same observations of validation dataset. 486 

3.3 Comparative study 487 

In order to demonstrate the performance of RFE-SVR and RFE-LR, we compared both 488 

regression models against STICS simulations developed in (Schoving, 2020). The soybean 489 

yield model proposed by Schoving was calibrated with the same training set as presented in 490 

section 2. Table 6 shows the results of RFE-SVR, RFE-LR and STICS models evaluated from 491 

validation dataset (Section 2). 492 

Models Statistical criteria 

R2 RMSE 
RFE-SVR 0.710 0.645 

RFE-LR 0.691 0.693 

(Schoving, 2020) 0.040 1.320 
Table 6. Comparison of Support Vector Regression and Linear Regression (LR) trained with subset of variables selected by 493 
Recursive Feature Selection (RFS) vs soybean yield model proposed by (Schoving, 2020). Validation dataset (Section 2) was 494 
used to evaluate the models. Statistical criteria used to estimate the performance of models: Coefficient of determination (R2) 495 
and Root Mean Square Error (RMSE). 496 

The two regression models explained around 70 % of the grain yield variation and they achieved 497 

half of RMSE values obtained for STICS simulations developed in (Schoving, 2020). Although 498 

total aboveground biomass was correctly simulated by (Schoving, 2020) (r² = 0.64), final grain 499 

yield of semi-indeterminate and indeterminate soybean cultivars was poorly represented (Table 500 

6; r² = 0.04). This is probably because STICS uses the standard formalism of wheat and maize 501 

crops to simulate the final grain yield in soybean. 502 

4- Discussion 503 

Feature selection methods are relevant in order to reduce the computational complexity and 504 

improve the model generalization ability (Maldonado & Weber, 2009). High dimensional 505 

variables impose a high computational cost and a high cost of data acquisition. On the other 506 

hand, a low-dimensional representation reduces the risk of overfitting (Famili et al., 1997; Liu 507 

& Zheng, 2006). The value added by applying feature selection techniques is to determinate a 508 

subset of available variables to build a good model, which is a combinatorial problem in the 509 

number of original variables (Wolsey & Nemhauser, 1999; Guyon & Elisseeff, 2003). 510 

With this rationale, we used popular filter, embedded and wrapper methods in order to select 511 

the relevant variables to predict soybean yield. 512 

Filter methods are independent of any learners and they are based on performance evaluation 513 

metrics calculated directly from the data. We used two correlation-based filters (Pearson and 514 

Spearman) followed by a measure based on information theory (Information Gain). Figure 7 515 

presents Venus diagram of top-15 variables selected by filter methods. Correlation-based filters 516 

selected twelve same variables. The correlations found by Pearson and Spearman are equivalent 517 

to rank the common twelve variables; whereas Pearson inspects straight connections, Spearman 518 

evaluates monotonic connections (regardless of whether direct or not) (Thirumalai et al., 2017). 519 

However, of the three filter methods share less features in common (eight variables) due to 520 



18 

 

entropy-based information is designed to observe the amount of information gained between 521 

two discrete variables, and dataset used contains only numeric variables. 522 

The principle of embedded methods (feature selection as part of the training process) is to 523 

reduce the computation time taken up for testing several subsets of variables which is done in 524 

wrapper methods (Chandrashekar & Sahin, 2014). In this work, the number of variables 525 

selected by RF and LASSO were higher. LASSO selected 66 variables and Random Forest all 526 

of the initial variable set. Although M5 decision Tree selected less variables (13), the results 527 

were worse than RF (R2 = 0. 4010, MSE = 0. 9466, RMSE = 0. 9729 and MAE = 0. 7802). 528 

Embedded methods showed an improvement when they were used as ensemble approaches of 529 

filter and wrapper techniques. 530 

 531 

Figure 7.Venus diagram of top-15 variables selected by filter methods: Pearson, Spearman and Entropy-based information  532 

Wrapper methods are widely recognized and considered a superior alternative for two reasons: 533 

(i) they evaluate variables iteratively with respect to performance learner. Therefore, variables 534 

selected by wrapper approach are more likely to suit the learner (Kohavi & John, 1997); (ii) 535 

wrapper approaches evaluate variables jointly and are effective in capturing intrinsic 536 

relationships such as interactions among multiple variables (Freitas, 2001). However 537 

computational cost is high, even for learners that exhibit a moderate complexity, the number of 538 

iterations required by the search of subset variables is high, especially as more complex search 539 

strategies are used (Talavera, 2005). In this paper, we used a dataset with few observations (105 540 

instances) but it contains a large number of features (87 variables). Recursive Feature 541 

Elimination through SVR and LR learners reached the best performance. RFE-SVR and RFE-542 

LR are recommended to be used as surrogate models to predict soybean yield in southern 543 

France. Concerning to time complexity, the lowest time was obtained by RFE-LR (59.42 544 

seconds) against RFE-SVR (5271.56 seconds). 545 

On the other hand, Support Vector Regression and Linear Regression belong different type of 546 

learners. SVR is considered a black-box model whereas LR an interpretable model (Loyola-547 

González, 2019). SVR builds a hyperplane or set of hyperplanes in a high-dimensional space, 548 

which are very hard to explain and to be understood by experts in practical applications (Rudin, 549 

2019). LR generates a linear equation to explain the correlation among variables in a language 550 

close to a human expert. 551 

In this sense, RFE-LR is represented by the following linear equation:  552 
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Mafruit = -0.3095*MaxTemp_avg_Idrp-Imat + 0.0148*Qnplante_Idrp + 0.0057*Masec(n)_Imat + 

0.0066*Ep_cum_Idrp-Imat + 0.0458 *Lai(n)_Imat + 0.0008*Raint_cum_Idrp-Imat + 8.5049 

 

(9) 

RFE-LR model explains biologically the higher leaf area duration during grain filling through 553 
the increase of grain yield (Mafruit) with aboveground biomass at maturity (Masec(n)_Imat), 554 
precipitation amount (Raint_cum_Idrp-Imat), cumulative crop transpiration during grain filling 555 

