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the secondary instability conserves axisymmetry. The latter is characterized by an instability of the array of vortices leading to a continuous sequence of creation and merging of vortex pairs. Axisymmetric numerical simulations reproduce qualitatively very well the experimentally observed flow behavior.

affected by the viscoelasticity of the used fluids. For the Newtonian fluid, the TVF regime is found to bifurcate into a wavy vortex flow with a high frequency and low amplitude of axial oscillations of the vortices at Re = 5.28 Re c . At Re = 6.9 Re c , the frequency of oscillations decreases and the amplitude increases abruptly. For the shear-thinning fluids

Introduction

The Taylor-Couette flow of a viscous incompressible fluid between two coaxial cylinders that are infinitely long is a paradigm for studies of stability and transition to turbulence.

A survey of the literature on the Taylor-Couette problem can be found in [START_REF] Koschmieder | Bénard cells and Taylor vortices[END_REF] and [START_REF] Tagg | The Couette-Taylor problem[END_REF]. In the usual case, the inner cylinder of radius R 1 is rotating with angular velocity Ω 1 and the outer cylinder of radius R 2 is stationary. The radius ratio will be denoted

η = R 1 /R 2 < 1.
(1.1)

The axial length ℓ is, in most implementations, much larger than the gap,

d = R 2 -R 1 , (1.2) 
i.e. the aspect ratio

L = ℓ/d (1.3)
is much larger than 1 (L ≫ 1). In the basic state, commonly called circular Couette flow (CCF), only the azimuthal velocity u θ , θ standing for the azimuthal angle, is non zero and it is a decreasing function of only the radius r.

Taylor vortex flow in Newtonian fluids

As demonstrated by [START_REF] Taylor | Stability of a viscous liquid contained between two rotating cylinders[END_REF], as inertial effects start to dominate over viscous ones, CCF becomes unstable giving rise to the Taylor vortex flow (TVF) characterized by stationary counter-rotating vortices stacked along the axial direction. The onset of instability can be parameterized by the Reynolds number (Eq. 1.5). Equivalently, the Reynolds number can be used. In most common configurations the outer cylinder is at rest and the inner one rotates with angular velocity Ω 1 . This defines the velocity scale

U ref = R 1 Ω 1 .
(1.4)

In an incompressible Newtonian flow with uniform viscosity µ and density ρ where kinematic viscosity ν = µ/ρ is well defined, the standard definition of the Reynolds number using the gap d as length scale results in:

Re = R 1 Ω 1 d/ν. (1.5)
The critical Reynolds number of the onset of TVF will be denoted Re c . The canonical configuration, most convenient for theoretical study, consists in considering a small gap η → 1 and an infinite aspect ratio L → ∞ [START_REF] Taylor | Stability of a viscous liquid contained between two rotating cylinders[END_REF]. However, in practical cases, in particular, experimental implementations, large gaps and finite aspect ratios occur. The values of the critical Reynolds for several values of the radius ratio are available in the literature (see for instance Table 1 in [START_REF] Diprima | The effect of radius ratio on the stability of Couette flow and Taylor vortex flow[END_REF]). Approximate expressions of Re c (η) can be found in [START_REF] Esser | Analytic expression for Taylor-Couette stability boundary[END_REF] and [START_REF] Dutcher | Explicit analytic formulas for newtonian Taylor-Couette primary instabilities[END_REF].

Concerning the influence of the aspect ratio, [START_REF] Cole | Taylor-vortex instability and annulus-length effects[END_REF] has shown experimentally that there is practically no effect of the annulus length on the critical Reynolds number for an aspect ratio L as low as 8. The interaction between the endwall boundary layer and the centrifugal Taylor instability has been studied numerically by Czarny et al. (2003) for a particularly low value of aspect ratio L = 6.

Stability of Taylor vortices in Newtonian fluids

For small gap width, the range of Reynolds number Re, in which the axisymmetric vortices remain stable is small. For instance, in the experiments of [START_REF] Cole | Taylor-vortex instability and annulus-length effects[END_REF] where η = 0.95 and L = 60, the Taylor vortex flow becomes unstable with respect to azimuthal disturbances at Re s = 1.05Re c . A bifurcation from TVF to the wavy vortex flow (WVF) is observed. The structure of the WVF and the doubly periodic (axially and in time)

motion was first studied experimentally by [START_REF] Coles | Transition in circular Couette flow[END_REF]. Unlike the transition to TVF, the Reynolds number Re s of the onset of the secondary instability yielding WVF depends significantly on the aspect ratio L. It increases strongly when the aspect ratio L is reduced below 40, as it has been shown experimentally by [START_REF] Cole | Taylor-vortex instability and annulus-length effects[END_REF]. For L ≥ 40, with η > 0.89, Re s changes by only few percent. The azimuthal wavenumber varies on a much wider range. It ranges from 2 to 8 depending on the conditions by which the second transition is approached [START_REF] Coles | Transition in circular Couette flow[END_REF][START_REF] Cole | Taylor-vortex instability and annulus-length effects[END_REF][START_REF] Mullin | Onset of time dependence in Taylor-Couette flow[END_REF][START_REF] Dutcher | Spatio-temporal mode dynamics and higher order transitions in high aspect ratio newtonian Taylor-Couette flows[END_REF]. The non-uniqueness of this flow has been also observed through the existence of hysteresis phenomena [START_REF] Coles | Transition in circular Couette flow[END_REF]. In other words, multiple stable flow states could be reached for a given Reynolds number. Concerning the physical mechanisms that drive the transition from TVF to WVF, they were discussed by [START_REF] Martinand | Mechanisms for the transition to waviness for Taylor vortices[END_REF] and [START_REF] Dessup | Selfsustaining process in Taylor-Couette flow[END_REF].

For η < 0.75, Re s increases rapidly as η decreases [START_REF] Jones | The transition to wavy Taylor vortices[END_REF]). For instance, for η = 0.67, Re s ≈ 5Re c . This tendency is in agreement with the experimental results

of [START_REF] Snyder | Harmonic generation in Taylor vortices between rotating cylinders[END_REF], [START_REF] Meincke | Routes into chaos in small and wide gap Taylor-Couette flow[END_REF] and [START_REF] King | Wave speeds in wavy Taylor-vortex flow[END_REF]. A recent direct numerical simulation by [START_REF] Razzak | Numerical study on wide gap Taylor Couette flow with flow transition[END_REF] in a wide gap setup η = 0.5 yielded Re s ≈ 8.45Re c . In their study, a four wavelengths fluid column is considered (L = 4 Λ = 7.944) with periodic boundary conditions in the axial direction. For this relatively small aspect ratio, [START_REF] Razzak | Numerical study on wide gap Taylor Couette flow with flow transition[END_REF] evidenced an intermediate step be-tween TVF and WVF in the interval 6.2 Re c ≤ Re ≤ 8.45 Re c . They found that the flow becomes non-axisymmetric with a strong azimuthal wave in the inflow region (inward oriented flow of the TVF vortex array) as compared to the outflow region. Three decades earlier, the linear stability of the Taylor vortices was investigated by [START_REF] Jones | The transition to wavy Taylor vortices[END_REF] for the same radius ratio η = 0.5. The axisymmetric solution was determined using a Fourier expansion in the axial direction with a period of one or two axial wavelengths, and a

Chebychev polynomials in the radial direction. He found that the results depend on the axial wavelength Λ selected. For Λ < 2 (1.6 and 1.7 in the table 1 of his paper ), [START_REF] Jones | The transition to wavy Taylor vortices[END_REF] detected a wavy outflow boundary (WOB) mode at Re ≈ 5 Re c . In this mode, the oscillation amplitude is localized in the outflow boundary jet and adjacent outflow boundaries jets oscillate in antiphase, i.e. the flow is axial subharmonic with respect to the period of Taylor vortices. If Λ > 2 a direct transition to wavy vortex flow is observed.

