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Abstract. We give a combinatorial algorithm to find a maximum pack-
ing of hypertrees in a capacitated hypergraph. Based on this we ex-
tend to hypergraphs several algorithms for the k-cut problem, that are
based on packing spanning trees in a graph. In particular we give a γ-
approximation algorithm for hypergraphs of rank γ, extending the work
of Ravi and Sinha [22] for graphs. We also extend the work of Chekuri,
Quanrud and Xu [7] in graphs, to give an algorithm for the k-cut problem
in hypergraphs that is polynomial if k and the rank of the hypergraph
are fixed. We also give a combinatorial algorithm to solve a linear pro-
gramming relaxation of this problem in hypergraphs.

Keywords: k-cut · Packing hypertrees · Hypergraphic matroids.

1 Introduction

Hypergraphic matroids were introduced by Lorea [17] and later studied by Frank,
Kiraly and Kriesell [10]. They showed that the notion of circuit-matroid of graphs
can be generalized to hypergraphs. The notion of spanning trees generalizes to
hypertrees. Then Frank et al. [10] extended a theorem of Tutte [25] and Nash-
Williams [21] about spanning trees, to a similar theorem giving the maximum
number of disjoint hypertrees contained in a hypergraph. Based on this we give
an algorithm to find a maximum packing of hypertrees in a capacitated hyper-
graph.

Spanning tree packing has been used to study the k-cut problem in graphs.
It was used by Naor and Rabani [20] to derive a linear programming relaxation,
and by Thorup [24] to develop an algorithm that is polynomial for fixed k. The
linear programming relaxation was further studied by Chekuri, Quanrud and Xu
[7], shedding light on the connections among several of these results. Here we
show that hypertree packing and other algorithms for hypergraphic matroids,
can be used to extend to the k-cut problem in hypergraphs, several of the results
mentioned above.

Below we describe previous work, then we give more details about our con-
tribution, and we outline the organization of this paper.
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1.1 Previous Work

Based on the Theorem of Tutte [25] and Nash-Williams [21], polynomial algo-
rithms for packing spanning trees in a graph have been given by Barahona [2]
and Gabow and Manu [13]. The k-cut problem in graphs is NP-hard if k is part
of the input, see [15]. If k is fixed, Goldschmidt and Hochbaum [15] gave the first
polynomial algorithm. Later other algorithms improving the running time have
been found. For a graph G = (V,E), let n = |V | and m = |E|. Thorup [24] gave
an O(mn2k−2) algorithm. Chekuri, Quanrud and Xu [7] improved the running
time to O(mn2k−3). Also they presented a framework that unifies the tree pack-
ing approach of Thorup [24] and the linear programming approach of Naor and
Rabani [20]. When k is part of the input, several 2-approximation algorithms
have been developed. Saran and Vazirani [23], gave a (2− 2/k) approximation.
Nagamochi and Kamidoi [19], and Kapoor [16], found a similar approximation.
Naor and Rabani [20] used a linear programming relaxation to obtain a 2(1−1/n)
approximation. Ravi and Sinha [22] used Lagrangian relaxation to also give a
2(1 − 1/n) approximation. Under the Small Set Expansion hypothesis [18], a
factor of 2 is the best possible approximation. For more references on the k-cut
problem see [7].

For a hypergraph H = (V,E), let n = |V |, m = |E|, and γ = max{|e| : e ∈
E}. This last number is called the rank of H. For the k-cut problem in hyper-
graphs, Fukunaga [12] extended Thorup’s algorithm and gave an O(m2nγk−1)
algorithm. Chandrasekaran, Xu and Yu [5] obtained a randomized algorithm
that runs in Õ(pn2k−1) time, where p =

∑
e∈E |e|. Fox, Panigrahi and Zhang [9]

improved the randomized run-time to Õ(mn2k−2). Recently Chandrasekaran and
Chekuri [4] gave two deterministic algorithms with complexities O(n3k(k−1)/2)
and O(n8k). When k is part of the input, the k-cut problem in hypergraphs is
hard to approximate to within large factors under the Exponential Time Hy-
pothesis, see [6], [18]; recall that for graphs there are several 2-approximation
algorithms.

