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Abstract

Viewing optimization methods as numerical
integrators for ordinary differential equations
(ODEs) provides a thought-provoking modern
framework for studying accelerated first-order
optimizers. In this literature, acceleration is
often supposed to be linked to the quality of
the integrator (accuracy, energy preservation,
symplecticity). In this work, we propose a
novel ordinary differential equation that ques-
tions this connection: both the explicit and
the semi-implicit (a.k.a symplectic) Euler dis-
cretizations on this ODE lead to an acceler-
ated algorithm for convex programming. Al-
though semi-implicit methods are well-known
in numerical analysis to enjoy many desirable
features for the integration of physical sys-
tems, our findings show that these properties
do not necessarily relate to acceleration.

1 Introduction

Momentum methods are the state-of-the-art choice of
practitioners for the optimization of machine learning
models. The simplest of such algorithms is the Heavy-
ball (HB), first proposed and analyzed in the context
of convex optimization by Polyak (1964):

xk+1 = xk + β(xk − xk−1)− s∇f(xk) (HB)

where f : Rd → R is the L-smooth1 function we want
to minimize, s > 0 is the step-size and β ∈ [0, 1) the

*Correspondence to talantyeri@gmail.com.
1For all x, y ∈ Rd, ‖∇f(x)−∇f(y)‖ ≤ L‖x− y‖, where

‖ · ‖ is the standard Euclidean norm.
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momentum parameter. Using a novel and beautiful ar-
gument on fixed point iterations, Polyak (1964) proved
that, if f is twice continuously differentiable and µ-
strongly-convex2, the sequence (xk)k≥0 produced by
HB locally (i.e. if initialized close to the solution)
converges to the minimizer x∗ = arg minx∈Rd f(x) at
an accelerated rate. The keyword “accelerated” has a
precise meaning: an algorithm for µ-strongly-convex
and L-smooth problems is accelerated if and only if
the convergence rate of f(xk) to f∗ := minx∈Rd f(x) is
O((1−

√
µ/L)k). For instance, Gradient Descent (i.e.

β = 0) in this setting converges linearly but with con-
stant 1− µ/L and is therefore not accelerated3.

Nesterov’s acceleration. Supported by the lower
bounds established by Nemirovsky and Yudin (1983),
many researchers in the early 80s tried to develop
an algorithm with a global accelerated convergence
rate. The problem was solved by Nesterov (1983), who
proposed the following modification4 of HB:

xk+1 = xk + β(xk − xk−1)− s∇f(xk)

− βs(∇f(xk)−∇f(xk−1)).
(NAG)

The intuition behind this algorithm puzzled researchers
for decades, and many articles are devoted to under-
standing the underlying mechanism (Allen-Zhu and
Orecchia, 2014; Defazio, 2019; Ahn, 2020) and the
role of the small yet crucial modification5 compared
to HB (Flammarion and Bach, 2015; Lessard et al.,
2016; Hu and Lessard, 2017). Notwithstanding the the-
oretical value of these contributions, they are arguably
only of a descriptive nature and leave open more fun-
damental questions on the reason behind acceleration.

Continuous-time models for acceleration. A
new line of research bloomed from a seminal paper by
Su et al. (2014). This work gained a lot of attraction,

2∀x ∈ Rd, ∇2f(x)− µI is positive semidefinite.
3If L/µ is large, 1−

√
µ/L� 1− µ/L.

4In the original paper Nesterov (1983), the algorithm is
presented in a more general way. Our formulation is similar
to Shi et al. (2018).

5This is usually referred to as gradient extrapolation.
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as it introduces6 a powerful way to look at acceleration
through the lens of second order ordinary differential
equations (ODEs). In the µ-strongly-convex case, this
equation is

Ẍ + 2
√
µẊ +∇f(X) = 0 (NAG-ODE)

and retains the essence of acceleration: namely, con-
vergence with a rate O(e−

√
µt). Analogously to the

discrete-time case we just discussed, one can prove that
the continuous-time model of gradient descent, i.e. the
gradient flow Ẋ = −∇f(X), converges instead at the
non-accelerated rate O(e−µt). Other interesting prop-
erties of damped gradient systems such as NAG-ODE
can be found in the (stochastic) optimization litera-
ture (Krichene et al., 2015; Xu et al., 2018; Cabot et al.,
2009; Orvieto et al., 2020; Orvieto and Lucchi, 2019;
Diakonikolas and Jordan, 2019; Alecsa et al., 2019; Al-
imisis et al., 2020), and in the applied mathematics
literature (Sanz-Serna and Zygalakis, 2020; Attouch
et al., 2000; Attouch and Alvarez, 2000; Alvarez, 2000;
Bégout et al., 2015).

High-resolution ODEs. As first noted by Wil-
son et al. (2016), while NAG-ODE is formally the
continuous-time limit (for some specific choice of β)
of NAG, it is also the continuous-time limit of HB. In
other words, NAG-ODE does not capture the vanish-
ing gradient correction (a.k.a gradient extrapolation)
term βs(∇f(xk)−∇f(xk−1)), which is regarded to be
a fundamental piece of the acceleration machinery in
discrete-time. To solve this issue (i.e. to get a more
accurate model of Nesterov’s acceleration), Shi et al.
(2018) introduced a high-resolution model of NAG:

Ẍ + (2
√
µ+
√
s∇2f(X))Ẋ

+ (1 + 2
√
µs)∇f(X) = 0.

(NAG-ODE-HR)

Remarkably, here (1) the step-size s is included directly
in the model, and (2) the vanishing (as s → 0) term√
s∇2f(X)Ẋ is used to capture the gradient correc-

tion βs(∇f(xk)−∇f(xk−1)). The term
√
s∇2f(X)Ẋ

is referred to as Hessian damping, and can be seen
as a curvature-dependent viscosity correction. As a
validation for their new ODE, Shi et al. (2018) showed
that NAG-ODE-HR enjoys the same accelerated rate
of NAG-ODE — but it is empirically more faithful to
NAG compared to NAG-ODE, for finite values of s.

Connection to numerical integration. In a sec-
ond article, Shi et al. (2019) showed that NAG

6We point out that, actually, the differential equations
proposed in Su et al. (2014) was already written down
and partly analyzed in the original 1963 paper by Polyak
(1964). Even more surprisingly, a first study of damped
second order differential equations for optimization can be
found already in a 1958 paper of the soviet mathematician
Gavurin (1958).

can be approximately recovered7 through a semi-
implicit (a.k.a. symplectic) Euler discretization of
NAG-ODE-HR. The authors also claim that if the same
system is integrated with the explicit Euler method, the
resulting optimizer might8 not be accelerated because it
is only found stable for small values of s. Semi-implicit
methods are well-known to perform remarkably well for
integrating second-order ODEs in physics (Hairer et al.,
2006) and chemistry (Lubich, 2008); namely, one can
use big step-sizes while preserving the geometry of the
original flow. Shi et al. suggested that the essence of
acceleration can be explained by the same phenomenon,
which is mathematically well understood in the Hamil-
tonian (i.e. energy-conserving) setting thanks to the
theory of backward error analysis (Hairer, 1994; Benet-
tin and Giorgilli, 1994).

Accelerated flow 1
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Slow optimizer

<latexit sha1_base64="TNAH39/hd+2jOl1DDnUD91nWYXk=">AAAB/nicbVDLSgNBEJz1GeMrKp68DAbBU9iVgHoLevEY0TwgCWF20kmGzO4sM71qXAL+ihcPinj1O7z5N06SPWhiQUNR1U13lx9JYdB1v52FxaXlldXMWnZ9Y3NrO7ezWzUq1hwqXEml6z4zIEUIFRQooR5pYIEvoeYPLsd+7Q60ESq8xWEErYD1QtEVnKGV2rn9JsIDJjdS3VMVoQjEI+hRO5d3C+4EdJ54KcmTFOV27qvZUTwOIEQumTENz42wlTCNgksYZZuxgYjxAetBw9KQBWBayeT8ET2ySod2lbYVIp2ovycSFhgzDHzbGTDsm1lvLP7nNWLsnrUSEUYxQsini7qxpKjoOAvaERo4yqEljGthb6W8zzTjaBPL2hC82ZfnSfWk4BUL59fFfOkijSNDDsghOSYeOSUlckXKpEI4ScgzeSVvzpPz4rw7H9PWBSed2SN/4Hz+ACvZlko=</latexit>

(coincides with NAG-ODE-HR)

