
HAL Id: hal-03454414
https://hal.science/hal-03454414

Submitted on 29 Nov 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Network disconnection games: A game theoretic
approach to checkpoint evaluation in networks

Mourad Baïou, Francisco Barahona

To cite this version:
Mourad Baïou, Francisco Barahona. Network disconnection games: A game theoretic approach to
checkpoint evaluation in networks. Discrete Applied Mathematics, 2022, �10.1016/j.dam.2020.05.008�.
�hal-03454414�

https://hal.science/hal-03454414
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

NETWORK DISCONNECTION GAMES: A GAME THEORETIC
APPROACH TO CHECKPOINT-PLACEMENT IN NETWORKS

MOURAD BAÏOU AND FRANCISCO BARAHONA

ABSTRACT. We study a Network Security question that consists of learning
where are the most important locations to place checkpoints to intercept an ad-
versary traveling from an origin to a destination. For that we define a multi-agent
cooperative game where every agent controls an arc, and is able to place a check-
point on it. We assume that the adversary is trying to travel from s to t. If the
adversary crosses a checkpoint there is no certainty that he will be detected,
therefore the value of a coalition should reflect the number of checkpoints, in
the coalition, that the adversary has to cross (the more, the better). This suggests
defining the value of a coalition S as the maximum number of disjoint st-cuts
included in S; this is a lower bound for the number of checkpoints in S that the
adversary has to cross. The adversary can choose any shortest path (minimum
cardinality) from s to t, so in any particular coalition one cannot know the exact
number of checkpoints that he will cross, and thus we propose to work with a
lower bound instead. We give a polynomial combinatorial algorithm for com-
puting the nucleolus of this game. The nucleolus is an allocation of resources
to each arc that reflects the contribution of each checkpoint to the common ob-
jective of detecting the adversary. Since in reality one might not be able to put
a checkpoint on every arc, the larger values in the nucleolus indicate the most
important locations to place checkpoints.

1. INTRODUCTION

We study a Network Security issue, namely deciding where are the most im-
portant locations to place checkpoints, in a transportation or a communication net-
work, to detect an adversary trying to travel from a node s to a node t. For that we
define a multi-agent cooperative game where each agent owns an arc and is able to
place a checkpoint on it. If the adversary crosses a checkpoint there is no certainty
that he will be detected, and thus the value of a coalition should reflect the num-
ber of checkpoints, in the coalition, that the adversary has to cross (the more, the
better). This suggests to define the value of a coalition S as the maximum number
of disjoint st-cuts included in S; this is a lower bound for the number of check-
points in the coalition that the adversary has to cross. The adversary can choose any
shortest path (minimum cardinality), and thus one cannot know the exact number
of checkpoints in a coalition that he will cross. For that reason we have chosen to
work with a lower bound instead. In Figure 1 we show an example with two coali-
tions. The arcs in Coalition 1 are drawn with thick arrows, and the arcs in Coalition
2 are drawn with thick dashed arrows. The circles and ovals represent sets of nodes.
Coalition 1 has value 2, notice that arc (c, d) does not belong to it. Coalition 2 has

1

2 M. BAÏOU AND F. BARAHONA

value 3 because it consists of three bridges. We depict with a dashed line one short-
est path from s to t. It contains three arcs in each of these two coalitions. We use a
dotted line to represent another shortest path. It contains two arcs from Coalition 1
and three arcs from Coalition 2. The adversary can choose any shortest path, so we
can be sure that he will cross at least two checkpoints in Coalition 1. Coalition 2
consists of three bridges, here the adversary has to cross exactly three checkpoints.

Coalition 2

Coalition 1

s

t

a

b

d

FIGURE 1. An example of two coalitions. Coalition 1 is depicted
with thick arrows. Coalition 2 is drawn with thick dashed arrows.
The circles and ovals represent sets of nodes. An st-path is de-
picted with dashed lines. This path uses three arcs in Coalition 1
and three arcs in Coalition 2. A second st-path is shown with a
dotted line, it uses two arcs from Coalition 1 and three arcs from
Coalition 2.

1.1. Our contribution. For this type of cooperative games, computing the nucle-
olus can be accomplished by solving a sequence of linear programs, each of them
involving an exponential number of inequalities. Thus the challenge is to find a way
to solve all these linear programs in polynomial time. Our contribution consists of
giving a polynomial combinatorial algorithm for computing the nucleolus of this
game. The key is to identify a subset of inequalities that has polynomial size, and
that is sufficient for the computation of the nucleolus. Then we show how to treat
these inequalities with a combinatorial algorithm. The nucleolus is an allocation
of resources to the arcs, so that for each arc it reflects its relative contribution to
the common objective of detecting the adversary. Since in reality one might not be
able to put a checkpoint on every arc, the larger values in the nucleolus show which
are the most important locations to place checkpoints. Our development uses tech-
niques of Linear Programming and Network Flows, and thus we expect the reader
to be familiar with these two subjects. A reference for Linear Programming is [6],
and for Network Flows is [1]. We also expect the reader to be familiar with Coop-
erative Game Theory, in particular with concepts like the core and the nucleolus.