1.2 Our Contribution

We give a combinatorial algorithm for packing hypertrees in a hypergraph. Then
we use this algorithm and the tools developed in [1], to study the k-cut problem
in hypergraphs. First we extend the algorithm of Ravi and Sinha [22] for graphs,
to obtain a γ-approximation algorithm for hypergraphs of rank γ. Then we study
a linear programming relaxation for hypergraphs similar to the one used by Naor
and Rabani [20] for graphs. We give a combinatorial algorithm to solve this linear
relaxation. Then we extend to hypergraphs the analysis done by Cheruki et al. [7]
for graphs, and show that the integrality gap is γ. We also build on their analysis
to show that a maximum hypertree packing gives an O(mnγk−3) algorithm for
k-cut in hypergraphs of rank γ. This improves by a factor of O(mn2) the time
of the algorithm of [12], that is based on an approximate hypertree packing.
In summary, our work shows that the use of hypergraphic matroids leads to
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natural extensions of several algorithms for the k-cut problem, that were initially
developed for graphs.

1.3 Organization

Section 2 contains definitions, notation and some preliminary results. In Sec-
tion 3 we give the algorithm for packing hypertrees. Section 4 contains lower
and upper bounds for the value of a minimum k-cut. In Section 5 we study a
linear programming relaxation. Section 6 contains a polynomial algorithm for
fixed k and fixed rank.

2 Preliminaries

Let H = (V,E) be hypergraph. For a non-empty set X ⊂ V and F ⊆ E, F [X]
denotes the set of hyperedges in F contained in X. For S ⊂ V we use H(S)
to denote the hypergraph (S,E[X]). Let P = {V1, . . . , Vk} be a family of non-
empty subsets of V with Vi ∩ Vj = ∅ for i 6= j, we denote by δF (P) the set
of hyperedges in F included in ∪iVi and that intersect at least two sets in P.
Notice that P is not necessarily a partition of V . For a hypergraph H ′ = (V,E′)
sometimes we use δH′(P) instead of δE′(P). Also when there is no confusion
we use δ(P) instead of δF (P). We say that H is connected if δ(S, V \ S) 6= ∅,
for all S ⊂ V , ∅ 6= S 6= V . For S ⊂ V , shrinking S means creating a new
hypergraph H ′ = (V ′, E′). Here V ′ = (V \ S) ∪ {s}, where s is a new node
that represents S. And E′ = E1 ∪ E2, where E1 = {e ∈ E : e ∩ S = ∅}, and
E2 = {(e \ S) ∪ {s} : e ∈ E, e ∩ S 6= ∅, e ∩ (V \ S) 6= ∅}. For a vector x ∈ RE ,
and S ⊆ E we use x(S) to denote

∑
e∈S x(e).

Let D = (V,A) be a directed graph, for S ⊆ V , we denote by δ+(S) the set
δ+(S) = {(u, v) ∈ A |u ∈ S, v /∈ S}. Given two distinguished vertices s and t,
for a set S ⊂ V , with s ∈ S, t /∈ S, the set of arcs δ+(S) is called an st-cut.
Given a capacity vector c ∈ RA+, a minimum st-cut is an st-cut δ+(S) such that
c(δ+(S)) is minimum. A minimum st-cut can be found in O(|V |3) time with the
push-preflow algorithm of [14].

For a hypergraph H = (V,E), a hyperforest is a set F ⊆ E such that |F [X]| ≤
|X| − 1 for every non-empty X ⊆ V . A hyperforest F is called a hypertree of
H if |F | = |V | − 1. If H is a graph, F ⊆ E is a hypertree if and only if
F is a spanning tree. It was proven by Lorea [17] that the hyperforests of a
hypergraph form the family of independent sets of a matroid. These are called
hypergraphic matroids. Frank et al. [10] further studied hypergraphic matroids.
In particular they gave the following formula for the rank r(F ) of F ⊆ E,
r(F ) = min{|V | − |P|+ |δF (P)| : P a partition of V }. Notice that matroid rank
and rank of a hypergraph are completely different concepts.