<latexit sha1_base64="g85SeguuMTANRdqXQG+/rs7BPhU=">AAACC3icbVDLSgNBEJz1GeNr1aOXwSDEg2FXBPUWX+jJF0aFJITZSScZnJ1dZnrVsOTuxV/x4kERr/6AN//GScxBowUNRVU33V1BLIVBz/t0hoZHRsfGMxPZyanpmVl3bv7CRInmUOKRjPRVwAxIoaCEAiVcxRpYGEi4DK53u/7lDWgjInWO7RiqIWsq0RCcoZVq7lIF4Q7TPI+E4qIOht4KbNGj7YPV47391cOzlU7NzXkFrwf6l/h9kiN9nNTcj0o94kkICrlkxpR9L8ZqyjQKLqGTrSQGYsavWRPKlioWgqmmvV86dNkqddqItC2FtKf+nEhZaEw7DGxnyLBlBr2u+J9XTrCxWU2FihMExb8XNRJJMaLdYGhdaOAo25YwroW9lfIW04yjjS9rQ/AHX/5LLtYK/nph63Q9V9zpx5Ehi2SJ5IlPNkiRHJITUiKc3JNH8kxenAfnyXl13r5bh5z+zAL5Bef9Cww6mcQ=</latexit>

Semi-implicit Euler

<latexit sha1_base64="g0SzFtokwTBg2+DjEKkqyxe/8eE=">AAACA3icbVDLSgNBEJyNrxhfUW96GQyCF8OuBNRbUASPEc0DkhBmJ51kyMzuMtMrhiXgxV/x4kERr/6EN//GyeOgiQUNRVU33V1+JIVB1/12UguLS8sr6dXM2vrG5lZ2e6diwlhzKPNQhrrmMwNSBFBGgRJqkQamfAlVv3858qv3oI0IgzscRNBUrBuIjuAMrdTK7jUQHjC5BSWOhbIbuUB6FUvQw1Y25+bdMeg88aYkR6YotbJfjXbIYwUBcsmMqXtuhM2EaRRcwjDTiA1EjPdZF+qWBkyBaSbjH4b00Cpt2gm1rQDpWP09kTBlzED5tlMx7JlZbyT+59Vj7Jw1ExFEMULAJ4s6saQY0lEgtC00cJQDSxjXwt5KeY9pxtHGlrEheLMvz5PKSd4r5M9vCrnixTSONNknB+SIeOSUFMk1KZEy4eSRPJNX8uY8OS/Ou/MxaU0505ld8gfO5w9n7pgH</latexit>

Explicit Euler

<latexit sha1_base64="SIrn/RuA1tsOIfpVfyDLM4St5+w=">AAAB/nicbVDLSgNBEJz1GeNrVTx5GQyCp7ArAfUWlIDHCOYBSQizk95kyOyDmV5JWAL+ihcPinj1O7z5N06SPWhiQUNR1U13lxdLodFxvq2V1bX1jc3cVn57Z3dv3z44rOsoURxqPJKRanpMgxQh1FCghGasgAWehIY3vJ36jUdQWkThA45j6ASsHwpfcIZG6trHbYQRppWRWcYF0koiQU26dsEpOjPQZeJmpEAyVLv2V7sX8SSAELlkWrdcJ8ZOyhQKLmGSbycaYsaHrA8tQ0MWgO6ks/Mn9MwoPepHylSIdKb+nkhZoPU48ExnwHCgF72p+J/XStC/6qQijBOEkM8X+YmkGNFpFrQnFHCUY0MYV8LcSvmAKcbRJJY3IbiLLy+T+kXRLRWv70uF8k0WR46ckFNyTlxyScrkjlRJjXCSkmfySt6sJ+vFerc+5q0rVjZzRP7A+vwBvE+WAQ==</latexit>

Figure 1: Sketch of the storyline of Shi et al. (2019): while
semi-implicit discretization of NAG-ODE-HR yields an ac-
celerated method, explicit discretization results in a method
not known in the literature, which is claimed to be stable
only for very small step-sizes (s ≤ O(µ/L2), compared to
s ≤ O(1/L) of the semi-implicit method). This is used by
the authors to advocate that the structure provided by semi-
implicit integration is somethow critical for the construction
of accelerated methods. This storyline (and the associated
conclusion) is much different from ours, sketched in Fig. 2.
Superiority of semi-implicit methods is also claimed/hinted
in several works (Shi et al., 2018; Bravetti et al., 2019; Be-
tancourt et al., 2018; França et al., 2020a; Muehlebach and
Jordan, 2019).

On a parallel line, Muehlebach and Jordan (2019)
derived a different continuous-time model that con-
tains terms of the form ∇f(X +

√
sẊ) instead of√

s∇2f(X)Ẋ. This ODE can also relate to Nesterov’s
method through semi-implicit integration. More-
over, inspired by the variational perspective presented
in Wibisono et al. (2016), many research papers (Be-
tancourt et al., 2018; Muehlebach and Jordan, 2020;
França et al., 2020a,b; Alecsa, 2020; Bravetti et al.,
2019) have been devoted to understanding the geomet-
ric properties of Nesterov’s method, seen as either (1)

7See approximations in Sec. 2.2 of Shi et al. (2019).
8We point out here a potential problem in the main

claim of Shi et al. (2019): the authors show that the explicit
integrator of NAG-ODE-HR is stable only for small step-
sizes by finding necessary conditions for the steady decrease
of a particular energy function. While this fact surely hints
at potential instabilities of the associated algorithm, it does
not per se provide a sufficient condition for slow convergence.
In other words, one could in principle find a different result
by choosing a different Lyapunov function.
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a (Strang/Lie-Trotter) splitting scheme for structure-
preserving integration of conformal Hamiltonian sys-
tems (McLachlan and Perlmutter, 2001; McLachlan and
Quispel, 2002) or (2) the composition of a map derived
from a contact Hamiltonian (de León and Lainz Val-
cázar, 2019; Bravetti et al., 2017) and a gradient descent
step. Finally, the application of Runge-Kutta schemes
was explored (Zhang et al., 2018, 2019; Sanz Serna
and Zygalakis, 2020); in particular, Zhang et al. (2018)
first showed that fast rates can be also achieved via
high-order explicit methods.

To sum it up, to the best of our knowledge, all recent
convex optimization literature advocates that, in order
to achieve acceleration from an ODE model, one needs
to use either structure-preserving integrators (Bravetti
et al., 2019; Shi et al., 2018; França et al., 2020a), high-
order explicit methods (Zhang et al., 2018, 2019), or
implicit methods (Shi et al., 2019; Wilson et al., 2016;
Diakonikolas and Orecchia, 2017).

Our contribution. We show that, contrary to what
is often claimed (or hinted at) in recent literature (see
paragraph above) acceleration can also be achieved
by means of simple low-order explicit numerical inte-
grators — such as the explicit Euler method. While
explicit Euler is well-known to be provably subopti-
mal for accurate integration of Hamiltonian systems
(Hairer et al., 2006; Hairer, 1994; Benettin and Giorgilli,
1994), we show that this does not necessarily imply
slow convergence of the resulting optimizer. In partic-
ular, our work suggests that the structure-preserving
properties of semi-implicit (symplectic) methods are
not a necessary component of accelerated algorithms.

We start by introducing a generalized momentum ODE
(GM-ODE), dependent on three parameters, which re-
covers both NAG-ODE and NAG-ODE-HR as special
cases. In Sec. 3 we study the convergence of this ODE.
Next, in Sec. 4 we show that both the explicit and the
semi-implicit Euler methods, when applied for numeri-
cal integration of GM-ODE, can achieve an accelerated
rate. Finally, in Sec. 5, we go one step further and show
that there exist damped gradient systems for which
the semi-implicit Euler method is unstable, while the
explicit Euler method (with the same step-size) is sta-
ble. Of course, for other ODE systems, we observe the
opposite behavior. This showcases that the stability of
the integrator depends on the underlying accelerated
ODE.
At its core, our work showcases some unintuitive aspects
of the connection between the fields of numerical inte-
gration and optimization. Namely, while for accurate
integration of physical systems symplectic integrators
are provably superior to explicit methods (Hairer et al.,
2006; Benettin and Giorgilli, 1994), we show that the
same ranking might not hold when seeking fast op-