NETWORK DISCONNECTION GAMES 3

1.2. Related work. Related work on this type of games is the following. This
game is dual to a flow game studied in [18], where the value of a coalition S ⊆ A
is the maximum number of disjoint st-paths included in S. The core of this flow
game has been studied in [18], and the nucleolus has been studied in [9] and [22].
A number of network interdiction models have been studied in the literature where
the goal is to identify network elements that, if lost, could result in a significant
interruption to supply, services or communication, see for instance [5, 2, 17, 28,
27]. Our case is a security game where the goal is to intercept every path from s
to t. This type of games has been studied in [4] and [3], and have been called Path
Disruption Games (PDG). For PDG the value of a coalition is one if it controls a
set of arcs whose removal disconnects s and t, and the value is zero otherwise. A
polynomial algorithm to compute the ε-core was given in [3]. This (zero-one) value
function is useful under the assumption that the adversary is detected each time that
he crosses a checkpoint, on the other hand, our (different) value function let us deal
with the uncertainty of detection. Other references for the study of combinatorial
games are [21] and [10]. Other work on the nucleolus of combinatorial games
appears in [26], [16], [19], [12]. See also the surveys [7] and [8].

1.3. Organization. This paper is organized as follows. In Section 2 we give some
notation and show how to compute the value function of the game. In Section 3
we study the core and the nucleolus of the game. In Section 4 we show two small
examples. Section 5 contains some final remarks.

2. PRELIMINARIES

In this section we define some notation, and show how to compute the value
function of the game.

Let G = (V,A) be a directed graph, for U ⊆ V , we denote by δ+(U) the set

δ+(U) = {(u, v) ∈ A |u ∈ U, v /∈ U},

also δ−(U)=δ+(V \ U). If there are two distinguished vertices s and t, for a set
U ⊂ V , with s ∈ U , t /∈ U , the set of arcs δ+(U) is called an st-cut. We use δ+(u)
(resp. δ−(u)) instead of δ+({u}) (resp. δ−({u})).

An st-path is a sequence of arcs (u1, u2), (u2, u3), . . . , (uk−1, uk), where s =
u1, uk = t, and all nodes {ui} are distinct.

For a set S ⊆ A, its incidence vector xS ∈ IRA is defined by xS(a) = 1 if the
arc a ∈ S, and xS(a) = 0 otherwise.

For a vector x ∈ IRA and for S ⊆ A, we use x(S) to denote x(S) =
∑

a∈S x(a).
For a graph G = (V,A) we use n to denote |V |, and m to denote |A|.

2.1. Computing the value function. For an arc-set S we need to compute the
maximum number of disjoint st-cuts included in S, here we show that a primal-
dual version of Dijkstra’s algorithm [11], for shortest paths, can be used. We start
with a linear programming formulation of the shortest path problem, as follows.
Let B be a matrix whose rows are the incidence vectors of all st-cuts. For a weight

4 M. BAÏOU AND F. BARAHONA

function w : A→ IR+ consider the linear program below

minwx, Bx ≥ 1, x ≥ 0.(1)

Here we used 1 to denote a column vector of ones, and 0 to denote a column of
zeroes. Its dual is

max y1, yB ≤ w, y ≥ 0.(2)

Here y is a row vector, we used 1 to denote a column of ones, and 0 to denote a row
of zeroes. For the primal problem there is a variable x(u, v) for each arc (u, v).
The inequalities in (1) are of the form∑

(u,v)∈C

x(u, v) ≥ 1,

for each st-cut C. For the dual problem there is a variable yC for each st-cut C.
The inequalities in (2) are of the form∑

C:(u,v)∈C

yC ≤ w(u, v),

for each arc (u, v). In other words, this says that for a fixed arc (u, v), the sum of
the variables yC for all st-cuts C containing the arc (u, v), is at most the weight
w(u, v). This can be solved with the following primal-dual version of Dijkstra’s
algorithm [11].

Dijkstra’s Algorithm
Step 0. Set S = {s}; d(u, v) = w(u, v), x(u, v) = 0 for all (u, v) ∈ A;
yC = 0 for each st-cut C.

Step 1. Let (k, l) = argmin{d(u, v) | (u, v) ∈ δ+(S)}.
Set
predecessor(l) = k,
yC = d(k, l), with C = δ+(S).
d(u, v)← d(u, v)− yC , for all (u, v) ∈ C = δ+(S),
S ← S ∪ {l}.

Step 2. If l 6= t go to Step 1.
If l = t, use the predecessors to retrace a path from s to t, set x(u, v) =

1, for each arc (u, v) in this path, and stop.
At the end, the set of arcs (u, v) with x(u, v) = 1, forms a directed path from s

to t, so x satisfies the inequalities in (1). At every iteration the algorithm produces
a vector y that satisfies the inequalities in (2).

Now we have to see that the pair (x, y) satisfies the complementary slackness
conditions of Linear Programming. For that notice that in the algorithm, each time
that a variable x(u, v) is set to the value x(u, v) = 1, then we also have∑

C:(u,v)∈C

yC = w(u, v).

This sum is over all st-cuts C that contain the arc (u, v). Thus x(u, v) > 0 =⇒∑
C:(u,v)∈C yC = w(u, v).

