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ABSTRACT 

 

Chromosome spatial organization and dynamics influence DNA-related metabolic processes. 

SMC complexes like cohesin are essential instruments of chromosome folding. Cohesin-

dependent chromatin loops bring together distal loci to regulate gene transcription, DNA 

repair and V(D)J recombination processes. Here we characterize further the roles of members 

of the cohesin holocomplex in regulating chromatin loop expansion, showing that Scc2, 

which stimulates cohesin ATPase activity, is essential for the translocation process required to 

extend DNA loop length. Eco1-dependent acetylation of Smc3 during S phase counteracts 

this activity through the stabilization of Pds5, to finely tune loop sizes and stability during G2. 

Inhibiting Pds5 in G2 leads to a strong enlargement of pre-established, stable DNA loops, in a 

Scc2-dependent manner. Altogether, the study strongly supports a Scc2-mediated 

translocation process driving expansion of DNA loops in living cells. 
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INTRODUCTION  

The three-dimensional folding of chromosomes influences or modulates a number of 

DNA-related metabolic processes, such as gene expression, replication, repair or segregation 

(Marchal et al., 2019; Zheng and Xie, 2019). The development of high-throughput 

chromosome conformation capture techniques (e.g. Hi-C) and high-resolution imaging 

approaches that quantify contact frequencies and physical distances between distant DNA loci 

have now unveiled the multi-layered organization of genomes (Dekker and Mirny, 2016; 

Szabo et al., 2019). A variety of mega-base (Mb) and sub-Mb structures, such as chromatin 

loops or self-interacting domains, have been described along the chromosomes of all studied 

organisms so far including bacteria, archaea, yeast and mammals (Cockram et al., 2021; 

Dauban et al., 2020; Dekker and Mirny, 2016; Gibcus et al., 2018; Le et al., 2013; Marbouty 

et al., 2015; Muller et al., 2018; Nora et al., 2012; Szabo et al., 2019).  

Multiple studies show that cohesin, a member of the structural maintenance of 

chromosomes (SMC) protein family well-known for its role in maintaining sister-chromatid 

cohesion (SCC) during mitosis (Nasmyth and Haering, 2009), is a major player in eukaryotic 

chromatin organisation (Dauban et al., 2020; Haarhuis et al., 2017; Lazar-Stefanita et al., 

2017; Merkenschlager and Nora, 2016; Rao et al., 2017; Schalbetter et al., 2017; Wutz et al., 

2020; Wutz et al., 2017). The cohesin complex consists of two Smc proteins, Smc1 and Smc3, 

that dimerize via their hinge domains and interact with the kleisin Scc1 via their ATPase head 

domains (Nasmyth and Haering, 2009). This tripartite complex forms a large ring that can 

accommodate one or two DNA molecules (Haering et al., 2008). Many proteins regulate the 

association of the cohesin holocomplex with DNA: on the one hand, Scc2 and Scc4 are 

involved in loading the cohesin ring on DNA; on the other hand, Wpl1 and Pds5 play a role in 

its release (Beckouet et al., 2016; Chan et al., 2013; Chan et al., 2012; Fernius et al., 2013; 

Kikuchi et al., 2016; Makrantoni and Marston, 2018). During replication, sister chromatids 

(SCs) are thought to be topologically entrapped within cohesin rings. To stabilize SCC from S 

to M phase, the releasing activity (Wpl1/Pds5) is repressed during S phase by Eco1 mediated 

acetylation of a pair of conserved lysine residues (K112/113) within the Smc3 ATPase head 

(Chan et al., 2012; Rolef Ben-Shahar et al., 2008; Rowland et al., 2009; Unal et al., 2008; 

Zhang et al., 2008). Smc3 acetylation is maintained throughout the G2 and M stages and only 

removed at the onset of anaphase by the deacetylase Hos1, following the cleavage of Scc1 by 

Separase (Beckouet et al., 2010; Nasmyth and Haering, 2009). Among all the proteins that 

regulate cohesin functions Pds5 is one of the most peculiar, in addition of being implicated in 
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releasing activity, Pds5 promotes Smc3 acetylation by Eco1 and subsequently prevents Smc3 

de-acetylation from Hos1 (Chan et al., 2013) 

Recently, cohesins were shown to promote large chromatin loops along mammalian 

chromosomes, modulating contacts between pairs of loci sometimes separated by hundreds of 

kb. These loops contribute to the segmentation of interphase chromosomes in self-interacting 

topologically associating domains or TADs (reviewed in (Dekker and Mirny, 2016; Rowley 

and Corces, 2018; Yu and Ren, 2017). TADs boundaries coincide with the binding sites of 

transcriptional repressor CTCF in convergent orientation (Rao et al., 2014), frequently 

enriched in cohesin deposition. These observations suggested that cohesin organises 

chromatin by capturing small loops of DNA and gradually enlarging them into large 

structures, through an active process dubbed loop extrusion (Goloborodko et al., 2016; 

Nasmyth, 2001; Sanborn et al., 2015), until they encounter a roadblock corresponding to an 

occupied CTCF site. Experimental support for loop extrusion recently came from in vitro 

single molecule experiments showing that human cohesin (and the SMC homolog condensin) 

share the capability to extrude DNA (Davidson et al., 2019; Ganji et al., 2018; Kim et al., 

2019). Nipbl, the mammalian homolog of Scc2, and ATP hydrolysis are essential to promote 

both DNA loop expansion and DNA loop maintenance in vitro. Scc2 is furthermore essential 

to stimulate cohesin’s ATPase activity (Davidson et al., 2019; Petela et al., 2018). By 

competing with Scc2 for binding to cohesin’s kleisin (Kikuchi et al., 2016) and with the help 

from Eco1, Pds5 may in addition inhibits the putative Scc2 mediated translocation process. 

Structural findings further show that CTCF does not simply behaves as a passive 

physical boundary to cohesin extruding DNA, but suppresses the release of cohesin from 

DNA by competing with Wpl1 for binding on cohesin. Therefore, CTCF stabilises cohesin, 

and consequently chromatin DNA loops, along the chromosome (Li et al., 2020). It has been 

proposed that loop extrusion favours contacts between promoters and enhancers, whose 

contacts depend on CTCF and cohesin (Merkenschlager and Nora, 2016; Yatskevich et al., 

2019). While cohesin removal has no significant impact on global gene expression (Rao et al., 

2017), mutations in genes encoding the cohesin subunits have a local effect on the regulation 

of transcription (Merkenschlager and Nora, 2016). Recent studies further provide strong 

evidence for the importance of loop extrusion such as in DNA repair (Arnould et al., 2021; 

Piazza et al., 2020) or V(D)J recombination processes (Ba et al., 2020; Dai et al., 2021; Zhang 

et al., 2019a; Zhang et al., 2019b). 
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We and others recently showed that cohesin dependent loops are also found along 

yeast mitotic chromosomes (Costantino et al., 2020; Dauban et al., 2020; Paldi et al., 2020). 