(Ep_cum_Idrp-Imat), the mineral nitrogen accumulated by the plants at the onset of grain filling 556 
(Qnplante_Idrp) and residual leaf area index at maturity (Lai(n)_Imat). All these variables 557 
demonstrate that radiation, water and nitrogen resources are highly representative variables of 558 
soybean grain yield. Further, the high temperatures may affect crop photosynthesis and grain 559 
filling (MaxTemp_avg_Idrp-Imat) which is in accordance with our knowledge of soybean 560 

physiology (Grassini et al., 2021).  561 
 562 
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APPENDIX A  

 

Experimental 

site 

Year Maturity 

group 

Variety Planting date Water 

management 

Soil Observed variables 

Auzeville 2017 000, I, II Blancas, Ecudor, Santana, Isidor, 

Sultana, RGT, Shouna 

80, 130 IRR, DRY Clay, Loam LAI, BNF, AGPN, AGB, GY, GNC, Oil 

2018 000, I, II Blancas, Ecudor, Santana, Isidor, ES, 

Pallador, Sultana, RGT, Shouna 

114, 155 IRR, DRY Silty, Clay, 

Loam 

BNF, AGPN, AGB, GY, GNC, Oil, roots 

depth 

Béziers 2010 I, II Isidor, Sumatra, Ecudor, Fukui, 

S109554 

55, 76, 112 IRR Loam GY 

2011 0, I, II Sarema, Isidor, Ecudor 67, 96, 132 IRR Loam GY 

2012 0, I, II Sarema, Isidor, Ecudor 76, 103, 131 IRR Silt, Loam GY, GNC 

En Crambade 2013 I, II Isidor, Santana, Ecudor 74, 115 IRR, DRY Clay LAI, BNF, AGPN, AGB, GY, GNC, Oil 

2014 I, II Isidor, Santana, Ecudor 73, 120 IRR, DRY Clay LAI, BNF, AGPN, AGB, GY, GNC, Oil 

Mauguio 2010 I, II Isidor, Sumatra, Ecudor, Fukui, 

S109554 

74, 98, 145 IRR Clay, Loam GY 

Mondonville 2010 I, II Isidor, Sumatra, Ecudor, Fukui, 

S109554 

61, 92, 138 IRR Silt, Loam GY 

2011 0, I, II Sarema, Isidor, Ecudor 80, 102, 124 IRR Silt, Loam GY 

2012 I, II Isidor, Ecudor 76, 97, 124 IRR Silt, Loam GY, GNC 

2013 I, II Isidor, Santana, Ecudor 81, 147 IRR, DRY Silt, Loam LAI, BNF, AGPN, AGB, GY, GNC, Oil 

2014 I, II Isidor, Santana, Ecudor 126 IRR, DRY Silt, Loam LAI, BNF, AGPN, AGB, GY, GNC, Oil 

Rivières 2010 I, II Isidor, Sumatra, Ecudor, Fukui, 

S109554 

62, 99 IRR Clay, Loam GY 

2011 0, I, II Sarema, Isidor, Ecudor 70, 102, 131 IRR Clay, Loam GY 

2012 I, II Isidor, Ecudor 76, 108, 138 IRR Clay, Loam GY, GNC 

2013 I, II Isidor, Santana, Ecudor 81, 126 IRR, DRY Clay, Loam LAI, BNF, AGPN, AGB, GY, GNC, Oil 

2014 I, II Isidor, Santana, Ecudor 77, 126 IRR, DRY Clay, Loam LAI, BNF, AGPN, AGB, GY, GNC, Oil 
Table A1. Dataset description of seventeen experimental sites during 2010-2018 from six regions in the south of France. The dataset contains 227 simulation units (USM) created from combination 

of experimental sites, years and cropping practices (cultivar, water management and sowing date). LAI: Leaf area index (m2.m-2), BNF: fixed nitrogen (kg.ha-1), AGPN: Total nitrogen (kg.ha-

1), AGB: Biomass of aerial parts (t.ha-1), GY: Grain yield (t.ha-1), GNC: Nitrogen concentration in the grains (%), Oil: percentage of oil (%), roots depth: rooting depth (cm). Source: (Schoving, 

2020) . 
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Table A2 lists all of the preprocessed variables from STICS basic variables, crop phenology stages, 

descriptive values and thresholds.  