NETWORK DISCONNECTION GAMES 5

Now we have to see that

(3) yC > 0 =⇒
∑

(u,v)∈C

x(u, v) = 1.

Let {S0, S1, . . .} be the sequence of sets S obtained in Step 1. We have S0 = {s},
and Si+1 = Si ∪ {li} for some node li, i = 0, 1, . . . These are the only node sets
such that yCi takes a positive value, with Ci = δ+(Si). Also if x(u, v) = 1, then
u ∈ Si and v ∈ Si+j , with j ≥ 1. See Figure 2. The arcs (u, v) with x(u, v) = 1
form a path from s to t, therefore if yCi > 0 we cannot have more than one arc in
Ci whose associated variable takes the value one. Thus condition (3) is satisfied.

S0

t

S1

S2

S3

s

FIGURE 2. Here we show the sets {Si} produced by the algo-
rithm. We depict with thick lines the arcs (u, v) with x(u, v) = 1.

Therefore, since x and y satisfy the complementary slackness conditions, we
have that x and y are optimal solutions of (1) and (2).

The dual problem (2) gives a maximum packing of st-cuts with arc-capacities
w. Notice that if the weights w are integer, then the dual vector y produced by this
algorithm is also integral. So in particular if w is the vector of all ones, the primal
solution gives an st-path of minimum cardinality, and the dual solution gives the
maximum number of disjoint st-cuts contained inA. This will be used in Section 3.
To compute the value of a coalition S ⊆ A, we set w(u, v) = 1 for (u, v) ∈ S, and
w(u, v) = 0 otherwise. Then the algorithm above gives the maximum number of
disjoint st-cuts included in S. This algorithm also shows that the extreme points of
the polyhedron defined in (1) are the incidence vectors of all st-paths.

2.2. Maximum Flow. For a directed graph G = (V,A), with two distinguished
vertices s and t, we associate a variable x(u, v) with every arc (u, v) ∈ A. Then

6 M. BAÏOU AND F. BARAHONA

for a capacity function w : A→ IR, a maximum flow can be found by solving

max f

subject to

x(δ−(v))− x(δ+(v)) =


f, if v = t,
−f, if v = s,
0, if v 6= s, t,

0 ≤ x(u, v) ≤ w(u, v), for all (u, v) ∈ A.

If C is an st-cut, its capacity is w(C). A minimum st-cut is an st-cut of min-
imum capacity. The Max-flow Min-cut Theorem [13, 1], states that the value of a
maximum flow is equal to the capacity of a minimum st-cut.

3. THE NETWORK DISCONNECTION GAME

Given a directed graph G = (V,A) with two distinguished nodes s and t, we
assume that each arc is owned by a different player that is able to place a check-
point on it, and thus we identify the player set with A. We also assume that there
is an adversary trying to travel from s to t, and he will use a shortest (minimum
cardinality) st-path. If the adversary crosses a checkpoint there is no certainty of
detecting him. To deal with this situation we define a cooperative game (A,v),
where the characteristic function v : 2A → IR+, gives for each coalition S ⊆ A,
the maximum number of disjoint st-cuts included in S. This is a lower bound for
the number of checkpoints in the coalition that the adversary will cross. The idea
here is to relate the value of a coalition with the number of checkpoints, in the coali-
tion, that the adversary will cross, (the more, the better). Since the adversary could
take any shortest path, it is not possible to know in advance how many checkpoints
he will cross in the coalition. For this reason we are using a lower bound instead.
The value of the grand coalition is the length of a shortest st-path.

3.1. Non-convexity. We start by showing that this game is not convex. Convex
games were introduced in [25] where many nice properties were established. A
game is convex if its value function is supermodular, i.e., for any two coalitions S
and T ,

(4) v(S ∪ T) + v(S ∩ T) ≥ v(S) + v(T).

In our case consider a graph G = (V,A), where V = {s, a, b, t}, and A =
{(s, a), (s, b), (s, t), (a, t), (b, t)}. Let

S = {(s, a), (s, b), (s, t)} and T = {(a, t), (b, t), (s, t)}.

Both of them are st-cuts, so v(S) = v(T) = 1. We have S ∩ T = {(s, t)}, so this
does not contain an st-cut and v(S ∩T) = 0. The coalition S ∪T does not contain
two disjoint st-cuts, then v(S ∪ T) = 1. Thus inequality (4) is violated.

NETWORK DISCONNECTION GAMES 7

3.2. The core. The core of a game is a notion introduced in [14] seeking stabil-
ity, we study some algorithmic questions here. A vector x : A → IR is called an
allocation if x(A) = v(A). In our case x(a) represents the amount of resources al-
located to player a to satisfy the common objective of detecting the adversary. The
definition of the core is based on the following stability condition: No subgroup of
players does better if they break away from the joint decision of all players to form
their own coalition. Thus the core of the game is the set of allocations satisfying
the inequalities below.

x(A) = v(A)

x(S) ≥ v(S), ∀S ⊆ A.
First we need a simpler description of the core as follows.

Lemma 1. Let k be the length of an st-path of minimum cardinality. Then the core
is also defined by

x(A) = k,(5)
x(C) ≥ 1, for each st-cut C,(6)
x ≥ 0.(7)

Proof. It follows from Dijkstra’s algorithm in Subsection 2.1, that the value of a
minimum cardinality st-path is equal to the maximum number of disjoint st-cuts
included in A, therefore v(A) = k.

