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The stability of the Taylor vortex flow in Newtonian and shear-thinning fluids is inves-

tigated in the case of a wide gap Taylor-Couette system. The considered radius ratio

is η = R1/R2 = 0.4. The aspect ratio (length over the gap width) of experimental

configuration is 32. Flow visualization and measurements of two-dimensional flow fields

with Particle Image Velocimetry are performed in a glycerol aqueous solution (Newtonian

fluid) and in xanthan gum aqueous solutions (shear-thinning fluids). The experiments are

accompanied by axisymmetric numerical simulations of Taylor-Couette flow in the same

gap of a Newtonian and a purely viscous shear-thinning fluid described by the Carreau

model. The experimentally observed critical Reynolds and wave numbers at the onset

of Taylor vortices are in very good agreement with that obtained from a linear theory

assuming a purely viscous shear-thinning fluid and infinitely long cylinders. They are not

affected by the viscoelasticity of the used fluids. For the Newtonian fluid, the TVF regime

is found to bifurcate into a wavy vortex flow with a high frequency and low amplitude

of axial oscillations of the vortices at Re = 5.28Rec. At Re = 6.9Rec, the frequency of

oscillations decreases and the amplitude increases abruptly. For the shear-thinning fluids
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the secondary instability conserves axisymmetry. The latter is characterized by an insta-

bility of the array of vortices leading to a continuous sequence of creation and merging of

vortex pairs. Axisymmetric numerical simulations reproduce qualitatively very well the

experimentally observed flow behavior.

1. Introduction

The Taylor-Couette flow of a viscous incompressible fluid between two coaxial cylinders

that are infinitely long is a paradigm for studies of stability and transition to turbulence.

A survey of the literature on the Taylor-Couette problem can be found in Koschmieder

(1993) and Tagg (1994). In the usual case, the inner cylinder of radius R1 is rotating

with angular velocity Ω1 and the outer cylinder of radius R2 is stationary. The radius

ratio will be denoted

η = R1/R2 < 1. (1.1)

The axial length ℓ is, in most implementations, much larger than the gap,

d = R2 −R1, (1.2)

i.e. the aspect ratio

L = ℓ/d (1.3)

is much larger than 1 (L ≫ 1). In the basic state, commonly called circular Couette flow

(CCF), only the azimuthal velocity uθ, θ standing for the azimuthal angle, is non zero

and it is a decreasing function of only the radius r.
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1.1. Taylor vortex flow in Newtonian fluids

As demonstrated by Taylor (1923), as inertial effects start to dominate over viscous

ones, CCF becomes unstable giving rise to the Taylor vortex flow (TVF) characterized

by stationary counter-rotating vortices stacked along the axial direction. The onset of

instability can be parameterized by the Reynolds number (Eq. 1.5). Equivalently, the

Reynolds number can be used. In most common configurations the outer cylinder is at

rest and the inner one rotates with angular velocity Ω1. This defines the velocity scale

Uref = R1Ω1. (1.4)

In an incompressible Newtonian flow with uniform viscosity µ and density ρ where kine-

matic viscosity ν = µ/ρ is well defined, the standard definition of the Reynolds number

using the gap d as length scale results in:

Re = R1Ω1d/ν. (1.5)

The critical Reynolds number of the onset of TVF will be denoted Rec. The canonical

configuration, most convenient for theoretical study, consists in considering a small gap

η → 1 and an infinite aspect ratio L → ∞ (Taylor 1923). However, in practical cases, in

particular, experimental implementations, large gaps and finite aspect ratios occur. The

values of the critical Reynolds for several values of the radius ratio are available in the

literature (see for instance Table 1 in DiPrima et al. (1984)). Approximate expressions

of Rec(η) can be found in Esser & Grossmann (1996) and Dutcher & Muller (2007).

Concerning the influence of the aspect ratio, Cole (1976) has shown experimentally that

there is practically no effect of the annulus length on the critical Reynolds number for

an aspect ratio L as low as 8. The interaction between the endwall boundary layer and

the centrifugal Taylor instability has been studied numerically by Czarny et al. (2003)

for a particularly low value of aspect ratio L = 6.
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1.2. Stability of Taylor vortices in Newtonian fluids

For small gap width, the range of Reynolds number Re, in which the axisymmetric

vortices remain stable is small. For instance, in the experiments of Cole (1976) where

η = 0.95 and L = 60, the Taylor vortex flow becomes unstable with respect to azimuthal

disturbances at Res = 1.05Rec. A bifurcation from TVF to the wavy vortex flow (WVF)

is observed. The structure of the WVF and the doubly periodic (axially and in time)

motion was first studied experimentally by Coles (1965). Unlike the transition to TVF,

the Reynolds number Res of the onset of the secondary instability yielding WVF depends

significantly on the aspect ratio L. It increases strongly when the aspect ratio L is

reduced below 40, as it has been shown experimentally by Cole (1976). For L ≥ 40,

with η > 0.89, Res changes by only few percent. The azimuthal wavenumber varies on

a much wider range. It ranges from 2 to 8 depending on the conditions by which the

second transition is approached (Coles 1965; Cole 1976; Mullin 1985; Dutcher & Muller

2009). The non-uniqueness of this flow has been also observed through the existence of

hysteresis phenomena Coles (1965). In other words, multiple stable flow states could be

reached for a given Reynolds number. Concerning the physical mechanisms that drive

the transition from TVF to WVF, they were discussed by Martinand et al. (2014) and

Dessup et al. (2018).

For η < 0.75, Res increases rapidly as η decreases Jones (1985)). For instance, for

η = 0.67, Res ≈ 5Rec . This tendency is in agreement with the experimental results

of Snyder & Lambert (1966), Meincke & Egbers (1999) and King et al. (1984). A re-

cent direct numerical simulation by Razzak et al. (2019) in a wide gap setup η = 0.5

yielded Res ≈ 8.45Rec. In their study, a four wavelengths fluid column is considered

(L = 4Λ = 7.944) with periodic boundary conditions in the axial direction. For this

relatively small aspect ratio, Razzak et al. (2019) evidenced an intermediate step be-
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tween TVF and WVF in the interval 6.2Rec ≤ Re ≤ 8.45Rec. They found that the flow

becomes non-axisymmetric with a strong azimuthal wave in the inflow region (inward

oriented flow of the TVF vortex array) as compared to the outflow region. Three decades

earlier, the linear stability of the Taylor vortices was investigated by Jones (1985) for the

same radius ratio η = 0.5. The axisymmetric solution was determined using a Fourier

expansion in the axial direction with a period of one or two axial wavelengths, and a

Chebychev polynomials in the radial direction. He found that the results depend on the

axial wavelength Λ selected. For Λ < 2 (1.6 and 1.7 in the table 1 of his paper ), Jones

(1985) detected a wavy outflow boundary (WOB) mode at Re ≈ 5Rec. In this mode,

the oscillation amplitude is localized in the outflow boundary jet and adjacent outflow

boundaries jets oscillate in antiphase, i.e. the flow is axial subharmonic with respect to

the period of Taylor vortices. If Λ > 2 a direct transition to wavy vortex flow is observed.

Still earlier, Lorenzen et al. (1983) observed experimentally for η around 0.5 a transition

from TVF to WOB mode when the axial wavelength is less than 2 (the size of one vor-

tex is less that the gap width). In their experiments, the number of vortices was kept

constant as L is varied so that the size of individual vortices varied.

Hence for a wide gap, η around 0.5, wavy modes different from the conventional wavy

vortex flow are obtained numerically and experimentally. The type of wavy mode ob-

served is probably very sensitive to the aspect ratio, the size of vortices and may be also

to the type of boundary conditions. Furthermore, the wavy mode obtained by Razzak

et al. (2019) was not predicted by the linear stability analysis done by Jones (1985).

Therefore, we believe that additional experimental or numerical data are needed for a

wide gap geometry. Concerning, the effect of endwalls on the wavy vortex flow, it has

been shown numerically by Czarny et al. (2004), that this effect does not penetrate far

from the endwall. The waviness is already present one or two vortices away from the
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endwall.

Configurations with finite aspect ratio L or given axial period lead to restrictions of the

axial wavenumber of axisymmetric TVF. At the critical Reynolds number Rec, the axial

wavenumber k can have only a single, unique value, kc. For Re > Rec, TVF solutions to

the equations of motion exist for a range of wavenumbers which depends on the reduced

Reynolds number ǫ =
Re− Rec

Rec
and the boundary conditions. However, the resulting

solutions of such a system are not all stable. The stability of these solutions with respect

to axisymmetric perturbations is a fundamental mechanism which delimits the width of

the stable band of wavenumbers. Close to the marginal stability curve of the Couette

flow, the limits of the stable band can be determined using amplitude expansion up to

third order (Kogelman & DiPrima 1970). A first detailed investigation of the stability

of TVF solutions with respect to axisymmetric perturbations was done numerically by

Riecke & Paap (1986) for three radius ratios: η = 0.892, 0.75 and 0.5. It was followed by

that of Paap & Riecke (1990) for η = 0.5 and larger values of ǫ. Overall, a stationary TVF

solution for a given wavenumber k is computed, at different values of ǫ, using a Galerkin

method with Fourier expansion in the axial direction and Chebyshev polynomials in the

radial direction. Using the Floquet theory, the linear stability analysis of this solution,

with respect to infinitesimal perturbations with wavenumber k̃ leads to an eigenvalue

problem, the least stable eigenvalue of which is real, i.e. represents the growth-rate σ
(
k̃
)

of a stationary perturbation. A TVF solution with a wavenumber k is unstable when

the growth rate σ
(
k̃
)
is positive for some value of k̃. Two types of instabilities can be

distinguished according to the value of k̃ for which σ
(
k̃
)
first becomes positive. The first

one corresponds to the case where σ
(
k̃
)
first exceeds zero near k̃ = 0, the instability

is of Eckhaus type, i.e. of long wavelength (Riecke & Paap 1986; Paap & Riecke 1990;



Secondary instabilities 7

Dennin et al. 1994). In this case, the adjustment of the wavenumber is done by creation

of a pair of vortices (if k is too low) or pairing of vortices (if k is too large) and a new

stationary stable state is reached. The second type of instability corresponds to the case

where σ
(
k̃
)

first exceeds zero near k̃ = k/2. It is called short-wavelength instability.