Accelerated flow 1

<latexit sha1_base64="K93uaxogEdXw7evigAefzB+8vL8=">AAACAnicbVDLSgNBEJz1GeNr1ZN4GQyCp7ArAfUW9eIxgnlAsoTZSScZMvtgplcNS/Dir3jxoIhXv8Kbf+Mk2YMmFjQUVd10d/mxFBod59taWFxaXlnNreXXNza3tu2d3ZqOEsWhyiMZqYbPNEgRQhUFSmjECljgS6j7g6uxX78DpUUU3uIwBi9gvVB0BWdopLa930J4wPSCc5CgGEKHdmV0T91R2y44RWcCOk/cjBRIhkrb/mp1Ip4EECKXTOum68TopUyh4BJG+VaiIWZ8wHrQNDRkAWgvnbwwokdGMasjZSpEOlF/T6Qs0HoY+KYzYNjXs95Y/M9rJtg981IRxglCyKeLuomkGNFxHrQjFHCUQ0MYV8LcSnmfKcbRpJY3IbizL8+T2knRLRXPb0qF8mUWR44ckENyTFxySsrkmlRIlXDySJ7JK3mznqwX6936mLYuWNnMHvkD6/MHGjuXQA==</latexit>

in Tb.1, first column

<latexit sha1_base64="ZhBvwTsKsHkow2BzIz+3VFBhP9k=">AAACBnicbVDLSsNAFJ34rPUVdSnCYBFcSEikoO6KblxW6AvaUCbTSTt0MgkzN2IJXbnxV9y4UMSt3+DOv3HaZqGtBwYO59x7594TJIJrcN1va2l5ZXVtvbBR3Nza3tm19/YbOk4VZXUai1i1AqKZ4JLVgYNgrUQxEgWCNYPhzcRv3jOleSxrMEqYH5G+5CGnBIzUtY86wB4g4xLXAsc7wyFXGrCZm0ZyjLt2yXXcKfAi8XJSQjmqXfur04tpGjEJVBCt256bgJ8RBZwKNi52Us0SQoekz9qGShIx7WfTM8b4xCg9HMbKPDldIla/OzISaT2KAlMZERjoeW8i/ue1UwgvfXNjkgKTdPZRmAoMMZ5kgntcMQpiZAihiptdMR0QRSiY5IomBG/+5EXSOHe8snN1Vy5VrvM4CugQHaNT5KELVEG3qIrqiKJH9Ixe0Zv1ZL1Y79bHrHTJynsO0B9Ynz8RnZhA</latexit>

GM-ODE with m, n, q as

<latexit sha1_base64="LsCb8aMCgzhFIY231fzaxZiMnuw=">AAACDnicbVDJSgNBEO1xjXGLevTSGAIeYpiRgHoLLuhFjGAWSELo6fQkTXp6xu4aNQz5Ai/+ihcPinj17M2/sbMcNPFBweO9KqrquaHgGmz725qZnZtfWEwsJZdXVtfWUxubZR1EirISDUSgqi7RTHDJSsBBsGqoGPFdwSpu92TgV+6Y0jyQN9ALWcMnbck9TgkYqZnK1IE9QHx+uXd1eobvOXRwH/tZLLP4dmRhovvNVNrO2UPgaeKMSRqNUWymvuqtgEY+k0AF0brm2CE0YqKAU8H6yXqkWUhol7RZzVBJfKYb8fCdPs4YpYW9QJmSgIfq74mY+Fr3fNd0+gQ6etIbiP95tQi8w0bMZRgBk3S0yIsEhgAPssEtrhgF0TOEUMXNrZh2iCIUTIJJE4Iz+fI0Ke/nnHzu6DqfLhyP40igbbSDdpGDDlABXaAiKiGKHtEzekVv1pP1Yr1bH6PWGWs8s4X+wPr8ARoHmug=</latexit>

GM-ODE with m, n, q as

<latexit sha1_base64="LsCb8aMCgzhFIY231fzaxZiMnuw=">AAACDnicbVDJSgNBEO1xjXGLevTSGAIeYpiRgHoLLuhFjGAWSELo6fQkTXp6xu4aNQz5Ai/+ihcPinj17M2/sbMcNPFBweO9KqrquaHgGmz725qZnZtfWEwsJZdXVtfWUxubZR1EirISDUSgqi7RTHDJSsBBsGqoGPFdwSpu92TgV+6Y0jyQN9ALWcMnbck9TgkYqZnK1IE9QHx+uXd1eobvOXRwH/tZLLP4dmRhovvNVNrO2UPgaeKMSRqNUWymvuqtgEY+k0AF0brm2CE0YqKAU8H6yXqkWUhol7RZzVBJfKYb8fCdPs4YpYW9QJmSgIfq74mY+Fr3fNd0+gQ6etIbiP95tQi8w0bMZRgBk3S0yIsEhgAPssEtrhgF0TOEUMXNrZh2iCIUTIJJE4Iz+fI0Ke/nnHzu6DqfLhyP40igbbSDdpGDDlABXaAiKiGKHtEzekVv1pP1Yr1bH6PWGWs8s4X+wPr8ARoHmug=</latexit>

in Tb.1, second column

<latexit sha1_base64="O0zE6PObAtTlVsm3Zn7pUxK0KYw=">AAACB3icbVDLSgMxFM34rPVVdSlIsAgupMxIQd0V3bis0Be0Q8mkt21oJjMkd8RSunPjr7hxoYhbf8Gdf2PazkJbDwQO59yb5JwglsKg6347S8srq2vrmY3s5tb2zm5ub79mokRzqPJIRroRMANSKKiiQAmNWAMLAwn1YHAz8ev3oI2IVAWHMfgh6ynRFZyhldq5oxbCA46EopWg4J1RAzxSHWovTkI1pu1c3i24U9BF4qUkT1KU27mvVifiSQgKuWTGND03Rn/ENAouYZxtJQZixgesB01LFQvB+KNpjjE9sUqHdiNtj0I6VX9vjFhozDAM7GTIsG/mvYn4n9dMsHvp25BxgqD47KFuIilGdFIK7QgNHOXQEsa1sH+lvM8042iry9oSvPnIi6R2XvCKhau7Yr50ndaRIYfkmJwSj1yQErklZVIlnDySZ/JK3pwn58V5dz5mo0tOunNA/sD5/AHALpie</latexit>

Accelerated flow 2

<latexit sha1_base64="8zyO5a08hpel8DGC2x4t6hIOZ6w=">AAACAnicbVDJSgNBEO2JW4xb1JN4aQyCpzATAuot6sVjBLNAMoSeTk3SpGehu0YNQ/Dir3jxoIhXv8Kbf2NnOWjig4LHe1VU1fNiKTTa9reVWVpeWV3Lruc2Nre2d/K7e3UdJYpDjUcyUk2PaZAihBoKlNCMFbDAk9DwBldjv3EHSosovMVhDG7AeqHwBWdopE7+oI3wgOkF5yBBMYQu9WV0T0ujTr5gF+0J6CJxZqRAZqh28l/tbsSTAELkkmndcuwY3ZQpFFzCKNdONMSMD1gPWoaGLADtppMXRvTYKGZ1pEyFSCfq74mUBVoPA890Bgz7et4bi/95rQT9MzcVYZwghHy6yE8kxYiO86BdoYCjHBrCuBLmVsr7TDGOJrWcCcGZf3mR1EtFp1w8vykXKpezOLLkkByRE+KQU1Ih16RKaoSTR/JMXsmb9WS9WO/Wx7Q1Y81m9skfWJ8/G8CXQQ==</latexit>

Explicit Euler

<latexit sha1_base64="SIrn/RuA1tsOIfpVfyDLM4St5+w=">AAAB/nicbVDLSgNBEJz1GeNrVTx5GQyCp7ArAfUWlIDHCOYBSQizk95kyOyDmV5JWAL+ihcPinj1O7z5N06SPWhiQUNR1U13lxdLodFxvq2V1bX1jc3cVn57Z3dv3z44rOsoURxqPJKRanpMgxQh1FCghGasgAWehIY3vJ36jUdQWkThA45j6ASsHwpfcIZG6trHbYQRppWRWcYF0koiQU26dsEpOjPQZeJmpEAyVLv2V7sX8SSAELlkWrdcJ8ZOyhQKLmGSbycaYsaHrA8tQ0MWgO6ks/Mn9MwoPepHylSIdKb+nkhZoPU48ExnwHCgF72p+J/XStC/6qQijBOEkM8X+YmkGNFpFrQnFHCUY0MYV8LcSvmAKcbRJJY3IbiLLy+T+kXRLRWv70uF8k0WR46ckFNyTlxyScrkjlRJjXCSkmfySt6sJ+vFerc+5q0rVjZzRP7A+vwBvE+WAQ==</latexit>