Remark 1 It follows from the formula above that if T is a hypertree then
|δT (P)| ≥ |P| − 1, for every partition P of V .
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Frank et al. [10] extended a theorem of Tutte [25] and Nash-Williams [21]
giving the maximum number of spanning trees in a graph. They gave a similar
formula for the maximum number of disjoint hypertrees contained in a hyper-
graph. This is in the theorem below.

Theorem 2 [10] A hypergraph contains k disjoint hypertrees if and only if

|δ(P)| ≥ k(|P| − 1) (1)

holds for every partition P of V .

Based on this theorem we give an algorithm to find a maximum packing of
hypertrees in a hypergraph. For that we use three algorithms mentioned below,
that were developed in [1].

2.1 Separation of partition inequalities

Since there is an exponential number of inequalities (1), we need a polynomial
algorithm to test if there is any of them that is violated. For that we assume
that x̄ ∈ RE+ is an input vector and we solve

minimize x̄(δ(P))− β(|P| − 1). (2)

Where the minimum is taken among all partitions P of V , and β > 0 is a fixed
number. Since P = {V } is a partition, the minimum is always less than or equal
to zero. This gives us a most violated inequality, if there is any. In [1] this was
reduced to a sequence of |V | minimum cut problems in a graph with O(|V |+ |E|)
nodes.

2.2 Strength of a network

Given a hypergraph H = (V,E), with a capacity vector c ∈ RE+, we also need to
find the maximum value of k so that c(δ(P)) ≥ k(|P| − 1), for all partitions P of

V . We compute s = min c(δ(P))
|P|−1 , where the minimum is taken over all partitions

P of V , with |P| ≥ 2. For graphs this was called Network Strength in [8]. Thus
we call the value s, the strength of H. Then k = bsc. The strength can be found
with the same asymptotic complexity as |V | applications of the push-preflow
algorithm [14], in a graph with O(|V |+ |E|) nodes, see [1].

2.3 Network Reinforcement

The following problem was studied in [8]. Given a graph, a number k and a set
of candidate edges, each of them with an associated cost, find a minimum cost
set of candidate edges to be added to the network so it has strength equal to k.
We need to solve a similar problem for a hypergraph. An algorithm for it was
given in [1]. It requires to solve |E||V | minimum cut problems in a graph with
O(|V |+ |E|) nodes.
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3 Packing Hypertrees

Here we give an algorithmic proof of Theorem 2. If H contains k disjoint hy-
pertrees then it follows from Remark 1 that (1) holds for every partition. So we
have to prove the other direction.

A partition is called tight if (1) holds as equation. We proceed by induction
on |V |+ |E|. So we assume that the statement is true for any hypergraph H ′ =
(V ′, E′) with |V ′| + |E′| < |V | + |E|. If an edge does not belong to any tight
partition, we remove it and we apply the induction hypothesis. So we assume
that every edge appears in a tight partition.

Case 1. Suppose that the partition {S1, . . . , Sp} is tight, and at least one set,
S1 say, has |S1| > 1. We shrink S1 to form the hypergraphH ′. From the induction
hypothesis we know that there are k disjoint hypertrees in H ′. Now consider
H ′′ = H(S1). If there is a partition T1, . . . , Tl of S1 with δH′′(T1, . . . , Tl) <
k(l − 1), then δH(T1, . . . , Tl, S2, . . . , Sp) < k(l − 1) + k(p − 1) = k(l + p − 2), a
contradiction. Thus by our induction hypothesis there are k disjoint hypertrees
in H(S1). Lemma 3 below shows that any hypertree of H ′ can be combined with
a hypertree of H ′′ to obtain a hypertree of H.

Lemma 3 Let T ′ be a hypertree of H ′, and T ′′ a hypertree of H ′′. Then T =
T ′ ∪ T ′′ is a hypertree of H = (V,E).