In this case, the adjustment of the wavenumber is done by merging every two vortex

pairs into a single one (when k is too high) or by adding a vortex pair between every

two base vortex pairs (when k is too low). Riecke & Paap (1986) and Paap & Riecke

(1990) found that the band of stable wavenumbers is mainly delimited from either low

k- or high k- side by the Eckhaus instability mechanism. However, for ǫ > 1 and from

high k-side, the stable band is delimited by the short wavelength instability. Excellent

agreement exists between the theoretical results of Riecke & Paap (1986) and Paap &

Riecke (1990) and the experimental observations of Dominguez-Lerma et al. (1984) and

Dennin et al. (1994). Similar theoretical calculations done by Guo & Finlay (1991) lead

to the same results. Riecke & Paap (1986) and Paap & Riecke (1990) have noticed that

the width of the band of stable wavenumbers is much smaller than that predicted from

amplitude expansion. Furthermore, this behavior is more pronounced with lowering the

radius ratio. It was also observed theoretically and experimentally that on the low k-side,

the stability limits departs rather suddenly from the amplitude expansion result with in-

creasing ǫ. According to Riecke & Paap (1986) this structure arises from the interaction

of modes with resonating wavenumbers. The first such resonance occurs between k and

2 k. This point has been discussed by Meyer-Spasche & Keller (1985).

Note that, for a narrow gap, when Re is increased further, the wavy vortex flow bi-

furcates to modulated wavy vortex flow (MWVF) characterized by two incommensurate

temporal frequencies (Andereck et al. 1986). Shortly after the onset of the second fre-
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quency, the flow becomes chaotic or weakly turbulent (Brandstäter et al. 1983). This or-

derly progression of nonlinear states makes the Taylor-Couette flow an attractive model

for studying the influence of rheology of non-Newtonian fluids on the instability mecha-

nisms and transition to turbulence.

1.3. Brief Review on Taylor-Couette flow of shear-thinning fluids

A common feature of many non-Newtonian fluids is the shear-thinning behavior, i.e. a

nonlinear decrease of the viscosity when the shear rate increases. Polymer and colloid

solutions as well as particulate dispersions exhibit this behavior above a certain concen-

tration threshold. Actually, these fluids are also viscoelastic to varying degrees. Hereafter,

we focus on shear-thinning fluids for which the elastic response does not play a significant

role. Typically, stiff polymers show significant nonlinear decrease of viscosity with the

shear-rate, with almost negligible elastic effect (Lindner et al. 2000). The shear-thinning

behavior arises from the reorganization of the internal fluid structure reducing the vis-

cous dissipation. We will assume that the characteristic time of the reorganization of the

flow structure is much smaller than all characteristic times of the problem.

Several works have been devoted to the influence of shear-thinning behavior on threshold

instabilities in Taylor-Couette flow as well as to the features of Taylor vortices.

Circular Couette flow of a shear-thinning fluid is mainly characterized by a viscosity

stratification in the annular space, which is the more significant the stronger the shear-

thinning effects and the wider the annular space. With increasing shear-thinning effects,

the shear rate increases at the inner wall and decreases at the outer one. Furthermore,

the nonlinear variation of viscosity with the shear rate introduces, at the linear level, an

anisotropy of the deviatoric tensor associated to the perturbation.
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The mechanism of instability of CCF of shear-thinning fluids with negligible viscoelas-

ticity is the same as for a Newtonian fluid and results in axisymmetric counter rotating

vortices separated by radial inflow and outflow jets emanating from the fluid layers ad-

jacent to the cylinders’ wall. However, the critical conditions are different because of the

radial viscosity stratification and the modification of the azimuthal velocity profile. In

the case where the inner cylinder is rotating and the outer one is stationary, the crit-

ical Reynolds and axial wave numbers were determined using linear stability analysis,

for power-law and Carreau fluids, for wide and narrow annular spaces, see for instance

Alibenyahia et al. (2012), Li & Khayat (2004), Agbessi et al. (2015) and Topayev et al.

(2019) and the references therein. It is shown that the wavelength increases slightly with

increasing shear-thinning effects when η > 0.7 and decreases significantly with increasing

shear-thinning effects for a wide gap (η < 0.6). In shear-thinning flows the Newtonian

definition (1.5) of the Reynolds number requires an additional specification of the vis-

cosity scale µref to replace ν = µref/ρ. A frequent choice is µref = µ0, where µ0 is the

zero-shear viscosity:

Re = ρΩ1R1d/µ0 . (1.6)

The critical Reynolds number defined using the zero-shear viscosity decreases with in-

creasing shear-thinning effects. A radically different conclusion may be reached if one

uses the inner wall-shear viscosity of the fluid as viscosity scale. Masuda et al. (2017)

used an average viscosity weighted by the strain-rate squared. They found that the criti-

cal Reynolds number defined using this average viscosity is the same as for a Newtonian

fluid. However, this result is limited only to a narrow annular space with a radius ratio

η > 0.7. Recently, Elçiçek & Güzel (2020) suggested to use an average Reynolds number

ReG, defined as an average over the annular space of the local Reynolds number calcu-

lated using the local velocity and the local viscosity. With this definition, it is observed
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that the critical Reynolds number increases with increasing shear-thinning effects. The

selection of the reference viscosity defining the Reynolds number may be considered to

be simply a matter of choice, however, it changes the conclusions concerning the effect

of shear thinning.

From an experimental point of view, Sinevic et al. (1986) determined the onset of Tay-

lor vortices based on changes in the scaling relationship between the measured torque

exerted on the rotating inner cylinder and Re. The results were obtained for two radius

ratios η = 0.7 and 0.9, the rheological behavior of the used fluids, CMC and Carbopol

solutions, were described by the power-law model. Using a Taylor-Couette system with a

radius ratio η = 0.5, Escudier et al. (1995) determined the transition from CCF to TVF

by focusing on the development of the axial velocity component near the inner wall at a

radial position r such (R2 − r)/(R2 −R1) = 0.8. The Reynolds number is defined using

the inner wall shear viscosity. The used fluids were a glucose solution as a Newtonian

fluid reference, an aqueous solution of xanthan gum 1500 ppm which is shear thinning

and a Laponite suspension which is shear-thinning and thixotropic. The radius ratio and

the aspect ratio of the Taylor Couette configuration are η = 0.506 and L = 233. In their

experimental work, the authors focus mainly on the development of Taylor vortices. It is

indicated that for shear-thinning fluids, the onset of Taylor vortices is much more gradual

than that for a Newtonian fluid.

Concerning the flow structure in the TVF regime, the theoretical (Alibenyahia et al. 2012;

Agbessi et al. 2015; Topayev et al. 2019) and experimental (Escudier et al. 1995; Cagney

& Balabani 2019a,b) results indicate that the flow undergoes a significant change with

increasing shear-thinning effects. Indeed it is shown that with increasing shear-thinning

effects: (i) for a wide gap, the vortex eye is shifted towards the inner cylinder, because

of the viscosity stratification: the viscosity increases from the inner cylinder to the outer
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one; (ii) the vortices are shifted axially towards the radial outflow boundaries; (iii) this

axial shift leads to increasing concentration of the vorticity at these boundaries; (iv) the

vorticity in the outflow becomes stronger than the inflow and the extent of the inflow

zone increases accordingly; (v) the strength of the vortices becomes weak as compared to

the velocity of the inner cylinder. Note that, using a weakly non linear analysis, Topayev

et al. (2019) demonstrated for a large range of rheological parameters that the transition

to TVF regime for purely viscous shear-thinning fluids remains supercritical.

1.4. Stability of Taylor vortices in shear-thinning fluids

As far as the stability of the Taylor vortex flow is concerned, the results are sparse. In

the experiments of Escudier et al. (1995) at Rec < Re < 2.5Rec, with η = 0.506, it was

noticed for aquesous solutions of xanthan gum at 1500 ppm and for Laponite solution,

that the vortices exhibit a slow axial drift. A constant drift velocity of 3 − 4µ.m/s was

reported.

In a geometrical configuration with a narrow gap, η = 0.883 and L = 12.97, the transi-

tion from TVF to WVF was detected and studied by Cagney & Balabani (2019a) and

Cagney & Balabani (2019b) using particle image velocimetry and visualization. Their

results (Table III in Cagney & Balabani (2019b)) indicate that the transition to WVF

occurs at Res ≈ 8Rec for a Newtonian fluid and at Res > 8Rec for shear-thinning fluids.

However, one can note that for the Newtonian fluid, the value of Res is much larger than

that predicted by Cole (1976) for a similar geometry. Furthermore, Cagney & Balabani

(2019b) noticed that the amplitude of the wave varies with the axial position. It may be

a consequence of endwalls effects.

In a more recent paper, using xanthan gum solutions in a mixture glycerol-water (25%
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glycerol and 75% water) in a wider gap (η = 0.77) and a larger aspect ratio L = 21.5,

than previously, (Cagney et al. 2020) observed the same progression of regimes (CCF →

TVF → WVF) as for a Newtonian fluid. However, unlike in their previous study, the

authors observed merger events mainly in a WVF regime at some Reynolds numbers.