Still earlier, [START_REF] Lorenzen | End effects on the transition to time-dependent motion in the Taylor experiment[END_REF] observed experimentally for η around 0.5 a transition from TVF to WOB mode when the axial wavelength is less than 2 (the size of one vortex is less that the gap width). In their experiments, the number of vortices was kept constant as L is varied so that the size of individual vortices varied.

Hence for a wide gap, η around 0.5, wavy modes different from the conventional wavy vortex flow are obtained numerically and experimentally. The type of wavy mode observed is probably very sensitive to the aspect ratio, the size of vortices and may be also to the type of boundary conditions. Furthermore, the wavy mode obtained by [START_REF] Razzak | Numerical study on wide gap Taylor Couette flow with flow transition[END_REF] was not predicted by the linear stability analysis done by [START_REF] Jones | The transition to wavy Taylor vortices[END_REF].

Therefore, we believe that additional experimental or numerical data are needed for a wide gap geometry. Concerning, the effect of endwalls on the wavy vortex flow, it has been shown numerically by [START_REF] Czarny | Interaction of wavy cylindrical Couette flow with endwalls[END_REF], that this effect does not penetrate far from the endwall. The waviness is already present one or two vortices away from the endwall.

Configurations with finite aspect ratio L or given axial period lead to restrictions of the axial wavenumber of axisymmetric TVF. At the critical Reynolds number Re c , the axial wavenumber k can have only a single, unique value, k c . For Re > Re c , TVF solutions to the equations of motion exist for a range of wavenumbers which depends on the reduced

Reynolds number ǫ = Re -Re c Re c and the boundary conditions. However, the resulting solutions of such a system are not all stable. The stability of these solutions with respect to axisymmetric perturbations is a fundamental mechanism which delimits the width of the stable band of wavenumbers. Close to the marginal stability curve of the Couette flow, the limits of the stable band can be determined using amplitude expansion up to third order [START_REF] Kogelman | Stability of spatially periodic supercritical flows in hydrodynamics[END_REF]. A first detailed investigation of the stability of TVF solutions with respect to axisymmetric perturbations was done numerically by [START_REF] Riecke | Stability and wave-vector restriction of axisymmetric Taylor vortex flow[END_REF] for three radius ratios: η = 0.892, 0.75 and 0.5. It was followed by that of [START_REF] Paap | Wave-number restriction and mode interaction in Taylor vortex flow: Appearance of a short-wavelength instability[END_REF] for η = 0.5 and larger values of ǫ. Overall, a stationary TVF solution for a given wavenumber k is computed, at different values of ǫ, using a Galerkin method with Fourier expansion in the axial direction and Chebyshev polynomials in the radial direction. Using the Floquet theory, the linear stability analysis of this solution, with respect to infinitesimal perturbations with wavenumber k leads to an eigenvalue problem, the least stable eigenvalue of which is real, i.e. represents the growth-rate σ k of a stationary perturbation. A TVF solution with a wavenumber k is unstable when the growth rate σ k is positive for some value of k. Two types of instabilities can be distinguished according to the value of k for which σ k first becomes positive. The first one corresponds to the case where σ k first exceeds zero near k = 0, the instability is of Eckhaus type, i.e. of long wavelength [START_REF] Riecke | Stability and wave-vector restriction of axisymmetric Taylor vortex flow[END_REF][START_REF] Paap | Wave-number restriction and mode interaction in Taylor vortex flow: Appearance of a short-wavelength instability[END_REF][START_REF] Dennin | Measurement of a short-wavelength instability in Taylor vortex flow[END_REF]. In this case, the adjustment of the wavenumber is done by creation of a pair of vortices (if k is too low) or pairing of vortices (if k is too large) and a new stationary stable state is reached. The second type of instability corresponds to the case where σ k first exceeds zero near k = k/2. It is called short-wavelength instability.

In this case, the adjustment of the wavenumber is done by merging every two vortex pairs into a single one (when k is too high) or by adding a vortex pair between every two base vortex pairs (when k is too low). [START_REF] Riecke | Stability and wave-vector restriction of axisymmetric Taylor vortex flow[END_REF] and [START_REF] Paap | Wave-number restriction and mode interaction in Taylor vortex flow: Appearance of a short-wavelength instability[END_REF] found that the band of stable wavenumbers is mainly delimited from either low k-or high k-side by the Eckhaus instability mechanism. However, for ǫ > 1 and from high k-side, the stable band is delimited by the short wavelength instability. Excellent agreement exists between the theoretical results of [START_REF] Riecke | Stability and wave-vector restriction of axisymmetric Taylor vortex flow[END_REF] and [START_REF] Paap | Wave-number restriction and mode interaction in Taylor vortex flow: Appearance of a short-wavelength instability[END_REF] and the experimental observations of [START_REF] Dominguez-Lerma | Marginal stability curve and linear growth rate for rotating Couette-Taylor flow and Rayleigh-Bénard convection[END_REF] and [START_REF] Dennin | Measurement of a short-wavelength instability in Taylor vortex flow[END_REF]. Similar theoretical calculations done by [START_REF] Guo | Splitting, merging and wavelength selection of vortices in curved and/or rotating channel flow due to Eckhaus instability[END_REF] lead to the same results. [START_REF] Riecke | Stability and wave-vector restriction of axisymmetric Taylor vortex flow[END_REF] and [START_REF] Paap | Wave-number restriction and mode interaction in Taylor vortex flow: Appearance of a short-wavelength instability[END_REF] have noticed that the width of the band of stable wavenumbers is much smaller than that predicted from amplitude expansion. Furthermore, this behavior is more pronounced with lowering the radius ratio. It was also observed theoretically and experimentally that on the low k-side, the stability limits departs rather suddenly from the amplitude expansion result with increasing ǫ. According to [START_REF] Riecke | Stability and wave-vector restriction of axisymmetric Taylor vortex flow[END_REF] this structure arises from the interaction of modes with resonating wavenumbers. The first such resonance occurs between k and 2 k. This point has been discussed by [START_REF] Meyer-Spasche | Some bifurcation diagrams for Taylor vortex flows[END_REF].

Note that, for a narrow gap, when Re is increased further, the wavy vortex flow bifurcates to modulated wavy vortex flow (MWVF) characterized by two incommensurate temporal frequencies [START_REF] Andereck | Flow regimes in a circular Couette system with independently rotating cylinders[END_REF]. Shortly after the onset of the second fre-quency, the flow becomes chaotic or weakly turbulent [START_REF] Brandstäter | Low-dimensional chaos in a hydrodynamic system[END_REF]. This orderly progression of nonlinear states makes the Taylor-Couette flow an attractive model for studying the influence of rheology of non-Newtonian fluids on the instability mechanisms and transition to turbulence.

Brief Review on Taylor-Couette flow of shear-thinning fluids

A common feature of many non-Newtonian fluids is the shear-thinning behavior, i.e. a nonlinear decrease of the viscosity when the shear rate increases. Polymer and colloid solutions as well as particulate dispersions exhibit this behavior above a certain concentration threshold. Actually, these fluids are also viscoelastic to varying degrees. Hereafter, we focus on shear-thinning fluids for which the elastic response does not play a significant role. Typically, stiff polymers show significant nonlinear decrease of viscosity with the shear-rate, with almost negligible elastic effect [START_REF] Lindner | Viscous fingering in a shear-thinning fluid[END_REF]. The shear-thinning behavior arises from the reorganization of the internal fluid structure reducing the viscous dissipation. We will assume that the characteristic time of the reorganization of the flow structure is much smaller than all characteristic times of the problem.

Several works have been devoted to the influence of shear-thinning behavior on threshold instabilities in Taylor-Couette flow as well as to the features of Taylor vortices.