Those loops can form independently of replication and the presence of a sister chromatid (and 

SCC)(Dauban et al 2020). Although CTCF is not present in this organism, and therefore 

cannot contribute to the definition of loop basis, the regulation of cohesin loop expansion is 

highly conserved between species. Notably, Pds5 and Eco1 negatively regulate DNA loop 

enlargement in the budding yeast as well as in mammals (Dauban et al., 2020; Wutz et al., 

2020; Wutz et al., 2017). Despite important progresses in the last few years, and although the 

mechanisms mediating cohesin-dependent SCC are well described, how the same complex 

organises the folding of chromatin in cis remains unclear. Loop organized mitotic 

chromosomes also raise questions regarding the interplay between the cohesin complexes 

involved in SCC, and the ones involved in cis loop formation. Questions also relate to the 

elements positioning and driving loop expansion.  

We show that replacing Smc3 lysine 112 and 113 residues by arginine in yeast reduces 

the number of mitotic DNA loops and increases the length of cis contacts along chromosome 

arms. We further show that Smc3 acetylation by Eco1 controls DNA loop border positions 

and sizes during S phase. This establishment is restricted to S phase, and depends on Pds5, 

which is therefore necessary to block the translocation process. Pds5 stabilizes DNA loops 

along the chromosomes. In addition, the loss of Scc2 activity in G2/M does not destabilize a 

collection of established DNA loops. Instead, wild-type Scc2 activity promotes contacts 

between distant loci along chromosome arms in the absence of Pds5 regulation. Scc2 is 

therefore required for the translocation process, in addition to its canonical role in cohesin 

loading. 
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RESULTS 

 

Smc3 acetylation on K112 and K113 suppresses DNA loop expansion 

 

The mechanisms by which Pds5 and Eco1 inhibit the expansion of cohesin-dependent 

chromatin loops along mitotic budding yeast chromosomes remains unknown (Dauban et al., 

2020). Since Smc3 acetylation by Eco1 is essential for SCC during S phase, we wondered 

whether the Eco1 dependent inhibition of DNA loop expansion could also depend on its Smc3 

acetylation activity. We therefore characterized the formation of DNA loops in haploid strains 

ectopically expressing either a non-acetylable version of Smc3 (smc3(K112-113R), here 

referred to as smc3-RR) or a wild type allele of SMC3 integrated at LEU2, along with an 

auxin degradable endogenous SMC3 (smc3-AID). The endogenous SMC3 is used to sustain 

cell viability of smc3-RR otherwise lethal. The effect of smc3-RR on chromatin folding was 

scrutinized in cells depleted for the endogenous Smc3 before replication and arrested in 

metaphase by the depletion of the APC activator Cdc20 (Methods, Figure 1A). The 

metaphase arrest and the depletion of Smc3-AID consecutive to auxin addition were 

confirmed by flow cytometry and western blot respectively (Figure 1B and 1C). Three 

experimental conditions can then be analyzed: the first one in which no Smc3 is present in the 

cell, the second in which WT Smc3 is expressed and finally, cells in which only Smc3-RR is 

expressed. Hi-C contact maps were generated for these three conditions in parallel to wild 

type and Eco1 depleted cells in metaphase (Figure 1D).The normalized contact maps and the 

contact probabilities as a function of genomic distance curves P(s) and their derivatives show 

that smc3-RR is similar to Eco1 depletion, with cis contacts between pairs of loci spreading to 

longer distances (> 40kb) compared to wild type cells (Figure 1D and 1E). Chromatin loops 

along the chromosomes (Figure 1D) were called on contact maps using the program 

Chromosight (Matthey-Doret et al., 2020), revealing that the number of distinguishable and 

visible loops along chromosome arms in the presence of smc3-RR (88 loops) is reduced 

compared to a control strain expressing an ectopic copy of SMC3 (SMC3::LEU2, (202 loops)) 

or WT cells (223 loops, Figure 1D). This number is similar to the number of loops detected in 

the absence of Eco1 (60 loops, Figure 1D). Comparison of mean loop scores (MLS; i.e. the 

correlation scores of a set of input coordinates with a generic kernel; Methods; Matthey-Doret 

et al., 2020) confirmed the reduction of the amount of loops detected in cells expressing 

smc3-RR (MLS = 0,14) or depleted for Eco1 (0,16) compared to Smc3 (0,38) or WT loops 

(0,42) (Figure 1G). Interestingly, the few detected DNA loops have their basis separated by 
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longer distances (up to 80 kb in presence of smc3-RR) compared to control cells (< 50kb), as 

shown by the loop spectrum (Figure 1F). Altogether both results obtained with smc3-RR and 

Eco1 depletion show that the Eco1 mediated acetylation of Smc3 K112 and K113 inhibits 

DNA loop expansion. In the absence of Eco1 mediating Smc3 acetylation, most “stop” sites 

appear now bypassed, with a few hotspots standing out where most loop signal accumulate.  

Therefore, in addition to its role in sister chromatid-cohesion maintenance, Smc3 acetylation 

plays a role in stabilizing cohesin-dependent cis-contacts on DNA.  

 

Eco1 is not required during mitosis to inhibit DNA loop expansion on yeast 

chromosomes 

 

To assess whether Eco1 activity in post replicative cells is required to inhibit DNA loops 

expansion, we degraded Eco1-AID from cells blocked in G2/M by cdc20 depletion (Methods; 

Figure 2A, 2B and 2C). Once arrested in metaphase, and upon auxin addition, chromatin 

contacts were analysed using Hi-C. Control samples without auxin addition were processed in 

parallel. Normalized Hi-C maps and the corresponding P(s) curves reveal that Eco1 depletion 

from post-replicative cells has no substantial consequences on chromatin contacts (Figure 2D 

and 2E). Note that the AID epitope appears to slightly modify Eco1 function during S phase, 

as cells expressing Eco1-AID present slightly longer mitotic loop compared to wild type Eco1 

cells. Loop calling using Chromosight further showed that degradation of Eco1 during G2/M 

does not affect the strength, number and length distribution of DNA loops compared to Eco1-

AID cells in the absence of auxin (Figure 2F and G). Therefore, Eco1 doesn’t appear to play a 

role in the regulation of DNA-loop sizes after their establishment during S-phase. In other 

terms, inhibition of cohesin-dependent loops expansion by Eco1 may be restricted to the S 

phase, shortly after cohesin is being loaded onto DNA during replication, and may no longer 

occur after S phase completion. It is also possible that the translocase activity required to 

expand DNA loop is not active during mitosis. Alternatively, Eco1 mediated Smc3 

acetylation at S phase may ensure inhibition of DNA loop expansion during the rest of 

mitosis.  
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DNA replication stimulates the expansion of DNA loops.  