Consider now an inequality

(8) x(S) ≥ v(S),

for S ⊂ A. If v(S) = q > 0, then S contains q disjoint st-cuts C1, . . . , Cq. Thus
(8) can be obtained by adding x(Ci) ≥ 1, for i = 1, . . . , q, and x(a) ≥ 0 for
a ∈ S \ (∪iCi).

If v(S) = 0, then x(S) ≥ 0 can be obtained by adding x(a) ≥ 0, for a ∈ S.
Thus inequalities (8) are implied by (6) and (7). �
Inequalities (6)-(7) correspond to the ones in (1), and thus the extreme points

of the core are the incidence vectors of all minimum cardinality st-paths. In other
words, any vector in the core is a convex combination of incidence vectors of short-
est st-paths.

Now we use Network Flows to characterize the core. Given a directed graph
G = (V,A), we associate a variable x(u, v) with every arc (u, v) ∈ A. Then for
a function b : V → IR, and cost function c : A → IR, a minimum cost flow can be
found by solving

min
∑

(u,v)∈A

c(u, v)x(u, v)

subject to
x(δ−(v))− x(δ+(v)) = b(v), for all v ∈ V,(9)
x(u, v) ≥ 0, for all (u, v) ∈ A.

Equations (9) are called flow conservation equations.

8 M. BAÏOU AND F. BARAHONA

When c(u, v) ≥ 0 for all (u, v) ∈ A, b(s) = −1, b(t) = 1, b(v) = 0 for v 6= s, t;
then a minimum cost flow gives a shortest st-path. Here we are sending one unit
of flow from s to t. Thus any convex combination of incidence vectors of shortest
st-paths also corresponds to a minimum cost flow from s to t, with arc-costs all
equal to one; also the amount of flow is one. We summarize this below.

Theorem 2. The core is also defined by the system

x(δ−(v))− x(δ+(v)) =

 −1 if v = s,
0 if v 6= s, t,
1 if v = t,

(10)

x(u, v) ≥ 0 for all (u, v) ∈ A,(11)
x(u, v) = 0 for all (u, v) ∈ A0 .(12)

Here A0 is the set of arcs that do not belong to any shortest st-path.

Theorem 3. For the Network Disconnection Game, the core is non-empty if and
only if there is a path from s to t.

Theorem 4. Given a vector x̄, we can test whether x̄ belongs to the core in poly-
nomial time.

Proof. To test if x̄ satisfies (5)-(7), we have to solve a shortest path problem to test
equation (5). Then we solve a minimum cut problem with capacities x̄, to check if
inequalities (6) are satisfied.

Alternatively we can test if x̄ satisfies (10)-(12). For this we need to identify the
set A0, this reduces to a sequence of shortest path problems as follows. Let k be
the cardinality of a shortest st-path. Then for each arc (u, v) we compute a shortest
path from s to u, and a shortest path from v to t. If the sum of the cardinalities of
these two paths is greater than k − 1, then (u, v) ∈ A0. �

3.3. The nucleolus. For a coalition S and a vector x ∈ IRA, their excess is
e(x, S) = x(S)−v(S). The nucleolus is the allocation that lexicographically max-
imizes the vector of non-decreasingly ordered excesses, cf. [24]. Roughly speaking,
we would like to maximize the resources allocated to each coalition, since this in-
volves multiple (opposing) objectives, the nucleolus is used as a compromise. The
basic idea is to maximize the minimum satisfaction.

The nucleolus can be computed with a sequence of linear programs as described
below, cf. [20]. Also this procedure gives an alternative (and perhaps easier to
understand) definition of the nucleolus.

First we have to solve

max ε

x(S) ≥ v(S) + ε, ∀S ⊂ A
x(A) = v(A).

Here the variables are ε and x. Let ε1 be the optimal value of this, and P1(ε1) be
the polytope defined above, with ε = ε1, i.e., P1(ε1) is the set of optimal solutions

NETWORK DISCONNECTION GAMES 9

of the linear program above. For a polytope P ⊂ IRA let

F(P) = {S ⊆ A |x(S) = y(S),∀x, y ∈ P}
denote the set of coalitions fixed for P . For instance, for P (ε1), these are the coali-
tions whose associated inequalities are satisfied with equation for each vector in
P (ε1). In general given εr−1 we solve

max ε(13)
x(S) ≥ v(S) + ε,∀S /∈ F(Pr−1(εr−1))(14)
x ∈ Pr−1(εr−1).(15)

We denote by εr the optimal value of this, and Pr(εr) the polytope above with
ε = εr. We continue for r = 2, ..., |A|, or until Pr(εr) is a singleton. In other words
Pr(εr) is the set of optimal solutions of a linear program r, then inside this set
we solve the next linear program. Notice that each time the dimension of Pr(εr)
decreases by at least one. To see this notice that after each new linear program,
there is at least one inequality x(S) ≥ v(s) + ε that becomes equation. Thus it
takes at most |E| steps for Pr(εr) to be a singleton.