#  Variable #  Variable # Variable 

1 Nbgrmax 30 Etpp(n)_cum_Idrp-Imat 59 MaxTemp_max_Iflo-Idrp 

2 Stlevdrp 31 Etpp(n)_cum_Iflo-Idrp 60 Days_MaxTemp_28_Ilev-

Imat 

3 Stflodrp 32 Precip_cum_Ilev-Imat 61 Days_MaxTemp_28_Iflo-Imat 

4 Stdrpmat 33 Precip_cum_Iflo-Imat 62 Days_MaxTemp_28_Idrp-

Imat 

5 Masec(n)_Iflo 34 Precip_cum_Idrp-Imat 63 Days_MaxTemp_28_Iflo-Idrp 

6 Masec(n)_Idrp 35 Precip_cum_Iflo-Idrp 64 Swfac_avg_Ilev-Imat 

7 Masec(n)_Imat 36 Ep_cum_Ilev-Imat 65 Swfac_avg_Iflo-Imat 

8 Lai(n)_Iflo 37 Ep_cum_Iflo-Imat 66 Swfac_avg_Idrp-Imat 

9 Lai(n)_Idrp 38 Ep_cum_Idrp-Imat 67 Swfac_avg_Iflo-Idrp 

10 Lai(n)_Imat 39 Ep_cum_Iflo-Idrp 68 Swfac_min_Ilev-Imat 

11 Qnplante_Iflo 40 AvgTemp_avg_Ilev-Imat 69 Swfac_min_Iflo-Imat 

12 Qnplante_Idrp 41 AvgTemp_avg_Iflo-Imat 70 Swfac_min_Idrp-Imat 

13 Qnplante_Imat 42 AvgTemp_avg_Idrp-Imat 71 Swfac_min_ Iflo-Idrp 

14 Qfix_Iflo 43 AvgTemp_avg_Iflo-Idrp 72 Days_Swfac_0.6_ Ilev-Imat 

15 Qfix_Idrp 44 MinTemp_avg_Ilev-Imat 73 Days_Swfac_0.6_Iflo-Imat 

16 Qfix_Imat 45 MinTemp_avg_Iflo-Imat 74 Days_Swfac_0.6_Idrp-Imat 

17 Zrac_Iflo 46 MinTemp_avg_Idrp-Imat 75 Days_Swfac_0.6_Iflo-Idrp 

18 Zrac_Idrp 47 MinTemp_avg_Iflo-Idrp 76 Inn_avg_Ilev-Imat 

19 Zrac_Imat 48 Days_MinTemp_18_Ilev-Imat 77 Inn_avg_Iflo-Imat 

20 Jul_cum_Ilev-Imat 49 Days_MinTemp_18_Iflo-Imat 78 Inn_avg_Idrp-Imat 

21 Jul_cum_Iflo-Imat 50 Days_MinTemp_18_Idrp-

Imat 

79 Inn_avg_Iflo-Idrp 

22 Jul_cum_Idrp-Imat 51 Days_MinTemp_18_Iflo-Idrp 80 Inn_min_ Ilev-Imat 

23 Jul_cum_Iflo-Idrp 52 MaxTemp_avg_Ilev-Imat 81 Inn_min_Iflo-Imat 

24 Raint_cum_Ilev-Imat  53 MaxTemp_avg_Iflo-Imat 82 Inn_min_Idrp-Imat 

25 Raint_cum_Iflo-Imat 54 MaxTemp_avg_Idrp-Imat 83 Inn_min_Iflo-Idrp 

26 Raint_cum_Idrp-Imat 55 MaxTemp_avg_Iflo-Idrp 84 Days_Inn_0.6_Ilev-Imat 

27 Raint_cum_Iflo-Idrp 56 MaxTemp_max_Ilev-Imat 85 Days_Inn_0.6_Iflo-Imat 

28 Etpp(n)_cum_Ilev-Imat 57 MaxTemp_max_Iflo-Imat 86 Days_Inn_0.6_Idrp-Imat 

29 Etpp(n)_cum_Iflo-Imat 58 MaxTemp_max_Idrp-Imat 87 Days_Inn_0.6_Iflo-Idrp 
Table A2. Name of variables processed from Multidisciplinary Simulator for Standard Crops (STICS). Crop phenology stages: 

Ilev (emergence), Idrp (grain filling onset), Iflo (flowering), Imat (physiological maturity); descriptive values: cum 

(cumulative), max (maximum), avg (average); thresholds (MinTemp, MaxTemp, Swfac, Inn variables) 
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APPENDIX B 

 

 