Circular Couette flow of a shear-thinning fluid is mainly characterized by a viscosity stratification in the annular space, which is the more significant the stronger the shearthinning effects and the wider the annular space. With increasing shear-thinning effects, the shear rate increases at the inner wall and decreases at the outer one. Furthermore, the nonlinear variation of viscosity with the shear rate introduces, at the linear level, an anisotropy of the deviatoric tensor associated to the perturbation.

The mechanism of instability of CCF of shear-thinning fluids with negligible viscoelasticity is the same as for a Newtonian fluid and results in axisymmetric counter rotating vortices separated by radial inflow and outflow jets emanating from the fluid layers adjacent to the cylinders' wall. However, the critical conditions are different because of the radial viscosity stratification and the modification of the azimuthal velocity profile. In the case where the inner cylinder is rotating and the outer one is stationary, the critical Reynolds and axial wave numbers were determined using linear stability analysis, for power-law and Carreau fluids, for wide and narrow annular spaces, see for instance 

Re = ρ Ω 1 R 1 d/µ 0 . (1.6)
The critical Reynolds number defined using the zero-shear viscosity decreases with increasing shear-thinning effects. A radically different conclusion may be reached if one uses the inner wall-shear viscosity of the fluid as viscosity scale. [START_REF] Masuda | Prediction of onset of Taylor-Couette instability for shear-thinning fluids[END_REF] used an average viscosity weighted by the strain-rate squared. They found that the critical Reynolds number defined using this average viscosity is the same as for a Newtonian fluid. However, this result is limited only to a narrow annular space with a radius ratio η > 0.7. Recently, Elçiçek & Güzel (2020) suggested to use an average Reynolds number Re G , defined as an average over the annular space of the local Reynolds number calculated using the local velocity and the local viscosity. With this definition, it is observed that the critical Reynolds number increases with increasing shear-thinning effects. The selection of the reference viscosity defining the Reynolds number may be considered to be simply a matter of choice, however, it changes the conclusions concerning the effect of shear thinning.

From an experimental point of view, [START_REF] Sinevic | Power numbers, Taylor numbers and Taylor vortices in viscous newtonian and non-newtonian fluids[END_REF] determined the onset of Taylor vortices based on changes in the scaling relationship between the measured torque exerted on the rotating inner cylinder and Re. The results were obtained for two radius ratios η = 0.7 and 0.9, the rheological behavior of the used fluids, CMC and Carbopol solutions, were described by the power-law model. Using a Taylor-Couette system with a radius ratio η = 0.5, [START_REF] Escudier | Taylor vortices in Newtonian and shear-thinning liquids[END_REF] In a geometrical configuration with a narrow gap, η = 0.883 and L = 12.97, the transition from TVF to WVF was detected and studied by Cagney & Balabani (2019a) and

Cagney & Balabani (2019b) using particle image velocimetry and visualization. Their results (Table III in Cagney & Balabani (2019b)) indicate that the transition to WVF occurs at Re s ≈ 8 Re c for a Newtonian fluid and at Re s > 8 Re c for shear-thinning fluids.

However, one can note that for the Newtonian fluid, the value of Re s is much larger than that predicted by [START_REF] Cole | Taylor-vortex instability and annulus-length effects[END_REF] for a similar geometry. Furthermore, Cagney & Balabani (2019b) noticed that the amplitude of the wave varies with the axial position. It may be a consequence of endwalls effects.

In a more recent paper, using xanthan gum solutions in a mixture glycerol-water (25% glycerol and 75% water) in a wider gap (η = 0.77) and a larger aspect ratio L = 21.5, than previously, [START_REF] Cagney | Taylor-Couette flow of polymer solutions with shear-thinning and viscoelastic rheology[END_REF] observed the same progression of regimes (CCF → TVF → WVF) as for a Newtonian fluid. However, unlike in their previous study, the authors observed merger events mainly in a WVF regime at some Reynolds numbers.

These merger events occur near the ends of their system and are followed by a drifting and splitting of vortices. Actually, the process of vortex merger was also observed for a Newtonian fluid in WVF regime near the ends of the Taylor-Couette geometry by [START_REF] Park | Characteristic lengths in the wavy vortex state of Taylor-Couette flow[END_REF]; [START_REF] Ahlers | Possible mechanism for transitions in wavy Taylor-vortex flow[END_REF] and [START_REF] Crawford | Vortex pair annihilation in Taylor wavyvortex flow[END_REF]. [START_REF] Ahlers | Possible mechanism for transitions in wavy Taylor-vortex flow[END_REF] have analyzed this process in terms of stability of the WVF regime in the plane (axial wavenumber, Reynolds number). According to these authors, near the ends the local wavenumber (wavelength) is large (small). The system reacts by eliminating one pair of vortices and makes the structure "enter" into the stable band of wavenumbers. They have also found that the side boundaries of stability domain of WVF are very aspectratio dependent. This might explain why Cagney & Balabani (2019b) did not observe merger events since the aspect ratio was smaller than that in their paper Cagney et al. and we give some perspectives to our work.

Mathematical formulation

We consider the flow of an incompressible shear-thinning fluid of uniform density and negligible viscoelasticity in an annular cavity characterized by a radius ratio (1.1) aspect ratio (1.3). The inner cylinder is rotating with an angular velocity Ω 1 and the outer one is at rest. Non-dimensionalizing the velocity by the velocity scale (1.4) and the lengths by the gap d we obtain the flow equations in the following form:

div u = 0 (2.1) ∂ t u + (∇u) • u = -∇p + div (τ ) , (2.2) 
where u = u r e r + u θ e θ + u z e z is the velocity vector in cylindrical coordinates (r, θ, z)

and p the pressure non-dimensionalized by the pressure scale ρ U 2 ref .

τ is the nondimensionalized deviatoric stress tensor related to the strain-rate tensor:

γ = ∇u + (∇u) T (2.3) by the relation τ (Re, γ) = 1 Re µ µ 0 γ (2.4)
where Re is the Reynolds number (1.6) and the viscosity µ is modeled by the Carreau model [START_REF] Carreau | Rheological equations from molecular network theories[END_REF]:

µ -µ ∞ µ 0 -µ ∞ = 1 + λ2 Γ (nc-1)/2
.

(2.5)

In the Carreau model (2.5), Γ = 1 2 γ : γ is the second-invariant of the strain-rate tensor (2.3), µ ∞ is the dynamic viscosity at high shear rate, n c < 1 the shear-thinning index and λ = λ f U ref /d, where λ f is the characteristic time of the fluid. The location of the transition from the Newtonian plateau to the shear-thinning regime is determined by λ f since 1/λ f defines the characteristic shear rate for the onset of shear-thinning.

Increasing λ reduces the Newtonian plateau to lower shear rates. The infinite shear viscosity µ ∞ is generally associated with the breakdown of the fluid and is frequently significantly smaller, (10 3 -10 4 ) times smaller than µ 0 see [START_REF] Bird | Dynamics of polymeric liquids[END_REF] and Tanner [START_REF] Tanner | Engineering rheology[END_REF]. The ratio µ ∞ /µ 0 will thus be neglected in the following. This leaves three rheological parameters: µ 0 , λ and n c and the nondimensional viscosity in Eq. (2.4) writes

µ µ 0 = 1 + (λRe) 2 Γ nc-1 2 . (2.6)
In Eq. (2.6) we changed the original non-dimensionalization of the characteristic time λ by the time scale d/U ref to that by the viscous diffusion time scale ρd 2 /µ 0 which resulted in replacing λ = λRe. This makes the parameter λ independent of the Reynolds number. Assuming axisymmetric flow, the velocity components depend only on two cylindrical coordinates (r, z). The domain of these space variables is the rectangle

D = η 1 -η , 1 1 -η × [0, L].
Equations (2.1), (2.2), (2.4) and (2.6) have to be completed by appropriate boundary conditions. On the cylindrical boundaries, the dimensionless velocity (u r , u θ , u z ) obeys the no-slip condition

u r = u z = 0, u θ = 1, at r = r 1 ≡ η 1 -η , z ∈ ]0; L[ (2.7) u r = u z = 0, u θ = 0, at r = r 2 ≡ 1 1 -η , z ∈ [0; L] , (2.8) 
Concerning the upper (z = L) and bottom (z = 0) boundaries, we have considered two situations.