Proof. Suppose that for a partition {U1, . . . , Up} of V , we have |δT (U1, . . . , Up)| <
(p − 1). After renumbering the sets {Ui}, we can assume that S1 ⊆ ∪i=ri=1Ui,
and S1 ∩ Ui 6= ∅ for i = 1, . . . , r. Also |δT (U1, . . . , Up)| < (r − 1) + (p −
r) = (p − 1). But this is not possible because |δT (U1, . . . , Ur)| ≥ (r − 1), and
|δT (∪i=ri=1Ui, Ur+1, . . . , Up)| ≥ (p− r). Thus |δT (P)| ≥ |P| − 1, for every partition
P of V . Since r(T ) = min{|V | − |P| + |δT (P)| : P a partition of V }, we have
r(T ) = |V |− 1. In view of |T | = |V |− 1, we conclude that T is a hypertree of H.

Case 2. Now we assume that the partition {S1, . . . , Sp} is tight, and all sets
{Si} are singletons. We have

|E| = k(|V | − 1). (3)

If every hyperedge has exactly two elements we have a graph. Then the result
follows from the Theorem of Tutte [25] and Nash-Williams [21]. In this case the
algorithms of [2] or [13] give the packing of spanning trees.

Suppose that a hyperedge e has at least three elements. We remove one
element v from e, and test if all inequalities (1) are satisfied. If so we keep
working with the new hypergraph. If not, there is a tight partition P whose
inequality becomes violated after removing v from e. This is not the partition of
all singletons, because (3) is not violated after removing v from e. Then we can
treat P as in Case 1. This completes the proof.
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3.1 Integral Packing

Based on the above proof, now we derive an algorithm. We assume that for a
hypergraph H = (V,E), we have a capacity vector c ∈ ZE+. We denote by T(H)
the set of hypertrees of H. A maximum integral packing of hypertrees is a solution
of the following.

max
∑

T∈T(H)

yT ;
∑

T : e∈T
yT ≤ c(e), for each edge e; y ≥ 0, integer valued. (4)

The algorithm has several stages as follows.

– First we compute

k = min

⌊
c(δ(P))

|P| − 1

⌋
, (5)

over all partitions P of V . This is the maximum value of k such that c(δ(P)) ≥
k(|P|− 1) for every partition P of V . This is the strength of the hypergraph,
as defined in Sub-section 2.2. For that we use the algorithm in [1]. This
requires |V | applications of the push-preflow algorithm [14], in a graph with
O(|V |+ |E|) nodes. This gives the value of the maximum in (4), but not the
values for the variables y.

– Once the value k is known, we should adjust the capacities so that every
hyperedge appears at least in a tight partition. For that we solve the linear
program below.

minx(E) (6)

x(δ(P)) ≥ k(|P| − 1), for all partitions P of V , (7)

0 ≤ x(e) ≤ c(e). (8)

This is called Network Reinforcement, and as mentioned in Sub-section 2.3, it
reduces to |E||V | minimum cut problems in a graph with O(|V |+ |E|) nodes,
see [1]. If the capacities are integers, this algorithm produces an integer
solution. Denote by x̄ the solution obtained. We lower the capacities c to x̄,
i.e., we set c← x̄.

– Now we have to treat Cases 1 and 2 above. We have to find a tight partition.
For that we pick an edge e, we decrease by one its capacity c(e), and find
a most violated partition inequality, with the algorithm of [1]. This involves
|V | minimum cut problems in a graph with O(|V | + |E|) nodes. A violated
inequality is a tight inequality if we do not decrease c(e). Let {S1, . . . , Sp}
be the associated partition of V .
In Case 1 we assume that one set, S1 say, has |S1| > 1. We shrink S1 to a
single node and we denote by H ′ the resulting hypergraph. Then we look for
a packing of hypertrees of value k in H ′. We also denote by H ′′ = H(S1),
and look for a packing of hypertrees of value k in H ′′. Then we combine
hypertrees in H ′ with hypertrees in H ′′ to obtain a packing of hypertrees of
value k in H. This is done as below.