 

Depletion of the helicase Cdc45, resulting in the progression of unreplicated chromosomes 

into G2/M, doesn’t prevent chromosome folding, showing that DNA replication is not 

necessary to regulate the expansion and establishment of DNA loops (Figure 3) (Dauban et 

al., 2020). However, since replication is essential to trigger Smc3 acetylation, one would have 

expected that a lack of replication would mimic the effect of Eco1 depletion (i.e. the absence 

of acetylation), and therefore induce expansion of intrachromosomal contacts to greater 

distances. To explain this discrepancy, we hypothesized that Eco1 acetylates a sub-population 

of Smc3 even in the absence of DNA replication. We generated Hi-C maps of mitotic 

chromosomes from cells that reached mitosis without Eco1 nor Cdc45 (Figure 3A, 3B, 3C, 

3D). Contact maps and their associated p(s) revealed that Eco1 depletion has only a modest 

effect on chromatin interactions once DNA replication is repressed (Figure 3D, 3E, 3F, 3G). 

The effect of Eco1 depletion in the Cdc45 mutant cannot explain on its own the effect which 

is observed when Eco1 is depleted in replicating cells (Figure 1D, 3E). We propose two 

hypotheses to explain these observations. On the one hand, active processes favor the 

extension of DNA loops during DNA replication. On the second hand, active processes to 

prevent DNA loop expansion are more efficient in Cdc45 depleted cells, i.e. release of 

cohesin dependent DNA loops mediated by Wpl1.  

 

A subpopulation of DNA loops are stable in the absence of cohesin loading during 

mitosis 

 

Smc3 acetylation ensures stable cohesin binding on DNA by preventing cohesin removal 

from DNA by Wpl1 mediated releasing activity. Therefore, if DNA loops on mitotic 

chromosomes are anchored by acetylated Smc3, they should be resistant to the action of Wpl1 

and be maintained in the absence of cohesin de novo loading. In order to address the role of 

the cohesin loader we used scc2-45, a thermosensitive allele of Scc2. At permissive 

temperature, scc2-45 allows DNA loop formation and chromosome compaction of 

nocodazole arrested cells (Figure S1A-E, Methods). The number of loops (336 loops), the 

maximum loop size (45kb) and mean loop score (0.30) are however reduced in comparison to 

WT in this experimental setup (with 510 loops, 60kb, and MLS= 0.44, respectively; Figure 

S1F and S1G). Note that the overall number of WT loops detected by Hi-C is increased in the 

presence of nocodazole (510, Figure S1D and S1F) compared to a cdc20 block (223, Figure 
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1D): for reasons we don’t fully understand, the contact signal is indeed systematically neater 

in nocodazole conditions. Nevertheless, and as expected, at non-permissive temperature scc2-

45 fully abolishes cohesin loading, with no DNA loops nor DNA compaction detected while 

cells replicate their DNA (Figure S1D, S1E and S1F). Contact probabilities (P(s)) following 

Scc2 inactivation were similar to those of uncondensed G1 cells (Figure S1E) (Lazar-

Stefanita et al., 2017), and loop scores of 0.05 or 0.08, similar to G1, were measured after 1h 

or 2h at restrictive temperature (Figure S1F). In addition, Smc3 acetylation did not take place, 

as expected from the absence of cohesin loading and subsequent recruitment of Eco1 (Figure 

S1C). Therefore, at restrictive temperature, scc2-45 allele fully inactivates the establishment 

of DNA loops in cycling cells. 

To test whether mitotic DNA loops are stable in the absence of de novo loading during 

mitosis, we arrested wild type SCC2 and scc2-45 cells in G2/M at permissive temperature 

(30°C), before shifting both cultures to restrictive temperature (37°C) for either 20 or 60 min 

(Figure 4A and 4B). This treatment is sufficient to fully inactivate the scc2-45 allele (Figure 

S1, see also (Srinivasan et al., 2019). Hi-C maps were generated for both conditions (Figure 

4C). Hi-C maps and loop calling analysis revealed that Scc2 inactivation during mitosis has 

little impact on the positions, strengths (determined by the mean score in Figure 3D) and 

lengths of DNA loops (Figure 4E). In addition, the number of loops detected in mitosis in 

these conditions (336 loops) was only modestly affected by 20 min (308 loops) or 60 min 

(286 loops) of Scc2 inactivation. These results show that a large proportion of mitotic DNA 

loops are stable in the absence of active Scc2. In addition, while Scc2 inactivation has little 

effect on DNA loop maintenance, the overall amount of intra-chromosomal contacts, or 

compaction as seen from the contact probabilities P(s) curves (Figure 4F), and the log ratio 

between maps (Figure 4G), diminishes. 

In other words, while visible, DNA loops on contact maps are maintained after Scc2 

inactivation in mitosis, cis contacts between loci are reduced. This suggests that during 

mitosis, the turning over of a non-acetylated form of cohesin may also promote intra-

chromosomal contacts in mitosis. We hypothesized that cis contacts depending of non-

acetylated process may be established during the ongoing of LE process. 

 

The translocase activity required to expand DNA loop is active during mitosis  

 

We previously observed that depleting Pds5 prior to S phase results in an increase of contacts 

over longer distances (Dauban et al., 2020). To test whether this increase occurs during 
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mitosis, we depleted Pds5 in post-replicative cells arrested in G2/M by nocodazole using a 

Pds5-AID degron system (Methods; Figure 5A and 5B). Pds5 degradation was confirmed by 

western blot (Figure 5C). Hi-C contact maps and P(s) curves revealed that Pds5 depletion 

results in the spreading of intrachromosomal contacts over longer distances (Figure 5D and 

5E) and in the loss of most DNA loops present along yeast mitotic chromosome (411 loops in 

presence of Pds5 compared to 134 loops in absence of Pds5). The mean loop score was also 

strongly reduced, from 0,43 to 0,09 (Figure 5F). Not only this result shows that the 

mechanism driving loop expansion is fully active in post-replicated cells, but it also shows 

that Pds5, unlike Eco1 (Figure 2), is required to constrain DNA loops during mitosis. The 

regulation of DNA loops (i.e. sizes and positions) during mitosis, after their establishment, is 

therefore an active process.  

 

Scc2 stimulates translocase activity in living cells.  

 

We then asked if spreading of intrachromosomal contacts over longer distances observed in 

Pds5 depleted cells is driven by Scc2. To test this, we used a yeast strain expressing both 

scc2-45 and PDS5-AID alleles. To address this question, we also introduced in this genetic 

background a scc3-K404E allele that prevents Wpl1-mediated cohesin dissociation from 

DNA. We noticed that this mutant increases the number of pre-established DNA loops in 

strain expressing scc2-45 and PDS5-AID alleles and therefore may facilitate the analysis. 

Pds5 was depleted from cells arrested in G2 and efficient depletion was confirmed by 

Western blot analysis (Figure 6A, 6B, 6C). Hi-C maps and p(s) curves revealed that spreading 

of intrachromosomal contacts induced by Pds5 depletion was partially suppressed by the 

scc2-45 allele (Figure 6D, 6F). Moreover, according to the MLS, loss of DNA loop was 

attenuated in scc2-45 cells (from 0.43 to 0.25) compared to control (from 0,44 to 0,16) 

(Figure 6E). Scc2-45 also suppresses the increase of loop size induced by Pds5 depletion 

(Figure 6G). This data strongly supports the existence of a Scc2 mediated translocation 

process driving expansion of DNA loops in living cells.  