-In the first one, and in order to get as close as possible to the experimental conditions,

we have considered a no slip boundary condition at the motionless bottom wall z = 0, and a stress-free boundary condition on the upper boundary z = L. In this case, the free surface is assumed flat, and the surface tension is neglected, so that the surface is a pure slip boundary.

u r = u z = u θ = 0, at z = 0, r ∈ [r 1 ; r 2 ]
(2.9)

u z = 0, τ rz = τ rθ = 0, at z = L, r ∈ [r 1 ; r 2 ] .
(2.10)

The boundary condition at the bottom boundary is complicated by the difficulty in handling the singularity in the azimuthal velocity u θ at the corner where the cylinder has a different rotational speed than the lower surface (at z = 0 and r = r 1 ). To handle this, the velocity of the inner cylinder is set equal to 1, except very near the singularity, where the change of the velocity to zero is made progressive using a quadratic function: Concerning the height of the computational domain, we have used L = 10 for fixed bottom endwall and stress-free at the top wall, and L = 7 λ z for periodic boundary conditions. Here, λ z is the axial wavelength at the primary bifurcation.

u θ = 1, at r = r 1 , L 1 ≤ z ≤ L , (2.11) u θ = z L 1 2 - z L 1 at r = r 1 , 0 ≤ z ≤ L 1 . The height L 1 is set to L 1 = L/
The governing equations (2.1) and (2.2) combined with (2.4) and (2.6) are solved numerically using the finite element solver FreeFem++ [START_REF] Hecht | New development in freefem++[END_REF]). The weak formulation as well as time and space discretization are provided in Supplementary section S1. The validation of the numerical method, is carried out by comparing our results with those given in the literature in the framework of linear or weakly nonlinear theory as well as with those obtained in Newtonian fluid in a strongly nonlinear regime. Details of comparisons are available in Supplementary section S2.

3. Experimental setup, Fluids used and Protocol

Experimental cell

The Couette-Taylor configuration used in our experiments consists of two coaxial cylinders with vertical axis. The outer cylinder is made of Plexiglas and has a radius R 2 = 5 cm. The inner cylinder is made of stainless steel, has a radius R 1 = 2 cm and is painted in black to avoid light reflections. The gap between the two cylinders is

d = R 2 -R 1 = 3 cm.
The height of the working fluid in the annular gap is ℓ = 96 cm. Consequently, the dimensionless parameter that describe the geometry are the radius ratio η = R 1 /R 2 = 0.4 and the aspect ratio L = ℓ/d = 32. There is an additional box filled with water in order to minimize distortion effects of refraction due to curvature of the outer cylinder during optimal measurements. The outer cylinder is fixed, while the inner one is driven by a DC servomotor at the frequency angular Ω 1 .

The bottom end wall is fixed and at the top, the working fluid contacts with air and the surface is free. The height of the working fluid is slightly lower (2 cm) than that of the cylinders.

Flow visualization

For the purpose of visualization of flow structures, the working fluid is mixed with a small amount, 1 g of Iriodin [START_REF] Atkhen | Highly turbulent Couette-Taylor bubbly flow patterns[END_REF][START_REF] Nore | Experimental observation of near-heteroclinic cycles in the Von Kármán swirling flow[END_REF][START_REF] Smieszek | Instabilities with polyacrylamide solution in small and large aspect ratios Taylor-Couette systems[END_REF]). These Furthermore, these particles respond very quickly to any local change in the flow pattern giving a change in the light reflectance pattern whenever a change in the velocity occurs [START_REF] Hegseth | Turbulent spots in plane couette flow[END_REF][START_REF] Schwarz | Phase slip and turbulence in superfluid He 4: A vortex mill that works[END_REF][START_REF] Daviaud | Subcritical transition to turbulence in plane couette flow[END_REF]). The light reflectance can be recorded and digitized using a CCD camera.

In our experiments, the flow was illuminated from the top at an angle and visualized on the front side as it is shown in Supplementary figure F2. In presence of counter rotating vortices, upward rotating at the outer wall is seen as brighter region and downward rotating is seen as darker region [START_REF] Majji | Inertial flow transitions of a suspension in Taylor-Couette geometry[END_REF]. By plotting the reflected light inten- For some experiments, the flow was also visualized in the (r-z) plane by illuminating the gap between the cylinders using a He-Ne Laser sheet in the central part of the system.

Space-time plots are generated by extracting single line of pixel intensity at a particular radial position.

Velocity measurements

Velocity fields in a vertical plane (r, z) were measured using a particle image velocimetry (PIV) system. The working fluid was seeded with silver-coated hollow glass spheres with density 1.4 g/cm 3 and an average density of 10 µm. 

Primary bifurcation: onset of Taylor vortex flow

Numerical computations were first carried out to investigate endwalls effects. It is found that even for L = 10, there is practically no effect of the endwalls at the middle of the height of the annular space. Details are given in Supplementary section S4.

PIV measurements

In order to check if the viscoelasticity of the fluid plays any role on the onset of Taylor As already mentioned, above the TVF onset, the maximum of the outflow velocity is larger than the maximum inflow velocity. This is particularly true for shear-thinning fluids [START_REF] Topayev | Taylor-vortex flow in shear-thinning fluids[END_REF]. For instance for the xanthan gum 2000 ppm, the measured ratio between the maximum outflow velocity and the minimum inflow is ≈ 4.3 at ǫ = 6.5%.

The agreement of the measurements with theoretical results (not accounting for elasticity) tend to show that the viscoelastic properties of the fluid do not play any role in the transition to TVF.

Visualization

Visualization is the most widely used technique to determine the onset of the TVF regime.

However, as it will be shown later, some artifacts require special caution particularly for shear-thinning fluids. They are due to the anisotropic shape of the particles used for visualization. Guided by the results of the linear theory, the conclusions of the numerical simulation and the PIV measurements, and after several preliminary experimental tests, we have found that the following three criteria allow us to determine reliably the onset of the TVF: (i) Taylor vortices are first observed in the middle of the apparatus (z = L/2), (ii) the topology remains stable during a sufficiently long time and (iii) there is no variation in the topology after an increase of the velocity of rotation of the inner vortices is practically unaffected by end effects. This result is in agreement with that of [START_REF] Cole | Taylor-vortex instability and annulus-length effects[END_REF] in the case of a narrow gap (0.85 ≤ η ≤ 0.95). Based on torque measurements and visual observations, [START_REF] Cole | Taylor-vortex instability and annulus-length effects[END_REF] found that there is no variation of the critical speed for the onset of Taylor vortices, with the annulus length, so that theoretical predictions are applicable for an aspect ratio as small as 8 and probably still smaller. The vortices observed at Re = 67.88 and at Re = 66.18 are to be put on account of end effects, i.e.

Eckman vortices penetrate progressively the annular space with increasing Re.

In order to determine the critical wavenumber k exp c , a Fourier transform has been ap- Once the primary bifurcation is reached, the velocity of rotation of the inner cylinder was increased gradually by a small step following the protocol given in section 3.5. Space-time diagrams obtained from visualization at Re between 68.74 (Re exp c ) and 328.18 (4.8 Re exp c )

do not present any visible variation as it is shown in figure 4. The wavenumber remains constant with k = k exp c = 3.27. This is in agreement with experimental observations of [START_REF] Snyder | Harmonic generation in Taylor vortices between rotating cylinders[END_REF] and [START_REF] Burkhalter | Steady supercritical Taylor vortex flow[END_REF] using an apparatus of radius ratio η = 0.5 and an aspect ratio L ≈ 30 and increasing quasisteadily the Reynolds number. According to [START_REF] Guo | Splitting, merging and wavelength selection of vortices in curved and/or rotating channel flow due to Eckhaus instability[END_REF], this suggests that perturbations with k = k c grow faster than others and become dominant in the fully vortex flow. However, the flow structure is modified. Indeed, PIV measurements show that at Re sufficiently far from Re c , the center of vortices moves towards the outflow boundaries and the outer cylinder wall, in agreement with the numerical observations of [START_REF] Fasel | Numerical investigation of supercritical Taylor-vortex flow for a wide gap[END_REF].