Semi-implicit Euler

<latexit sha1_base64="g0SzFtokwTBg2+DjEKkqyxe/8eE=">AAACA3icbVDLSgNBEJyNrxhfUW96GQyCF8OuBNRbUASPEc0DkhBmJ51kyMzuMtMrhiXgxV/x4kERr/6EN//GyeOgiQUNRVU33V1+JIVB1/12UguLS8sr6dXM2vrG5lZ2e6diwlhzKPNQhrrmMwNSBFBGgRJqkQamfAlVv3858qv3oI0IgzscRNBUrBuIjuAMrdTK7jUQHjC5BSWOhbIbuUB6FUvQw1Y25+bdMeg88aYkR6YotbJfjXbIYwUBcsmMqXtuhM2EaRRcwjDTiA1EjPdZF+qWBkyBaSbjH4b00Cpt2gm1rQDpWP09kTBlzED5tlMx7JlZbyT+59Vj7Jw1ExFEMULAJ4s6saQY0lEgtC00cJQDSxjXwt5KeY9pxtHGlrEheLMvz5PKSd4r5M9vCrnixTSONNknB+SIeOSUFMk1KZEy4eSRPJNX8uY8OS/Ou/MxaU0505ld8gfO5w9n7pgH</latexit>

NAG-ODE-HR

<latexit sha1_base64="bdEzHVDYMF7Tg1tDYOsqrJ8XDqg=">AAAB+nicbVDLTsJAFJ36RHwVXbppJCZuIK0hUXf4iqwUjTwSaMh0GGDCdNrM3Kqk8iluXGiMW7/EnX/jAF0oeJKbnJxzb+69xws5U2Db38bc/MLi0nJqJb26tr6xaWa2qiqIJKEVEvBA1j2sKGeCVoABp/VQUux7nNa8/tnIr91TqVgg7mAQUtfHXcE6jGDQUsvMNIE+Qnx1cpm7Pr/IlW6HLTNr5+0xrFniJCSLEpRb5lezHZDIpwIIx0o1HDsEN8YSGOF0mG5GioaY9HGXNjQV2KfKjcenD609rbStTiB1CbDG6u+JGPtKDXxPd/oYemraG4n/eY0IOkduzEQYARVksqgTcQsCa5SD1WaSEuADTTCRTN9qkR6WmIBOK61DcKZfniXVg7xTyB/fFLLF0ySOFNpBu2gfOegQFVEJlVEFEfSAntErejOejBfj3fiYtM4Zycw2+gPj8wfcw5Mc</latexit>

(NAG with optimal parameters)

<latexit sha1_base64="m+DzVgU7u1S766ygJR1nuJRgOoE=">AAACDXicbVC7SgNBFJ31GeNr1dJmMAqxCbsSULuohVYSwTwgWcLsZDYZMvtg5q4alvyAjb9iY6GIrb2df+NssoUmHhg4nHMPd+5xI8EVWNa3MTe/sLi0nFvJr66tb2yaW9t1FcaSshoNRSibLlFM8IDVgINgzUgy4ruCNdzBReo37phUPAxuYRgxxye9gHucEtBSx9xvA3uApHh9donvOfRxGAH3icARkcRnoKOHo45ZsErWGHiW2BkpoAzVjvnV7oY09lkAVBClWrYVgZMQCZwKNsq3Y8UiQgekx1qaBnqTcpLxNSN8oJUu9kKpXwB4rP5OJMRXaui7etIn0FfTXir+57Vi8E6chAdRDCygk0VeLDCEOK0Gd7lkFMRQE0Il13/FtK9roGkLeV2CPX3yLKkflexy6fSmXKicZ3Xk0C7aQ0Vko2NUQVeoimqIokf0jF7Rm/FkvBjvxsdkdM7IMjvoD4zPHyePm6U=</latexit>

Accelerated optimizer

<latexit sha1_base64="UZoNcBwee1GTco86w6EK5VvFI74=">AAACBXicbVA9SwNBEN3zM8avU0stFoNgFe4koHZRG8sI5gOSI+xtJsmSvQ9258R4pLHxr9hYKGLrf7Dz37hJrtDEBwOP92aYmefHUmh0nG9rYXFpeWU1t5Zf39jc2rZ3dms6ShSHKo9kpBo+0yBFCFUUKKERK2CBL6HuD67Gfv0OlBZReIvDGLyA9ULRFZyhkdr2QQvhHtMLzkGCYggdGsUoAvEAatS2C07RmYDOEzcjBZKh0ra/Wp2IJwGEyCXTuuk6MXopUyi4hFG+lWiIGR+wHjQNDVkA2ksnX4zokVE6tBspUyHSifp7ImWB1sPAN50Bw76e9cbif14zwe6Zl4owThBCPl3UTSTFiI4joR2hgKMcGsK4EuZWyvtMMY4muLwJwZ19eZ7UTopuqXh+UyqUL7M4cmSfHJJj4pJTUibXpEKqhJNH8kxeyZv1ZL1Y79bHtHXBymb2yB9Ynz948Jk4</latexit>

(NAG with optimal parameters)

<latexit sha1_base64="m+DzVgU7u1S766ygJR1nuJRgOoE=">AAACDXicbVC7SgNBFJ31GeNr1dJmMAqxCbsSULuohVYSwTwgWcLsZDYZMvtg5q4alvyAjb9iY6GIrb2df+NssoUmHhg4nHMPd+5xI8EVWNa3MTe/sLi0nFvJr66tb2yaW9t1FcaSshoNRSibLlFM8IDVgINgzUgy4ruCNdzBReo37phUPAxuYRgxxye9gHucEtBSx9xvA3uApHh9donvOfRxGAH3icARkcRnoKOHo45ZsErWGHiW2BkpoAzVjvnV7oY09lkAVBClWrYVgZMQCZwKNsq3Y8UiQgekx1qaBnqTcpLxNSN8oJUu9kKpXwB4rP5OJMRXaui7etIn0FfTXir+57Vi8E6chAdRDCygk0VeLDCEOK0Gd7lkFMRQE0Il13/FtK9roGkLeV2CPX3yLKkflexy6fSmXKicZ3Xk0C7aQ0Vko2NUQVeoimqIokf0jF7Rm/FkvBjvxsdkdM7IMjvoD4zPHyePm6U=</latexit>

Accelerated optimizer

<latexit sha1_base64="UZoNcBwee1GTco86w6EK5VvFI74=">AAACBXicbVA9SwNBEN3zM8avU0stFoNgFe4koHZRG8sI5gOSI+xtJsmSvQ9258R4pLHxr9hYKGLrf7Dz37hJrtDEBwOP92aYmefHUmh0nG9rYXFpeWU1t5Zf39jc2rZ3dms6ShSHKo9kpBo+0yBFCFUUKKERK2CBL6HuD67Gfv0OlBZReIvDGLyA9ULRFZyhkdr2QQvhHtMLzkGCYggdGsUoAvEAatS2C07RmYDOEzcjBZKh0ra/Wp2IJwGEyCXTuuk6MXopUyi4hFG+lWiIGR+wHjQNDVkA2ksnX4zokVE6tBspUyHSifp7ImWB1sPAN50Bw76e9cbif14zwe6Zl4owThBCPl3UTSTFiI4joR2hgKMcGsK4EuZWyvtMMY4muLwJwZ19eZ7UTopuqXh+UyqUL7M4cmSfHJJj4pJTUibXpEKqhJNH8kxeyZv1ZL1Y79bHtHXBymb2yB9Ynz948Jk4</latexit>

(because only stable for small stepsizes)

<latexit sha1_base64="B8RKLXyEtoMiiwWHmKajfIQ7Fp4=">AAACGXicbVC7TgMxEPTxJrwClDQWERI00R1CAjoEDSVIJCAlUbTn7IGFzz7Ze4hwym/Q8Cs0FCBECRV/g/MoeE01mtnR7k6cKekoDD+DsfGJyanpmdnS3PzC4lJ5eaXuTG4F1oRRxl7E4FBJjTWSpPAiswhprPA8vj7q++c3aJ00+oy6GbZSuNQykQLIS+1y2CS8pWIzRgG5Q2606nJH4PM8MZa7FJTyAmZO3qHb6rXLlbAaDsD/kmhEKmyEk3b5vdkxIk9Rk1DgXCMKM2oVYEkKhb1S06/NQFzDJTY81ZCiaxWDz3p8wyudwSGJ0cQH6vdEAalz3TT2kynQlfvt9cX/vEZOyV6rkDrLCbUYLkpyxcnwfk28Iy0K8l10JAgr/a1cXIEFQb7Mki8h+v3yX1LfrkY71f3TncrB4aiOGbbG1tkmi9guO2DH7ITVmGD37JE9s5fgIXgKXoO34ehYMMqssh8IPr4AGFKhAA==</latexit>