 

The block of loop expansion by Smc3 acetylation requires Pds5  

 

Pds5 protects Smc3 from deacetylation by Hos1/HDAC8 in mitosis (Figure 5C) (Chan et al., 

2013). To distinguish between the roles of Smc3 acetylation and Pds5 in blocking the 

expansion of chromatin loops during mitosis, we asked whether Smc3 acetylation inhibits 
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loop expansion in a Pds5 dependent or independent mechanism. To test this, we prevented 

Smc3 deacetylation in a hos1Δ background prior degrading Pds5 in mitosis (Figure 5B and 

5C). In other words, we tested whether preventing Smc3 deacetylation would stop, or slow 

down, the DNA loop expansion resulting from Pds5 depletion in G2/M arrested cells. We 

note that hos1 deletion had no significant impact on DNA loop formation (Figure S2B and 

S2C). Comparison of Hi-C contact maps, revealed that the absence of Hos1/HDAC8 does not 

suppress the effect of Pds5 depletion on chromatin interaction (Figure 5D), as confirmed by 

P(s) curves and DNA loop mean score (Figure 5E and 5F). Our results therefore suggest that 

Smc3 acetylation is not sufficient per se to block DNA loop expansion independently of Pds5.  

 

Smc3 acetylation stabilizes Pds5 on DNA at loop borders 

 

As Eco1 activity is thought to stabilize the cohesin subunit Pds5 on DNA, we asked whether 

Smc3 lysines K112 and K113 are the targets of Eco1 that improve Pds5 binding on cohesin 

and consequently anchor DNA loops. To check this hypothesis, we measured the effect of 

non-acetylable Smc3 on Pds5 versus Scc1’s association with the entire genome using 

calibrated ChIP-seq. To avoid any confusing variables due to Wpl1-mediated releasing 

activity, all ChIP-seq experiments were performed in a cellular context depleted for Wpl1. 

Scc1 peak heights observed in Smc3-RR condition were slightly reduced compared to Smc3 

WT as peaks were also broadened (Figure 5G and S2C). This cohesin distribution may be a 

consequence of the translocation process that passes the former “stop sites” in smc3-RR cells 

(Figure 5G and S2D). In addition, Pds5 binding was highly reduced in smc3-RR condition 

compared to WT (Figure 5G and S2D) showing that Smc3 K112 and K113 are essential for 

Pds5 positioning at cohesin sites. Occupancy ratios were calculated as in (Hu et al., 2015) and 

were 1,609 in SMC3 WT and 1,399 in smc3-RR for Scc1-pk. They were 1,087 in SMC3 WT 

and 0,167 in smc3-RR for Pds5-pk (Figure S2D). Therefore, these results support the notion 

that Smc3 acetylation stabilizes Pds5 at DNA loop anchors. 
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DISCUSSION 

 

Eco1-dependent acetylation of Smc3 inhibits loop expansion 

Recent studies have brought forward the idea that cohesin organizes mammalian interphase 

and yeast metaphase chromosomes by extruding DNA loops, a process which consists in 

capturing chromatin loops within the cohesin ring and progressively enlarging them up to 

Mb-sized structures. The molecular factors that regulate cohesin mediated loop expansion are 

related to those involved in the establishment and maintenance of SCC. Experiments on 

mammalian and yeast cells showing that chromatin loop lengths increase when Wpl1 is 

inactivated have suggested that its releasing activity restricts DNA loop expansion by 

removing cohesin from the DNA (Dauban et al., 2020; Haarhuis et al., 2017). Moreover, we 

and others demonstrated that an Eco1-dependent mechanism also inhibits DNA loop 

expansion in both human and yeast (Dauban et al., 2020; Wutz et al., 2020). Inactivation of 

Eco1 also induces the enlargement of loops and spreading of intrachromosomal contact over 

greater distances. According to the loop extrusion model, contacts over longer distances can 

result either from an increase of cohesin residence time on the DNA, or from a stimulation (or 

de-repression) of a translocase activity. As the absence of Eco1 reduces the cohesin residence 

time (Chan et al., 2012), we postulated that the long range, intrachromosomal cis contacts 

observed in Eco1 depleted cells may rather arose from a stimulation, or de-repression, of a 

translocase activity. In the present work we show that preventing the acetylation of K112 and 

K113, two conserved lysine within Smc3 ATPase head (Smc3-RR mutant), also lead to longer 

cis contacts, a phenotype similar to that of Eco1 mutant. During replication, these two Smc3 

lysines are acetylated by Eco1 to ensure SCC (Chan et al., 2012; Rolef Ben-Shahar et al., 

2008; Rowland et al., 2009; Unal et al., 2008; Zhang et al., 2008). Finally, our results show 

that Eco1 depletion has little effect in cdc45 cells that are G2/M arrested without going 

through replication. This strongly suggest that Eco1-dependent acetylation of Smc3 during S 

phase inhibits the translocation processes (Figure 6H).  

 

How does cohesin expand DNA loops?  

To understand how Smc3 acetylation limits the length of DNA loops in vivo, it is crucial to 

decipher the mechanisms that stimulate the expansion of these loops. The inactivation of Pds5 

in G2, after replication, induces the expansion of pre-established loops (Figure 5). It has been 

proposed that stimulation of cohesin ATP hydrolysis by Scc2 (NIPBL in mammals) promotes 

the translocase activity supporting DNA loop expansion. Indeed, depleting NIPBL led to 
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TADs disruption and decreased DNA loop size in either primary or haploid mammalian cells 

(Haarhuis et al., 2017; Schwarzer et al., 2017). In both systems however, it was impossible to 

distinguish a role for Scc2 as a potential cohesin translocase from its conventional role in 

cohesin loading, that would also affect the residence time parameter and disturb the loop 

patterns. The importance of Scc2 in promoting DNA loop extrusion also comes from in vitro 

data (Davidson et al., 2019; Gutierrez-Escribano et al., 2019). Crucially, we show that Scc2 

promotes DNA loop expansion in vivo in the absence of Pds5, after cohesin are loaded on 

DNA. The scc2-45 allele abolishes this stimulation showing that Scc2 is required for the 

translocation process (Figure 6H). 

 

Is Scc2 required to maintain DNA loops? 

Our present work reveals that a large amount of pre-formed DNA loop is preserved after Scc2 

inactivation in G2 arrested cells, showing that most loops are maintained in absence of 

cohesin loading. However, the length of a significant portion of intrachromosomal contacts is 

reduced following Scc2 inactivation as chromosomes decondense (Figure 4). This indicates 

that Scc2 is needed to maintain a sub-population of cis chromosomal contacts along the 

genome. We postulate that during mitosis, Scc2 may be required to de novo load non-

acetylated cohesin complexes to promote intra-chromosomal contacts. It can also be 

envisaged that Scc2 is necessary to maintain a portion of cohesin engaged in cis contacts on 

DNA. It is possible that Scc2 renders cohesin resistant to releasing activity by avoiding 

binding of Pds5/Wpl1 on the kleisin subunit or counteracts a Wpl1 independent pathway 

(Srinivasan et al., 2019). Recent structural studies also revealed that engagement of ATPase 

head prior to ATPase hydrolysis dissociates Scc1 from Smc3 (Higashi et al., 2020). Opening 

of this interface during translocation process may induce escape of DNA from cohesin. 