-Aqueous solution of xanthan gum

The onset of the TVF regime in aqueous solutions of xanthan gum used is illustrated in the case corresponding to a concentration of 2000 ppm. The transition to TVF regime for 1000 and 3000 ppm is described by the Supplementary Figures F3 andF4. T6.

Discussion

From the experimental results, the following points can be underlined: (i) for the geometrical configuration used, the critical conditions are practically not affected by the end effects in agreement with [START_REF] Cole | Taylor-vortex instability and annulus-length effects[END_REF]; (ii) the critical Reynolds and axial wavenumbers obtained experimentally are in good agreement with the linear theory assuming a purely 1. It can be noted that in the regime called here wavy vortex flow I (WVF I), the period (frequency) of oscillations increases (decreases) as the Reynolds number is increased. This time dependent flow regime is observed for Re ranging from 361 (5.28 Re c ) to 472 (≈ 6.9 Re c ). Additional information about this regime are obtained from PIV measurements. Figure 6 shows the instantaneous velocity field in the radial-axial plane at Re = 444 (6.5 Re c ) through one cycle. One period is represented.

The axial motion of the vortices is evident based on the location of the vortex centers marked by a cross. One can also observe that: (i) the outflow boundary oscillates with a very small amplitude; (ii) the inflow boundary has a significant amplitude of oscillations;

(iii) the radial outflow is much stronger than the radial inflow. By numbering the vortices 1 to 3 from the bottom, and analyzing the orientation of vectors velocity in different frames of figure 6, it can be shown that there is a weak transfer of the fluid from the vortex 2 to the vortex 1 in the frame (b) and from the vortex 1 to the vortex 2, in the frame (d). Of course, the net volume of fluid transferred axially over one cycle must be zero.

At Re = 472 ≈ 6.9 Re c , an abrupt increase (decrease) in period (frequency) of oscillations occurs as indicated in Table 1 associated to an abrupt increase in the amplitude oscillations as shown in Supplementary Figure F7. The axial wavenumber is not modified and will be called here wavy vortex flow II (WVF II). However, the oscillations amplitude of the outflow boundary is stronger than previously as well as the transfer of the fluid between vortices 1 and 2 in the frames (a), (c) and (e). The wavy vortex flow II has the same features as the wavy vortex flow described by [START_REF] Wereley | Spatio-temporal character of non-wavy and wavy Taylor-Couette flow[END_REF] for a narrow gap geometry (η = 0.83). However, in their case, the experimental results do not show any jump in the frequency nor in the amplitude oscillations.

k = k f inite c ≈ 3.
The stage WVF I observed here experimentally was not detected by [START_REF] Razzak | Numerical study on wide gap Taylor Couette flow with flow transition[END_REF] using a numerical simulation with periodic boundary conditions and η = 0.5. One might be also tempted to make a connection between out WVF I and the inward flow oscillations observed by [START_REF] Lorenzen | End effects on the transition to time-dependent motion in the Taylor experiment[END_REF] for 11.5 ≤ L ≤ 15. However in their case the outflow boundary is flat and the frequency of oscillations is constant with increasing Re unlike our WVF I. This discrepancy with the literature shows again that the radius ratio and the aspect ratio are crucial parameters in the wavy instability.

Shear-thinning fluids: creation and merging of vortices

For the used shear-thinning fluids, visualization, PIV measurements as well as axisymmetric numerical simulations show that starting from a secondary critical Reynolds number, Re s , the regular arrangement of Taylor vortices with an axial wavenumber k = k c becomes unstable in a fundamentally different way from that discussed in the Newtonian case, since the flow remains axisymmetric. The instability is characterized by a creation of a new pair of vortices in the inflow region, where the inward flow is weak, causing a local increase of the wavenumber. This new state is in its turn unstable and two vortex pairs merge to form one pair reducing the wavenumber. This process of creation and annihilation of vortex pairs repeats continuously. The axial position at which a new vortex pair is created is random. Furthermore, once a new extra vortex pair appears, or once two vortex pairs start to merge to form one pair, neighbouring vortex pairs will move modifying the wavenumber and consequently the axial positions of the following events of creation and merging. A complex pattern may then result. Note also that it is possible to have more than one defect in the system.

Results of axisymmetric numerical simulations

As mentioned in the Supplementary section S1, a continuation method is used to solve the unsteady axisymmetric momentum equations. Each new simulation is started with the converged solution of the steady regime corresponding to the closest set of parameters as initial condition. This procedure is followed before and after the onset of TVF. In the TVF regime, Taylor vortices are steady and their axial periodicity remains the same as at the onset. As we have seen, with increasing Reynolds number, the outflow becomes stronger than the inflow and the extent of the inflow zone where the vorticity is low increases accordingly.

For a Carreau fluid with n c = 0.5, λ = 200 and periodic boundary conditions in the axial direction, the steady axisymmetric vortices lose their stability at Re = 1.69 Re c . A continuous creation and merging of vortices is observed. This is illustrated by figure 8 where contours of stream functions for three base vortex pairs are represented at different times. The choice of three base vortex pairs rather than the whole system is adopted only A representation of the vorticity distribution on a longer interval of time and for the whole system in figure 10 shows the repetitive appearance of creation and merging of vortex pairs. Simultaneous defects may occur at the same time. Similar phenomenon is observed for fixed bottom endwall and stress-free at the top endwall, the secondary critical Reynolds number Re s = 1.67 Re c is also pratically the same to that obtained for periodic boundary conditions. The primary bifurcation occurs at ǫ = 0 and the TVF regime is stable when 0 < ǫ < ǫ s , i.e. Re c < Re < Re s . The variation of ǫ s with n c is shown by a dashed line. From ǫ > ǫ s , the TVF regime is no longer stable. It is interesting to note that there is a quite good agreement between the numerical and the experimental results even if the experimental aspects ratio is three times higher than the numerical one.

In Table 2, we have reported the times T between creation and merging. Close to the onset of secondary bifurcation, globally, T increases with increasing shear-thinning effects. As the Reynolds number increases further from Re s , this process lasts significantly longer time, particularly for low n c . -Good agreement between the experimental and the theoretical and numerical results assuming purely viscous shear-thinning fluid suggests that the shear-thinning behavior of aqueous solutions of xanthan-gum play a major role in controlling the stability of Taylor-Couette system. Furthermore, it is argued in the literature [START_REF] Dutcher | Effects of weak elasticity on the stability of high reynolds number co-and counter-rotating Taylor-Couette flows[END_REF], 2013) and [START_REF] Lacassagne | Shear-thinning mediation of elasto-inertial Taylor-Couette flow[END_REF]) that the higher the polymer-to-solvent viscosity ratio the stronger the pure shear-thinning. According to these authors, the shear-thinning may act to reduce or suppress elastic and elasto-inertial instabilities observed for Boger fluids.

Remark

Possible mechanisms of instability of the TVF regime

For the used shear-thinning fluids, experimental and numerical results show that from Re = Re s , the steady TVF regime with a wavenumber k = k c bifurcates to an axisymmetric unsteady regime with repetitive creation and merging of vortices. We believe that this process is associated with the instability of Taylor vortices to axial perturbations.

The most relevant mechanism mechanism is that of Eckhaus instability or generalized Eckhaus instability [START_REF] Guo | Splitting, merging and wavelength selection of vortices in curved and/or rotating channel flow due to Eckhaus instability[END_REF][START_REF] Bottaro | On longitudinal vortices in curved channel flow[END_REF]). If the axial wavenumber is too large, two vortex pairs will merge to form one pair and the wavenumber will be reduced.