Slow optimizer

<latexit sha1_base64="TNAH39/hd+2jOl1DDnUD91nWYXk=">AAAB/nicbVDLSgNBEJz1GeMrKp68DAbBU9iVgHoLevEY0TwgCWF20kmGzO4sM71qXAL+ihcPinj1O7z5N06SPWhiQUNR1U13lx9JYdB1v52FxaXlldXMWnZ9Y3NrO7ezWzUq1hwqXEml6z4zIEUIFRQooR5pYIEvoeYPLsd+7Q60ESq8xWEErYD1QtEVnKGV2rn9JsIDJjdS3VMVoQjEI+hRO5d3C+4EdJ54KcmTFOV27qvZUTwOIEQumTENz42wlTCNgksYZZuxgYjxAetBw9KQBWBayeT8ET2ySod2lbYVIp2ovycSFhgzDHzbGTDsm1lvLP7nNWLsnrUSEUYxQsini7qxpKjoOAvaERo4yqEljGthb6W8zzTjaBPL2hC82ZfnSfWk4BUL59fFfOkijSNDDsghOSYeOSUlckXKpEI4ScgzeSVvzpPz4rw7H9PWBSed2SN/4Hz+ACvZlko=</latexit>

(coincides with NAG-ODE-HR)

<latexit sha1_base64="g85SeguuMTANRdqXQG+/rs7BPhU=">AAACC3icbVDLSgNBEJz1GeNr1aOXwSDEg2FXBPUWX+jJF0aFJITZSScZnJ1dZnrVsOTuxV/x4kERr/6AN//GScxBowUNRVU33V1BLIVBz/t0hoZHRsfGMxPZyanpmVl3bv7CRInmUOKRjPRVwAxIoaCEAiVcxRpYGEi4DK53u/7lDWgjInWO7RiqIWsq0RCcoZVq7lIF4Q7TPI+E4qIOht4KbNGj7YPV47391cOzlU7NzXkFrwf6l/h9kiN9nNTcj0o94kkICrlkxpR9L8ZqyjQKLqGTrSQGYsavWRPKlioWgqmmvV86dNkqddqItC2FtKf+nEhZaEw7DGxnyLBlBr2u+J9XTrCxWU2FihMExb8XNRJJMaLdYGhdaOAo25YwroW9lfIW04yjjS9rQ/AHX/5LLtYK/nph63Q9V9zpx5Ehi2SJ5IlPNkiRHJITUiKc3JNH8kxenAfnyXl13r5bh5z+zAL5Bef9Cww6mcQ=</latexit>

Semi-implicit Euler

<latexit sha1_base64="g0SzFtokwTBg2+DjEKkqyxe/8eE=">AAACA3icbVDLSgNBEJyNrxhfUW96GQyCF8OuBNRbUASPEc0DkhBmJ51kyMzuMtMrhiXgxV/x4kERr/6EN//GyeOgiQUNRVU33V1+JIVB1/12UguLS8sr6dXM2vrG5lZ2e6diwlhzKPNQhrrmMwNSBFBGgRJqkQamfAlVv3858qv3oI0IgzscRNBUrBuIjuAMrdTK7jUQHjC5BSWOhbIbuUB6FUvQw1Y25+bdMeg88aYkR6YotbJfjXbIYwUBcsmMqXtuhM2EaRRcwjDTiA1EjPdZF+qWBkyBaSbjH4b00Cpt2gm1rQDpWP09kTBlzED5tlMx7JlZbyT+59Vj7Jw1ExFEMULAJ4s6saQY0lEgtC00cJQDSxjXwt5KeY9pxtHGlrEheLMvz5PKSd4r5M9vCrnixTSONNknB+SIeOSUFMk1KZEy4eSRPJNX8uY8OS/Ou/MxaU0505ld8gfO5w9n7pgH</latexit>

Explicit Euler

<latexit sha1_base64="SIrn/RuA1tsOIfpVfyDLM4St5+w=">AAAB/nicbVDLSgNBEJz1GeNrVTx5GQyCp7ArAfUWlIDHCOYBSQizk95kyOyDmV5JWAL+ihcPinj1O7z5N06SPWhiQUNR1U13lxdLodFxvq2V1bX1jc3cVn57Z3dv3z44rOsoURxqPJKRanpMgxQh1FCghGasgAWehIY3vJ36jUdQWkThA45j6ASsHwpfcIZG6trHbYQRppWRWcYF0koiQU26dsEpOjPQZeJmpEAyVLv2V7sX8SSAELlkWrdcJ8ZOyhQKLmGSbycaYsaHrA8tQ0MWgO6ks/Mn9MwoPepHylSIdKb+nkhZoPU48ExnwHCgF72p+J/XStC/6qQijBOEkM8X+YmkGNFpFrQnFHCUY0MYV8LcSvmAKcbRJJY3IbiLLy+T+kXRLRWv70uF8k0WR46ckFNyTlxyScrkjlRJjXCSkmfySt6sJ+vFerc+5q0rVjZzRP7A+vwBvE+WAQ==</latexit>

Figure 2: The main conceptual finding of our paper: both
the semi-implicit and the explicit Euler integrators are
able to recover Nesterov’s method, when used to discretize
different accelerated flows (ODEs are given in Sec. 4).

timizers through ODE discretization. We think that
clarifying this critical point makes the (already vast) lit-
erature on this topic richer, motivating future research
on the connections between the fields of optimization
and numerical analysis.

2 Summary of the results

Our work is based on the study of a novel continuous-
time model for momentum algorithms, namely the
following ordinary differential equation that is indexed
by non-negative parameters m,n, q:{

Ẋ = −m∇f(X)− nV
V̇ = ∇f(X)− qV,

(GM-ODE)

We show that the above ODE includes both NAG-
ODE and NAG-ODE-HR as special cases and recovers
a large set of momentum methods through the appli-
cation of two classical numerical integrators, i.e. semi-
implicit and explicit Euler. In Lemma 2 we show that
these integrators are equivalent and can both lead to
acceleration (see also Fig. 2). Equivalence is shown
by reparameterization: any semi-implicit discretiza-
tion of GM-ODE with parameters (mSIE, nSIE, qSIE)
can be viewed as explicit Euler discretization of GM-
ODE with different parameters (mEE, nEE, qEE). These
parameters can be computed in closed form starting
from (mSIE, nSIE, qSIE) (see Lemma 2 for precise formu-
las). Such an equivalence suggests that the energy-
preservation properties of semi-implicit integration
might no be strictly necessary to achieve acceleration,
as instead hinted in recent works (Bravetti et al., 2017;
McLachlan and Perlmutter, 2001; Shi et al., 2019).

To make our analysis complete, we establish an acceler-
ated convergence rate (in Thm. 3 and Cor. 6) for a set
of algorithms that can be interpreted as (both the two)
Euler discretizations of GM-ODE with a proper param-
eters choice. As a side product of our novel analysis of
semi-implicit and explicit methods, we derive a novel
accelerated convergence rate for the quasi-hyperbolic
momentum (QHM) method introduced by Ma and
Yarats (2018). Indeed, along with HB and NAG, the
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QHMmethod can also be seen as a numerical integrator
on GM-ODE. QHM was shown to be very competitive
in deep learning tasks (Choi et al., 2019) as well as in
the strongly-convex setting (see Appendix J in (Ma and
Yarats, 2018)). However, to the best of our knowledge,
QHM has only been studied in the quadratic case (Git-
man et al., 2019) (hence the novelty of our rate). We
like to point out that this is not the main contribu-
tion of our paper, but is presented here nonetheless to
showcases the flexibility of our novel ODE and of the
numerical integration approach.

Finally, we go beyond convergence analysis and study
the discretization errors in Sec. 5. Under some condi-
tions on the choice of parameters, we show that the
explicit Euler method enjoys the same integration error
as the semi-implicit Euler method when integrating
GM-ODE (see Lemma 8).

3 Continuous-time analysis

Before discussing numerical integration, we provide
here a continuous-time analysis of GM-ODE, in line
with most related works on acceleration and numerical
integration (Shi et al., 2018; Su et al., 2014). The
results in this section are not fundamental for the
understanding of our claims on the discretization of
GM-ODE. Hence, for a quick read, this section can be
safely skipped.

GM-ODE can be seen as as a linear combination of
the gradient flow Ẋ = −∇f(X) (obtained for n = 0)
and NAG-ODE (obtained for n = 1). Assuming the
objective function f is L-smooth, one can check that
GM-ODE admits a unique solution (follows directly
from Thm. 3.2 in Khalil and Grizzle (2002)). The
model above is inspired by the quasi-hyperbolic momen-
tum (QHM) algorithm9 developed in Ma and Yarats
(2018). We discuss the connection to QHM later in
Sec. 4.