Therefore, Scc2 may avoid release of cohesin from DNA by preventing opening of Scc1-

Smc3. Additional investigations are necessary to fully understand all Scc2 dependent 

mechanisms regulating LE process.  

 

How does Smc3 acetylation inhibits loop expansion?  

Structural studies from fission yeast and human revealed that NIPBL/Scc2 interacts with the 

conserved acetyl acceptor lysine of Smc3 to trigger ATP hydrolysis (Higashi et al., 2020; Shi 

et al., 2020). It has been proposed that ATP hydrolysis stimulated by Scc2 promotes the 

translocase activity supporting DNA loop expansion, and that acetylation of Smc3 K112 and 

K113 per se may compromise the translocation process. This idea was based on the facts that 
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changing KK to QQ reduces stimulation of ATPase activity by Scc2 in vitro (Collier et al., 

2020). Based on structural data it was proposed that Smc3 acetylation abolishes Scc2 binding 

to cohesin. However, our data shows that Smc3 acetylation isn’t sufficient to block DNA loop 

expansion in the absence of Pds5, indicating that Smc3 acetylation per se is not sufficient to 

block Scc2 mediated ATPase hydrolyses.  

Pds5 is thought to compete with Scc2 for the binding on cohesin (Kikuchi et al., 2016; Petela 

et al., 2018) Pds5 and Scc2 have a similar overall structure, suggesting that they may bind to 

the same regions on the cohesin ring (Higashi et al., 2020; Lee et al., 2016; Muir et al., 2016; 

Ouyang et al., 2016; Shi et al., 2020). Eco1 inactivation also affects the way that Pds5 binds 

to chromatin (Chan et al., 2013; Chapard et al., 2019). Crucially we showed that the amount 

of Pds5 on chromatin decreases in cells expressing Smc3-RR instead of Smc3-KK. This 

indicates that Pds5 may also interact with acetyl acceptor lysines of Smc3 or close to their 

location. Smc3 acetylation of those lysines may strengthen Pds5 binding to cohesin, and 

consequently inhibits Scc2 mediated ATPase hydrolysis. 

 

In addition of leading to contacts over longer distances, smc3-RR reduces the number of DNA 

loops at discrete positions. This indicates that Smc3 acetylation also positively regulates the 

maintenance of cohesin-dependent DNA loops. Therefore, by acetylating Smc3 on lysine 

residues K112 and K113, Eco1 stabilises cohesin units on DNA and not only entitles SCC, 

but also maintains DNA loops at discrete positions. However, although the underlying 

mechanisms appear similar, relying in part on Smc3 acetylation, they remain distinguishable 

as the latter can occur in the absence of the former. We postulate that acetylation of cohesin 

extruding DNA loops helps anchoring and maintaining DNA loops at discrete positions along 

the genome. Nevertheless, LE process could also be stopped by a portion of cohesin which is 

acetylated and that topologically entraps one or two sister DNA. In other terms, stably bound 

cohesin involved in SCC may also halt extrusion process and consequently induce appearance 

of additional DNA loops along the genome. The factors that regulate DNA loop stability in 

cdc45 cells have yet to be explored.  

Our present findings suggest that Smc3 acetylation is needed to stabilize loops at discrete 

positions by reinforcing Pds5 binding onto cohesin bound DNA (Figure 6H). Our data 

showing that Pds5 depletion decreases the number of DNA loops also supports this notion. 

Pds5 may create a compartment in which DNA is being trapped, similarly to what is observed 

for Ycg1 subunit that anchors condensin oligomers on DNA (Kschonsak et al., 2017). This 

anchoring by Pds5 is compatible with the role of Pds5 in providing and maintaining cohesion 
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(Chan et al., 2013) but also with either one sided or double-sided DNA loop extrusion 

(Banigan et al., 2020).  
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LEGENDS 

 

Figure 1: Smc3 acetylation counteracts DNA loop expansion 

A. Illustration of the experimental protocol used to process yeast cells from G1 to metaphase 

in the presence of Smc3-RR or in the absence of Eco1-AID.  

B. Cell synchronisation was monitored by flow cytometry. 

C. Western blot assessing loss of Smc3 acetylation induced by Smc3-AID or Eco1-AID 

depletion. Right panel: Smc3-AID is represented by the top band while Smc3 WT is the 

lowest band. Pgk1 was used as loading control.  

D. Contact maps of chromosomes III and IV (bin 1kb) from metaphase arrested cells.  Upper 

panel: contact map for cells without (SMC3-AID +IAA, left, FB134-16C) or with Smc3 

(SMC3 +IAA, middle, yNB54-4) and for cells with Smc3-RR (smc3-RR +IAA, right, yNB54-

3). Lower panel: contact maps for cells with (WT +IAA, left, yLD116-1a) or without Eco1 

(ECO1-AID +IAA, right, FB133-20c). Chromatin interactions along a region (300kb to 

510kb) of the chromosome IV are represented in the black square.  

E. Contact probability curves Pc(s) representing contact probability as a function of genomic 

distance (bp) and their respective derivative curves 

F.  Loop spectrum indicating scores in function of loop size. 

G. Mean profile heatmap of loops called by chromosight. 

 

 

Figure 2: Eco1 is required to restrict DNA loop expansion only during S phase.  

A. Illustration of the followed experimental protocol to deplete Eco1-AID during metaphase.  

B. Cell synchronization in G1 and metaphase were confirmed by flow cytometry.  

C. Western Blot assessing Eco1-pk-AID degradation with anti V5 antibody. Pgk1 was used as 

loading control.  

D. Contact maps of chromosomes III and IV (bin 1kb) for metaphase arrested WT (top, 

FB133-57B) and ECO1-AID (bottom, FB133-20c) cells before (left) and after (right) auxin 

(IAA) addition. Chromatin interactions along a region (300kb to 510kb) of the chromosome 

IV are represented in the black square. 

E. Contact probability curves Pc(s) representing contact probability as a function of genomic 

distance (bp) and their respective derivative curves for WT and ECO1-AID after auxin 

treatment.  

F. Mean profile heatmap of loops called by chromosight. 
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G. Loop spectrum indicating scores in function of loop size. 

 

Figure 3: Eco1 has a modest effect in absence of DNA Replication  

A. Schematic representation of the protocol followed to degrade Cdc45-AID and Eco1-AID 

in G1 and arrested cells in G2. 

B. Cell synchronization was monitored by flow cytometry 

C. Cdc45 degradation was assessed by western blot using anti-FLAG antibody. Pgk1 was 

used as loading control.  

D. Contact maps of chromosomes III and IV (bin 1kb) for metaphase arrested CDC45-AID 

(left, FB154) and CDC45-AID, ECO1-AID (right, FB162-1C) cells . 