These merger events occur near the ends of their system and are followed by a drifting

and splitting of vortices. Actually, the process of vortex merger was also observed for

a Newtonian fluid in WVF regime near the ends of the Taylor-Couette geometry by

Park et al. (1983); Ahlers et al. (1983) and Crawford et al. (1985). Ahlers et al. (1983)

have analyzed this process in terms of stability of the WVF regime in the plane (axial

wavenumber, Reynolds number). According to these authors, near the ends the local

wavenumber (wavelength) is large (small). The system reacts by eliminating one pair

of vortices and makes the structure “enter” into the stable band of wavenumbers. They

have also found that the side boundaries of stability domain of WVF are very aspect-

ratio dependent. This might explain why Cagney & Balabani (2019b) did not observe

merger events since the aspect ratio was smaller than that in their paper Cagney et al.

(2020).

Elçiçek & Güzel (2020) studied experimentally the influence of shear-thinning on flow

structure and transition thresholds in a Taylor Couette flow for narrow (η = 0.883, L =

42) and wide (η = 0.643, L = 16) gaps. The used fluids are aqueous solutions of xanthan

gum at 1000 and 2000 ppm. The rheological behavior of these fluids is described by a

power-law model with a shear-thinning index np = 0.45 and 0.38 for 1000 and 2000 ppm

concentration respectively. Unlike Cagney & Balabani (2019a) and Cagney & Balabani

(2019b) the transition from TVF to WVF is not observed. A direct transition from TVF

to MWVF followed by a chaotic flow is observed. Furthermore, the authors highlighted

the existence of non-axisymmetric modes between CCF and TVF.
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It is clear from the above literature review, that additional experimental, theoretical and

numerical work is needed to understand the influence of shear-thinning behavior on the

stability of the Taylor vortex flow.

1.5. Objectives, methodology and outline of the paper

The aim of the present article is to study the stability of Taylor vortex flow in shear-

thinning fluids both experimentally and numerically. The novelty of the present work

is to consider a wide gap configuration such that the onset of WVF regime would be

delayed and the axisymmetric instabilities could develop. In this configuration, the ob-

served creation and merging of vortices is not confined to the ends of the fluid domain. The

experimental approach is based on visualization and particle image velocimetry measure-

ments. The paper is structured as follows. In Section 2, we introduce the equations of the

problem with the boundary conditions and we define the dimensionless parameters. The

numerical method is briefly described. The experimental details of the Taylor-Couette

flow setup as well as the measurement techniques are described in Section 3, along with

the rheology of the used fluids. Experimental and numerical results are discussed in Sec-

tions 4 and 5. Section 4 concerns the primary bifurcation and Section 5 deals with the

secondary bifurcation. In the conclusion section, we summarize the most relevant results

and we give some perspectives to our work.

2. Mathematical formulation

We consider the flow of an incompressible shear-thinning fluid of uniform density and

negligible viscoelasticity in an annular cavity characterized by a radius ratio (1.1) aspect

ratio (1.3). The inner cylinder is rotating with an angular velocity Ω1 and the outer one

is at rest. Non-dimensionalizing the velocity by the velocity scale (1.4) and the lengths
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by the gap d we obtain the flow equations in the following form:

divu = 0 (2.1)

∂tu+ (∇u) · u = −∇p+ div (τ ) , (2.2)

where u = urer + uθ eθ + uzez is the velocity vector in cylindrical coordinates (r, θ, z)

and p the pressure non-dimensionalized by the pressure scale ρU2
ref . τ is the non-

dimensionalized deviatoric stress tensor related to the strain-rate tensor:

γ̇ = ∇u+ (∇u)T (2.3)

by the relation

τ (Re, γ̇) =
1

Re

µ

µ0
γ̇ (2.4)

where Re is the Reynolds number (1.6) and the viscosity µ is modeled by the Carreau

model (Carreau 1972):

µ− µ∞

µ0 − µ∞

=
(
1 + λ̂2Γ

)(nc−1)/2

. (2.5)

In the Carreau model (2.5), Γ =
1

2
γ̇ : γ̇ is the second-invariant of the strain-rate tensor

(2.3), µ∞ is the dynamic viscosity at high shear rate, nc < 1 the shear-thinning index

and λ̂ = λf Uref/d, where λf is the characteristic time of the fluid. The location of

the transition from the Newtonian plateau to the shear-thinning regime is determined

by λf since 1/λf defines the characteristic shear rate for the onset of shear-thinning.

Increasing λ̂ reduces the Newtonian plateau to lower shear rates. The infinite shear

viscosity µ∞ is generally associated with the breakdown of the fluid and is frequently

significantly smaller, (103− 104) times smaller than µ0 see Bird et al. (1987) and Tanner

Tanner (2000). The ratio µ∞/µ0 will thus be neglected in the following. This leaves three

rheological parameters: µ0, λ and nc and the nondimensional viscosity in Eq. (2.4) writes

µ

µ0
=

[
1 + (λRe)

2
Γ
]nc−1

2

. (2.6)
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In Eq. (2.6) we changed the original non-dimensionalization of the characteristic time

λ̂ by the time scale d/Uref to that by the viscous diffusion time scale ρd2/µ0 which

resulted in replacing λ̂ = λRe. This makes the parameter λ independent of the Reynolds

number. Assuming axisymmetric flow, the velocity components depend only on two

cylindrical coordinates (r, z). The domain of these space variables is the rectangle D =
[

η

1− η
,

1

1− η

]
× [0, L].

Equations (2.1), (2.2), (2.4) and (2.6) have to be completed by appropriate boundary

conditions. On the cylindrical boundaries, the dimensionless velocity (ur, uθ, uz) obeys

the no-slip condition

ur = uz = 0, uθ = 1, at r = r1 ≡
η

1− η
, z ∈ ]0;L[ (2.7)

ur = uz = 0, uθ = 0, at r = r2 ≡
1

1− η
, z ∈ [0;L] , (2.8)

Concerning the upper (z = L) and bottom (z = 0) boundaries, we have considered two

situations.

- In the first one, and in order to get as close as possible to the experimental conditions,

we have considered a no slip boundary condition at the motionless bottom wall z = 0,

and a stress-free boundary condition on the upper boundary z = L. In this case, the free

surface is assumed flat, and the surface tension is neglected, so that the surface is a pure

slip boundary.

ur = uz = uθ = 0, at z = 0, r ∈ [r1; r2] (2.9)

uz = 0, τrz = τrθ = 0, at z = L, r ∈ [r1; r2] . (2.10)

The boundary condition at the bottom boundary is complicated by the difficulty in

handling the singularity in the azimuthal velocity uθ at the corner where the cylinder

has a different rotational speed than the lower surface (at z = 0 and r = r1). To handle

this, the velocity of the inner cylinder is set equal to 1, except very near the singularity,
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where the change of the velocity to zero is made progressive using a quadratic function:

uθ = 1, at r = r1, L1 ≤ z ≤ L , (2.11)

uθ =
z

L1

(
2−

z

L1

)
at r = r1, 0 ≤ z ≤ L1.

The height L1 is set to L1 = L/100. Additional numerical tests were made with L1 =

L/200.

- In the second situation, following several authors, Razzak et al. (2019), Ng et al.

(2018), Teng et al. (2015), Fasel & Booz (1984), we have assumed axial periodic boundary

conditions at the upper and lower endwalls, i.e.

f(r, 0, t) = f(r, L, t) , (2.12)

where f represents any of the dependent variables. Note that the height L of the domain

is an integer multiple of the expected wavelength. In this case, the velocity field u and the

pressure p were split into the basic field (ub,pb) corresponding to a Couette flow solution

between infinite coaxial cylinders and a disturbance: u = ub + u
′ and p = pb + p′. Sub-

stituting u and p by their expressions into equations (2.1) and (2.2) lead to perturbation

equations that are solved numerically.

Concerning the height of the computational domain, we have used L = 10 for fixed

bottom endwall and stress-free at the top wall, and L = 7λz for periodic boundary con-

ditions. Here, λz is the axial wavelength at the primary bifurcation.

The governing equations (2.1) and (2.2) combined with (2.4) and (2.6) are solved numer-

ically using the finite element solver FreeFem++ (Hecht 2012). The weak formulation as

well as time and space discretization are provided in Supplementary section S1. The vali-

dation of the numerical method, is carried out by comparing our results with those given

in the literature in the framework of linear or weakly nonlinear theory as well as with
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those obtained in Newtonian fluid in a strongly nonlinear regime. Details of comparisons

are available in Supplementary section S2.

3. Experimental setup, Fluids used and Protocol

3.1. Experimental cell

The Couette-Taylor configuration used in our experiments consists of two coaxial cylin-

ders with vertical axis. The outer cylinder is made of Plexiglas and has a radius R2 =

5 cm. The inner cylinder is made of stainless steel, has a radiusR1 = 2 cm and is painted in

black to avoid light reflections. The gap between the two cylinders is d = R2−R1 = 3 cm.

The height of the working fluid in the annular gap is ℓ = 96 cm. Consequently, the di-

mensionless parameter that describe the geometry are the radius ratio η = R1/R2 = 0.4

and the aspect ratio L = ℓ/d = 32. There is an additional box filled with water in order

to minimize distortion effects of refraction due to curvature of the outer cylinder during

optimal measurements. The outer cylinder is fixed, while the inner one is driven by a DC

servomotor at the frequency angular Ω1.

The bottom end wall is fixed and at the top, the working fluid contacts with air and the

surface is free. The height of the working fluid is slightly lower (2 cm) than that of the

cylinders.

3.2. Flow visualization

For the purpose of visualization of flow structures, the working fluid is mixed with a small

amount, 1 g of Iriodin (Atkhen et al. 2000; Nore et al. 2005; Smieszek et al. 2008). These

thin and flat reflective mica platelets of typical size 0.1µm thick and ≈ 20µm across are

oriented by the flow. The intensity of the light reflected depends on the particle orienta-

tion, revealing the flow structure. The region where the normal vectors of particles are in

the bisectional direction between the incident light and the line of sight, appears bright.
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Furthermore, these particles respond very quickly to any local change in the flow pattern

giving a change in the light reflectance pattern whenever a change in the velocity occurs

(Hegseth 1996; Schwarz 1990; Daviaud et al. 1992). The light reflectance can be recorded

and digitized using a CCD camera.