Connections to existing ODE models. GM-
ODE recovers existing continuous momentum mod-
els under different choices of parameters. To see
this, let us take the second derivative of X: Ẍ =
−m∇2f(X)Ẋ − nV̇ .

Ẍ +
(
q +m∇2f(X)

)
Ẋ + (n+ qm)∇f(X) = 0. (1)

The choice10 m = 0, n = 1, q = 2
√
µ recovers NAG-

ODE by Polyak (1964). Moreover, the choice m =√
s, n = 1, q = 2

√
µ recovers NAG-ODE-HR, pro-

posed by Shi et al. (2018, 2019). That is, GM-ODE
9QHM was introduced as weighted average of momentum

and gradient descent methods. It is shown to recover both
HB and NAG as special cases.

10Proofs for discretized GM-ODE will rely on condition
m > 0. This discussion will be elaborated in Sec. 4.

includes as special cases both the high-resolution and
low-resolution models of Nesterov’s method (see dis-
cussion in the introduction). We note that, contrary
to Shi et al. (2018), the Hessian of f is not explicitly
included in the model. Also, contrary to Muehlebach
and Jordan (2019), the gradient is evaluated only at
the current position X. This feature arguably gives
GM-ODE higher interpretability than existing models –
a simple linear combination of gradient and momentum
can also achieve high resolution11.

m n q

Gradient Flow 1 0 any
NAG-ODE (Su et al., 2014) 0 1 2

√
µ

NAG-ODE-HR (Shi et al., 2019)
√
s 1 2

√
µ

Stability and convergence rate. The equilibria
of GM-ODE are easy to characterize: since m,n and
q are non-negative, we have Ẋ = 0 and V̇ = 0 if and
only if both ∇f(X) = 0 and V = 0. Under the as-
sumption that f is strongly-convex, only its unique
minimizer x∗ is such that ∇f(x∗) = 0. Therefore the
point (x∗, 0) ∈ R2d is the only equilibrium of GM-ODE.
Next, we want to show that (x∗, 0) is asymptotically sta-
ble and characterize the convergence rate of our model.
Borrowing some inspiration from Su et al. (2014); Shi
et al. (2019), we propose the following energy function:

E(X,V ) = (qm+ n)
(
f(X)− f(x∗)

)
+

1

4
‖q(X − x∗)− nV ‖2 +

n(qm+ n)

4
‖V ‖2.

The next theorem states our result about Lyapunov sta-
bility, of which the proof is presented in the appendix.

Theorem 1 (Continuous-time stability). Let f be µ-
strongly-convex and L-smooth. If n,m, q ≥ 0 then, for
any value of the strong-convexity modulus µ ≥ 0, the
point (x∗, 0) ∈ R2d is globally asymptotically stable
for GM-ODE, as

E(X(t), V (t)) ≤ e−γ1t · E(X(0), V (0)), (2)

where γ1 := min

(
µ(n+ qm)

2q
,
q

2

)
.

Remarkably, the stability analysis in the proof can
be used to guide the analysis of different momentum
methods (see Sec. 4) — obtained by the application of
standard Euler integrators of our model.
Remark 1. The rate in Thm. 1 is not affected by the
gradient Lipshitz constant L. This might look strange

11That is, a finer, compared to the original ODE in Su
et al. (2014) approximation of Nesterov’s method. For a
detailed discussion on this terminology, we refer the reader
to Shi et al. (2018).
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at first for a reader familiar with the optimization
literature. However, we point to the fact that this is a
feature of most continuous-time models (see e.g. rates
in Shi et al. (2018)). The Lipschitz constant comes
back into the rate after discretization, since one has to
introduce a bound on the maximum integrator step-size,
usually proportional to 1/L (see Eq. 3 and 4).

How do m,n, q affect the ODE dynamics? One
can readily check that Thm. 1 implies a linear rate in
function value of the form f(X(t))−f(x∗) ≤ O(−eγ1t).
This result recovers exactly the rates in Shi et al. (2018)
as a special case. However, we note that our result
is more general and leads to novel insights on the in-
terplay between gradient amplification (controlled by
n), momentum (controlled by q) and Hessian damp-
ing (controlled by m). Indeed, given the expression for
γ1 in Eq. 2, we can make the following conclusions.

• For fixed m,n ≥ 0, the value of q which maximizes
γ1 also solves µ(n + qm)/q = q, which implies q =

(m+
√

4µn+m2)/2. If we restrict q to be a power of
µ, set n = 1 and ignore the effect of m, then we get
the popular choice (Shi et al., 2018, 2019; Muehlebach
and Jordan, 2019) q = O(

√
µ) (see the first panel of

Fig. 3). Sanz-Serna and Zygalakis (2020) recently
showed that this choice is optimal using the linear
matrix inequalities framework (Lessard et al., 2016;
Fazlyab et al., 2018).

• For any q ≥ 0, if n ≥ 0 is chosen small enough such
that q2−µn ≥ 0, then by pickingm = (q2−µn)/q we
have γ1 = q/2. Hence, by increasing q (and adapting
m accordingly) the convergence in continuous-time
can be sped-up arbitrarily (see the second panel of
Fig. 3).

• If n = q2/µ, then γ1 = q/2 for all q ≥ 0 and any
m ≥ 0. Again, by increasing q the convergence can
be sped-up arbitrarily (bottom panel of Fig. 3).

Remark 2. If n or m are increased, one can guarantee
arbitrarily fast convergence to the minimizer. This
result only holds true in continuous-time, as noted also
in a similar setting by Wilson et al. (2016). Indeed, as
we will see in Thm. 3, in the discrete word, to ensure
stability, n and m have to be bounded by a constant
which is inversely proportional to the discretization
accuracy.

4 Discretization and acceleration

We now jump to the discrete world and show how
both explicit and semi-implicit numerical integration,
applied to GM-ODE, can yield accelerated gradient
iterations.

Discretization schemes. We consider two well-
understood (Hairer et al., 2006) and practical first-order

Figure 3: Role of parameters in GM-ODE. The objective
function is a 10-dimensional quadratic function f with
µI � ∇2f � LI where µ = 0.01 and L = 1. The panels
depict, from left to right, the influence of q, m and n, as
suggested in above discussion. In each figure we vary the
parameter we are interested in (as in the legends) and keep
the others fixed. For left panel we use m = 0.2 and n = 1.
For the middle panel we use n = 0.1. For the right panel we
use m = 0.2. Numerical integration of GM-ODE performed
using a fourth-order Runge-Kutta with step-size 10−4.

numerical integration schemes applied to GM-ODE
with discretization step-size

√
s (see discussion in Su

et al. (2014); Shi et al. (2019)): Explicit Euler (EE)
and Semi-Implicit12 Euler (SIE).

(EE) :

{
xk+1 − xk = −m

√
s∇f(xk)− n

√
svk

vk+1 − vk =
√
s∇f(xk)− q

√
svk.

(SIE) :

{
xk+1 − xk = −m

√
s∇f(xk)− n

√
svk

vk+1 − vk =
√
s∇f(xk+1)− q

√
svk.

Even though the second equation in SIE is written in
an implicit way, it can be trivially solved: indeed, one
shall first find xk+1 and then plug the solution into the
second equation. Since the gradient computed at xk+1

can be used at the next iteration, the two algorithms
have the same complexity. Indeed, for n 6= 0 (gradient
descent is recovered for n = 0), by simplifying the
variable v, both schemes can be written in one line:

xk+1 = xk + (1− q
√
s)(xk − xk−1)−m

√
s∇f(xk)

+ ((1− q
√
s)m
√
s− ns)∇f(xk−1); (EE)

12Actually, there exist many semi-implicit methods that
go under the name of “semi-implicit Euler”. We expect many
of those integrators to work equally well for the sake of our
discussion on equivalence. For a more detailed discussion,
we refer the reader to Chapter 1 of Hairer et al. (2006).
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xk+1 = xk + (1− q
√
s)(xk − xk−1)

−
(
m
√
s+ ns

)
∇f(xk) + (1− q

√
s)m
√
s∇f(xk−1).

(SIE)

Remarkably, different choices of parameters yield a rich
set of momentum methods, and the reader can probably
already notice some configurations which recover well-
known optimizers (see introduction). We explore this
in the next subsection.

4.1 Equivalence between SIE and EE

We show that algorithms obtained from semi-implicit
discretization of an accelerated flow can also be seen
as explicit discretization of a different accelerated flow.