The following lemma gives a simpler formulation of (13)-(15).

Lemma 5. Instead of solving (13)-(15), we can solve

max ε(16)
x(C) ≥ 1 + ε, for each st-cut

C /∈ F(Pr−1(εr−1)),(17)
x(a) ≥ ε for each arc a /∈ F(Pr−1(εr−1)),(18)
x ∈ Pr−1(εr−1).(19)

Proof. Consider S ⊂ A, with S /∈ F(Pr−1(εr−1)). First assume that v(S) = q >
0, and let C1, . . . , Cq be a set of disjoint st-cuts included in S.

If there is at least one of them, C1 say, with C1 /∈ F(Pr−1(εr−1)), then x(S) ≥
v(S)+ ε can be obtained as the sum of x(C1) ≥ 1+ ε, x(Ci) ≥ 1 for i = 2, . . . , q,
and x(a) ≥ 0 for a ∈ S \ (∪jCj).

If Ci ∈ F(Pr−1(εr−1)), for all i, then there is an arc ā ∈ S \ (∪jCj) with ā /∈
F(Pr−1(εr−1)). Then x(S) ≥ v(S) + ε can be obtained as the sum of x(Ci) ≥ 1
for i = 1, . . . , q, x(a) ≥ 0 for a ∈ S \ (∪jCj), a 6= ā, and x(ā) ≥ ε.

If v(S) = 0, then there is an arc ā ∈ S with ā /∈ F(Pr−1(εr−1)), then x(S) ≥ ε
can be obtained adding x(ā) ≥ ε, and x(a) ≥ 0 for a ∈ S, a 6= ā. �

Now we show that to find εr it is enough to work with constraints x(a) ≥ ε,
for a /∈ F(Pr−1(εr−1)), then the constraints x(δ+(U)) ≥ 1 + ε, for δ+(U) /∈
F(Pr−1(εr−1)), will be automatically satisfied. We treat this in the lemma below.
Notice that for a ∈ F(Pr−1(εr−1)) we denote by l(a) the fixed value that x(a)
should take.

Lemma 6. Assume that x is in the core, x(a) ≥ ε for each a /∈ F(Pr−1(εr−1)),
x(a) = l(a) for a ∈ F(Pr−1(εr−1)). Then x(δ+(U)) ≥ 1 + ε for δ+(U) /∈
F(Pr−1(εr−1)).

10 M. BAÏOU AND F. BARAHONA

Proof. Consider U ⊂ V , s ∈ U , t /∈ U . The system (10)-(12) implies x(δ+(U))−
x(δ−(U)) = 1, or x(δ+(U)) = 1 + x(δ−(U)). We have two cases:

• If a ∈ F(Pr−1(εr−1)) for all a ∈ δ−(U) then δ+(U) ∈ F(Pr−1(εr−1)).
• If there is an arc ā ∈ δ−(U) with ā /∈ F(Pr−1(εr−1)), then x(ā) ≥ ε.

Therefore x(δ+(U)) = 1 + x(δ−(U)) ≥ 1 + ε. �

The lemma above is key, because it shows that an exponential number of in-
equalities can be ignored, and only simple inequalities associated with the arcs
are needed. Thus to compute the nucleolus, at each step we have to look for the
maximum value of λ such that the system below has a solution.

x(δ−(v))− x(δ+(v)) =

 −1 if v = s,
0 if v 6= s, t,
1 if v = t,

(20)

x(u, v) = l(u, v), ∀(u, v) ∈ F(Pr−1(εr−1)),(21)
x(u, v) ≥ l(u, v) + λ,

∀(u, v) ∈ Ar = A \ F(Pr−1(εr−1)),(22)
λ ≥ 0.(23)

Here we assume that for (u, v) ∈ F(Pr−1(εr−1)), x(u, v) = l(u, v). And for
(u, v) ∈ Ar, l(u, v) = εr−1.

This could be done with linear programming techniques, however now we show
that it can be done in a combinatorial way, namely it reduces to a sequence of
minimum cut problems. We define

x′(u, v) = x(u, v)− l(u, v)− λ, for (u, v) ∈ Ar.

Then we have to find the largest value of λ such that the system below has a solu-
tion.

x′(δ−(v))− x′(δ+(v)) = b(v) + λd(v), for each v ∈ V ,(24)
x′ ≥ 0.(25)

Here the arc-set is Ar, and b(v) is the right hand side of (20) minus the sum of
the lower bounds l(u, v) for the arcs entering v, plus the sum of the lower bounds
l(v, u) for the arcs leaving v. Then d(v) is the number of arcs in Ar leaving v,
minus the number of arcs in Ar entering v. Their formal definition is as follows.
First we set b′(s) = −1, b′(t) = 1, and b′(v) = 0 if v 6= s, t. Then for each v ∈ V ,

b(v) = b′(v)−
∑

(u,v)∈A

l(u, v) +
∑

(v,u)∈A

l(v, u),

and
d(v) = |{(v, u) ∈ Ar}| − |{(u, v) ∈ Ar}|.

3.4. Parametric Flows. It only remains to show how to find the maximum value
of λ so that (24)-(25) has a solution. For that we use parametric flows as below.
First we need the following lemma.

