N
N

N

HAL

open science

Automatic Intermediate Frames for Stroke-based
Animation

Nicolas Barroso, Amélie Fondevilla, David Vanderhaeghe

» To cite this version:

Nicolas Barroso, Amélie Fondevilla, David Vanderhaeghe. Automatic Intermediate Frames for Stroke-
based Animation. Journées Frangaises d’Informatique Graphique (JFIG 2021), Nov 2021, Sophia

Antipolis, France. hal-03454288

HAL Id: hal-03454288
https://hal.science/hal-03454288

Submitted on 29 Nov 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://hal.science/hal-03454288
https://hal.archives-ouvertes.fr

Journées Francaises de I'Informatique Graphique 2021 / R.Vergne and N.Mellado.

(Paper Chairs)

Automatic Intermediate Frames for Stroke-based Animation

Nicolas BarrosoT, Amélie Fondevilla, David Vanderhaeghe

IRIT, Université de Toulouse, CNRS, UT3, INP, Toulouse, France.

Figure 1: From a user provided set of key frames (designated by arrows) and motion field, our approach generates intermediate to create

an animation.

Abstract

Creating a 2D animation with visible strokes is a tedious and time consuming task for an artist. Computer aided animation
usually focus on cartoon stylized rendering, or is built from an automatic process as 3D animations stylization, loosing the
painterly look and feel of hand made animation. We propose to simplify the creation of stroke-based animations: from a set of
key frames, our methods automatically generates intermediate frames with coherent motion. Each intermediate frame looks as
it could have been drawn by an artist, using the same high level stroke based representation as key frame, and in succession
they display the subtle temporal incoherence usually found in hand-made animations.

CCS Concepts

*Computing methodologies — Non-photorealistic rendering; Animation;

1. Introduction

2D animated feature film exhibits a wide range of visual appear-
ances. In this paper we focus on appearance that shows individual
2D marks as in sketching or painting. In this kind of style we distin-
guish two main workflows. The classical workflow is to create key

T E-mail: nicolas.barroso @irit.fr

© 2021 The Author(s)
Journées Frangaises de I’ Informatique Graphique

frames to define the movement, and then create the necessary inbe-
tweening to smooth this movement. The other workflow, known as
"under the camera", is to create a first frame, then slightly modify
this frame to obtain the next one, and so on. Each frame of the an-
imation only exists when its captured and is then destroyed to pro-
duce the next one. The under the camera workflow needs specific
artistic skills to anticipate the whole animation sequence. Comput-
ers algorithm can help artists in many tedious animation tasks, im-
proving the efficiency of the pipeline in various ways [GM19]. Our

N. Barroso & A. Fondevilla & D. Vanderhaeghe / Automatic Intermediate Frames for Stroke-based Animation

long term goal is to provide computer tools to have the look and
feel of the under the camera workflow with the level of control of
the classical workflow.

This paper focus on the automatic creation of intermediate
frames given a set of key frames. We target professional anima-
tors and need to provide fine control over each frame, even those
computed automatically. To this end we use stroke based render-
ing [VC12] where each stroke of the animation is represented inde-
pendently, rather than keeping only the pixels representation of the
frames. Strokes are rendered using a paint simulator to compute the
final frame appearance.

The main contributions of the paper are:

e the extrapolation of 3D rendered motion field to obtain a 2D mo-
tion field suitable for stroke propagation (Sec 4),

e an optimization scheme to generate guide strokes from key
frames and motion field (Sec 5),

e a frame generator that leverage guide stroke from up to two key
frames to produce intermediate frames (Sec. 6).

These contributions allows us to elaborate a first inbetween pipeline

to generate intermediates frames in a stroke based rendering frame-

work.