Pos Variable name Var 

Importance 

Pos Variable name Var 

Importance 

1 Masec(n)_Imat 0.7923 45 Inn_avg_Iflo-Idrp 0.3542 

2 Lai(n)_Imat 0.7726 46 MinTemp_avg_Ilev-Imat 0.3508 

3 Qnplante_Idrp 0.7710 47 Days_MaxTemp_28_Iflo-Imat 0.3478 

4 Qnplante_Imat 0.7523 48 Precip_cum_Iflo-Idrp 0.3460 

5 Masec(n)_Idrp 0.7334 49 MaxTemp_avg_Iflo-Imat 0.3432 

6 Ep_cum_Idrp-Imat 0.6819 50 Days_MinTemp_18_Iflo-Idrp 0.3327 

7 Qfix_Imat 0.6805 51 Inn_avg_Iflo-Imat 0.3099 

8 Ep_cum_Iflo-Imat 0.6650 52 MinTemp_avg_Iflo-Idrp 0.2944 

9 Raint_cum_Idrp-Imat 0.6326 53 Inn_avg_Ilev-Imat 0.2924 

10 Lai(n)_Idrp 0.6292 54 Days_Inn_0.6_Iflo-Imat 0.2923 

11 AvgTemp_avg_Idrp-Imat 0.6157 55 Days_Inn_0.6_Iflo-Idrp 0.2923 

12 Swfac_avg_Iflo-Imat 0.6088 56 Days_Inn_0.6_Ilev-Imat 0.2903 

13 MinTemp_avg_Idrp-Imat 0.5937 57 Inn_min_Iflo-Imat 0.2824 

14 Ep_cum_Ilev-Imat 0.5842 58 Inn_min_Iflo-Idrp 0.2684 

15 Days_Swfac_0.6_Iflo-Imat 0.5811 59 Inn_min_Idrp-Imat 0.2673 

16 MinTemp_avg_Iflo-Imat 0.5654 60 Precip_cum_Idrp-Imat 0.2453 

17 Swfac_min_Idrp-Imat 0.5638 61 Inn_min_ Ilev-Imat 0.2405 

18 Days_MinTemp_18_Idrp-Imat 0.5618 62 AvgTemp_avg_Ilev-Imat 0.2320 

19 Swfac_min_Iflo-Imat 0.5600 63 Jul_cum_Ilev-Imat 0.1721 

20 MaxTemp_avg_Idrp-Imat 0.5578 64 Masec(n)_Iflo 0.1698 

21 AvgTemp_avg_Iflo-Imat 0.5551 65 Lai(n)_Iflo 0.1594 

22 Swfac_min_Ilev-Imat 0.5521 66 MaxTemp_max_Ilev-Imat 0.1560 

23 Days_MinTemp_18_Iflo-Imat 0.5328 67 Inn_avg_Idrp-Imat 0.1557 

24 Days_MaxTemp_28_Idrp-

Imat 0.5119 

68 

Days_MaxTemp_28_Ilev-Imat 0.1442 

25 Ep_cum_Iflo-Idrp 0.5113 69 AvgTemp_avg_Iflo-Idrp 0.1030 

26 Jul_cum_Idrp-Imat 0.5069 70 Zrac_Iflo 0.0934 

27 Swfac_avg_Ilev-Imat 0.5054 71 Etpp(n)_cum_Idrp-Imat 0.0858 

28 Qfix_Idrp 0.4953 72 MaxTemp_avg_Iflo-Idrp 0.0856 

29 Swfac_avg_Idrp-Imat 0.4929 73 Qfix_Iflo 0.0821 

30 Swfac_avg_Iflo-Idrp 0.4909 74 Nbgrmax 0.0781 

31 Days_Swfac_0.6_ Ilev-Imat 0.4899 75 MaxTemp_max_Iflo-Imat 0.0773 

32 Days_Swfac_0.6_Iflo-Idrp 0.4834 76 Etpp(n)_cum_Ilev-Imat 0.0708 

33 Raint_cum_Iflo-Imat 0.4712 77 Etpp(n)_cum_Iflo-Imat 0.0701 

34 Days_Swfac_0.6_Idrp-Imat 0.4627 78 Days_MaxTemp_28_Iflo-Idrp 0.0643 

35 Zrac_Idrp 0.4592 79 MaxTemp_max_Iflo-Idrp 0.0618 

36 Zrac_Imat 0.4536 80 MaxTemp_avg_Ilev-Imat 0.0613 

37 Swfac_min_ Iflo-Idrp 0.4464 81 Etpp(n)_cum_Iflo-Idrp 0.0565 

38 MaxTemp_max_Idrp-Imat 0.4257 82 Raint_cum_Iflo-Idrp 0.0461 

39 Jul_cum_Iflo-Imat 0.3997 83 Jul_cum_Iflo-Idrp 0.0456 

40 Days_MinTemp_18_Ilev-Imat 0.3926 84 Stflodrp 0.0372 

41 Qnplante_Iflo 0.3866 85 Stlevdrp 0.0308 

42 Raint_cum_Ilev-Imat 0.3802 86 Stdrpmat 0.0074 

43 Precip_cum_Ilev-Imat 0.3714 87 Days_Inn_0.6_Idrp-Imat 0.0000 

44 Precip_cum_Iflo-Imat 0.3585    
Table B1. Ranking of variables computed by Pearson correlation. 
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Pos Variable name Var 