NETWORK DISCONNECTION GAMES 11

Lemma 7. Either the system below has a solution,

x(δ−(v))− x(δ+(v)) = b(v), for all v ∈ V ,
x(u, v) ≥ 0 for all (u, v) ∈ A,

or there is a set U ⊂ V with b(U) < 0 and δ+(U) = ∅.

Proof. Here we have b : V → IR, and we assume that
∑

v b(v) = 0. Let b+(v) =
max{b(v), 0}, and b−(v) = max{−b(v), 0}, for each v ∈ V . To test if the system
above has a solution, we add two nodes s′ and t′. Then for each node v with b(v) <
0, we add an arc (s′, v) with capacity b−(v), and for each node v with b(v) > 0 we
add an arc (v, t′) with capacity b+(v). We give infinite capacity to all original arcs.
Then we look for a maximum flow from s′ to t′.

Let α =
∑

v b
+(v) =

∑
v b
−(v). If the flow value is α, then there is a solution,

otherwise there is a minimum cut whose capacity is less than α. Now we discuss
the structure of this cut. The cut is δ+(U ∪ {s}), where U ⊂ V . Its capacity is

b+(U) + b−(V \ U) = b+(U) + α− b−(U) =

= α+ b(U) < α.

Thus b(U) < 0, and since we obtained a minimum cut, we have a set U ⊂ V
with δ+(U) = ∅, (this is because the original arcs have infinite capacity), and
such that b(U) is minimum. A maximum flow and a minimum cut can be found in
O(nm log(n2/m)) time, see [15] and [1]. �

Now consider (24)-(25). If the system is infeasible for some value λ̄ > 0, the
lemma above shows that there is a set U ⊂ V with δ+(U) = ∅, b(U)+ λ̄d(U) < 0.
Since the system is feasible for λ = 0, we should have b(U) ≥ 0, and d(U) < 0.
To have feasibility, we should impose b(U) + λd(U) ≥ 0, or λ ≤ b(U)/(−d(U)).
Thus

(26) λ = min
b(U)

−d(U)
,

where the minimum is taken among all sets U ⊂ V , with δ+(U) = ∅ and d(U) <
0. This minimum can be found with Newton’s algorithm for minimum ratio prob-
lems as below, see [23].

Newton’s method
Step 0. Set λ = λM .
Step 1. Find Ū = argmin{b(U) + λd(U)}, with U ⊂ V , δ+(U) = ∅ and
d(U) < 0.

Step 2. If b(Ū) + λd(Ū) < 0, then update λ as

λ =
b(Ū)

−d(Ū)

and go to Step 1.
Otherwise b(Ū) + λd(Ū) = 0, and we stop.

12 M. BAÏOU AND F. BARAHONA

Here λM is an upper bound for the value of λ, we can use λM = 2, for instance.
The set Ū in Step 1 can be found using a minimum cut algorithm, as seen in
Lemma 7.

Let Ũ be a node-set obtained in Step 1 for some value of λ, and λ̃ = b(Ũ)/(−d(Ũ)).
Let U ′ be the node-set obtained in the next iteration. We could have U ′ = Ũ , there-
fore b(U ′) + λ̃d(U ′) ≤ 0. If b(U ′) + λ̃d(U ′) < 0, we have b(U ′)/(−d(U ′)) <

b(Ũ)/(−d((̃U)), and we have found improvement. Otherwise b(U ′)+ λ̃d(U ′) = 0

and the set Ũ gives the minimum ratio. Since this is done over a finite number of
sets, we have that this method converges in a finite number of steps. Now we use
the lemma below to derive a better bound for the number of iterations of Newton’s
method.

Lemma 8. Let Ũ be a node-set obtained in Step 1 for some value of λ, and λ̃ =
b(Ũ)/(−d(Ũ)). If U ′ is the node-set obtained in the next iteration and b(U ′) +

λ̃d(U ′) < 0, then |d(U ′)| < |d(Ũ)|.

Proof.

0 > b(U ′) + λ̃d(U ′)

= b(U ′) + λd(U ′)− λd(U ′) + λ̃d(U ′)

≥ b(Ũ) + λd(Ũ)− λd(U ′) + λ̃d(U ′)

= (d(Ũ)− d(U ′))(λ− λ̃).

Thus |d(U ′)| < |d(Ũ)|. �
This lemma shows that if U1, . . . , Uk is the sequence of sets produced by New-

ton’s method, then |d(Ui)| > |d(Ui+1)|, for i = 1, . . . , k − 1. Since |d(U)| ≤ m,
for each set U ⊂ V , and d is integer valued, then Newton’s method takes at most
m iterations; recall that m = |A|.

Each time that we find the value of λ in (20)-(23), we obtain a new set of arcs
such that their associated variables should remain fixed. Thus it takes at most m
times until all variables are fixed. Now we can give a high level description of the
algorithm that computes the nucleolus.

Step 0. Build the system (10)-(12). Set l(u, v) = 0 for all arcs (u, v). Label as
“fixed” all arcs in A0, and the other arcs as “free.” Set ε0 = 0, r = 1.