If it is too small, a new pair of vortices will be created between existing pairs, causing the wavenumber to increase. The classical Eckhaus criterion obtained from an amplitude expansion at the third order is only valid in the region very close to Re c . For a Newtonian fluid, the Eckhaus criterion is valid up to Re = 1.1Re c [START_REF] Riecke | Stability and wave-vector restriction of axisymmetric Taylor vortex flow[END_REF]) and much less for a shear-thinning fluid.

At Re = Re s , the numerical simulations and the experimental tests show that for shearthinning fluids, the flow resulting from either creation or merging of vortices is as unstable as before the creation or the merge. It is also possible to observe creation and merging at the same time separated by one wavelength (figure 12 at 0 < z < 6 and figure 18 at Re = 1.81, 16 < z < 22). Such situation may happen, if the Eckhaus boundary is a closed loop and there is no wavenumber more stable than another. Thus a recurrent creation and merging will occur.

Conclusion

In this paper, we have investigated the influence of shear-thinning effects on the stabil- for low values of n c . This effect combined with the increase of the number of defects and splitting of vortices leads to complex patterns. We believe that the process of creation and merging of vortices is due to a generalized Eckhaus instability of the TVF regime.

If the Eckhaus boundary becomes a closed loop, repetitive sequences of creation and merging will occur [START_REF] Guo | Splitting, merging and wavelength selection of vortices in curved and/or rotating channel flow due to Eckhaus instability[END_REF].

An important open issue is to clarify the physical mechanism behind the secondary instabilities illustrated in this paper. In §5.3, we have proposed a possible mechanism based on generalized Eckhaus instability. Therefore, in our future work, we intend to examine numerically, using the linear stability analysis, the influence of the shear-thinning behavior on the stability of Taylor vortices with respect to axial and to non axisymmetric perturbations. For a wide gap, the axial mode is dominant, and it will be possible to determine the Eckhaus boundary and how it is modified by shear-thinning effects. For a thin gap, the non axisymmetric one will be dominant, and it is possible to analyze the influence of shear-thinning behavior on the stability of the TVF regime to non ax-

  Secondary instabilities in Taylor Couette flow of shear thinning fluidsS. T O P A Y E V 1 , C. N O U A R 1 and J. D U S E K 2 1 LEMTA, UMR7563, CNRS -Université de Lorraine, 2 Avenue de la Fort de Haye, BP 90161 54505 Vandoeuvre Lès Nancy, France 2 ICUBE, UMR 7357, CNRS -Université de Strasbourg, 2 rue Boussingault, 67000 Strasbourg, France (Received 4 November 2021)The stability of the Taylor vortex flow in Newtonian and shear-thinning fluids is investigated in the case of a wide gap Taylor-Couette system. The considered radius ratiois η = R 1 /R 2 = 0.4. The aspect ratio (length over the gap width) of experimental configuration is 32. Flow visualization and measurements of two-dimensional flow fields with Particle Image Velocimetry are performed in a glycerol aqueous solution (Newtonian fluid) and in xanthan gum aqueous solutions (shear-thinning fluids). The experiments are accompanied by axisymmetric numerical simulations of Taylor-Couette flow in the same gap of a Newtonian and a purely viscous shear-thinning fluid described by the Carreau model. The experimentally observed critical Reynolds and wave numbers at the onset of Taylor vortices are in very good agreement with that obtained from a linear theory assuming a purely viscous shear-thinning fluid and infinitely long cylinders. They are not
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  et al. (2012),[START_REF] Li | A non-linear dynamical system approach to finite amplitude Taylor-vortex flow of shear-thinning fluids[END_REF],[START_REF] Agbessi | Linear stability of Taylor-Couette flow of shear-thinning fluids: modal and non-modal approaches[END_REF] and[START_REF] Topayev | Taylor-vortex flow in shear-thinning fluids[END_REF] and the references therein. It is shown that the wavelength increases slightly with increasing shear-thinning effects when η > 0.7 and decreases significantly with increasing shear-thinning effects for a wide gap (η < 0.6). In shear-thinning flows the Newtonian definition (1.5) of the Reynolds number requires an additional specification of the viscosity scale µ ref to replace ν = µ ref /ρ. A frequent choice is µ ref = µ 0 , where µ 0 is the zero-shear viscosity:

  determined the transition from CCF to TVF by focusing on the development of the axial velocity component near the inner wall at a radial position r such (R 2 -r)/(R 2 -R 1 ) = 0.8. The Reynolds number is defined using the inner wall shear viscosity. The used fluids were a glucose solution as a Newtonian fluid reference, an aqueous solution of xanthan gum 1500 ppm which is shear thinning and a Laponite suspension which is shear-thinning and thixotropic. The radius ratio and the aspect ratio of the Taylor Couette configuration are η = 0.506 and L = 233. In their experimental work, the authors focus mainly on the development of Taylor vortices. It is indicated that for shear-thinning fluids, the onset of Taylor vortices is much more gradual than that for a Newtonian fluid. Concerning the flow structure in the TVF regime, the theoretical (Alibenyahia et al. 2012; Agbessi et al. 2015; Topayev et al. 2019) and experimental (Escudier et al. 1995; Cagney & Balabani 2019a,b) results indicate that the flow undergoes a significant change with increasing shear-thinning effects. Indeed it is shown that with increasing shear-thinning effects: (i) for a wide gap, the vortex eye is shifted towards the inner cylinder, because of the viscosity stratification: the viscosity increases from the inner cylinder to the outer one; (ii) the vortices are shifted axially towards the radial outflow boundaries; (iii) this axial shift leads to increasing concentration of the vorticity at these boundaries; (iv) the vorticity in the outflow becomes stronger than the inflow and the extent of the inflow zone increases accordingly; (v) the strength of the vortices becomes weak as compared to the velocity of the inner cylinder. Note that, using a weakly non linear analysis, Topayev et al. (2019) demonstrated for a large range of rheological parameters that the transition to TVF regime for purely viscous shear-thinning fluids remains supercritical. 1.4. Stability of Taylor vortices in shear-thinning fluids As far as the stability of the Taylor vortex flow is concerned, the results are sparse. In the experiments of Escudier et al. (1995) at Re c < Re < 2.5 Re c , with η = 0.506, it was noticed for aquesous solutions of xanthan gum at 1500 ppm and for Laponite solution, that the vortices exhibit a slow axial drift. A constant drift velocity of 3 -4 µ.m/s was reported.

  (2020) studied experimentally the influence of shear-thinning on flow structure and transition thresholds in a Taylor Couette flow for narrow (η = 0.883, L = 42) and wide (η = 0.643, L = 16) gaps. The used fluids are aqueous solutions of xanthan gum at 1000 and 2000 ppm. The rheological behavior of these fluids is described by a power-law model with a shear-thinning index n p = 0.45 and 0.38 for 1000 and 2000 ppm concentration respectively. UnlikeCagney & Balabani (2019a) andCagney & Balabani (2019b) the transition from TVF to WVF is not observed. A direct transition from TVF to MWVF followed by a chaotic flow is observed. Furthermore, the authors highlighted the existence of non-axisymmetric modes between CCF and TVF.It is clear from the above literature review, that additional experimental, theoretical and numerical work is needed to understand the influence of shear-thinning behavior on the stability of the Taylor vortex flow.1.5. Objectives, methodology and outline of the paperThe aim of the present article is to study the stability of Taylor vortex flow in shearthinning fluids both experimentally and numerically. The novelty of the present work is to consider a wide gap configuration such that the onset of WVF regime would be delayed and the axisymmetric instabilities could develop. In this configuration, the observed creation and merging of vortices is not confined to the ends of the fluid domain. The experimental approach is based on visualization and particle image velocimetry measurements. The paper is structured as follows. In Section 2, we introduce the equations of the problem with the boundary conditions and we define the dimensionless parameters. The numerical method is briefly described. The experimental details of the Taylor-Couette flow setup as well as the measurement techniques are described in Section 3, along with the rheology of the used fluids. Experimental and numerical results are discussed in Sections 4 and 5. Section 4 concerns the primary bifurcation and Section 5 deals with the secondary bifurcation. In the conclusion section, we summarize the most relevant results