In our experiments, the flow was illuminated from the top at an angle and visualized on

the front side as it is shown in Supplementary figure F2. In presence of counter rotat-

ing vortices, upward rotating at the outer wall is seen as brighter region and downward

rotating is seen as darker region (Majji et al. 2018). By plotting the reflected light inten-

sity I(z, t) along the axial direction in the Taylor-Couette cell, at regular time interval

(0.1 s) a space-time diagram I(z, t) of flow patterns is obtained. The recorded length is

12 d = 36 cm in the central part of the system corresponding to a spatial resolution of

86 pixels / cm.

For some experiments, the flow was also visualized in the (r−z) plane by illuminating the

gap between the cylinders using a He-Ne Laser sheet in the central part of the system.

Space-time plots are generated by extracting single line of pixel intensity at a particular

radial position.

3.3. Velocity measurements

Velocity fields in a vertical plane (r, z) were measured using a particle image velocimetry

(PIV) system. The working fluid was seeded with silver-coated hollow glass spheres with

density 1.4 g/cm3 and an average density of 10µm. The particles are illuminated by a

vertical laser sheet of thickness b ≈ 1mm produced by a double pulsed Nd-Yag New-

wave laser (2×120mJ, 532 nm). Images are acquired with a high resolution camera (Flow

SenseEO 1280× 1024 pixels2, 4096 gray levels), synchronized with the laser at a rate of 1

frame pair per 0.1 s. The time delay between two laser pulses typically ranges from 1 to

8ms depending on the azimuthal velocity component. The 1280×1024 pixels2 observation
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window corresponds to physical size of 30 × 90mm2. For each PIV measurements, 500

pairs of images of size 1280×1024 pixels were recorded and analyzed using the adaptative-

correlation technique of the ’Dynamic Studio’ (Software of Dantec). Each image of a pair

was sampled into a window of 64× 64 pixels with 50% window overlap.

3.4. Fluids used: preparation and rheology

The working fluids used are: a 80% by volume glycerol aqueous solution, which is Newto-

nian fluid, and aqueous xanthan gum (semi-rigid polymer) solutions at different concen-

trations: between 850 ppm, and 3000 ppm. The rheological behavior of the fluids used

has been determined using a controlled torque rheometer (TA Instrument AR2000) with

a cone and plate geometry (60mm diameter, 28µm truncature, angle 1.036◦). The varia-

tion of the shear viscosity µ with the dimensional shear rate ˆ̇γ is shown in the figure 1(b).

For the xanthan gum solutions, the flow curves (µ vs ˆ̇γ) are fitted by the Carreau model

in the range of shear rate encountered in our experiments. The rheological parameters

are given in Supplementary Table T4. The shear-thinning becomes more prominent as

xanthan concentration in the solution increases. The zero shear-rate viscosity and the

characteristic time of the fluid λf increase significantly with increasing the concentration.

The variation of the storage G′ and loss G′′ modulus versus the shear-rate oscillation ω

applied by the rheometer are reported in figure 2 at a strain amplitude γ = 1% which is

within the linear viscoelastic region identified through strain sweep tests. The relaxation

time τR is defined as τR = 1/ωc according to Maxwell model where ωc is the crossover

frequency for the G′ and G′′ curves. When the concentration increases both G′ and G′′

increase and the crossover point shifts to lower shear-rate oscillations. For instance, the

relaxation time τR is 2.5 s, 10.9 s and 63.1 s for 1000, 2000 and 3000 ppm xanthan con-

centration respectively.
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Figure 1: Variation of the viscosity µ versus shear rate ˆ̇γ for (1) a 80% by volume glycerol

aqueous solution and for aqueous xanthan gum solutions at different concentration. (2)

850 ppm; (3) 1000 ppm; (4) 1200 ppm; (5) 1500 ppm; (6) 2000 ppm and (7) 3000 ppm.

3.5. Experimental protocol

To observe flow structures corresponding to various Re in the Taylor-Couette geome-

try, the Reynolds number is slowly increased with time starting from a stationary inner

cylinder. Experiments typically lasted approximately 6 to 10 hours. Temperature mea-

surements of the working fluid before and after an experiment indicated that the temper-

ature change was less than 1◦C. Details about the experimental procedure are available

in Supplementary section S3.
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Figure 2: Variation of the elastic G′ and viscous G′′ as a function of the shear oscillation

ω for different concentration of xanthan gum solutions.

4. Primary bifurcation: onset of Taylor vortex flow

Numerical computations were first carried out to investigate endwalls effects. It is

found that even for L = 10, there is practically no effect of the endwalls at the middle of

the height of the annular space. Details are given in Supplementary section S4.

4.1. PIV measurements

In order to check if the viscoelasticity of the fluid plays any role on the onset of Taylor

vortices, PIV measurements were performed at Re around Rec. The increase of the veloc-

ity of the inner cylinder follows the protocol given in section 3.5. At Re below Rec, PIV

measurements did not detect radial or axial velocity. At Re slightly above Rec, Taylor

vortices are detected. They are illustrated in figure 3, where the velocity field measured

just above Rec, at ǫ ≈ 0.01, is shown for glycerol solution and xanthan gum solutions at

1000 ppm (nc = 0.51, λ = 5.3) and 2000 ppm (nc = 0.33, λ = 262). The axial position

is scaled with the corresponding wavelength calculated from the distance between two
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successive outflow boundaries and a single wavelength is represented. It is interesting

to note that with increasing shear-thinning effects, Taylor vortices are squeezed against

the inner wall (Alibenyahia et al. 2012; Agbessi et al. 2015; Topayev et al. 2019). The

periodicity of the cells around the middle of the annular domain can be estimated from

the measurement of the wavelength. This yields wavenumbers k = 3.15 ± 0.1 for glyc-

erol solution, k = 3.5 ± 0.15 for xanthan gum solution 1000 ppm and k = 4.9 ± 0.3 for

xanthan gum 2000 ppm. These values are in agreement with the linear theory (Topayev

et al. 2019): kc = 3.1836, 3.4601 and 4.7109 respectively.

As already mentioned, above the TVF onset, the maximum of the outflow velocity is

larger than the maximum inflow velocity. This is particularly true for shear-thinning flu-

ids Topayev et al. (2019). For instance for the xanthan gum 2000 ppm, the measured ratio

between the maximum outflow velocity and the minimum inflow is ≈ 4.3 at ǫ = 6.5%.

The agreement of the measurements with theoretical results (not accounting for elastic-

ity) tend to show that the viscoelastic properties of the fluid do not play any role in the

transition to TVF.

4.2. Visualization

Visualization is the most widely used technique to determine the onset of the TVF regime.

However, as it will be shown later, some artifacts require special caution particularly for

shear-thinning fluids. They are due to the anisotropic shape of the particles used for

visualization. Guided by the results of the linear theory, the conclusions of the numer-

ical simulation and the PIV measurements, and after several preliminary experimental

tests, we have found that the following three criteria allow us to determine reliably the

onset of the TVF: (i) Taylor vortices are first observed in the middle of the apparatus

(z = L/2), (ii) the topology remains stable during a sufficiently long time and (iii) there

is no variation in the topology after an increase of the velocity of rotation of the inner
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Figure 3: Radial-axial velocity vectors in a radial-axial plane for Taylor vortex flow mea-

sured at ǫ ≈ 0.01. (Left frame) glycerol solution with λz = 2; (middle frame) xanthan

gum solution 1000 ppm with λz = 1.8; (right frame) xanthan gum solution 2000 ppm

with λz = 1.3. For the same length of a vector, the dimensionless velocity in the frames

(b) and (c) is two times and four times lower than that in the frame (a), respectively.

cylinder by ∆Ω1 = 0.21 rad/s.

- Glycerol aqueous solution

Experiments were first carried out with a Newtonian fluid. The annular space was filled

with 80% glycerol aqueous solution. The velocity of rotation of the inner cylinder was

increased slowly from rest as described in the protocol given in §3.5. Close to the onset of

the TVF regime, ∆Ω1 was reduced to 0.105 rad/s (∆Re = 0.86) in order to determine ac-
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curately the critical Reynolds number. To avoid effects associated with the cylinder ends

such as the strong Eckman vortex at the rigid bottom boundary, we focused mainly on

the flow structure in the central zone of length 12 d. Figure 4 displays the spatio-temporal

diagram at five values of Re, each developed over a time span of 50 s. At each time, the

image is averaged over 10 pixels in the azimuthal direction. With account of the three

criteria given above, we find that the transition to TVF occurs at a critical Reynolds

number 67.88 < Reexpc < 68.74. This value is in good agreement with that obtained from

linear theory assuming infinite cylinders, Rec = 68.2961. As expected, for the configura-

tion used here, L = 32, the value of the critical Reynolds number for the onset of Taylor

vortices is practically unaffected by end effects. This result is in agreement with that of

Cole (1976) in the case of a narrow gap (0.85 ≤ η ≤ 0.95). Based on torque measurements

and visual observations, Cole (1976) found that there is no variation of the critical speed

for the onset of Taylor vortices, with the annulus length, so that theoretical predictions

are applicable for an aspect ratio as small as 8 and probably still smaller. The vortices

observed at Re = 67.88 and at Re = 66.18 are to be put on account of end effects, i.e.

Eckman vortices penetrate progressively the annular space with increasing Re.