Packing hypertrees and the k-cut problem in Hypergraphs 7

Let S′ = {T ′1, . . . , T ′r} be a set of hypertrees of H ′ with positive weights
{α1, . . . , αr}, and let S′′ = {T ′′1 , . . . , T ′′s } be a set of hypertrees of H ′′ with
positive weights {β1, . . . , βs}. Pick any hypertree in the first set, T ′1 say,
and any hypertree in the second set, T ′′1 say, and form a hypertree in H,
T = T ′1 ∪ T ′′1 with weight γ = min{α1, β1}. Subtract γ from α1 and β1,
and remove from S′ and S′′ any hypertree with zero weight. Continue until
S′ and S′′ are empty. This procedure produces at most r + s hypertrees of
H. If the weights {αi} and {βj} are integers, then the new weights are also
integer.
In Case 2 we assume that {S1, . . . , Sp} is the partition of all singletons. If
all hyperedges have exactly two elements, we have a graph. Then we can
apply the algorithms of [2] or [13]. If the capacities are integer these two
algorithms produce an integral packing. The algorithm of [13] has complexity
O(|V |3|E| log(|V |2/|E|)) and produces at most 2|E|+2|V |−2 spanning trees.
Assume now that there is a hyperedge e with at least three nodes and with
capacity c(e). We remove a node v and look for a most violated partition
inequality. If there is none, we keep working with the new hypergraph. Oth-
erwise, let α be the violation. We create a new hyperedge e′ = e \ {v} with
capacity c(e) − α, and give a capacity α to e. Then we have a tight par-
tition that is treated as in Case 1. Notice that Case 1 arises at most |V |
times, therefore during the entire execution of this algorithm, at most |V |
new hyperedges are created.

Since all arithmetic operations are additions and subtractions, and the capacities
are integer, this algorithm produces an integral packing. Now we analyze the
complexity of this algorithm. Notice that it requires finding at most |V | violated
partition inequalities. This amounts to at most |V |2 minimum cut problems in
a graph with O(|V |+ |E|) nodes. So the complexity of this part is O(|V |2(|V |+
|E|)3). This dominates the complexity of the algorithm for finding a packing of
spanning trees that is O(|V |3|E| log(|V |2/|E|)).

After some transformations our algorithm requires finding packings of span-
ning trees in graphs. For each of these trees, each edge is contained in a hyper-
edge of the original hypergraph. The algorithm of [13] produces 2m+2n different
spanning trees for a graph with n nodes and m edges. Thus we conclude that
our algorithm produces at most O(|E|+ |V |) hypertrees.

3.2 Fractional Packing

Now we consider problem (4), but without requiring integrality of the variables

y. The only difference here is that formula (5) is replaced by k′ = min c(δ(P))
|P|−1 .

Then k′ might be a non-integer number. All other steps of the algorithm remain
the same. Notice that in Case 2 when a new hyperedge is created, it receives a
fraction of the capacity of the original hyperedge. We illustrate this below with
a simple example.

Consider H = (V = {a, b, c, d}, E = {V }). Let c(V ) = 1. Then using for-
mula above we get k′ = 1/3, given by the partition of all singletons. Thus in
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our algorithm, this partition is tight. As in Case 2, removing node a from the
hyperedge V gives a violation of 1/3 for the partition inequality associated with
{{a}, {b, c, d}}. Thus we give capacity 1/3 to V and capacity 2/3 to the new
hyperedge {b, c, d}; then the partition {{a}, {b, c, d}} is tight. When we shrink
{b, c, d} to single node we obtain a graph with one edge. Then we have to keep
working with H({b, c, d}). Here the partition of all singletons is tight, so we
remove b from the hyperedge {b, c, d}. Then the partition inequality associated
with {{b}, {c, d}} is violated by 1/3. Thus we give capacity 1/3 to {b, c, d}, and
capacity 1/3 to {c, d}. When we shrink {c, d}, we obtain a graph with one edge,
and the hypergraph H({c, d}) is also a graph with one edge. In both cases the
packing is trivial to find. In summary, the algorithm made three copies of the
hyperedge V (or subsets of it), each of them with capacity 1/3, and gave the
weight 1/3 to the resulting hypertree.