  100. Additional numerical tests were made with L 1 = L/200.-In the second situation, following several authors,[START_REF] Razzak | Numerical study on wide gap Taylor Couette flow with flow transition[END_REF],[START_REF] Ng | Interaction dynamics of longitudinal corrugations in Taylor-Couette flows[END_REF],[START_REF] Teng | Direct numerical simulation of Taylor-Couette flow subjected to a radial temperature gradient[END_REF],[START_REF] Fasel | Numerical investigation of supercritical Taylor-vortex flow for a wide gap[END_REF], we have assumed axial periodic boundary conditions at the upper and lower endwalls, i.e.f (r, 0, t) = f (r, L, t) ,(2.12)where f represents any of the dependent variables. Note that the height L of the domain is an integer multiple of the expected wavelength. In this case, the velocity field u and the pressure p were split into the basic field (u b , p b ) corresponding to a Couette flow solution between infinite coaxial cylinders and a disturbance: u = u b + u ′ and p = p b + p ′ . Substituting u and p by their expressions into equations (2.1) and (2.2) lead to perturbation equations that are solved numerically.

  thin and flat reflective mica platelets of typical size 0.1µm thick and ≈ 20 µm across are oriented by the flow. The intensity of the light reflected depends on the particle orientation, revealing the flow structure. The region where the normal vectors of particles are in the bisectional direction between the incident light and the line of sight, appears bright.

  sity I(z, t) along the axial direction in the Taylor-Couette cell, at regular time interval (0.1 s) a space-time diagram I(z, t) of flow patterns is obtained. The recorded length is 12 d = 36 cm in the central part of the system corresponding to a spatial resolution of 86 pixels / cm.

  The particles are illuminated by a vertical laser sheet of thickness b ≈ 1 mm produced by a double pulsed Nd-Yag Newwave laser (2×120 mJ, 532 nm). Images are acquired with a high resolution camera (Flow SenseEO 1280 × 1024 pixels 2 , 4096 gray levels), synchronized with the laser at a rate of 1 frame pair per 0.1 s. The time delay between two laser pulses typically ranges from 1 to 8 ms depending on the azimuthal velocity component. The 1280×1024 pixels 2 observation window corresponds to physical size of 30 × 90mm 2 . For each PIV measurements, 500 pairs of images of size 1280×1024 pixels were recorded and analyzed using the adaptativecorrelation technique of the 'Dynamic Studio' (Software of Dantec). Each image of a pair was sampled into a window of 64 × 64 pixels with 50 % window overlap.3.4. Fluids used: preparation and rheologyThe working fluids used are: a 80% by volume glycerol aqueous solution, which is Newtonian fluid, and aqueous xanthan gum (semi-rigid polymer) solutions at different concentrations: between 850 ppm, and 3000 ppm. The rheological behavior of the fluids used has been determined using a controlled torque rheometer (TA Instrument AR2000) with a cone and plate geometry (60 mm diameter, 28 µm truncature, angle 1.036 • ). The variation of the shear viscosity µ with the dimensional shear rate γ is shown in the figure1(b).For the xanthan gum solutions, the flow curves (µ vs γ) are fitted by the Carreau model in the range of shear rate encountered in our experiments. The rheological parameters are given in Supplementary TableT4. The shear-thinning becomes more prominent as xanthan concentration in the solution increases. The zero shear-rate viscosity and the characteristic time of the fluid λ f increase significantly with increasing the concentration.The variation of the storage G ′ and loss G ′′ modulus versus the shear-rate oscillation ω applied by the rheometer are reported in figure2at a strain amplitude γ = 1% which is within the linear viscoelastic region identified through strain sweep tests. The relaxation time τ R is defined as τ R = 1/ω c according to Maxwell model where ω c is the crossover frequency for the G ′ and G ′′ curves. When the concentration increases both G ′ and G ′′ increase and the crossover point shifts to lower shear-rate oscillations. For instance, the relaxation time τ R is 2.5 s, 10.9 s and 63.1 s for 1000, 2000 and 3000 ppm xanthan concentration respectively.

Figure 1 :Figure 2 :

 12 Figure 1: Variation of the viscosity µ versus shear rate γ for (1) a 80 % by volume glycerol aqueous solution and for aqueous xanthan gum solutions at different concentration. (2) 850 ppm; (3) 1000 ppm; (4) 1200 ppm; (5) 1500 ppm; (6) 2000 ppm and (7) 3000 ppm.

  vortices, PIV measurements were performed at Re around Re c . The increase of the velocity of the inner cylinder follows the protocol given in section 3.5. At Re below Re c , PIV measurements did not detect radial or axial velocity. At Re slightly above Re c , Taylor vortices are detected. They are illustrated in figure 3, where the velocity field measured just above Re c , at ǫ ≈ 0.01, is shown for glycerol solution and xanthan gum solutions at 1000 ppm (n c = 0.51, λ = 5.3) and 2000 ppm (n c = 0.33, λ = 262). The axial position is scaled with the corresponding wavelength calculated from the distance between two successive outflow boundaries and a single wavelength is represented. It is interesting to note that with increasing shear-thinning effects, Taylor vortices are squeezed against the inner wall (Alibenyahia et al. 2012; Agbessi et al. 2015; Topayev et al. 2019). The periodicity of the cells around the middle of the annular domain can be estimated from the measurement of the wavelength. This yields wavenumbers k = 3.15 ± 0.1 for glycerol solution, k = 3.5 ± 0.15 for xanthan gum solution 1000 ppm and k = 4.9 ± 0.3 for xanthan gum 2000 ppm. These values are in agreement with the linear theory (Topayev et al. 2019): k c = 3.1836, 3.4601 and 4.7109 respectively.

Figure 3 :

 3 Figure 3: Radial-axial velocity vectors in a radial-axial plane for Taylor vortex flow measured at ǫ ≈ 0.01. (Left frame) glycerol solution with λ z = 2; (middle frame) xanthan gum solution 1000 ppm with λ z = 1.8; (right frame) xanthan gum solution 2000 ppm with λ z = 1.3. For the same length of a vector, the dimensionless velocity in the frames (b) and (c) is two times and four times lower than that in the frame (a), respectively.

  Figure 4: Spatio-temporal diagrams for a 80% by volume of glycerol aqueous solution at Re = 66.18, 67.88, 68.74, 103.11 and Re = 328.18. They are constructed from images taken at 10 frames s -1 . Note that for a Newtonian fluid with η = 0.4, Re c = 68.2965. At Re = 66.18, 50 s = 573.05 d/ (R 1 Ω 1 )

Figure 5

 5 Figure 5 shows spatio-temporal diagrams for aqueous solution of xanthan gum at 2000 ppm, with n c = 0.34 and λ = 197. Stationary patterns are first observed at Re = 1.12, much lower than the critical Reynolds number predicted by the linear theory, Re c = 1.6944. These patterns are illustrated by the space-time plot shown in the left frame of figure 5. They account for a variation of the orientation of reflective particles along the axial position which can be related to Taylor-like vortices. At Re = 1.69, the three criteria for the onset of TVF are satisfied. The experimental Reynolds number for the onset of TVF, 1.67 < Re exp c < 1.69 is in agreement with the linear theory. Applying a fast Fourier transform to the space-time plot corresponding to Re = 1.69, it is found that the most energetic mode is obtained at k = k exp c = 4.37. This value is again in a very good agreement with that obtained using a linear stability analysis, k c = 4.5160. If we take into account the finite length of the system, a closer value is obtained, k f inite c
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 5 Figure 5: Space-time diagrams of xanthan gum 2000 ppm for Re = 1.5, 1.67, 1.69 and 1.72. The rheological parameters are n c = 0.34, λ = 197. For this case, the linear theory gives Re c = 1.6944. At Re = 1.5, 50 s = 1099 d/ (R 1 Ω 1 )
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 6 Figure 6: Aqueous glycerol solution. Instantaneous radial-axial velocity vectors in radialaxial plane for wavy vortex flow I at Re = 444 (6.5 Re c ). The time progresses from left to right through one cycle of an azimuthal wave passing the measurement plane.(a) t = 0, (b) t = 5.3 (d/R 1 Ω 1 ), (c) t = 13.25 (d/R 1 Ω 1 ), (d) t = 21.2 (d/R 1 Ω 1 ), (e) t = 26.5 (d/R 1 Ω 1 ).