Lemma 2 (Equivalence between SIE and EE). For
n = 0 both EE and SIE reduce to gradient descent.
For n 6= 0, consider parameters (mSIE, nSIE, q) and set

mEE = mSIE +
√
snSIE,

nEE = (1− q
√
s)nSIE.

EE with stepsize
√
s > 0 on GM-ODE with parameters

(mEE, nEE, q) leads to the same exact algorithm as the
one obtained using SIE with stepsize

√
s > 0 on GM-

ODE with parameters (mSIE, nSIE, q).

Proof. We start from the one-line representation. We
get the following conditions for n 6= 0:{

mSIE
√
s+ snSIE = mEE

√
s

(1− q
√
s)mSIE

√
s = (1− q

√
s)mEE

√
s− snEE.

We substitute the first equation into the second.

As a crucial consequence of the last lemma, Heavy-ball
and Nesterov method can be seen both as semi-implicit
and explicit integrators on GM-ODE. This is illustrated
in Tb. 1. Since, as it is well known, NAG is accelerated,
Lemma 2 shows that both explicit and semi-implicit
Euler integrators can lead to acceleration under well-
chosen parameters. In the next subsection, we elaborate
more on this finding and recover parameters which lead
to acceleration for EE and SIE.

An ODE which gives NAG under the explicit
Euler method. From Tb. 1 and Eq. 1, we get that

Ẍ +
(
2
√
µ+ 2(1−√µs)

√
s∇2f(X)

)
Ẋ +∇f(X) = 0

leads to NAG through EE (choosing q = 2
√
µ), while

Ẍ +
(
2
√
µ+
√
s∇2f(X)

)
Ẋ +∇f(X) = 0

recovers NAG through SIE discretization. These pa-
rameter choices lead to acceleration (see Cor. 4). Note

EE discretization SIE discretization
HB q = (1− β)/

√
s q = (1− β)/

√
s

m =
√
s m = 0

n = β n = 1
NAG q = (1− β)/

√
s q = (1− β)/

√
s

m = (1 + β)
√
s m =

√
s

n = β2 n = β

Table 1: HB and NAG with any stepsize s > 0 and mo-
mentum β ∈ (0, 1) (see definition in the introduction) can
be seen as both EE or SIE numerical integrators.

that the last equation is equivalent13 to NAG-ODE-HR,
while the first is not known in the literature. However,
Thm. 1 ensures that both ODEs are accelerated. This
is enough to show that the sketch in Fig. 2 is correct.

4.2 Semi-implicit Euler is accelerated

Leveraging insights from the ODE stability analysis in
Thm. 1 and the lessons learned from semi-implicit Lya-
punov function design in recent literature Shi et al.
(2018, 2019), our next result establishes a general
convergence rate for the semi-implicit Euler method
on GM-ODE. In the next subsection, we also provide
a similar result for EE, using Lemma 2.

Theorem 3 (Convergence of SIE). Assume f L-
smooth and µ-strongly-convex. Let (xk)∞k=1 be the se-
quence obtained from semi-implicit discretization of
GM-ODE with step

√
s. Let

0 < m
√
s ≤ 1

2L
, 0 < ns ≤ m

√
s, 0 < q

√
s ≤ 1

2
. (3)

There exists a constant C > 0 such that, for any k ∈ N,
it holds that

f(xk)− f(x∗) ≤
(
1 + γ2

√
s
)−k

C,

where γ2 := 1
5 min

(
nµ

q
,

q

1 + q2/(nL)

)
.

Proof Sketch. The proof is based on the following en-
ergy function inspired by the ODE model (cf. Sec. 3):

E(k) =r1r2(f(xk)− f(x∗))− r1r2m
√
s

2
‖∇f(xk)‖2

+
nr21r2

4
‖vk‖2 +

1

4
‖q(xk+1 − x∗)− nr1vk‖2,

where r1 = 1 − q
√
s, r2 = n + mq and the last term

is a vanishing (as s→ 0) correction that accounts for
13The careful reader might notice a factor 1 +

√
µs in

front of the gradient for the ODE in Shi et al. (2019). This
small difference is only due to the particular definition of
semi-implicit integration. If one replaces q

√
svk in the RHS

of SIE with q
√
svk+1, then we have complete equivalence.
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the discretization error (cf. Shi et al. (2019)). We show
E(k+1)−E(k) ≤ −γ2

√
sE(k+1) in App. B, completing

the proof.

The generality of the convergence result allows us to
derive accelerated rates for different momentum meth-
ods whose convergence rates may even be unknown.
We illustrate this by deriving the well-known rate of
Nesterov’s method in just a few lines. We note that
known results on semi-implicit integration such as the
ones presented in Shi et al. (2019) are less general since
are limited to high/low resolution or to a fixed viscosity
O(
√
µ).

From Thm. 3 to the well-known rate for NAG.
By invoking Thm. 3, we can recover acceleration of
NAG since it can be written as SIE discretization
of GM-ODE (see Tb. 1).

Corollary 4 (NAG is accelerated). Let f be L-
smooth and µ-strongly-convex with large14 condition
number L/µ ≥ 9. Consider the SIE discretization
of GM-ODE with s ≤ 1

4L , q = (1 − β)/
√
s (with

β = 1 − 2
√
µs), m =

√
s, n = β (i.e. NAG, see

Tb. 1). The algorithm enjoys the accelerated conver-
gence rate O((1 −

√
µ/L)k). Namely, ∃C > 0 such

that
f(xk)− f(x∗) ≤

(
1 +
√
µs/15

)−k
C.

Proof. The conditions in in Eq. 3 are satisfied since
s = m

√
s ≤ 1/(4L), n = β < 1 = m√

s
and q

√
s =

2
√
µs ≤ 2

√
Ls/9 ≤ 1/3. Thus, nµ

5q =
(1−2√µs)√µ

10 ≥
(1−1/3)√µ

10 ≥
√
µ

15 and q
5+5q2/(nL) ≥

2
√
µ

5+6µ/L ≥
√
µ

9 .

From Thm. 4 to a new rate for QHM. The gen-
erality of our model and our discretization analysis pro-
vides an accelerated convergence rate for a broad class
of momentum methods. Among these methods is quasi-
hyperbolic momentum (Ma and Yarats, 2018), which15

shows promises in optimization for neural nets (Choi
et al., 2019).{

xk+1 = xk − s((1− a)∇f(xk) + agk+1)

gk+1 = bgk +∇f(xk),
(QHM)

where a, b ∈ (0, 1). For classification tasks, QHM yields
an accelerated rate on real-world datasets (even better
than NAG) (Ma and Yarats, 2018). Despite empirical
benefits, the convergence analysis for this algorithm
is limited to quadratics (Gitman et al., 2019). Using

14The lower bound assumption for conditional number
here and in Cor. 5 is purely technical and only serves for a
simple illustration of these corollaries.

15Ma and Yarats (2018) presented a normalized second
iteration, i.e. gk+1 = bgk+(1−b)∇f(xk), which is generally
equivalent to the one we present here by factor rescaling.

Figure 4: Convergence of QHM. The left plot shows the
convergence of 10-dimensional quadratic with µ = 0.01 and
L = 1; the right plot reports 10-dimensional regularized
logistic regression (random data and labels) with regular-
ization weight l = 10−4. We specifically used s = 0.5,
β = 1− 2

√
µs and s = 0.5, β = 1− 2

√
ls, respectively, in

the two experiments.

Thm. 3, the next corollary establishes an accelerated
rate for QHM (proof in the appendix).

Corollary 5 (Convergence of QHM). Let f be L-
smooth and µ-strongly-convex with L/µ ≥ 9. The
iterates of enjoy a linear convergence rate for s ≤ 1

4L
and a ≤ 1/2. In particular, also enjoys convergence
rate O((1 −

√
µ/L)k) for b = 1 − 2

√
µs. Namely,

∃C > 0 such that

f(xk)− f(x∗) ≤
(

1 + a
√
µs/10

)−k
C.

Fig. 4 shows the accelerated rate established in the
corollary, and its dependency on the parameter a. We
leave the extension to the stochastic case (possible
with the methodology in Assran and Rabbat (2020)) to
future work, for the sake of continuing our discussion
on numerical integration.

Thm. 3 fails to prove accelerated rate for HB.
An interesting question may arise as a consequence of
our results: since HB can be recast as semi-implicit
discretization of GM-ODE, then does invoking Thm. 3
produce a global acceleration proof for HB? The an-
swer is no, since the convergence result in Thm. 3 is
conditioned on m > 0; while one needs to set m = 0 to
obtain HB by SIE integration. This is not surprising
since the Lyapunov functions used in the literature
to prove acceleration for NAG often differ from the
one used for convergence of HB (see Eq. 3.3 in Shi
et al. (2018)). Nonetheless, It is possible to construct
an analogue of Thm. 3, using a different Lyapunov
function, to derive (non accelerated) convergence for
an HB-like method.