E. Intra-chromosomal contact probability as a function of genomic distance and their 

respective derivative curves for WT, (FB133-57B), ECO1-AID (FB133-20c), CDC45-AID 

(FB154), and CDC45-AID, ECO1-AID (FB162-1C) cells.  

F. Mean profile heatmap of loops called by chromosight 

G. Loop spectrum indicating scores in function of loop size 

 

 

Figure 4: Scc2 is dispensable for maintenance of cohesin dependent loops in G2 

A. Schematic representation of the protocol followed to inactivate Scc2 in G2.  

B. Cell synchronization was monitored by flow cytometry.  

C. Contact maps of a part of chromosome V (100kb to 400kb) for WT (W303-1A) and scc2-

45 (KN20751) cells arrested in mitosis at permissive temperature and then shifted at 

restrictive temperature during 20min or 60min.  

D. Mean profile heatmap of loops called by chromosight. 

E. Loop spectrum indicating scores in function of loop size. 

F. Intra-chromosomal contact probability as a function of genomic distance and their 

respective derivative curves for WT and scc2-45 cells arrested in mitosis at permissive 

temperature, and then shifted at 37°C during 20min and 60min.  

G. Log2 ratio between Hi-C maps from WT and Scc2-45 mitotic cells at permissive or 

restrictive temperature during 60min.  

 

 

Figure 5: Smc3 acetylation per se is not sufficient to block expansion of DNA loop  

A. Schema illustrating the experimental protocol for Pds5 degradation in G2.  
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B. Cell synchronisation was monitored by flow cytometry. 

C. Pds5 degradation and loss of Smc3 acetylation were confirmed by western blot using V5 

(Pds5-PK-aid) and Smc3-K113Ac antibodies respectively. Pgk1 was used as loading control.  

D. Hi-C contact matrices of a part (10kb to 510kb) of chromosome IV (bin = 1kb) showing 

effect of Pds5 depletion in G2 in presence (yNB33.1-8a) or in absence (yNB40-2b) of Hos1.   

E. Contact probability curves Pc(s) representing contact probability as a function of genomic 

distance (bp) and their respective derivative curves. 

F. Mean profile heatmap of loops called by chromosight. 

G. Calibrated ChIP-seq profiles showing effect of smc3-RR on the distribution of Scc1-PK 

and Pds5-PK on chromosomes I and IV. 

 

 

Figure 6: Scc2 drives translocation process  

A. Schema illustrating the protocol used to degrade Pds5 in G2.  

B. Cell synchronisation was monitored by Flow cytometry showing  

C. Pds5 degradation and loss of Smc3 acetylation in G2 were analysed by western blot V5 

(Pds5-PK-aid) and Smc3-K113Ac antibodies respectively. Pgk1 was used as loading control.  

D. Hi-C contact matrices of a part (20kb to 520kb) of chromosome VII (bin = 2kb) showing 

effect of Pds5 depletion in scc3-K404E, scc2-45 (yNB33.2-8c) and scc3-K404E (yNB55.1-

2a) background. 

E. Mean profile heatmap of loops called by chromosight. 

F. Contact probability curves Pc(s) representing contact probability as a function of genomic 

distance (bp) and their respective derivative curves 

G. Loop spectrum indicating scores as function of loop size (bp) 

H. Model 
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SUPPLEMENTARY DATA  

 

Figure S1: scc2-45 allele fully inactivates establishment of DNA loop (related to Fig. 4) 

A. Schematic representation of the protocol followed to inactivate Scc2 during S phase.  

B. Cell synchronization was monitored by flow cytometry.  

C. Western blotting showing that inactivation of Scc2 prior to S phase induces loss of Smc3 

acetylation   

D. Contact maps of a part of chromosome V (100kb to 400kb) for WT (W303-1A) and scc2-

45 (KN20751) cells arrested in mitosis at permissive temperature during 2h or arrested at 

restrictive temperature during 1h or 2h. 

E. Intra-chromosomal contact probability as a function of genomic distance and their 

respective derivative curves for WT and scc2-45 cells arrested in mitosis at permissive 

temperature during 2h or arrested at restrictive temperature during 1h or 2h  

F. Mean profile heatmap of loops called by chromosight. 

G. Loop spectrum indicating scores in function of loop size. 

 

 

Figure S2: Effect of Hos1 inactivation on chromatin interactions (related to Fig. 5) 

A. Schematic representation of the protocol followed to synchronize cells. 

B. Hi-C contact matrices of a part (10kb to 510kb) of chromosome IV (bin = 1kb) of WT 

(W303-1A) and hos1Δ (yNB40-1c) cells.  

C. Mean profile heatmap of loops called by chromosight. 

D. Calibrated ChIP seq profiles showing effect of smc3-RR on the distribution of Scc1-PK 

and Pds5-PK on chromosome I and the respective occupancy ratios 
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EXPERIMENTAL PROCEDURES 

 

 

Media culture conditions and synchronisation  

All strains used in this study are derivate of W303 and are listed in the Table “Strain list”.  All 

strains were grown overnight at 30°C or 25°C in 150mL of suitable media to attain 4,2x10^8 

cells. 

Degradation of ECO1-AID and SMC3-AID in G1 (Figure 1) 

To study effect of Eco1 inactivation and smc3-RR on chromosome organisation, overnight 

culture of the strains, FB133-20C (ECO1-AID), yNB54-4 (SMC3, SMC3-AID), yNB54-3 

(smc3-RR, SMC3-AID), FB134-16C (SMC3-AID) and yLD116-1a (cdc20) were gown in a 

complete medium deprived of methionine (SC-met) (SC: 0.67% yeast nitrogen base without 

amino acids (Difco)), supplemented with a mix of amino-acids, uracil and adenine, 2% 

glucose). To arrest cells in metaphase, yeast cells were synchronised in G1 by adding of α-

factor (Antibodies-online, ABIN399114) in the media every 30min during 2h30 (1µg/mL 

final). Auxin (2mM final) (Sigma-Aldrich, I3750) was added to the media 1h after starting α-

factor arrest. After G1 arrest cells were washed twice in fresh YP and released in rich medium 

(YPD): 1%bacto pepone (Difco), 1% bacto yeast extract (Difco), and 2% glucose) 

supplemented with 2mM of methionine and containing auxin.  

 

Degradation of ECO1-AID in G2 (Figure 2) 

To analyse effect of Eco1 depletion in metaphase on chromatin interactions strains FB133-

57B (cdc20) and FB133-20C (ECO1-AID) were grown overnight in a complete medium 

deprived of methionine and then arrested in G1 using α-factor. After 2h30 in G1, cells were 

washed twice in fresh YP and released in rich medium (YPD) supplemented in methionine 

(2mM final) to be re-arrested in metaphase. After 2 h in metaphase, 2mM of auxin was added 

during two more hours.  