In order to determine the critical wavenumber kexpc , a Fourier transform has been ap-

plied to the gray-scale spatio temporal diagram I(z) =
∑

k

Ī(k) exp(ikz) corresponding

to Re = 68.74. The maximum of the squared modulus of the Fourier coefficient
∣∣Ī
∣∣2 is

reached at k = kexpc = 3.27 which is close to the critical axial wavenumber kc = 3.1834

obtained from the linear stability analysis. Actually, one has to note that for a finite

system, only discrete states with an integer number of vortices can occur. With one rigid

and one free boundary, our system normally contains an odd number of vortices (2N+1)

(Linek & Ahlers 1998; Watanabe & Toya 2012). We designate by kfinitec the closest value

to kc compatible with an odd number of vortices. We obtain kfinitec = 3.24, which is very
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Figure 4: Spatio-temporal diagrams for a 80% by volume of glycerol aqueous solution

at Re = 66.18, 67.88, 68.74, 103.11 and Re = 328.18. They are constructed from images

taken at 10 frames s−1. Note that for a Newtonian fluid with η = 0.4, Rec = 68.2965. At

Re = 66.18, 50 s = 573.05 d/ (R1Ω1)

close to our experimental result kexpc = 3.27. The stationarity of TVF is evident from

figure 4.

Once the primary bifurcation is reached, the velocity of rotation of the inner cylinder was

increased gradually by a small step following the protocol given in section 3.5. Space-time

diagrams obtained from visualization at Re between 68.74 (Reexpc ) and 328.18 (4.8Reexpc )

do not present any visible variation as it is shown in figure 4. The wavenumber remains

constant with k = kexpc = 3.27. This is in agreement with experimental observations of

Snyder & Lambert (1966) and Burkhalter & Koschmieder (1973) using an apparatus of

radius ratio η = 0.5 and an aspect ratio L ≈ 30 and increasing quasisteadily the Reynolds

number. According to Guo & Finlay (1991), this suggests that perturbations with k = kc

grow faster than others and become dominant in the fully vortex flow. However, the flow

structure is modified. Indeed, PIV measurements show that at Re sufficiently far from

Rec, the center of vortices moves towards the outflow boundaries and the outer cylinder
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wall, in agreement with the numerical observations of Fasel & Booz (1984).

- Aqueous solution of xanthan gum

The onset of the TVF regime in aqueous solutions of xanthan gum used is illustrated in

the case corresponding to a concentration of 2000 ppm. The transition to TVF regime

for 1000 and 3000 ppm is described by the Supplementary Figures F3 and F4.

Figure 5 shows spatio-temporal diagrams for aqueous solution of xanthan gum at 2000 ppm,

with nc = 0.34 and λ = 197. Stationary patterns are first observed at Re = 1.12, much

lower than the critical Reynolds number predicted by the linear theory, Rec = 1.6944.

These patterns are illustrated by the space-time plot shown in the left frame of figure

5. They account for a variation of the orientation of reflective particles along the axial

position which can be related to Taylor-like vortices. At Re = 1.69, the three criteria

for the onset of TVF are satisfied. The experimental Reynolds number for the onset of

TVF, 1.67 < Reexpc < 1.69 is in agreement with the linear theory. Applying a fast Fourier

transform to the space-time plot corresponding to Re = 1.69, it is found that the most

energetic mode is obtained at k = kexpc = 4.37. This value is again in a very good agree-

ment with that obtained using a linear stability analysis, kc = 4.5160. If we take into

account the finite length of the system, a closer value is obtained, kfinitec = 4.4156.

The values of Rec, Rec,exp, kc, kc,exp and kc,finite for aqueous solution of glycerol and

aqueous solutions of xanthan gum used are provided in Supplementary Table T6.

4.3. Discussion

From the experimental results, the following points can be underlined: (i) for the geo-

metrical configuration used, the critical conditions are practically not affected by the end

effects in agreement with Cole (1976); (ii) the critical Reynolds and axial wavenumbers

obtained experimentally are in good agreement with the linear theory assuming a purely
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Figure 5: Space-time diagrams of xanthan gum 2000 ppm for Re = 1.5, 1.67, 1.69 and

1.72. The rheological parameters are nc = 0.34, λ = 197. For this case, the linear theory

gives Rec = 1.6944. At Re = 1.5, 50 s = 1099 d/ (R1Ω1)

viscous shear-thinning fluid; (iii) no sign of elastic instability such as ribbon, spiral vor-

tices or diwhirls (Groisman & Steinberg (1998); Crumeyrolle et al. (2002) was observed

despite the large values of the Deborah number De and the elasticity number El found.

For instance, for the xanthan gum at 2000 ppm we have De = 120.2 and El = 71.1.

The Deborah number is defined as the product of the relaxation time with a nominal

shear rate (Cagney & Balabani (2019b), Cagney et al. (2020)) Ω1R1/d and the elasticity

number as El = De/Re. Note that Groisman & Steinberg (1998) did not observe any

sign of elastic instability for aqueous solutions of xanthan gum up to De = 600, the

maximum value reachable in their experiments; (iv) for sufficiently strong shear-thinning

effects, patterns which can be related to counter-rotating vortices are observed at Re

much lower than Reexpc . The value of Re at which these patterns appear decreases with

increasing shear-thinning effects. Elçiçek & Güzel (2020) have also reported, from visu-

alization experiments, the existence of axisymmetric vortices at ǫ ≈ −15% (before TVF
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regime, Figure 10 in their paper) and they attributed it to Eckman vortices.

Based on the point (i) and the Supplementary figure F2, we think that the patterns

observed at Re much below Rec are not induced by the vortices generated by the endwall

boundary condition. These patterns might be ascribed to the anisotropic shape of the

particles, since PIV measurements using spherical particles did not detect radial or axial

velocity at Re much below Rec. The only difference between the visualization experi-

ments and the PIV measurements is the shape of the particles. In order to clarify the

mechanisms behind the appearance of the banded structures, additional investigations

are planned. One possibility is to analyze the motion of anisotropic particles in a Couette

flow of a shear-thinning fluid with realistic boundary conditions. Another possibility is to

extend the theoretical study of Gillissen & Wilson (2018) to the case of a shear-thinning

fluid. These authors demonstrated theoretically that suspensions of disks in a Newtonian

fluid have destabilizing effect in a circular Couette flow. This destabilization is due to

anisotropic viscous stress induced by suspended disk shaped particle. Furthermore, it is

shown (Gillissen & Wilson 2018; Gillissen et al. 2020) that the critical Reynolds number

for the onset of instability of the circular Couette flow decreases strongly with increasing

the concentration of particles.

5. Secondary bifurcations

5.1. Newtonian fluid: Instability to travelling azimuthal wave mode

Visualization experiments show that in the TVF regime, Taylor vortices are stationary

and their axial periodicity is the same as at the onset (figure 4). At Re = Reexps = 361 =

5.28Rec, a secondary instability occurs with a transition from steady axisymmetric Taylor

vortices to time-dependent non-axisymmetric flow. Typical spatio-temporal diagrams

of reflected light intensity obtained, in this regime, at Re = 361 (5.28Rec) and Re =
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452 (6.58Rec) are shown in Supplementary Figures F5 and F6. Applying the 2D fast

Fourier transform (FFT) to spatio-temporal diagrams, it is possible to obtain the axial

wavenumber and the frequency of oscillations. The axial wavenumber remains the same

as in TVF regime, k ≈ kfinitec = 3.27. The period T of oscillations in non-dimensional

time units and the ratio of the frequency of oscillations to the inner cylinder frequency

at different Re is given in Table 1. It can be noted that in the regime called here wavy

vortex flow I (WVF I), the period (frequency) of oscillations increases (decreases) as

the Reynolds number is increased. This time dependent flow regime is observed for Re

ranging from 361 (5.28Rec) to 472 (≈ 6.9Rec). Additional information about this regime

are obtained from PIV measurements. Figure 6 shows the instantaneous velocity field in

the radial-axial plane at Re = 444 (6.5Rec) through one cycle. One period is represented.

The axial motion of the vortices is evident based on the location of the vortex centers

marked by a cross. One can also observe that: (i) the outflow boundary oscillates with a

very small amplitude; (ii) the inflow boundary has a significant amplitude of oscillations;

(iii) the radial outflow is much stronger than the radial inflow. By numbering the vortices

1 to 3 from the bottom, and analyzing the orientation of vectors velocity in different

frames of figure 6, it can be shown that there is a weak transfer of the fluid from the

vortex 2 to the vortex 1 in the frame (b) and from the vortex 1 to the vortex 2, in the

frame (d). Of course, the net volume of fluid transferred axially over one cycle must be

zero.

At Re = 472 ≈ 6.9Rec, an abrupt increase (decrease) in period (frequency) of oscil-

lations occurs as indicated in Table 1 associated to an abrupt increase in the amplitude

oscillations as shown in Supplementary Figure F7. The axial wavenumber is not modified

k = kfinitec ≈ 3.27. The flow field through one cycle of an azimuthal wave passing the

measurement plane represented in figure 7 is quite similar to that described previously
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Re Re/Reexpc Type of mode T (d/R1Ω1) f/fi

361 5.28 wavy vortex flow I 8.2 0.51

415 6.05 wavy vortex flow I 13.5 0.31

452 6.58 wavy vortex flow I 20.2 0.206

471 6.85 wavy vortex flow I 25.8 0.16

479 6.97 wavy vortex flow II 105 0.04

497 7.23 wavy vortex flow II 109 ≈ 0.04

Table 1: Period T of oscillations in non-dimensional time-unit and ratio of the frequency

of oscillations to the inner cylinder frequency fi.

Figure 6: Aqueous glycerol solution. Instantaneous radial-axial velocity vectors in radial-

axial plane for wavy vortex flow I at Re = 444 (6.5Rec). The time progresses from

left to right through one cycle of an azimuthal wave passing the measurement plane.