Step 1. Find the maximum value of λ so that the system (20)-(23) has a solution.
This done as in Subsection 3.4. Add λ to l(u, v) for all arcs (u, v) that
are free. Set εr = εr−1 + λ. The algorithm in Subsection 3.4 also gives a
node-set U so that all arcs entering U should become “fixed.”

Step 2. If there are free arcs remaining, increase r by one and go to Step 1. Other-
wise stop, the system (20)-(23) has a unique solution that is the nucleolus.

This leads to our main result below.

Theorem 9. Computing the nucleolus of the Network Disconnection Game re-
quires O(m3n log(n2/m)) time.

NETWORK DISCONNECTION GAMES 13

Proof. The algorithm above takes at mostm iterations. Thus Newton’s method has
to be applied at most m times, and each time requires at most m min-cut prob-
lems. Therefore we have O(m2) min-cut problems. Since each of them requires
O(nm log(n2/m)) time we obtain the bound. �

4. TWO SMALL EXAMPLES

Now we show a simple example based on the graph in Figure 3 (a). We do not
go into the full details of the algorithm, but we just show the most significant steps.
We start by building system (10)-(12), and we have A0 = {(s, h), (h, i), (i, c)}.
We fix to zero the variables corresponding to all arcs in A0. To compute ε1 we set
a lower bound λ for the flow in every arc, and look for the maximum value such
that there is a flow. Consider the st-cut depicted in Figure 3 (b), since the sum of
the flows across this cut is one, the value of λ cannot be greater than 1/3. On the
other hand in Figure 3 (d) we have a flow that satisfies these lower bounds, so 1/3
is the right value. With 1/3 as lower bound, the flow in the arcs across this cut
should remain fixed to this value. Then the flow equations imply the flow values of
all arcs to the right of node c. The flow values are shown in Figure 3 (c). We call
all these arcs “fixed,” and ε1 = 1/3. For the arcs that remain free, we try again to
increase their lower bound. These are the arcs to the left of node c. Consider the
cut depicted in Figure 3 (d), since the sum of the flows across this cut is one, we
have that the new value cannot be greater than 1/2. Once we set the lower bounds
across this cut to 1/2 we obtain the flow shown Figure 3 (e). Now the flow in every
arc is fixed, so we have found the nucleolus.

Now let us look at the values of this vector. If we look at all possible shortest
st-paths, the arcs (c, e) and (f, t) appear in 2/3 of them, this is reflected in the
values in the nucleolus. Each of the arcs (s, a) and (s, b) belongs to 1/2 of all
possible st-paths, this is consistent with the values in the nucleolus. Similarly we
have that each arc with value 1/3 appears in 1/3 of all shortest st-paths. Here
the arcs (c, e) and (f, t) are the most important to place checkpoints, followed by
(s, a), (a, c), (s, b) and (b, c). Therefore if the budget only allows to install three
checkpoints, for instance, we should choose (c, e), (f, t) and one of the arcs whose
associated value is 1/2.

A more extreme example is in Figure 4. The values near the arcs describe the
nucleolus. Arc (a, t) gets the value 1, because it appears in every st path. On the
other hand every other arc gets the value 1/4 because each of them appears in 1/4
of all st-paths. This shows their individual contribution to detecting the adversary.

5. FINAL REMARKS

Now we summarize our procedure. We start by assuming that there is a check-
point on every arc, and compute the nucleolus of the game. The components of the
nucleolus reflect the contribution of each arc to the common objective of detecting
the adversary. Thus the larger values indicate the most important locations. Since
in reality one might not be able to put a checkpoint on every arc, we propose to
concentrate on the arcs that have the largest values.

14 M. BAÏOU AND F. BARAHONA

(d)

t

d

s

b

a

e

g

f

1=3

1=3

1=3

0

h

i

0

h i

0

h i

0

h i

2=3

1=3

2=3

1=3

t

d

s

b

a

e

g

f

1=3

1=3

1=3

1=2

1=2

1=2

1=2

2=3

1=3

2=3

1=3

t

d

s

b

a

e

g

f

1=3

1=3

1=3

t

d

s

b

a

e

g

f

0

0

0

0

0

0

0

0

(a)

(b)

(
)

FIGURE 3. A small example. The values in the nucleolus appear
in the last picture.

1

s

t

a

1/4

1/4

1/4

1/4

1/4

1/4

1/4

1/4

FIGURE 4. A second example. The values in the nucleolus appear
in the picture.

We have used network flow techniques to give a combinatorial polynomial algo-
rithm for computing the nucleolus of the Network Disconnection Game. The basic
tools are algorithms for shortest paths and for minimum cuts.

NETWORK DISCONNECTION GAMES 15

Consider now the case when there are k adversaries, each of them trying to travel
from si to ti, for i = 1, . . . , k. We propose to compute the nucleolus for each value
of i, i = 1, . . . , k, and then add all these vectors. The components of this final
vector should be used to decide where to put the checkpoints.

ACKNOWLEDGEMENTS

We are grateful to an anonymous referee whose comments helped us to improve
the presentation.

REFERENCES

[1] R. K. AHUJA, T. L. MAGNANTI, AND J. B. ORLIN, Network flows: Theory, algorithms, and
applications, 1993.