 

Depletion of CDC45-AID and ECO1-AID (Figure 3) 

To study effect of DNA replication on chromatin loops expansion, strains FB154(CDC45-

AID) and FB162-1C (CDC45-AID, ECO1-AID), were grown overnight in YPD. Cells were 

synchronised in G1 using α-factor during 2h30, auxin (2mM final) was added to the media 1h 

after starting α-factor arrest. After G1 arrest, cells were washed in fresh YP and released in 

rich medium (YPD) containing Nocodazole (Sigma-Aldrich, M1404-10MG) and auxin (2mM 

final) during 1h30.  
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Inactivation of Scc2 (Figure 4 and S1) 

To check effect of Scc2 inactivation on establishment of cohesin-dependent loops cells 

KN20751(scc2-45) and W303-1A (WT) were synchronised in G1 thanks to α-factor at 30°C 

during 2h30. Then yeasts cells were washed and released in YPD containing Nocodazole at 

37°C during 1h or 2h. To determine effect of Scc2 inactivation on maintenance of cohesin 

dependant loop, KN20751 (scc2-45) and W303-1A (WT) was first arrest in G1 thanks to α-

factor as described previously, then cells were released in G2 with Nocodazole at 30°C during 

2h. After G2 arrest, cells in media containing Nocodazole were heat in a water bath at 37°C 

during 20min or 60min. 

 

Degradation of Pds5 (Figure 5 and S2) 

To analyse effect of Pds5 depletion in G2, strains yNB33.1-8a (PDS5-AID), W303-1A (WT), 

yNB40-2B (Hos1∆, PDS5-AID) and yNB40-1C (Hos1∆) were grown overnight in YPD. Cells 

were then synchronised in G1 using α-factor and released in YPD media containing 

Nocodazole to arrest cells in G2 during 1h. After G2 arrest, 2mM of auxin are added during 

2h to induce Pds5 degradation.  

 

Depletion of Pds5 in Scc2-45 background (Figure 6) 

To study effect of Scc2 on translocase activity, strains yNB33.2-8c (scc2-45, PDS5-AID, 

scc3-K404E) and yNB55.1-2a (PDS5-AID, scc3-K404E) were grown overnight in YPD. Cells 

were synchronised using α-factor during 2h30 and released in YPD containing Nocodazole 

during 1h30. After G2 arrest, 4mM of auxin was added to the media during 2h to induced 

Pds5 degradation.  

 

After synchronization all strains were fixed for Hi-C experiments.  

 

Flow cytometry 

To verify cell cycle arrest and synchronisation, 1mL of cells culture were fixed in ethanol 

70% and stored overnight at -20°C. Pellet was incubated with 50mM Tris-HCl (pH 7,5) and 

5µL RNase A (10mg/mL) overnight at 37°C. Cells were pelleted and resuspended in 400µL 

of FACS buffer (1mg/mL propidium iodide (Fisher, P3566), Tris-HCl, NaCl, MgCl2) and 

incubated at 4°C. Cells were sonicated with 60% output for 10secondes.  

Flow cytometry was performed on a CyFlow ML Analyzer (Partec) and data were analysed 

using FloMax software with measure 1000 events at 300events/sec.  
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Proteins extractions and acetylation assays 

A pellet form 10mL of culture was frozen in liquid nitrogen and stored overnight at -20°C. 

Cells pellet were resuspended in 100µL H2O and 20µL trichloroacetic acid (Sigma-Aldrich, 

T8657) (TCA). Then cells were broken by glass beads at 4°C and precipitated proteins were 

resuspended in Lamely buffer with 100mM DTT and Tris-HCl (pH 9,5). Proteins were 

extracted by cycles of 5 min heating at 80°C and 5min vortexing at 4°C. After centrifugation, 

extracted proteins were collected and freeze at -20°C.  

Eluates were analysed by SDS-page followed by wester blotting with antibodies anti Smc3-

K113Ac (Beckouët et al., 2010), anti V5-tag (VWR, MEDMMM-) and Anti-pgk1(Invitrogen, 

459250) 

  

Calibrated ChIP-sequencing 

Cells were grown exponentially to OD600 = 0.5. In triplicates, 15 OD600 units of S. 

cerevisiae cells were mixed with 3 OD600 units of C. glabrata to a total volume of 45 mL 

and fixed with 4mL of fixative solution (50 mM Tris-HCl, pH 8.0; 100 mM NaCl; 0.5 mM 

EGTA; 1 mM EDTA; 30% (v/v) formaldehyde) for 30 min at room temperature (RT) with 

rotation. The fixative was quenched with 2mL of 2.5M glycine (RT, 5 min with rotation). The 

cells were then harvested by centrifugation at 3,500 rpm for 3 min and washed with ice-cold 

PBS. The cells were then resuspended in 300 mL of ChIP lysis buffer (50 mM HEPES KOH, 

pH 8.0; 140 mM NaCl; 1 mM EDTA; 1% (v/v) Triton X-100; 0.1% (w/v) sodium 

deoxycholate; 1 mM PMSF; 2X Complete protease inhibitor cocktail (Roche)) and transfer in 

tubes 2mL containing glass beads before mechanical cells lysis. The soluble fraction was 

isolated by centrifugation at 2,000 rpm for 3min then transferred to sonication tubes and 

samples were sonicated to produce sheared chromatin with a size range of 200-1,000bp. After 

sonication the samples were centrifuged at 13,200 rpm at 4°C for 20min and the supernatant 

was transferred into 700µL of ChIP lysis buffer. 80µL (27µl of each sample) of the 

supernatant was removed (termed ‘whole cell extract [WCE] sample’) and store at -80°C. 

5mg of antibody (anti-PK) was added to the remaining supernatant which is then incubated 

overnight at 4°C (wheel cold room). 50µL of protein G Dynabeads was then added and 

incubated at 4°C for 2h. Beads were washed 2 times with ChIP lysis buffer, 3 times with high 

salt ChIP lysis buffer (50mMHEPES-KOH, pH 8.0; 500 mM NaCl; 1 mM EDTA; 1% (v/v) 

Triton X-100; 0.1% (w/v) sodium deoxycholate;1 mM PMSF), 2 times with ChIP wash buffer 

(10 mM Tris-HCl, pH 8.0; 0.25MLiCl; 0.5% NP-40; 0.5% sodium deoxycholate; 1mM 
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EDTA;1 mMPMSF) and 1 time with TE pH7.5. The immunoprecipitated chromatin was then 

eluted by incubation in 120µL TES buffer (50 mMTris-HCl, pH 8.0; 10 mM EDTA; 1% 

SDS) for 15min at 65°C and the supernatant is collected termed ‘IP sample’. The WCE 

samples were mixed with 40µL of TES3 buffer (50 mM Tris-HCl, pH 8.0; 10 mM EDTA; 3% 

SDS). ALL (IP and WCE) samples were de-cross-linked by incubation at 65°C overnight. 

RNA was degraded by incubation with 2µL RNase A (10 mg/mL) for 1h at 37°C. Proteins 

were removed by incubation with 10µL of proteinase K (18 mg/mL) for 2h at 65°C. DNA 

was purified by a phenol/Chloroform extraction. The triplicate IP samples were mixed in 1 

tube and libraries for IP and WCE samples were prepared using Invitrogen TM Collibri TM 

PS DNA Library Prep Kit for Illumina and following manufacturer instructions. Paired-end 

sequencing on an Illumina NextSeq500 (2x35 bp) was performed. 