Importance 

Pos Variable name Var 

Importance 

1 Lai(n)_Imat 0.7699 45 Precip_cum_Iflo-Imat 0.3140 

2 Masec(n)_Imat 0.7311 46 Days_MinTemp_18_Iflo-Idrp 0.3018 

3 Qnplante_Idrp 0.7137 47 Inn_avg_Iflo-Idrp 0.2983 

4 Masec(n)_Idrp 0.7003 48 MinTemp_avg_Ilev-Imat 0.2851 

5 Ep_cum_Iflo-Imat 0.6886 49 Inn_min_Idrp-Imat 0.2817 

6 Ep_cum_Idrp-Imat 0.6734 50 Precip_cum_Ilev-Imat 0.2602 

7 Qnplante_Imat 0.6714 51 Days_Inn_0.6_Ilev-Imat 0.2599 

8 Ep_cum_Ilev-Imat 0.6456 52 Days_Inn_0.6_Iflo-Imat 0.2599 

9 Lai(n)_Idrp 0.6439 53 Days_Inn_0.6_Iflo-Idrp 0.2599 

10 Raint_cum_Idrp-Imat 0.6288 54 Inn_avg_Iflo-Imat 0.2570 

11 Swfac_min_Idrp-Imat 0.6160 55 Precip_cum_Iflo-Idrp 0.2407 

12 Swfac_min_Iflo-Imat 0.6136 56 Inn_min_Iflo-Idrp 0.2370 

13 AvgTemp_avg_Idrp-Imat 0.6081 57 Inn_avg_Ilev-Imat 0.2353 

14 Swfac_min_Ilev-Imat 0.6009 58 MinTemp_avg_Iflo-Idrp 0.2174 

15 MinTemp_avg_Idrp-Imat 0.5977 59 Masec(n)_Iflo 0.2164 

16 Qfix_Imat 0.5964 60 Inn_min_Iflo-Imat 0.2155 

17 MaxTemp_avg_Idrp-Imat 0.5937 61 Lai(n)_Iflo 0.2105 

18 Days_MinTemp_18_Idrp-Imat 0.5876 62 Inn_min_ Ilev-Imat 0.1991 

19 MinTemp_avg_Iflo-Imat 0.5758 63 Jul_cum_Ilev-Imat 0.1979 

20 Swfac_avg_Iflo-Imat 0.5655 64 Days_MaxTemp_28_Ilev-

Imat 

0.1840 

21 AvgTemp_avg_Iflo-Imat 0.5548 65 AvgTemp_avg_Ilev-Imat 0.1831 

22 Days_MinTemp_18_Iflo-Imat 0.5510 66 MaxTemp_max_Ilev-Imat 0.1801 

23 Ep_cum_Iflo-Idrp 0.5482 67 Inn_avg_Idrp-Imat 0.1667 

24 Jul_cum_Idrp-Imat 0.5380 68 Precip_cum_Idrp-Imat 0.1519 

25 Days_Swfac_0.6_Iflo-Imat 0.5361 69 AvgTemp_avg_Iflo-Idrp 0.1400 

26 Days_MaxTemp_28_Idrp-

Imat 

0.5033 70 Qfix_Iflo 0.1263 

27 Qfix_Idrp 0.4679 71 Nbgrmax 0.1160 

28 Jul_cum_Iflo-Imat 0.4667 72 Etpp(n)_cum_Idrp-Imat 0.1095 

29 MaxTemp_max_Idrp-Imat 0.4629 73 Raint_cum_Iflo-Idrp 0.1015 

30 Raint_cum_Iflo-Imat 0.4590 74 MaxTemp_max_Iflo-Imat 0.0949 

31 Days_Swfac_0.6_ Ilev-Imat 0.4546 75 Jul_cum_Iflo-Idrp 0.0849 

32 Swfac_avg_Ilev-Imat 0.4364 76 MaxTemp_avg_Ilev-Imat 0.0763 

33 Swfac_avg_Idrp-Imat 0.4319 77 Etpp(n)_cum_Ilev-Imat 0.0763 

34 Raint_cum_Ilev-Imat  0.4209 78 Etpp(n)_cum_Iflo-Idrp 0.0736 

35 Qnplante_Iflo 0.4206 79 Etpp(n)_cum_Iflo-Imat 0.0731 

36 Days_Swfac_0.6_Idrp-Imat 0.4148 80 Zrac_Iflo 0.0720 

37 Swfac_avg_Iflo-Idrp 0.4131 81 Days_MaxTemp_28_Iflo-Idrp 0.0538 

38 Swfac_min_ Iflo-Idrp 0.4105 82 Stflodrp 0.0465 

39 Days_Swfac_0.6_Iflo-Idrp 0.3993 83 MaxTemp_avg_Iflo-Idrp 0.0345 

40 Days_MinTemp_18_Ilev-Imat 0.3857 84 MaxTemp_max_Iflo-Idrp 0.0235 

41 Days_MaxTemp_28_Iflo-Imat 0.3552 85 Stlevdrp 0.0085 

42 Zrac_Idrp 0.3287 86 Stdrpmat 0.0085 

43 MaxTemp_avg_Iflo-Imat 0.3273 87 Days_Inn_0.6_Idrp-Imat 0.0000 

44 Zrac_Imat 0.3214    
Table B2. Ranking of variables computed by Spearman correlation filter. 

 

 

 

 

 

 

 

 



32 

 

 

 

Pos Variable name Var 

Importance 

Pos Variable name Var 

Importance 

1 Lai(n)_Imat 0.5929 45 Inn_min_Iflo-Imat 0.1745 

2 Masec(n)_Imat 0.5875 46 Inn_avg_Idrp-Imat 0.1744 

3 Qnplante_Imat 0.5515 47 MinTemp_avg_Iflo-Imat 0.1687 

4 Ep_cum_Idrp-Imat 0.4223 48 Inn_min_Idrp-Imat 0.1673 

5 Qfix_Imat 0.4072 49 Days_Swfac_0.6_ Ilev-Imat 0.1628 

6 Inn_min_Iflo-Idrp 0.3799 50 Days_MaxTemp_28_Ilev-

Imat 

0.1595 

7 Inn_avg_Iflo-Idrp 0.3652 51 Lai(n)_Iflo 0.1540 

8 Ep_cum_Iflo-Imat 0.3486 52 Precip_cum_Ilev-Imat 0.1213 

9 Days_Swfac_0.6_Iflo-Imat 0.3443 53 AvgTemp_avg_Ilev-Imat 0.1204 

10 Inn_avg_Ilev-Imat 0.3400 54 MaxTemp_avg_Ilev-Imat 0.1204 

11 Inn_avg_Iflo-Imat 0.3380 55 Etpp(n)_cum_Iflo-Imat 0.0993 

12 Masec(n)_Idrp 0.3300 56 Etpp(n)_cum_Ilev-Imat 0.0993 

13 Qnplante_Idrp 0.3285 57 Etpp(n)_cum_Iflo-Idrp 0.0993 

14 Raint_cum_Idrp-Imat 0.3080 58 Masec(n)_Iflo 0.0000 

15 Days_Swfac_0.6_Iflo-Idrp 0.3025 59 Qfix_Iflo 0.0000 

16 Precip_cum_Iflo-Imat 0.2988 60 Zrac_Iflo 0.0000 

17 Qnplante_Iflo 0.2895 61 Etpp(n)_cum_Idrp-Imat 0.0000 

18 Ep_cum_Ilev-Imat 0.2833 62 Precip_cum_Idrp-Imat 0.0000 

19 Swfac_avg_Iflo-Imat 0.2758 63 MaxTemp_avg_Iflo-Imat 0.0000 

20 Lai(n)_Idrp 0.2711 64 MaxTemp_max_Iflo-Imat 0.0000 

21 Swfac_min_Iflo-Imat 0.2476 65 Raint_cum_Ilev-Imat  0.0000 

22 Swfac_min_Ilev-Imat 0.2476 66 MinTemp_avg_Ilev-Imat 0.0000 

23 Zrac_Idrp 0.2457 67 Swfac_avg_Ilev-Imat 0.0000 

24 Zrac_Imat 0.2457 68 MaxTemp_max_Ilev-Imat 0.0000 

25 MinTemp_avg_Idrp-Imat 0.2374 69 Inn_min_ Ilev-Imat 0.0000 

26 Swfac_min_ Iflo-Idrp 0.2309 70 Jul_cum_Ilev-Imat 0.0000 

27 Swfac_min_Idrp-Imat 0.2289 71 Raint_cum_Iflo-Idrp 0.0000 

28 AvgTemp_avg_Iflo-Imat 0.2266 72 AvgTemp_avg_Iflo-Idrp 0.0000 

29 MaxTemp_avg_Idrp-Imat 0.2222 73 MinTemp_avg_Iflo-Idrp 0.0000 

30 Days_MinTemp_18_Ilev-Imat 0.2214 74 MaxTemp_avg_Iflo-Idrp 0.0000 

31 Jul_cum_Iflo-Imat 0.2191 75 MaxTemp_max_Iflo-Idrp 0.0000 

32 Days_MinTemp_18_Iflo-Imat 0.2063 76 Jul_cum_Iflo-Idrp 0.0000 

33 AvgTemp_avg_Idrp-Imat 0.2049 77 Days_Inn_0.6_Ilev-Imat 0.0000 

34 Days_MinTemp_18_Idrp-Imat 0.2035 78 Days_MaxTemp_28_Iflo-

Imat 

0.0000 

35 MaxTemp_max_Idrp-Imat 0.2000 79 Days_Inn_0.6_Iflo-Imat 0.0000 

36 Qfix_Idrp 0.1980 80 Days_Inn_0.6_Idrp-Imat 0.0000 

37 Ep_cum_Iflo-Idrp 0.1971 81 Days_MinTemp_18_Iflo-Idrp 0.0000 

38 Jul_cum_Idrp-Imat 0.1969 82 Days_MaxTemp_28_Iflo-Idrp 0.0000 

39 Days_MaxTemp_28_Idrp-Imat 0.1954 83 Days_Inn_0.6_Iflo-Idrp 0.0000 

40 Raint_cum_Iflo-Imat 0.1927 84 Nbgrmax 0.0000 

41 Swfac_avg_Idrp-Imat 0.1883 85 Stlevdrp 0.0000 

42 Days_Swfac_0.6_Idrp-Imat 0.1883 86 Stflodrp 0.0000 

43 Precip_cum_Iflo-Idrp 0.1872 87 Stdrpmat 0.0000 

44 Swfac_avg_Iflo-Idrp 0.1829    
Table B3. Ranking of variables computed by filter of entropy-based information gain. 
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APPENDIX C 