(a) t = 0, (b) t = 5.3 (d/R1Ω1), (c) t = 13.25 (d/R1Ω1), (d) t = 21.2 (d/R1Ω1), (e)

t = 26.5 (d/R1Ω1).
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Figure 7: Aqueous glycerol solution. Instantaneous radial-axial velocity vectors in radial-

axial plane for wavy vortex flow II at Re = 478 (7Rec). The time progresses from left

to right through one cycle of an azimuthal wave passing the measurement plane. (a)

t = 0, (b) t = 14.4 (d/R1Ω1), (c) t = 28.8 (d/R1Ω1), (d) t = 43.2 (d/R1Ω1), (e) t =

51.8 (d/R1Ω1).

and will be called here wavy vortex flow II (WVF II). However, the oscillations ampli-

tude of the outflow boundary is stronger than previously as well as the transfer of the

fluid between vortices 1 and 2 in the frames (a), (c) and (e). The wavy vortex flow II has

the same features as the wavy vortex flow described by Wereley & Lueptow (1998) for a

narrow gap geometry (η = 0.83). However, in their case, the experimental results do not

show any jump in the frequency nor in the amplitude oscillations.

The stage WVF I observed here experimentally was not detected by Razzak et al. (2019)

using a numerical simulation with periodic boundary conditions and η = 0.5. One might

be also tempted to make a connection between out WVF I and the inward flow oscilla-

tions observed by Lorenzen et al. (1983) for 11.5 ≤ L ≤ 15. However in their case the

outflow boundary is flat and the frequency of oscillations is constant with increasing Re
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unlike our WVF I. This discrepancy with the literature shows again that the radius ratio

and the aspect ratio are crucial parameters in the wavy instability.

5.2. Shear-thinning fluids: creation and merging of vortices

For the used shear-thinning fluids, visualization, PIV measurements as well as axisym-

metric numerical simulations show that starting from a secondary critical Reynolds num-

ber, Res, the regular arrangement of Taylor vortices with an axial wavenumber k = kc

becomes unstable in a fundamentally different way from that discussed in the Newtonian

case, since the flow remains axisymmetric. The instability is characterized by a creation

of a new pair of vortices in the inflow region, where the inward flow is weak, causing a

local increase of the wavenumber. This new state is in its turn unstable and two vortex

pairs merge to form one pair reducing the wavenumber. This process of creation and an-

nihilation of vortex pairs repeats continuously. The axial position at which a new vortex

pair is created is random. Furthermore, once a new extra vortex pair appears, or once

two vortex pairs start to merge to form one pair, neighbouring vortex pairs will move

modifying the wavenumber and consequently the axial positions of the following events

of creation and merging. A complex pattern may then result. Note also that it is possible

to have more than one defect in the system.

5.2.1. Results of axisymmetric numerical simulations

As mentioned in the Supplementary section S1, a continuation method is used to solve

the unsteady axisymmetric momentum equations. Each new simulation is started with

the converged solution of the steady regime corresponding to the closest set of parameters

as initial condition. This procedure is followed before and after the onset of TVF. In the

TVF regime, Taylor vortices are steady and their axial periodicity remains the same as
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at the onset. As we have seen, with increasing Reynolds number, the outflow becomes

stronger than the inflow and the extent of the inflow zone where the vorticity is low

increases accordingly.

For a Carreau fluid with nc = 0.5, λ = 200 and periodic boundary conditions in the

axial direction, the steady axisymmetric vortices lose their stability at Re = 1.69Rec. A

continuous creation and merging of vortices is observed. This is illustrated by figure 8

where contours of stream functions for three base vortex pairs are represented at different

times. The choice of three base vortex pairs rather than the whole system is adopted only

for a better illustration of creation and merging process. At t = T0 (frame a), a new vortex

pair, denoted C and D, emerges. It grows radially and reaches its maximum strength at

t ≈ T0 + 25 (frame d). The development of the vortices leads to a local increase of the

wavenumber. At t = T0 + 36 (frame e) the merging process starts: two vortices B and C

in frames (e) and (f) appear to collide and disappear completely at t = T0 + 64. A new

pair formed by the vortices A and D is obtained. A short time after, a new vortex pair

emerges between two other base vortex pairs, it increases radially then merges with one

of the adjacent base vortex pairs by the same mechanism. Another illustration of creation

and merging events is given in figure 9. The distribution of the azimuthal vorticity along

the line r = R1/d+0.44 (passing near the center of vortices) is represented as a function

of time. It can be observed how the vortices B and C are weakened and then annihilated.

A representation of the vorticity distribution on a longer interval of time and for the

whole system in figure 10 shows the repetitive appearance of creation and merging of

vortex pairs. Simultaneous defects may occur at the same time. Similar phenomenon

is observed for fixed bottom endwall and stress-free at the top endwall, the secondary

critical Reynolds number Res = 1.67Rec is also pratically the same to that obtained for

periodic boundary conditions.
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Figure 8: Secondary instability for a Carreau fluid with nc = 0.5, λ = 200 at Re =

1.67Rec. Periodic boundary conditions in the axial direction, with λz = 1.7974, L =

7λz = 12.582. Contours of stream function at different times: (a) t = T0, (b) t = T0 + 6,

(c) t = T0 + 15, (d) t = T0 + 30, (e) t = T0 + 36, (f) t = T0 + 45, (g) t = T0 + 57, (h)

t = T0 + 64.
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Figure 9: Secondary instability for a Carreau fluid with nc = 0.5, λ = 200 at Re =

1.69Rec. Periodic boundary conditions in the axial direction with λz = 1.7974, L =

7λz = 12.582. Distribution of the azimuthal vorticity along the line r = R1/d+ 0.44 as

a function of time: zoom on three pairs of vortices.

With increasing shear-thinning effects, the range of Reynolds numbers for which the

Taylor vortices remain stable shrinks. For instance, for nc = 0.2, λ = 200, Taylor vortices

lose their stability at Reynolds number 1.07Rec < Res < 1.08Rec. Similar events of

creation and merging of vortices are observed as shown in figure 11 where contours of

stream functions are shown at different times at Re = 1.08Rec. A new pair of vortices

C and D forms at t ≈ T0 + 20. It grows in size, and reaches a maximum at t ≈ T0 + 70.

From this time, two vortices of opposite sign of vorticity C and B appear to collide

and then cancel at t ≈ T0 + 117. A new pair of vortices A and D is obtained. Note

that the process lasts longer than for nc = 0.5, λ = 200. The repetitive appearance of

creation and merging of vortex pairs is illustrated in figure 12 by the evolution of the
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Figure 10: Secondary instability for a Carreau fluid with nc = 0.5, λ = 200 at Re =

1.69Rec. Periodic boundary conditions in the axial direction with λz = 1.7974, L =

7λz = 12.582. Distribution of the azimuthal vorticity along the line r = R1/d+ 0.44 as

a function of time.

azimuthal vorticity along the line r = R1/d+0.123 in time. It is interesting to observe how

the process of creation and merging modifies the local wavenumber of the neighbouring

vortices and consequently the following events of creation and merging. For nc = 0.2

and λ = 200, and for both types of boundary conditions, we observed up to four defects

maximum at the same time. We think that the number of simultaneous defects depends

on the aspect ratio.

Because of repetitive creation and merging process, the torque applied on the inner

cylinder experiences fluctuations. In figure 13 we have plotted the variation of the ratio of

the torque to that obtained in a purely Couette flow as a function of time. The simulation
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Figure 11: Secondary instability for a Carreau fluid with nc = 0.2, λ = 200, fixed bottom

endwall, stress-free at the top endwall at Re = 1.08Rec. Contours of stream function

at different times. (a) t = T0, (b) t = T0 + 20, (c) t = T0 + 49, (d) t = T0 + 69, (e)

t = T0 + 96, (f) t =, (g) t = T0 + 110, (h) t = T0 + 117.
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Figure 12: Secondary instability for a Carreau fluid with nc = 0.2, λ = 200, fixed bottom

endwall, stress-free at the top, at Re = 1.08Rec. Distribution of the azimuthal vorticity

along the line r = R1/d+ 0.123 as a function of time.

parameters are nc = 0.5, λ = 200, Re = 1.69Rec, periodic boundary conditions in the

axial direction and L = 8λz. The dashed line before t = 0 is the converged solution

at Re = 1.62Rec. Figure 14(a) is a zoom of the curve C(t)/Cb showing when creation

and merging events occur. Examining C(t)/Cb and the velocity field, we have placed,

on the curve C(t)/Cb, letters C, D and M for torque at times of creation of a new pair

of vortices, of full development of the new pair of vortices and of the end of merging,
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respectively. It can be observed that C(t)/Cb increases when the new pair of vortices

araises and decreases when the merging process is underway. It happens, that we have a

creation of two pairs of vortices at the same time and at two different axial positions, with

different times of raising and merging. Similar results are obtained using fixed bottom

endwall and stress free at the top endwall (figure 14b). Starting from t = 1000, a Fourier

transform of the plot in figure 10 presents a dominant peak at f = 0.0153 corresponding

to a period T = 65. It is visible 14(a) and can be related to the frequency of generation

of defects along the line z ≈ 7 in figure 10. Similar analysis applies to figure 14(b). A

dominant peak at f = 0.007 corresponding to T ≈ 140 is obtained and can be related in

the generation of defects in figure 12.

It is not surprising to observe that the period of creation and merging is longer for

a Carreau fluid with nc = 0.2, λ = 200 than that for nc = 0.5, λ = 200, since with

increasing shear-thinning effects, the inward flow in the inflow region becomes weaker.

The same tendency is observed for fixed nc and larger λ. This may explain the difference

in time of creation and merging of vortices between figures 8 and 15.