4 A relaxation of the k-cut problem

Consider a hypergraph H = (V,E), with a weight vector w ∈ RE+, and a fixed
number k. The k-cut problem consists of finding a partition {S1, . . . , Sk} of V
that minimizes w(δ(S1, . . . , Sk)). Let λk(H) denote the value of the minimum.
For a non-negative number b, a lower bound of λk(H) is

l(b) = min
p≥1

{
w(δ(S1, . . . , Sp))− b(p− k)

}
. (9)

Here the minimum is taken over all partitions of V , and b is a fixed non-negative
number. The function l(·) is concave and piece-wise linear, and it has at most n
break-points. The maximum of l is found at a break-point b̄. In what follows we
study how to find all break-points bi ≤ b̄. For graphs, a similar lower bound was
proposed in [3] and independently in [22].

4.1 Break-points of l

We start with b = 0, then the trivial partition P = {V } gives the minimum in
(9). The following lemma gives us a way to generate the subsequent break-points.

Lemma 4 Let P′ = {S1, . . . , Sp} be a solution of (9) for b = b′. Assume that
for b = b′′, b′′ ≥ b′, P′ and P′′ = {T1, . . . , Tq} are both solutions of (9), with
q > p. Then b′′ is the strength of one of the sets {Si}. Recall that the strength
was defined in Sub-section 2.2.

Proof. Since q > p, we can assume that after renumbering, S1 ⊆ ∪ri=1Ti and
Qi = Ti ∩ S1 6= ∅, for i = 1, . . . , r, r > 1.

Since P′ is a solution for b = b′′, we have w(δ(Q1, . . . , Qr)) ≥ b′′(r − 1). If
this is not the case, we would have w(δ(Q1, . . . , Qr)) < b′′(r − 1), and we could
improve the solution P′ by removing S1 and adding the sets {Qi}. With the
same argument we conclude that a similar inequality holds for any partition of
S1.
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Since P′′ is also a solution for b = b′′ we cannot have w(δ(Q1, . . . , Qr)) >
b′′(r − 1). If that was the case, we could improve the solution P′′ replacing the
sets Ti, 1 ≤ i ≤ r, with their union.

Therefore w(δ(Q1, . . . , Qr)) = b′′(r − 1), and w(δ(R1, . . . , Rt)) ≥ b′′(t − 1),
for any partition {R1, . . . , Rt} of S1. Thus b′′ is the strength of S1.

This suggests the following procedure.

Algorithm 1

Step 0. Start with P0 = {V }, b = b̄ = 0, j = 0.
Step 1. Compute the strength of each set in Pj . Among them, let Sq be a set

with minimum strength sq.
Step 2. Update b̄← sq, and to obtain Pj+1, replace Sq in Pj with a partition of

Sq giving its strength. Set j ← j+1, if |Pj | < k go to Step 1, otherwise stop.

The sequence of partitions produced here can be studied in the context of
submodular functions as in [11].

4.2 The maximum of l

Consider the last value j, we have |Pj | ≥ k. Let b̄ be the associated value of the
parameter. The corresponding lower bound is

µ = w(Pj−1)− b̄(|Pj−1| − k) = w(Pj)− b̄(|Pj | − k). (10)

If |Pj | = k, this is a solution of the k-cut problem. Now we treat the case when
|Pj | > k.

Since b̄ =
w(Pj)−w(Pj−1)
|Pj |−|Pj−1| , we obtain the expression below that is needed in

the next sub-section.

µ =
|Pj | − k

|Pj | − |Pj−1|
w(δ(Pj−1)) +

k − |Pj−1|
|Pj | − |Pj−1|

w(δ(Pj)). (11)

4.3 An upper bound

Now we produce an approximate solution for the k-cut problem. Let l = k −
|Pj−1| and γ = max{|e| : e ∈ E}. Let {T1, . . . , Tr} be the partition of the last
set Sq obtained in Step 2 of Algorithm 1. We number the sets {Ti} so that
w(δ(Ti)) ≤ w(δ(Ti+1)), for i = 1, . . . , r−1. We choose {T1, . . . , Tl}, and combine
{Tl+1, . . . , Tr} into one set. A similar procedure was proposed for graphs in [22].