[2] D. S. ALTNER, Ö. ERGUN, AND N. A. UHAN, The maximum flow network interdiction prob-
lem: valid inequalities, integrality gaps, and approximability, Operations Research Letters, 38
(2010), pp. 33–38.

[3] H. AZIZ AND T. B. SØRENSEN, Path coalitional games, arXiv preprint arXiv:1103.3310,
(2011).

[4] Y. BACHRACH AND E. PORAT, Path disruption games, in Proceedings of the 9th International
Conference on Autonomous Agents and Multiagent Systems: volume 1-Volume 1, International
Foundation for Autonomous Agents and Multiagent Systems, 2010, pp. 1123–1130.

[5] R. L. CHURCH, M. P. SCAPARRA, AND R. S. MIDDLETON, Identifying critical infrastructure:
the median and covering facility interdiction problems, Annals of the Association of American
Geographers, 94 (2004), pp. 491–502.

[6] V. CHVATAL, Linear programming, Macmillan, 1983.
[7] I. CURIEL, Cooperative combinatorial games, in Pareto optimality, game theory and equilibria,

Springer, 2008, pp. 131–157.
[8] X. DENG AND Q. FANG, Algorithmic cooperative game theory, in Pareto Optimality, Game

Theory And Equilibria, Springer, 2008, pp. 159–185.
[9] X. DENG, Q. FANG, AND X. SUN, Finding nucleolus of flow game, Journal of combinatorial

optimization, 18 (2009), pp. 64–86.
[10] X. DENG AND C. H. PAPADIMITRIOU, On the complexity of cooperative solution concepts,

Mathematics of Operations Research, 19 (1994), pp. 257–266.
[11] E. W. DIJKSTRA, A note on two problems in connexion with graphs, Numerische mathematik,

1 (1959), pp. 269–271.
[12] U. FAIGLE, W. KERN, AND J. KUIPERS, Note computing the nucleolus of min-cost spanning

tree games is np-hard, International Journal of Game Theory, 27 (1998), pp. 443–450.
[13] L. R. FORD AND D. R. FULKERSON, Maximal flow through a network, in Classic papers in

combinatorics, Springer, 2009, pp. 243–248.
[14] D. B. GILLIES, Solutions to general non-zero-sum games, Contributions to the Theory of

Games, 4 (1959), pp. 47–85.
[15] A. V. GOLDBERG AND R. E. TARJAN, A new approach to the maximum-flow problem, Journal

of the ACM (JACM), 35 (1988), pp. 921–940.
[16] D. GRANOT, M. MASCHLER, G. OWEN, AND W. R. ZHU, The kernel/nucleolus of a standard

tree game, International Journal of Game Theory, 25 (1996), pp. 219–244.
[17] E. ISRAELI AND R. K. WOOD, Shortest-path network interdiction, Networks, 40 (2002),

pp. 97–111.
[18] E. KALAI AND E. ZEMEL, Totally balanced games and games of flow, Mathematics of Opera-

tions Research, 7 (1982), pp. 476–478.
[19] W. KERN AND D. PAULUSMA, Matching games: the least core and the nucleolus, Mathematics

of Operations Research, 28 (2003), pp. 294–308.

16 M. BAÏOU AND F. BARAHONA

[20] A. KOPELOWITZ, Computation of the kernels of simple games and the nucleolus of n-person
games., tech. rep., DTIC Document, 1967.

[21] N. MEGIDDO, Computational complexity of the game theory approach to cost allocation for a
tree, Mathematics of Operations Research, 3 (1978), pp. 189–196.

[22] J. POTTERS, H. REIJNIERSE, AND A. BISWAS, The nucleolus of balanced simple flow net-
works, Games and Economic Behavior, 54 (2006), pp. 205–225.

[23] T. RADZIK, Fractional combinatorial optimization, in Handbook of combinatorial optimiza-
tion, Springer, 1999, pp. 429–478.

[24] D. SCHMEIDLER, The nucleolus of a characteristic function game, SIAM Journal on applied
mathematics, 17 (1969), pp. 1163–1170.

[25] L. S. SHAPLEY, Cores of convex games, International Journal of Game Theory, 1 (1971),
pp. 11–26.

[26] T. SOLYMOSI AND T. E. RAGHAVAN, An algorithm for finding the nucleolus of assignment
games, International Journal of Game Theory, 23 (1994), pp. 119–143.

[27] J. TSAI, Z. YIN, J.-Y. KWAK, D. KEMPE, C. KIEKINTVELD, AND M. TAMBE, Urban secu-
rity: Game-theoretic resource allocation in networked physical domains, in National Confer-
ence on Artificial Intelligence (AAAI), 2010.

[28] R. K. WOOD, Deterministic network interdiction, Mathematical and Computer Modelling, 17
(1993), pp. 1–18.

(M. Baı̈ou) CNRS, AND UNIVERSITÉ CLERMONT II, CAMPUS DES CÉZEAUX BP 125, 63173
AUBIÈRE CEDEX, FRANCE.

E-mail address, M. Baı̈ou: baiou@isima.fr

(F. Barahona) IBM T. J. WATSON RESEARCH CENTER, YORKTOWN HEIGHTS, NY 10589,
USA.

E-mail address, F. Barahona: barahon@us.ibm.com