5.2.2. Experimental results: PIV measurements and visualization

Instability of Taylor vortices in shear-thinning fluids was also investigated experimen-

tally by PIV measurements and by visualization. In agreement with the numerical simula-

tion, a secondary bifurcation sets in at Re = Res depending on the rheological properties

of the fluid. The fluid stays axisymmetric but becomes time-dependent with repetitive

sequences of creation and merging of vortices. Such process is shown in figure 15 where

we have plotted, for xanthan gum 1000 ppm with nc = 0.51 and λ = 5.3, snapshots of

instantaneous velocity field in the vertical plane (r, z) at Re = 16.5 = 1.7Rec. Emergence

of a new vortex pair at the inner wall is evident in the frame(a). It grows in size with

increasing time as indicated by the frames (b) and (c). The new vortex pair and one base



40 S. Topayev, C. Nouar and J. Dusek

Figure 13: Secondary instability for a Carreau fluid with nc = 0.5, λ = 200. Variation of

the ratio of the torque to that obtained for a purely Couette flow with periodic boundary

conditions at Re = 1.69Rec. The dashed line before t = 0, is the converged solution at a

lower Reynolds number.

(a) (b)

Figure 14: Secondary instability for a Carreau fluid. Variation of the ratio of the torque

to that obtained for a purely Couette flow. (a) nc = 0.5, λ = 200, Re = 1.69Rec, periodic

boundary conditions in the axial direction. (b) nc = 0.2, λ = 200, Re = 1.08Rec, fixed

bottom endwall and stress-free at the top endwall.
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Figure 15: Xanthan gum 1000 ppm with nc = 0.51, λ = 5.3. Velocity field in the plane

(r, z). (a) t̂ = T0, (b) t̂ = T0 + 0.2 s = T0 + 2.1 d/(R1Ω1), (c) t̂ = T0 + 1.5 s = T0 +

15.8 d/(R1Ω1), (d) t̂ = T0+1.7 s = T0+17.9 d/(R1Ω1), (e) t̂ = T0+2 s = T0+21 d/(R1Ω1).

vortex pair collide. The vortices B and C of opposite sign of vorticity in the frame (d)

weaken and disappear. In the frame (e) a new vortex pair is formed by the vortices A

and D. The process of creation and merging lasts approximately 2s = 21 d/(R1Ω1) and

repeats continuously. During this process, several defects exist out of the measurement

zone. Comparison between frames (a) and (e) shows an axial shift of the outflow bound-

aries which will lead to a modification of the local axial wavenumber of the neighboring

vortices.

Qualitatively, the same phenomena are observed for higher concentration of xanthan

gum, i.e. for stronger shear-thinning effects. However, three fundamental differences have

to be stressed, by comparison with xanthan gum 1000 ppm: (i) the outward radial flow

is much stronger and narrower than the radial inward flow, (ii) the new vortex pair

reaches practically the same size as the base vortex pair and (iii) the time before merg-
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Figure 16: Xanthan gum 2000 ppm with nc = 0.33, λ = 262. Velocity field in the plane

(r, z). (a) t̂ = T0, (b) t̂ = T0 + 1.5 s = T0 + 17.5 d/(R1Ω1), (c) t̂ = T0 + 3.3 s = T0 +

38.7 d/(R1Ω1), (d) t̂ = T0 + 33.1 s = T0 + 385 d/(R1Ω1), (e) t̂ = T0 + 38.1 s = T0 +

443 d/(R1Ω1), (f) t̂ = T0 + 39.2 s = T0 + 456 d/(R1Ω1), (g) t̂ = T0 + 40.4 s = T0 +

470 d/(R1Ω1), (h) t̂ = T0 + 42.1 s = T0 + 490 d/(R1Ω1).
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ing is much larger. An illustration is given in figure 16 where the flow field in the (r, z)

plane, obtained for xanthan gum 2000 ppm with nc = 0.33, λ = 262 at Re = 1.08Rec,

is represented at different times. A new vortex pair C, D is formed in frame (b). It is

bigger in frame (c). Its development is accompanied by a splitting of the two neighboring

vortex pairs. It remains aligned with the base vortex pairs during significant amount of

time, here 30 s ≈ 350 d/ (R1,Ω1), before merging. The process of merging by collision

starts from frame (d). The vortices B and C weaken and disappear in frames (e)-(g).

A new vortex pair A, D is formed in frame (h). The creation and merging process lasts

42 s = 490 d/(R1Ω1), much longer than xanthan gum 1000 ppm, in addition more defects

may appear at the same time.

In the visualization experiments, the flow is recorded in the front view plane with

a CCD camera (10 frames/second). These experiments allow: (i) to determine the sec-

ondary critical Reynolds number from which the stationary TVF regime bifurcates to-

wards an unsteady regime where creation and merging of vortices happens repetitively,

(ii) to provide another view of the creation and merging process and (iii) to account for

the complexity of the patterns with increasing Reynolds number because of the nonlinear

interactions between vortex pairs.

For xanthan gum 1000 ppm with nc = 0.5, λ = 3.1, the secondary critical Reynolds

number found experimentally is 1.65Rec < Res < 1.7Rec, with Rec = 10.9823. It is quite

close to that obtained numerically for higher value of λ and lower aspect ratio. Visualiza-

tion of creation and merging events is tricky as expected from the analysis of figure 15,

in addition the process is fast (≈ 3 s). Figure 17 shows spatio-temporal diagrams of the

reflected light intensity at different values of Re. In the frame, Re = 18.67, emergence of
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Figure 17: Xanthan gum 1000 ppm, nc = 0.5 and λ = 3.1. Spatio-temporal diagrams

at different Reynolds numbers: front view of repetitive creation and merging events. At

Re = 18.67, 50 s = 342d/(R1Ω1).

a small bright spot in a dark zone at z ≈ 16 and z ≈ 18 corresponds to a creation of a

new vortex pair. Merging of the new bright spot with a large bright band corresponds

to merging of vortices. It is followed by an abrupt axial shift of the outflow boundary. In

the frame Re = 22.86, continuous creation and merging events occur at z ≈ 12, probably

similar to the numerical simulations in figure 10. As the Reynolds number increases, the

defects become more frequent and complex pattern arise. Nevertheless, the bright bands

remain horizontal.

For xanthan gum 2000 ppm with nc = 0.34 and λ = 197, the onset of the sec-

ondary instability occurs earlier than for xanthan gum 1000 ppm. Experimentally, we

have 1.05Rec < Res < 1.07Rec, with Rec = 1.6916. Front view of repetitive sequences

of creation and merging of vortices is illustrated in figure 18, where spatio-temporal di-

agrams are shown at different values of Re. As previously, at Re = Res ≈ 1.81, one
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observes emergence of a weakly bright spot in a dark region, corresponding to emergence

of new vortex pairs, at different axial positions, (here, z ≈ 18, 19 and 20 highlighted by

circles). They grow in size and merge with a larger neighboring base vortex pair after

a quite short time. The creation and merging last approximately 7 s = 80 d/ (R1Ω1).

At the end of the process, the axial position of the vortices is abruptly shifted axially.

This axial shift of the vortices modifies the local wavenumber and favors subsequently

the formation of a new vortex pair, similarly as in figure 12. By increasing slightly the

Reynolds number, it is observed that: (i) the formation of the new vortex pair and its

development leads to a significant splitting of the neighboring vortices, as shown in the

frame Re = 1.93 at z ≈ 12, (ii) the new vortex pair may remain aligned for some time,

(20− 40 s = 230− 460 d/(R1Ω1)) before merging and (iii) the bright bands are no longer

horizontal, i.e. their axial position evolves, as a consequence of a number of defects split-

ting and merging simultaneously.

At still higher concentration of xanthan gum, the onset of creation and merging of

vortices occurs very close to Rec, i.e. the range of stable TVF shrinks strongly. For

xanthan gum 3000 ppm with nc = 0.23, λ = 1255, creation and merging of vortices

happen at Re = 1.02Rec. For a slightly larger Reynolds number, the phenomena de-

scribed previously, i.e. (i) the increasing number of defects and (ii) the non horizontal

bright bands, become more pronounced as shown in figure 19. However, the creation and

merging of vortices is the main mechanism that drives the flow structure. It can be still

better illustrated by applying a complex demodulation technique to the reflected light

intensity I(z, t) (Bot & Mutabazi 2000; Crumeyrolle et al. 2005). The real signal I(z, t)

is transformed in its complex equivalent expression by means of Hilbert transform (Bot

& Mutabazi 2000; Crumeyrolle et al. 2005). In practice, the complex demodulation is

performed by computing a two-dimensional fast-Fourier-transform of I(z, t), keeping the
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Figure 18: Xanthan gum 2000 ppm, nc = 0.34 and λ = 197. Spatio-temporal diagrams

at different Reynolds numbers: front view of repetitive creation and merging events. At

Re = 1.81, 50 s = 523 d/(R1Ω1). The insert is a zoom on the emergence of a weakly

bright spot in a dark region.

Figure 19: Xanthan gum 3000 ppm, nc = 0.23 and λ = 1255. Spatio-temporal diagrams

at different Reynolds numbers. At Re = 0.519, 50 s = 809 d/(R1Ω1).
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Figure 20: Xanthan gum 3000 ppm, nc = 0.23 and λ = 1255. Complex demodulation of a

spatio-temporal diagram at Re = 0.521: (a) amplitude demodulation dark zones corre-

sponds to the core of the defects where the amplitude vanishes; (b) phase demodulation.

Circles and squares show the position of creation and merging processes respectively.

most energetic modes and performing an inverse FFT. The modulus |A(z, t)| and the

phase φ(z, t) of the complex signal are then determined. Figure 20 shows such a result

for xanthan gum 3000 ppm at Re = 0.52. The phase varies from −π (dark colour) to

+π (bright colour). The phase jump from −π to +π at the boundary between dark and

bright colours corresponds to the boundary between two counter rotating vortices. The

main feature of the space-time diagrams displayed in figure 20 is the occurrence of topo-

logical defects: points where the amplitude |A| vanishes (dark points in the amplitude

space time diagram) and the phase is no longer defined. Two types of defects are clearly

observed. The first one shown by a square is a merging by two vortex pairs. The phase

jumps by −2π after a loss of one pair of rolls. The second type of defect is shown by a

circle, where the phase jumps by +2π corresponds to a creation of one vortex pair. The

process described previously can again be observed in figure 20(b): two vortices B and C
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weaken with time, then disappear and a new vortex pair A and D is formed.