Theorem 5 The value of this solution is at most γ(1− 1
n )λk(H).

Proof. We have

l∑
i=1

w(δ(Ti)) ≤
l

r

r∑
i=1

w(δ(Ti)) ≤ γ
l

r
w(δ(T1, . . . , Tr)) =

γ
r − 1

r

l

r − 1
w(δ(T1, . . . , Tr)).
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Thus the value of this solution is at most

w(Pj−1) + γ(1− 1

r
)

l

r − 1
w(δ(T1, . . . , Tr)) =

w(Pj−1)
(

1− γ(1− 1

r
)

l

r − 1

)
+ γ(1− 1

r
)

l

r − 1
w(Pj) ≤

γ(1− 1

r
)w(Pj−1)(

r − 1− l
r − 1

) + γ(1− 1

r
)

l

r − 1
w(Pj) =

γ(1− 1

r
)µ ≤ γ(1− 1

r
)λk(H) ≤ γ(1− 1

n
)λk(H).

Thus we have a γ-approximation algorithm for hypergraphs of rank γ. Re-
call that the k-cut problem in hypergraphs is hard to approximate to within
large factors under the Exponential Time Hypothesis, see [6], [18]. Also recall
that for γ = 2, under the same hypothesis, a factor of 2 is the best possible
approximation, cf. [18].

5 A linear programming relaxation for k-cut

Let H = (V,E) be a connected hypergraph, and w ∈ ZE+. Let T(H) denote the
set of hypertrees of H. We study the linear program

min
∑

w(e)x(e) (12)∑
e∈T

x(e) ≥ k − 1 for T ∈ T(H) (13)

0 ≤ x(e) ≤ 1 for e ∈ E (14)

An integer solution of this gives a solution of the k-cut problem. For graphs
a similar linear program was proposed in [20].

Now we extend to hypergraphs the analysis used in [7] for graphs. Let Pj be
the last partition produced by Algorithm 1, and let {T1, . . . , Tr} be the partition
of the last set Sq obtained in Step 2 of Algorithm 1. The vector x̄ defined below
is a feasible solution of (12)-(14).

– x̄(e) = 1 for e ∈ δ(Pj−1); x̄(e) = 0 for e ∈ E \ δ(Pj).
– x̄(e) = α for e ∈ δ(Pj) \ δ(Pj−1), where α =

k−|Pj−1|
|Pj |−|Pj−1| .

Its value is

w(δ(Pj−1)) +
k − |Pj−1|
|Pj | − |Pj−1|

w(δ(T1, . . . , Tr)) = (15)

|Pj | − k
|Pj | − |Pj−1|

w(δ(Pj−1)) +
k − |Pj−1|
|Pj | − |Pj−1|

w(δ(Pj)).

This is the value µ as in (11).
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Now consider the dual problem.

max(k − 1)
∑

T∈T(H)

yT −
∑
e∈E

z(e) (16)

∑
T : e∈T

yT ≤ w(e) + z(e)∀e ∈ E (17)

y ≥ 0, z ≥ 0 (18)

To obtain a dual solution define

w(e) + z̄(e) =

{
(bj/bi)w(e) for e ∈ δ(Pi)− δ(Pi−1), i < j,

w(e) otherwise.

Using w + z̄ as capacities leads to a hypergraph whose strength is bj . Thus this
set of capacities yields a maximum (fractional) hypertree packing ȳ of value bj .
Now we compute the objective value for the dual vector (ȳ, z̄). This is

(k − 1)bj −
j−1∑
i=1

(
bj
bi
− 1)(w(Pi)− w(Pi−1)) =

(k − 1)bj −
j−1∑
i=1

(
bj − bi
bi

)(w(Pi)− w(Pi−1)) =

(k − 1)bj −
j−1∑
i=1

(bj − bi)(|Pi| − |Pi−1|) =

(k − 1)bj − (|Pj−1| − 1)bj + w(Pj−1) =

k − |Pj−1|
|Pj | − |Pj−1|

w(δ(T1, . . . , Tr)) + w(Pj−1).