 

Coefficients of linear regression created by LASSO 

# Variable name Coefficient 

value 

# Variable name Coefficient 

value 

1 Masec(n)_Iflo 2.8188e+00 34 Inn_min_Iflo-Imat -1.3651e+01 

2 Lai(n)_Iflo 9.3241e-01 35 Raint_cum_Ilev-Imat -1.1394e-02 

3 Qnplante_Iflo 7.4166e-02 36 Precip_cum_Ilev-Imat 5.6827e-03 

4 Qfix_Iflo -1.7155e-01 37 Ep_cum_Ilev-Imat -7.9358e-02 

5 Zrac_Iflo 7.6535e-02 38 MinTemp_avg_Ilev-Imat 1.2562e-01 

6 Masec(n)_Idrp -4.0427e-01 39 MaxTemp_avg_Ilev-Imat -3.7455e-04 

7 Lai(n)_Idrp 7.3189e-01 40 Swfac_avg_Ilev-Imat 6.1859e+00 

8 Qnplante_Idrp -9.3804e-02 41 Inn_avg_Ilev-Imat 1.6985e+01 

9 Qfix_Idrp 9.1514e-02 42 MaxTemp_max_Ilev-Imat 7.1837e-01 

10 Zrac_Idrp 5.0038e-02 43 Swfac_min_Ilev-Imat 1.4684e-01 

11 Masec(n)_Imat 5.1417e-01 44 Inn_min_ Ilev-Imat -3.9823e+00 

12 Lai(n)_Imat -4.0912e-01 45 Jul_cum_Ilev-Imat -7.5989e-02 

13 Qnplante_Imat 3.8100e-02 46 Precip_cum_Iflo-Idrp 6.9931e-03 

14 Qfix_Imat -5.2369e-02 47 Ep_cum_Iflo-Idrp 2.4697e-02 

15 Zrac_Imat -6.7964e-02 48 MinTemp_avg_Iflo-Idrp 3.9772e+00 

16 Raint_cum_Idrp-Imat 9.6513e-03 49 MaxTemp_avg_Iflo-Idrp -2.6303e+00 

17 Precip_cum_Idrp-Imat -2.8790e-03 50 Swfac_avg_Iflo-Idrp 1.6022e+01 

18 MinTemp_avg_Idrp-Imat 4.7465e+00 51 Inn_avg_Iflo-Idrp 1.1904e+01 

19 MaxTemp_avg_Idrp-Imat -3.7388e+00 52 MaxTemp_max_Iflo-Idrp -8.1299e-01 

20 Swfac_avg_Idrp-Imat 1.2500e+01 53 Swfac_min_ Iflo-Idrp -4.1521e-01 

21 Inn_avg_Idrp-Imat 3.1469e+01 54 Inn_min_Iflo-Idrp 2.0532e+01 

22 MaxTemp_max_Idrp-Imat -4.1193e-01 55 Jul_cum_Iflo-Idrp 4.9970e-01 

23 Swfac_min_Idrp-Imat -1.3343e+00 56 Days_MinTemp_18_Ilev-Imat 1.8624e-02 

24 Inn_min_Idrp-Imat -1.2703e+00 57 Days_MaxTemp_28_Ilev-

Imat 

4.6168e-02 

25 Jul_cum_Idrp-Imat -2.3218e-01 58 Days_Swfac_0.6_ Ilev-Imat 3.6354e-03 

26 Raint_cum_Iflo-Imat 5.7320e-03 59 Days_MinTemp_18_Iflo-Imat -2.3197e-02 

27 Ep_cum_Iflo-Imat 7.4176e-02 60 Days_MaxTemp_28_Iflo-

Imat 

-1.7790e-01 

28 MinTemp_avg_Iflo-Imat -9.4243e+00 61 Days_Swfac_0.6_Iflo-Imat 1.0801e-02 

29 MaxTemp_avg_Iflo-Imat 7.7822e+00 62 Days_MinTemp_18_Iflo-Idrp -1.0127e-01 

30 Swfac_avg_Iflo-Imat -2.8792e+01 63 Days_MaxTemp_28_Iflo-Idrp -8.3875e-04 

31 Inn_avg_Iflo-Imat -4.6737e+01 64 Days_Swfac_0.6_Iflo-Idrp 5.2675e-03 

32 MaxTemp_max_Iflo-Imat -1.6202e-03 65 Nbgrmax 5.1039e-04 

33 Swfac_min_Iflo-Imat 6.6187e-02 66 Stdrpmat 9.8675e-03 
Table C1. Coefficients of linear regression created by LASSO. Coefficients equal to zero were assigned to 11 variables. 