The trade-off speed-stability. As noted in Re-
mark 2, in continuous time one can increase either
m or n to infinity and get an arbitrarily fast rate.
Thm. 3 shows why a similar phenomenon is not pos-
sible in discrete time (would violate the lower bound
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in Nemirovsky and Yudin (1983)): for a specific dis-
cretization step-size

√
s, Eq. 3 gives us a bound on

the maximum m and n we can choose to have guar-
anteed stability. In other words, if we choose a large
value for either m and n to get a faster rate, we would
end up with a slow algorithm since numerical stability
would require a very small integration step-size. Hence,
as expected by the classic theory of convex optimiza-
tion (Nemirovsky and Yudin, 1983), there is a sweet
spot which yields γ2 = O(

√
µ/L) — a.k.a acceleration.

4.3 Explicit Euler is also accelerated!

In the last subsection, we provided a convergence rate
for semi-implicit discretization of GM-ODE and showed
how this general result can be applied to derive (old
and new) convergence rates for momentum methods.
However, as already noted a few times, Lemma 2 im-
plies that an equivalent theorem can be written for the
explicit Euler method.

Corollary 6 (Convergence of EE). Assume f L-
smooth and µ-strongly-convex. Let (xk)∞k=1 be the se-
quence obtained from semi-implicit discretization of
GM-ODE with step

√
s. Let

0 < m
√
s− ns/(1− q

√
s) ≤ 1

2L
,

0 < ns ≤ 1− q
√
s

2
m
√
s, 0 < q

√
s ≤ 1

2
.

(4)

There exists a constant C > 0 such that, for any k ∈ N,
it holds that

f(xk)− f(x∗) ≤
(
1 + γ3

√
s
)−k

C,

where γ3 := 1
5 min

(
nµ

q(1− µ
√
s)
,

q

1 + q2/(nL)

)
.

Proof. Consider an explicit method with parameters
(mEE, nEE, q) and a semi-implicit method with param-
eters (mSIE, nSIE, q). Thm. 3 holds if 0 < mSIE

√
s ≤

1/(2L), 0 < snSIE ≤ mSIE
√
s and q

√
s ≤ 1/2, then it

is convergent. By Lemma 2, we can recover the pa-
rameter of an equivalent explicit method by setting
nEE = (1− q

√
s)nSIE and mEE = mSIE +

√
snSIE. Com-

bining these conditions with the theorem requirements
on nSIE, we get:

0 <
snEE

1− q
√
s
≤ mSIE

√
s = mEE

√
s− snEE

1− q
√
s
,

which implies the condition on nEE. For the condition
on mEE, just note that the condition on mSIE from
Thm. 3 implies

√
smSIE =

√
smEE − s

1−q
√
s
nEE ≤ 1

2L .

Stability of EE and SIE. For the integration of
Hamiltonian systems, semi-implicit Euler is provably
more stable than explicit Euler (Hairer et al., 2006). For
example, a linearized pendulum integrated with explicit
Euler diverges in phase space, while the semi-implicit
Euler method is stable and conserves the structure of
the ODE system (energy, volume). In Fig. 5, we show
that for a dissipative (hence not Hamiltonian) system
such as GM-ODE the situation can be very different:
in complete agreement with our equivalence result in
Lemma 2, there exists parameter configurations for
which EE is stable but SIE is not, and vice versa.

Figure 5: EE vs. SIE. To show that SIE and EE are
neither superior nor inferior to each other, in each subplot,
we use the same parameters m,n, q for both SIE and EE
discretization. We observe very different behaviours. This
suggests the stability and convergence is determined by
the joint choice of parameters and numerical integrator
together. The objective function here is a 2-dimensional
quadratic with µ = 0.01, L = 1 and the step-size is s = 1.
In the left plot we use m =

√
s, n = 1 and q = 2

√
µ and in

the right plot we use m = 2
√
s, n = 0.5 and q = 2

√
µ.

5 Behaviour of the discretization error

In the last sections, we studied the properties of ex-
plicit and semi-implicit integration of GM-ODE and
showed that both can lead to acceleration. Yet, most
recent literature (Wilson et al., 2016; Shi et al., 2019;
Muehlebach and Jordan, 2019, 2020) claims that semi-
implicit integration is somehow more natural for the
approximation of partitioned dissipative systems such
as GM-ODE. Indeed, recent works (França et al., 2020a;
Muehlebach and Jordan, 2020) showed that the geomet-
ric properties of semi-implicit methods combined with
backward error analysis (Hairer et al., 2006) can be used
to successfully prove the preservation of continuous-
time rates of convergence up to a controlled error. In-
stead, our results in Thm. 6 show that explicit Euler
discretization — of a proper ODE — also leads to an
accelerated method (see also Tb. 1). To conclude our
study, we compare semi-implicit and explicit Euler in
terms of their approximation error, specifically for the
integration of GM-ODE. For this particular ODE, EE
suffers from a worse local discretization error compared
to SIE for the general choice of parameters. Under
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particular choices of parameters, EE and SIE yield
contractive algorithms. In this case, the error of the
both discretization schemes decays exponentially fast.

A trap: local error analysis for the general case.
Consider the following discretization errors:

∆
(EE)
k := ‖X(k

√
s)− x(EE)

k ‖, (5)

∆
(SIE)
k := ‖X(k

√
s)− x(SIE)

k+1 ‖. (6)

We compare the above errors for k = 1 (for one step).
Proof/details are provided in the appendix.

Lemma 7. Let f be L-smooth and of class C2. If
m = O(

√
s), then ∆

(SIE)
1 = O(s

3/2) and ∆
(EE)
1 = O(s).

The above lemma holds for any finite choice of the
parameters, and shows that SIE provides a better one-
step integration error in the position variable16. This
result may lead to a wrong conclusion: semi-implicit
integration leads to faster algorithm when discretizing
GM-ODE. However, this analysis does not provide
us a complete picture. Indeed, as we proved in the
last section, explicit discretization can also lead to
acceleration — in particular, it can recover Nesterov’s
method. To provide some intuition on why a local error
analysis leads to misleading conclusions, we provide a
tighter analysis of the integration error for a narrowed
set of parameters in GM-ODE.

Analysis for contractive cases. A line of recent
works around the connection between acceleration
and numerical integration (Orvieto and Lucchi, 2019;
Muehlebach and Jordan, 2020; França et al., 2020a)
studied the behavior of the discretization error of NAG-
ODE as k →∞, showing interesting shadowing17 prop-
erties. The main idea behind shadowing is studying
the discretization error when the choice of parameters
leads to a contractive algorithm. In this case, one can
provide a tighter analysis for the discretization error.
The next lemma proves that the integration error of
semi-implicit and explicit Euler discretization of GM-
ODE decays exponentially fast if one properly chooses
the parameters.

16It is well known (Hairer et al., 2006) that these methods
actually have the same order, since they are O(s) in the
velocity.

17That is, the discretization bound does not explode expo-
nentially due to error accumulation (Chow and Van Vleck,
1994) if the objective is convex, due to the contraction
provided by the landscape.

Lemma 8. Let f be µ-strongly-convex and L-smooth.
For EE discretization of GM-ODE obeying Eq. 4, the
discretization error decays as ∆

(EE)
k = O((1+γ3

√
s)−k)

where γ3 is defined in Thm. 6. Furthermore, SIE also
enjoys ∆

(SIE)
k = O((1 + γ2

√
s)−k) where γ2 is defined

in Thm. 3 as long as conditions in Eq. 3 are satisfied.

The proof of the last lemma is postponed to the ap-
pendix. According to this result, SIE and EE discretiza-
tion have the same asymptotic integration error prop-
erties — under particular choice of parameters. This
similarity is also reflected in the convergence rates.

6 Conclusion

In this paper, we proposed a general ODE model
of momentum-based methods for optimizing smooth
strongly-convex functions. The generality of our model
allows to view different old and new momentum meth-
ods as semi-implicit or explicit Euler integrators and to
establish novel accelerated convergence rates for both
integrators. In particular, our new findings overturn
the following old notion: explicit Euler is inferior to
semi-implicit (a.k.a symplectic) Euler because of its
unstable nature. Instead, we show that the stability of
these integrators is tied to the underlying accelerated
ODE. At a deeper level, our methodology provides new
challenging insights on the link between accelerated
optimization, and numerical integration.
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