2. Related Works

Synthesis of Intermediate frames. The automatic synthesis of in-
termediate frames, also called inbetweening, is a well-known do-
main in the field of 2D animation. Most methods work in image
space, by synthesizing texture depicting as-rigid-as-possible defor-
mation [SDC09,BCK*13,DBB*17], or using a triangulation of the
image space and applying deformation directly on this triangulated
mesh, using 2D skinning techniques [BKLP16]. Texture synthe-
sis approaches are agnostic to the tools used to produce the exam-
ple. The resulting frames are raster images. Our approach gener-
ates strokes that give high level structure for post editing. Closer
to our method, other approaches are working at the stroke level,
deducing the deformation between two frames through stroke pair-
ing [WNS*10], or using directly the motion of an underlying 3D
animation [WDK*12]. While most of the stroke-based approaches
are focused on sketches, a few of them deal with paintings. In this
case, the inbetweening problem can be overcome by embedding
the painting strokes in a 3D space [SSGS11], where the strokes can
follow the motion of a 3D surface [BBS™13]. We propose to define
all the strokes in the 2D image which corresponds to the traditional
animation pipeline.

Temporal coherence. Temporal coherence plays a significant role
in the perception of stylized animations. In texture approach it
can be ensure by energy minimization [BCK*13] or neural net-
work architectures [RDB18]. To get closer to the hand drawn look
some works try to reduce the temporal coherence of the styliza-
tion process and inject randomness through noise control in their
algorithm [FLJ*14] [FJS*17] or use marks approach to obtain a
more finer control of the randomness [CZBB20]. As chown by
Delanoy et. al. [DBHI19], processing the motion rather than the
image, with motion rigidifaction for instance, break temporal co-
herence provided by the initial optical flow and results in 2D look
closer to manual methods. Our approach focus on automatic, yet

plausible, intermediate frame generation, with the noise inherent to
hand made animation, rather than enforcing temporal coherence of
the animation.

Generation of strokes by example. Chen et. al. [CZBB20]
builds strokes of intermediate frames by rigid transformation of
the strokes of key frames. Intermediate frames are composed by
selecting and transforming strokes to reach a target density map.
The density map is estimated by interpolating key frame’s densi-
ties with the image registration method [SDC09]. Combined with
transformed strokes the animation sequence shows an hand drawn
look. We share the same approach, but in our case case, the strokes’
transformation are guided by an underlying motion field that gives
the expected motion. In addition, our approach modifies the curve
shape using optimization scheme that preserve geometric proper-
ties from the key frames.

3. Overview

Key frames refer to frame drawn, by the artist, and generated frames
are automatically rendered by our approach. The animation work-
flow is as follow: the artist draw one or more key frames which
convey the example style and appearance to reproduce (Fig. 1). The
artist also provides a motion field that encompass the animation
motion. Our approach generates intermediate frames taking key
frames and motion, one frame after the other (Fig. 2). At any time,
the artist can decide that frame do not corresponds to his wishes
and modify or redraw it, this introduce a new key frame in the an-
imation. Intermediate frames are updated to take into account this
new key frame. For the rest of the paper we consider that interme-
diate frames are surrounded by two key frames, one before and one
after along the timeline.

We focus on the animation of one object, multiple objects and
background are handled using layers. The final animation is com-
posed of multiple layers, each layer is animated and rendered in-
dependently, using a different motion field and key frames. Layers
composition can then be mixed as painted on different transparent
canvas, or mixed as if they are paint one over the other.

Key frames and intermediate frames are defined by an ordered
list of strokes. A stroke is defined by a curve represented as a poly-
line, and a set of parameters, i.e. the quantity and color of paint on
the virtual tool and the pressure of the tool on the canvas along the

Guide Strokes
3
8
= 7 =
5 @ e @ =
g '@ e a
S
=) T Timeline |—;—'
©
)
2 @
el =
g =
¥
3D animation and painted keyframes inputs Intermediate Frame

Figure 2: We generate an intermediate frame, here at time 12, us-
ing the guide strokes computed from the key frames before (at time
10) and after (at time 15) on the timeline.

© 2021 The Author(s) Journées Francaises de I’Informatique Graphique 2021 .

N. Barroso & A. Fondevilla & D. Vanderhaeghe / Automatic Intermediate Frames for Stroke-based Animation

curve. The final image is obtained by rendering the strokes with a
paint simulator. There is two main steps to generate an intermediate
frame: the propagation of guide strokes (Sec. 5) using motion field
(Sec. 4) and the generation of frame’s strokes (Sec. 6).