 

Linear regressions created by M5 decision tree  

Linear regression number 1: 

 

Mafruit = -0.2193 * Lai(n)_Iflo + 0.0187 * Qnplante_Iflo - 0.0314 * Qfix_Iflo + 0.0869 * Lai(n)_Idrp + 0.0759 

* Masec(n)_Imat + 0.002 * Qfix_Imat + 3.9514 * Inn_avg_Iflo-Idrp - 1.665 * Inn_min_Iflo-Idrp - 1.0665 

 

Linear regression number 2: 
 

Mafruit = -0.243 * Masec(n)_Iflo - 0.2193 * Lai(n)_Iflo + 0.0305 * Qnplante_Iflo - 0.0179 * Qfix_Iflo + 0.0047 

* Zrac_Iflo + 0.0869 * Lai(n)_Idrp + 0.0434 * Masec(n)_Imat + 0.002 * Qfix_Imat + 0.0036 * Ep_cum_Idrp-

Imat + 0.0287 * MaxTemp_avg_Ilev-Imat + 3.2551 * Inn_avg_Iflo-Idrp - 1.665 * Inn_min_Iflo-Idrp - 1.7154 
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Linear regression number 3: 

 

Mafruit = -0.4282 * Masec(n)_Iflo - 0.2193 * Lai(n)_Iflo + 0.0242 * Qnplante_Iflo - 0.0398 * Qfix_Iflo + 0.0869 

* Lai(n)_Idrp + 0.0434 * Masec(n)_Imat + 0.002 * Qfix_Imat + 0.0032 * Ep_cum_Idrp-Imat + 0.0258 * 

MaxTemp_avg_Ilev-Imat + 3.2551 * Inn_avg_Iflo-Idrp - 1.665 * Inn_min_Iflo-Idrp - 0.1411 

 

Linear regression number 4: 
 

Mafruit = -0.4282 * Masec(n)_Iflo - 0.2193 * Lai(n)_Iflo + 0.0242 * Qnplante_Iflo - 0.0398 * Qfix_Iflo + 0.0869 

* Lai(n)_Idrp + 0.0434 * Masec(n)_Imat + 0.002 * Qfix_Imat + 0.0032 * Ep_cum_Idrp-Imat + 0.0258 * 

MaxTemp_avg_Ilev-Imat + 3.2551 * Inn_avg_Iflo-Idrp - 1.665 * Inn_min_Iflo-Idrp - 0.1438 

 

Linear regression number 5: 
 

Mafruit = -0.4587 * Masec(n)_Iflo - 0.2193 * Lai(n)_Iflo + 0.0242 * Qnplante_Iflo - 0.0401 * Qfix_Iflo + 0.0869 

* Lai(n)_Idrp + 0.0434 * Masec(n)_Imat + 0.002 * Qfix_Imat + 0.0032 * Ep_cum_Idrp-Imat + 0.0258 * 

MaxTemp_avg_Ilev-Imat + 3.2551 * Inn_avg_Iflo-Idrp - 1.665 * Inn_min_Iflo-Idrp - 0.0967 

 

Linear regression number 6: 
 

Mafruit = -0.3026 * Masec(n)_Iflo - 0.2193 * Lai(n)_Iflo + 0.0242 * Qnplante_Iflo - 0.0312 * Qfix_Iflo + 0.0869 

* Lai(n)_Idrp + 0.0434 * Masec(n)_Imat + 0.002 * Qfix_Imat + 0.0032 * Ep_cum_Idrp-Imat + 0.0258 * 

MaxTemp_avg_Ilev-Imat + 3.2551 * Inn_avg_Iflo-Idrp - 1.665 * Inn_min_Iflo-Idrp - 0.5323 

 

Linear regression number 7: 
 

Mafruit = -0.2811 * Masec(n)_Iflo + 0.0803 * Lai(n)_Iflo + 0.0067 * Qnplante_Iflo + 0.0383 * Qfix_Iflo + 0.0881 

* Masec(n)_Idrp + 0.0103 * Lai(n)_Idrp + 0.0017 * Qfix_Imat - 0.0046 * Ep_cum_Idrp-Imat + 0.7974 * 

Swfac_avg_Idrp-Imat + 0.577 * Swfac_avg_Iflo-Imat + 3.8547 * Inn_avg_Iflo-Idrp - 2.4314 * Inn_min_Iflo-Idrp 

+ 0.256 

 

Linear regression number 8: 
 

Mafruit = -0.1899 * Masec(n)_Iflo + 0.0274 * Lai(n)_Iflo + 0.0067 * Qnplante_Iflo + 0.0223 * Qfix_Iflo + 0.0881 

* Masec(n)_Idrp + 0.0256 * Lai(n)_Idrp + 0.0017 * Qfix_Imat - 0.0041 * Ep_cum_Idrp-Imat + 0.7974 * 

Swfac_avg_Idrp-Imat + 0.6392 * Swfac_avg_Iflo-Imat + 3.8547 * Inn_avg_Iflo-Idrp - 2.4314 * Inn_min_Iflo-

Idrp + 0.1624 

 

Linear regression number 9: 
 

Mafruit = -0.1928 * Masec(n)_Iflo + 0.0274 * Lai(n)_Iflo + 0.0067 * Qnplante_Iflo + 0.0223 * Qfix_Iflo + 0.0881 

* Masec(n)_Idrp + 0.0256 * Lai(n)_Idrp + 0.0017 * Qfix_Imat - 0.0041 * Ep_cum_Idrp-Imat + 0.7974 * 

Swfac_avg_Idrp-Imat + 0.6669 * Swfac_avg_Iflo-Imat + 3.8547 * Inn_avg_Iflo-Idrp - 2.4314 * Inn_min_Iflo-

Idrp + 0.1587 

 

Linear regression number 10: 
 

Mafruit = -0.1928 * Masec(n)_Iflo + 0.0274 * Lai(n)_Iflo + 0.0067 * Qnplante_Iflo + 0.0223 * Qfix_Iflo + 0.0881 

* Masec(n)_Idrp + 0.0256 * Lai(n)_Idrp + 0.0017 * Qfix_Imat - 0.0041 * Ep_cum_Idrp-Imat + 0.7974 * 

Swfac_avg_Idrp-Imat + 0.3752 * Swfac_avg_Iflo-Imat + 3.8547 * Inn_avg_Iflo-Idrp - 2.4314 * Inn_min_Iflo-

Idrp + 0.3922 

 

Linear regression number 11: 
 