Our experimental and numerical results are summarized in figure 21 and Table 2. In

figure 21, we have reported the stability diagram in the plane (ǫ = (Re− Rec)/Rec, nc).

The primary bifurcation occurs at ǫ = 0 and the TVF regime is stable when 0 < ǫ < ǫs,

i.e. Rec < Re < Res. The variation of ǫs with nc is shown by a dashed line. From ǫ > ǫs,

the TVF regime is no longer stable. It is interesting to note that there is a quite good

agreement between the numerical and the experimental results even if the experimental

aspects ratio is three times higher than the numerical one.

In Table 2, we have reported the times T between creation and merging. Close to the onset

of secondary bifurcation, globally, T increases with increasing shear-thinning effects. As

the Reynolds number increases further from Res, this process lasts significantly longer

time, particularly for low nc.

Remark

- For a Carreau fluid with nc = 0.5 and λ = 3.1, a reduction of the wavelength was

observed at two Reynolds numbers Re = 14.48 and 16.77 below Res. In these cases, a new

steady-state with an additional vortex pair appears. Such reduction of the wavelength

has also been detected by PIV measurement using spherical particles. Therefore, one

may conjecture that this reduction of the wavelength is not an artefact induced by the

anisotropic shape of the particles used in flow visualization.

- Creation, propagation and annihilation of vortices was observed by Hoffmann et al.

(2013) in a Newtonian fluid, in the case of a short Taylor-Couette system (L = 4 and L

= 8) with counter-rotating cylinders, non rotating end walls and before the centrifugal

instability. The radius ratio is η = 0.5. In their study: (i) the vortices are generated by the
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Figure 21: Stability diagram of the TVF regime for a Carreau fluid with η = 0.4 in

the plane (ǫ = (Re− Rec)/Rec), nc). The thin dashed line (drawn as a guide for the

eye) joins the experimental results represented by filled circles. Numerical results are

represented by a filled triangle for realistic boundary conditions and filled diamonds for

periodic boundary conditions.

shear flow near the Ekman cells and (ii) the phenomenon of creation and merging is not

observed in the case of periodic boundary conditions. The physical mechanisms involved

in their study is fundamentally different from the ours. Indeed, in our study, repetitive

creation and merging of vortices is observed even with periodic boundary conditions.

- In the work of Cagney et al. (2020) where η = 0.77 and L = 21, merger events, followed

by drifting and splitting of vortices are observed in the WVF regime. They occur at the

ends of the geometry and at some particular Reynolds numbers. In our case, η = 0.4 and

L = 32, repetitive creation and merging are observed at Re > Res as a consequence of

an instability of the TVF regime with respect to axisymmetric perturbations.
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nc λ Boundary conditions Num/Exp Re Figures T (d/(R1Ω1))

0.5 200 periodic numerical 1.69Rec 16-18,22(a) 64

0.51 5.3 realistic PIV 1.70Rec 23 21

0.5 3.1 realistic visual 1.69Rec 25 21

0.33 262 realistic PIV 1.08Rec 24 490

0.34 197 realistic visual 1.07Rec 26 80

0.34 197 realistic visual 1.09Rec 26 230-460

0.2 200 realistic numerical 1.08Rec 19 117

0.2 200 realistic numerical 1.08Rec 20,22(b) 140

0.23 1455 realistic visual 1.02Rec 28 > 100

0.23 1455 realistic visual 1.03Rec 27-28 > 400

Table 2: Durations T (last column) between creation and merging process for different

rheological parameters: numerical and experimental results.

- Good agreement between the experimental and the theoretical and numerical results

assuming purely viscous shear-thinning fluid suggests that the shear-thinning behavior of

aqueous solutions of xanthan-gum play a major role in controlling the stability of Taylor-

Couette system. Furthermore, it is argued in the literature Dutcher & Muller (2011, 2013)

and Lacassagne et al. (2021)) that the higher the polymer-to-solvent viscosity ratio the

stronger the pure shear-thinning. According to these authors, the shear-thinning may act

to reduce or suppress elastic and elasto-inertial instabilities observed for Boger fluids.

5.3. Possible mechanisms of instability of the TVF regime

For the used shear-thinning fluids, experimental and numerical results show that from

Re = Res, the steady TVF regime with a wavenumber k = kc bifurcates to an axisym-

metric unsteady regime with repetitive creation and merging of vortices. We believe that
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this process is associated with the instability of Taylor vortices to axial perturbations.

The most relevant mechanism mechanism is that of Eckhaus instability or generalized

Eckhaus instability (Guo & Finlay 1991; Bottaro 1993). If the axial wavenumber is too

large, two vortex pairs will merge to form one pair and the wavenumber will be reduced.

If it is too small, a new pair of vortices will be created between existing pairs, causing

the wavenumber to increase. The classical Eckhaus criterion obtained from an amplitude

expansion at the third order is only valid in the region very close to Rec. For a Newtonian

fluid, the Eckhaus criterion is valid up to Re = 1.1Rec (Riecke & Paap 1986) and much

less for a shear-thinning fluid.

At Re = Res, the numerical simulations and the experimental tests show that for shear-

thinning fluids, the flow resulting from either creation or merging of vortices is as unstable

as before the creation or the merge. It is also possible to observe creation and merging

at the same time separated by one wavelength (figure 12 at 0 < z < 6 and figure 18

at Re = 1.81, 16 < z < 22). Such situation may happen, if the Eckhaus boundary is

a closed loop and there is no wavenumber more stable than another. Thus a recurrent

creation and merging will occur.

6. Conclusion

In this paper, we have investigated the influence of shear-thinning effects on the stabil-

ity of Taylor vortex flow (TVF) in a wide gap geometry with a radius ratio η = 0.4. With

such radius ratio, the Taylor vortices remain stable with respect to non axisymmetric

perturbations in a large range of Reynolds numbers for a Newtonian fluid, for which we

found Res ≈ 5.3Rec. The inner cylinder is rotating and the outer one is at rest. Aqueous

solutions of xanthan gum solutions are used as shear-thinning fluids and aqueous solution

of glycerol as a Newtonian fluid reference. The shear-thinning behavior is described by
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the Carreau model. The originality of the present work consists in simultaneous exper-

imental observations and numerical simulations conveying credit to the presented new

results.

For shear-thinning fluids, we have shown experimentally and numerically that the range

of Reynolds numbers (defined with the zero shear-rate viscosity) where the Taylor vor-

tices are stable shrinks with increasing shear-thinning effects (figure 21). The dominant

feature of the secondary instability is the repetitive sequences of formation and merging

of vortices. Close to the onset of the secondary instability, Res, the duration of the cre-

ation and merging process increases globally with increasing shear-thinning effects. For

Re larger than Res, the new vortex formed may remain aligned with the neighboring vor-

tices during many number of rounds of the rotating cylinder before merging, particularly

for low values of nc. This effect combined with the increase of the number of defects and

splitting of vortices leads to complex patterns. We believe that the process of creation

and merging of vortices is due to a generalized Eckhaus instability of the TVF regime.

If the Eckhaus boundary becomes a closed loop, repetitive sequences of creation and

merging will occur (Guo & Finlay 1991).

An important open issue is to clarify the physical mechanism behind the secondary insta-

bilities illustrated in this paper. In §5.3, we have proposed a possible mechanism based

on generalized Eckhaus instability. Therefore, in our future work, we intend to examine

numerically, using the linear stability analysis, the influence of the shear-thinning be-

havior on the stability of Taylor vortices with respect to axial and to non axisymmetric

perturbations. For a wide gap, the axial mode is dominant, and it will be possible to

determine the Eckhaus boundary and how it is modified by shear-thinning effects. For

a thin gap, the non axisymmetric one will be dominant, and it is possible to analyze

the influence of shear-thinning behavior on the stability of the TVF regime to non ax-
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isymmetric perturbations. For intermediate radius ratios, the competition between the

axisymmetric mode and the non axisymmetric mode could be investigated.

Supplementary material

Supplementary material is available at

Declaration of interests

The authors report no conflict of interest.



54 S. Topayev, C. Nouar and J. Dusek

REFERENCES

Agbessi, Y., Alibenyahia, B., Nouar, C. & Choplin, L. 2015 Linear stability of Taylor-

Couette flow of shear-thinning fluids: modal and non-modal approaches. J. Fluid Mech.

775, 354–389.

Ahlers, G., Cannell, D.S. & Lerma, M.A. Dominguez 1983 Possible mechanism for tran-

sitions in wavy Taylor-vortex flow. Phys. Rev. A 27 (2), 1225.

Alibenyahia, B., Lematre, C., Nouar, C. & Ait-Messaoudene, N. 2012 Revisiting the

stability of circular Couette flow of shear-thinning fluids. J. Non-Newtonian Fluid Mech.

183, 37–51.

Andereck, C.D., Liu, S.S. & Swinney, H.L. 1986 Flow regimes in a circular Couette system

with independently rotating cylinders. J. Fluid Mech. 164, 155–183.

Atkhen, K., Fontaine, J. & Wesfreid, J.E. 2000 Highly turbulent Couette–Taylor bubbly

flow patterns. J. Fluid Mech. 422, 55–68.

Bird, R. B., Amstrong, R. & Hassager, O. 1987 Dynamics of polymeric liquids. New York:

Wiley-Interscience.

Bot, P. & Mutabazi, I. 2000 Dynamics of spatio-temporal defects in the Taylor-Dean system.

Eur. Phys. J. B 13 (1), 141–155.

Bottaro, Alessandro 1993 On longitudinal vortices in curved channel flow. J. Fluid Mech.

251, 627–660.
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