 
Hi-C procedure and sequencing 

Cell fixation with 3% formaldehyde (Sigma-Aldrich, Cat. F8775) was performed as described 

in Dauban et al. Quenching of formaldehyde with 300 mM glycine was performed at room 

temperature for 20 min. Hi-C experiments were performed with a Hi-C kit (Arima Genomics) 

with a double DpnII + HinfI restriction digestion following manufacturer instructions. 

Samples were sonicated using Covaris (DNA 300bp). Preparation of the samples for paired-

end sequencing on an Illumina NextSeq500 (2x35 bp) was performed using Invitrogen TM 

Collibri TM PS DNA Library Prep Kit for Illumina and following manufacturer instructions. 

 

Processing of the reads, computation of contact matrices, and generation of contact 

maps 

Reads were aligned and the contact data processed using Hicstuff, available on Github 

(https://github.com/koszullab/hicstuff). Briefly, pairs of reads were aligned iteratively and 

independently using Bowtie2 in its most sensitive mode against the S. cerevisiae S288C 

reference genome. Each uniquely mapped read was assigned to a restriction fragment. 

Quantification of pairwise contacts between restriction fragments was performed with default 

parameters: uncuts, loops and circularization events were filtered as described in ref. 

(Cournac et al., 2012)  

PCR duplicates (defined as paired reads mapping at exactly the same position) were 

discarded. Contact maps were generated with the “view” function of Hicstuff and normalized 

using the balance function of Cooler. Bins were set at 1, exp0.2 transformed, and rendered. 
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Generation of the ratio maps 

Ratio maps were generated with the “view” function of Hicstuff  

 

Computation of the contact probability as a function of genomic distance 

Computation of the contact probability as a function of genomic distance P(s) and its 

derivative have been determined using the “distance law” function of Hicstuff with default 

parameters, averaging the contact data of entire chromosome arms. 

 

Loop detection and scoring with Chromosight 

Chromosight 1.3.1 (Matthey-Doret et al., 2020) was used to call loops de novo from contact 

maps binned at 1 kb and balanced with Cooler (Abdennur and Mirny, 2020). Matrices were 

subsampled to contain the same total number of contacts.  De novo loop calling was 

computed using the “ detect ”  mode of Chromosight, with minimum loop length set at 2kb, 

percentage undetected set at 25 and pearson correlation threshold set at 0.315. 

Loop strength was quantified for each loop using the quantify mode of Chromosight and the 

mean loop score was calculated for each condition. Loop pile-up of averaged 17kb windows 

were generated with Chromosight.  

 

 

Data and software accessibility 

The accession number for the sequencing reads reported in this study is PRJNA715343 

 

Open-access versions of the programs and pipeline used (Hicstuff, Chromosight) are available 

online on the github account of the Koszul lab ( https://github.com/koszullab/ ). 

Bowtie2 2.3.4.1 is available online at  http://bowtie-bio.sourceforge.net/bowtie2/ 

 

 

 

STRAINS used in this study 

Yeast strain 

name 

Genetic 

background 

Genotype Reference 

FB134-16c W303 MATa, his3::ADH1promoter-

OsTIR1-9myc::HIS3, SMC3-

3sIAA::ADE2,TRP1:Metp:CDC20 

Dauban et al. 2020 

yNB54-3 W303 MATa, his3::ADH1promoter-

OsTIR1-9myc::HIS3, leu2::smc3 

K112R,K113R::LEU2, SMC3-

3sIAA::Kan,TRP1:Metp:CDC20 

This study 
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yNB54-4 W303 MATa, his3::ADH1promoter-

OsTIR1-9myc::HIS3,SMC3-

3sIAA::Kan, Leu2::SMC3::LEU2, 

TRP1:Metp:CDC20 

This study 

yLD116-1a W303 MATa , TRP1:Metp:CDC20 This study 

FB133-20c W303 MATa, ura::ADH1 promoter-

OsTIR1-9myc::URA3, Eco1-PK3-

aid::KanMx4, TRP1:Metp:CDC20 

Dauban et al. 2020 

FB133-57B W303 MATa, ura::ADH1 promoter-

OsTIR1-9myc::URA3, 

TRP1:Metp:CDC20 

Dauban et al.2020 

FB154 W303 MATa, CDC45-Flagx5-

aid::KanMX4,his3::ADH1promoter-

OsTIR1-9myc::HIS3 

Dauban et al.2020 

FB162-1C W303 MATa, CDC45-Flagx5-

aid::KanMX4, ura::ADH1 

promoter-OsTIR1-9myc::URA3, 

Eco1-PK3-aid::KanMx4 

This study 

W303-1A W303 MATa Rodney Rothstein 

KN20751 W303 MATa, scc2-45::natMX (L545P 

D575G) 

Petela et al. 2018 

yNB33.1-8a W303 MATa, ura::ADH1promoter-OOs-

Tir1-9myc::URA3, Pds5-pk-

aid::KanMX4 

This study 

yNB40-2B W303 MATa, hos1D::KanMx:ADE, 

ura::ADH1promoter-OOs-Tir1-

9myc::URA3, Pds5-pk-

aid::KanMX4 

This study 

yNB33.2-8c W303 MATa, ura::ADH1 promoter-OOs-

TIR1-9myc::URA3, PDS5-Pk3-

aid::KanMX4, scc2-45::natMX 

(L545P D575G), 

SCC3(K404E)::HA::HIS 

This study 

yNB55.1-2a W303 MATa, ura::ADH1 promoter-OOs-

TIR1-9myc::URA3, PDS5-Pk3-

aid::KanMX4, 

SCC3(K404E)::HA::HIS 

This study 

yNB40-1C W303 MATa, hos1D::KanMx:ADE, 

ura::ADH1promoter-OOs-Tir1-

9myc::URA3 

 

This study 

yNB66.1-6b 

  

W303 MATa, his3::ADH1promoter-OsTIR1-

9myc::HIS3, SMC3-3sIAA::Kan, 

Leu2::SMC3::LEU2, Pds5-

PK6::KanMX, Rad61 AID::natMX 

This study 

yNB67.1-1b W303 MATa, his3::ADH1promoter-OsTIR1-

9myc::HIS3, SMC3-3sIAA::Kan, 

leu2::smc3K112R,K113R::LEU2, 

Pds5-PK6::KanMX4, Rad61-

AID::natMX 

This study 

yNB64.1-17b W303 MATa, his3::ADH1promoter-OsTIR1- This study 
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9myc::HIS3,SMC3-3sIAA::Kan, 

Leu2::SMC3::LEU2, Scc1-

PK3::KanMX, Rad61-AID ::natMX 

yNB65 W303 MATa, his3::ADH1promoter-OsTIR1-

9myc::HIS3,SMC3-3sIAA::Kan, 

leu2::smc3 K112R,K113R::LEU2, 

Scc1-Pk ::KanMX, Rad61-

AID::natMX  

This study 
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