Mafruit = -0.163 * Masec(n)_Iflo - 0.2727 * Lai(n)_Iflo + 0.0067 * Qnplante_Iflo + 0.0228 * Qfix_Iflo + 0.0881 

* Masec(n)_Idrp + 0.0528 * Lai(n)_Idrp + 0.0017 * Qfix_Imat - 0.0032 * Ep_cum_Idrp-Imat + 1.002 * 

Swfac_avg_Idrp-Imat + 0.1212 * Swfac_avg_Iflo-Imat + 3.8547 * Inn_avg_Iflo-Idrp - 2.0948 * Inn_min_Iflo-

Idrp + 0.6173 
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Linear regression number 12: 
 

Mafruit = -0.163 * Masec(n)_Iflo - 0.1797 * Lai(n)_Iflo + 0.0067 * Qnplante_Iflo + 0.0234 * Qfix_Iflo + 0.0881 

* Masec(n)_Idrp + 0.0528 * Lai(n)_Idrp + 0.0017 * Qfix_Imat - 0.0032 * Ep_cum_Idrp-Imat + 1.0215 * 

Swfac_avg_Idrp-Imat + 0.1212 * Swfac_avg_Iflo-Imat + 3.8547 * Inn_avg_Iflo-Idrp - 2.0948 * Inn_min_Iflo-

Idrp + 0.3868 

 

Linear regression number 13: 
 

Mafruit = -0.0608 * Lai(n)_Iflo + 0.0067 * Qnplante_Iflo + 0.0881 * Masec(n)_Idrp + 0.0528 * Lai(n)_Idrp + 

0.0017 * Qfix_Imat - 0.0032 * Ep_cum_Idrp-Imat + 0.7974 * Swfac_avg_Idrp-Imat + 0.0005 * Precip_cum_Iflo-

Imat + 0.1593 * Swfac_avg_Iflo-Imat + 5.2879 * Inn_avg_Iflo-Idrp - 4.1489 * Inn_min_Iflo-Idrp + 0.3625 

 

Linear regression number 14: 
 

Mafruit = -0.0608 * Lai(n)_Iflo + 0.0067 * Qnplante_Iflo + 0.102 * Masec(n)_Idrp + 0.0528 * Lai(n)_Idrp + 

0.0017 * Qfix_Imat - 0.0032 * Ep_cum_Idrp-Imat + 0.7974 * Swfac_avg_Idrp-Imat + 0.0004 * Precip_cum_Iflo-

Imat + 0.1593 * Swfac_avg_Iflo-Imat + 5.2879 * Inn_avg_Iflo-Idrp - 4.1489 * Inn_min_Iflo-Idrp + 0.3484 

 

Linear regression number 15: 
 

Mafruit = -0.0608 * Lai(n)_Iflo + 0.0067 * Qnplante_Iflo + 0.1013 * Masec(n)_Idrp + 0.0528 * Lai(n)_Idrp + 

0.0017 * Qfix_Imat - 0.0032 * Ep_cum_Idrp-Imat + 0.7974 * Swfac_avg_Idrp-Imat + 0.0004 * Precip_cum_Iflo-

Imat + 0.1593 * Swfac_avg_Iflo-Imat + 5.2879 * Inn_avg_Iflo-Idrp - 4.1489 * Inn_min_Iflo-Idrp + 0.36 

 

Linear regression number 16 
 

Mafruit = 0.0227 * Masec(n)_Iflo - 0.2846 * Lai(n)_Iflo + 0.0067 * Qnplante_Iflo + 0.0131 * Qfix_Iflo + 0.2127 

* Masec(n)_Idrp + 0.0528 * Lai(n)_Idrp + 0.0025 * Qfix_Imat - 0.0077 * Ep_cum_Idrp-Imat + 1.9247 * 

Swfac_avg_Idrp-Imat - 1.1523 * Swfac_avg_Iflo-Imat + 4.2938 * Inn_avg_Iflo-Idrp - 3.7675 * Inn_min_Iflo-Idrp 

+ 1.6917 

 

Linear regression number 17: 
 

Mafruit = 0.0184 * Masec(n)_Iflo - 0.2846 * Lai(n)_Iflo + 0.0067 * Qnplante_Iflo + 0.0131 * Qfix_Iflo + 0.2127 

* Masec(n)_Idrp + 0.0528 * Lai(n)_Idrp + 0.0025 * Qfix_Imat - 0.0077 * Ep_cum_Idrp-Imat + 1.9247 * 

Swfac_avg_Idrp-Imat - 1.1523 * Swfac_avg_Iflo-Imat + 4.2938 * Inn_avg_Iflo-Idrp - 3.7675 * Inn_min_Iflo-Idrp 

+ 1.7071 

 

Linear regression number 18: 
 

Mafruit = -0.2114 * Masec(n)_Iflo - 0.2846 * Lai(n)_Iflo + 0.0067 * Qnplante_Iflo + 0.0143 * Qfix_Iflo + 0.2127 

* Masec(n)_Idrp + 0.0528 * Lai(n)_Idrp + 0.0025 * Qfix_Imat - 0.0077 * Ep_cum_Idrp-Imat + 1.9247 * 

Swfac_avg_Idrp-Imat - 1.1523 * Swfac_avg_Iflo-Imat + 4.2938 * Inn_avg_Iflo-Idrp - 3.7675 * Inn_min_Iflo-Idrp 

+ 2.2973 

 

Linear regression number 19: 
 

Mafruit = -0.1891 * Masec(n)_Iflo - 0.2846 * Lai(n)_Iflo + 0.0067 * Qnplante_Iflo + 0.0143 * Qfix_Iflo + 0.2127 

* Masec(n)_Idrp + 0.0528 * Lai(n)_Idrp + 0.0025 * Qfix_Imat - 0.0077 * Ep_cum_Idrp-Imat + 1.9247 * 

Swfac_avg_Idrp-Imat - 1.1523 * Swfac_avg_Iflo-Imat + 4.2938 * Inn_avg_Iflo-Idrp - 3.7675 * Inn_min_Iflo-Idrp 

+ 2.2385 

 

 