Here we obtained expression (15). Thus x̄ and (ȳ, z̄) have the same value, there-
fore they are optimal solutions. Hence we have polynomial combinatorial algo-
rithms to produce optimal primal and dual solutions of (12)-(14). For graphs,
other authors have suggested the use of the ellipsoid method, or the use of ap-
proximate tree packing, see [20], [24], [7], [12]. Having fast algorithms to produce
lower and upper bounds gives the possibility of embedding this in a branch and
bound procedure.

The optimal value of this linear program is exactly the lower bound µ defined
in (10). Hence from Theorem 5 we obtain the following.

Theorem 6 The integrality gap of this linear program is at most γ(1− 1
n ).

Notice that as long as the hypergraph is connected, the algorithm from Sub-
section 3.2 makes fractional copies of the hyperedges to produce a fractional
packing of hypertrees. Consider the example in Sub-section 3.2, with k = 2.
The value of the linear program is 1/3 and the value of a minimum 2-cut is 1.
Here we have exactly the gap given by Theorem 6. We can extend this example
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to a hypergraph with n nodes, and one hyperedge with weight 1, containing all
nodes. Then for k = 2 the lower bound is 1/(n− 1). Again we have exactly the
gap given by Theorem 6.

Consider now a non-connected hypergraph. Assuming that the weights are
integer, we propose the following. We multiply by n all the weights, and add a
minimal set of artificial edges to make the hypergraph connected. We give the
weight 1 to each artificial edge. Then minimum k-cuts in the new hypergraph
correspond to minimum k-cuts in the original one.

6 A polynomial algorithm for fixed γ and k

Now we show that the algorithm for graphs given in [7] can be extended to
hypergraphs. The lemma below was proved in [7] for γ = 2, the proof for larger
values of γ is similar.

Lemma 7 Let (ȳ, z̄) be an optimal solution of (16)-(18). Let E′ be any set of
hyperedges such that w(E′) ≤ αλk(H) for some α ≥ 1. For each hypertree T let
lT = |E′ ∩ E(T )|. Let τ =

∑
T ȳT and pT = ȳT /τ . For an integer h ≥ (k − 1),

let qh =
∑
T :lT≤h pT . Then

qh ≥ 1−
γα(k − 1)(1− 1

n )

h+ 1

Corollary 8 Let (ȳ, z̄) be an optimal solution of (16)-(18). Define the support
of ȳ as {T : ȳT > 0}. For every optimum k-cut A ⊆ E there is a hypertree T in
the support of ȳ such that |E(T ) ∩A| ≤ γk − 3.

Proof. We apply Lemma 7 with h = γk − 3 and α = 1. We obtain

qh ≥ 1−
(γk − γ)(1− 1

n )

γk − 2
,

and for γ ≥ 2 we have qh > 1.

This suggest the following algorithm: For each hypertree in the support of
ȳ, choose γk − 3 hyperedges, contract the remaining hyperedges, and find a
minimum k-cut in the resulting hypergraph. This has to be repeated for every
choice of γk−3 hyperedges. Recall that the packing algorithm produces O(m+n)
hypertrees, so this leads to an O((m+ n)nγk−3) algorithm that enumerates all
minimum k-cuts. Fukunaga has given an O(m2nγk−1) algorithm based on a
greedy packing of hypertrees. Using an optimal packing leads to decrease the
complexity by a factor of O(mn2), and to a simpler derivation. Chandrasekaran
and Chekuri [4] gave two algorithms with complexitiesO(n3k(k−1)/2) andO(n8k),
(that are independent of γ). Thus the hypertree packing approach seems to be
of interest for hypergraphs of small rank.
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