Figure 7 :

 7 Figure 7: Aqueous glycerol solution. Instantaneous radial-axial velocity vectors in radialaxial plane for wavy vortex flow II at Re = 478 (7 Re c ). The time progresses from left to right through one cycle of an azimuthal wave passing the measurement plane. (a) t = 0, (b) t = 14.4 (d/R 1 Ω 1 ), (c) t = 28.8 (d/R 1 Ω 1 ), (d) t = 43.2 (d/R 1 Ω 1 ), (e) t = 51.8 (d/R 1 Ω 1 ).

  for a better illustration of creation and merging process. At t = T 0 (frame a), a new vortex pair, denoted C and D, emerges. It grows radially and reaches its maximum strength at t ≈ T 0 + 25 (frame d). The development of the vortices leads to a local increase of the wavenumber. At t = T 0 + 36 (frame e) the merging process starts: two vortices B and C in frames (e) and (f) appear to collide and disappear completely at t = T 0 + 64. A new pair formed by the vortices A and D is obtained. A short time after, a new vortex pair emerges between two other base vortex pairs, it increases radially then merges with one of the adjacent base vortex pairs by the same mechanism. Another illustration of creation and merging events is given in figure 9. The distribution of the azimuthal vorticity along the line r = R 1 /d + 0.44 (passing near the center of vortices) is represented as a function of time. It can be observed how the vortices B and C are weakened and then annihilated.

Figure 8 :

 8 Figure 8: Secondary instability for a Carreau fluid with n c = 0.5, λ = 200 at Re = 1.67 Re c . Periodic boundary conditions in the axial direction, with λ z = 1.7974, L = 7 λ z = 12.582. Contours of stream function at different times: (a) t = T 0 , (b) t = T 0 + 6, (c) t = T 0 + 15, (d) t = T 0 + 30, (e) t = T 0 + 36, (f) t = T 0 + 45, (g) t = T 0 + 57, (h) t = T 0 + 64.

Figure 9 :

 9 Figure 9: Secondary instability for a Carreau fluid with n c = 0.5, λ = 200 at Re = 1.69 Re c . Periodic boundary conditions in the axial direction with λ z = 1.7974, L = 7 λ z = 12.582. Distribution of the azimuthal vorticity along the line r = R 1 /d + 0.44 as a function of time: zoom on three pairs of vortices.

Figure 12 :

 12 Figure 12: Secondary instability for a Carreau fluid with n c = 0.2, λ = 200, fixed bottom endwall, stress-free at the top, at Re = 1.08 Re c . Distribution of the azimuthal vorticity along the line r = R 1 /d + 0.123 as a function of time.
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 1314 Figure 13: Secondary instability for a Carreau fluid with n c = 0.5, λ = 200. Variation of the ratio of the torque to that obtained for a purely Couette flow with periodic boundary conditions at Re = 1.69 Re c . The dashed line before t = 0, is the converged solution at a lower Reynolds number.

Figure 15 :

 15 Figure 15: Xanthan gum 1000 ppm with n c = 0.51, λ = 5.3. Velocity field in the plane (r, z). (a) t = T 0 , (b) t= T 0 + 0.2 s = T 0 + 2.1 d/(R 1 Ω 1 ), (c) t = T 0 + 1.5 s = T 0 + 15.8 d/(R 1 Ω 1 ), (d) t = T 0 +1.7 s = T 0 +17.9 d/(R 1 Ω 1 ), (e) t = T 0 +2 s = T 0 +21 d/(R 1 Ω 1 ).

Figure 19 :

 19 Figure 19: Xanthan gum 3000 ppm, n c = 0.23 and λ = 1255. Spatio-temporal diagrams at different Reynolds numbers. At Re = 0.519, 50 s = 809 d/(R 1 Ω 1 ).

Figure 20 :

 20 Figure 20: Xanthan gum 3000 ppm, n c = 0.23 and λ = 1255. Complex demodulation of a spatio-temporal diagram at Re = 0.521: (a) amplitude demodulation dark zones corresponds to the core of the defects where the amplitude vanishes; (b) phase demodulation.Circles and squares show the position of creation and merging processes respectively.
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  Figure 21: Stability diagram of the TVF regime for a Carreau fluid with η = 0.4 in the plane (ǫ = (Re -Re c )/Re c ), n c ). The thin dashed line (drawn as a guide for the eye) joins the experimental results represented by filled circles. Numerical results are represented by a filled triangle for realistic boundary conditions and filled diamonds for periodic boundary conditions.

  ity of Taylor vortex flow (TVF) in a wide gap geometry with a radius ratio η = 0.4. With such radius ratio, the Taylor vortices remain stable with respect to non axisymmetric perturbations in a large range of Reynolds numbers for a Newtonian fluid, for which we found Re s ≈ 5.3 Re c . The inner cylinder is rotating and the outer one is at rest. Aqueous solutions of xanthan gum solutions are used as shear-thinning fluids and aqueous solution of glycerol as a Newtonian fluid reference. The shear-thinning behavior is described by the Carreau model. The originality of the present work consists in simultaneous experimental observations and numerical simulations conveying credit to the presented new results.For shear-thinning fluids, we have shown experimentally and numerically that the range of Reynolds numbers (defined with the zero shear-rate viscosity) where the Taylor vortices are stable shrinks with increasing shear-thinning effects (figure21). The dominant feature of the secondary instability is the repetitive sequences of formation and merging of vortices. Close to the onset of the secondary instability, Re s , the duration of the creation and merging process increases globally with increasing shear-thinning effects. For Re larger than Re s , the new vortex formed may remain aligned with the neighboring vortices during many number of rounds of the rotating cylinder before merging, particularly

  

  

  

  

  

Table 1 :

 1 

	27. The flow field through one cycle of an azimuthal wave passing the
	measurement plane represented in figure 7 is quite similar to that described previously

Period T of oscillations in non-dimensional time-unit and ratio of the frequency of oscillations to the inner cylinder frequency f i .

Table 2 :

 2 Durations T (last column) between creation and merging process for different rheological parameters: numerical and experimental results.

	n c	λ Boundary conditions Num/Exp	Re	Figures T (d/(R 1 Ω 1 ))
	0.5 200	periodic	numerical 1.69Re c 16-18,22(a)	64
	0.51 5.3	realistic	PIV	1.70Re c	23	21
	0.5 3.1	realistic	visual	1.69Re c	25	21
	0.33 262	realistic	PIV	1.08Re c	24	490
	0.34 197	realistic	visual	1.07Re c	26	80
	0.34 197	realistic	visual	1.09Re c	26	230-460
	0.2 200	realistic	numerical 1.08Re c	19	117
	0.2 200	realistic	numerical 1.08Re c 20,22(b)	140
	0.23 1455	realistic	visual	1.02Re c	28	> 100
	0.23 1455	realistic	visual	1.03Re c	27-28	> 400

isymmetric perturbations. For intermediate radius ratios, the competition between the axisymmetric mode and the non axisymmetric mode could be investigated.
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