4. Motion Field

Our method needs a motion field for each frame of the animation
as input. This motion field can come from different sources, for
instance it can be handcrafted by the artist. In practice, for the ex-
ample shown in the paper, we start from a simple 3D animation
capturing the motion to convey. Since the motion field is created
from the render of a 3D scene, we propose to display the 3D scene
as a background template to draw a key frame. The proposed UI al-
lows the artist to choose whether to draw or not over the underlying
image.

For each frame, the motion field contains two motion vectors for
each pixel of the image, one vector to next frame position of this
pixel and one vector to previous frame position. Since the motion
field is null outside of the animated object’s surface, we need to
extend the motion information for each background pixels to let the
artist paint over the background as well. To this end we compute bi-
harmonic weights as describe by Baster et. al. [BBA09] The main
step of the algorithm is to build a triangular 2D mesh over the image
plane to finally interpolate vertices motion vectors for each pixels.
Vertices of this mesh are evenly distributed over the image plane.
Each vertex over a surface is assigned the underlying motion vector
and become a seed point to the interpolation. The motion vector
of vertices falling on background pixels are computed using bi-
harmonic weight computed for each vertices according to the seeds,
as shown Figure 3. Finally, the motion vector of each pixels of the
image plane is computed using barycentric interpolation from the
motion field of the triangular mesh.

Moreover we store a confidence value with each motion vector.
The confidence is computed by the same barycentric interpolation
considering a value of one for each vertices of the 2D mesh that has
valid motion and zero for null vectors.

5. Guide Strokes

To guide the generation of an intermediate frame we generate a set
of guide strokes. We compute a guide stroke for each strokes of a
key frame. A guide stroke captures both key frame content, i.e. the
curve, color, and pressure variation, and the motion information,
i.e. the motion fields from stroke time to intermediate frame time.

Figure 3: Computed motion field of a bouncing ball. Left: mo-
tion field as computed from the 3D renderer. Middle: 2D mesh and
known vectors in green. Right: computed motion vector (in red)
from the known vectors using bi-harmonic interpolation.

© 2021 The Author(s) Journées Francaises de I’Informatique Graphique 2021 .

Let’s consider one stroke of one key frame at time 7, as stated
before, the stroke’s curve is described by a poly line, we call the
curve of the stroke in the key frame the reference curve. The ad-
vected curve is computed by moving each poly-line vertex accord-
ing to underlying motion field. Advection only is not sufficient, it
can break the curve shape and also spread curve away from the un-
derlying object due to the motion field interpolation. We regularize
the stroke curve using an optimization.

We leverage the confidence value to optimize the guide stroke
curve. The optimization process mix the reference curve, with the
advected curve according to confidence value: closer to reference
curve when the confidence is low ; or closer to the advected curve
when confidence is high.

We use the following three energy functions. These energies are
measured along the curve for N evenly distributed sample points.
The first constraint ensures the optimization will converge spatially
close to the advected curve.

i i
Cadv (ﬁ) — Copt (N)

where ¢(p) is the evaluation of a 2D point of the parametric curve
function at x € [0, 1], c4g, is the advected stroke and copr is the
curve of the guide stroke.

N—1 2

E-Y

i=0

The two next energy functions are weighted by the confidence
G(x) along the curve of the advected stroke. The second constraint
penalizes curvature differences between the reference curve and the
curve of the guide stroke:

b= 8 (1 () o () < (1-2(5)

where 7 is the curvature computed with finite differences.

The last energy ensures that the length between two consecutive
samples of the curve of the guide stroke remains close to the length
of corresponding samples in the reference curve.

8(a,b) = f(a) = F (D)

- (o (35 -0 (3 5)) (0 (3)

Since the stroke poly-line have a lot of points, the optimization
would be underconstrained. So, we first fit the poly-line by piece-
wise cubic Bézier curves, resulting in fewer variables to optimize.
We use the Levenberg Marquardt algorithm to solve the optimiza-
tion. The variables are control points of Bézier curves, and the en-
ergy minimized is

E:Es +Ec+E1

The curve regularization is shown Figure 4, where reference curve,
advected curve and guide curve are shown for a complex motion.

This process is repeated for each stroke of the key frame. And for
each intermediate frame, computing the new advected curve using

N. Barroso & A. Fondevilla & D. Vanderhaeghe / Automatic Intermediate Frames for Stroke-based Animation

Figure 4: (a) Example of two reference strokes on a key frame
painted in yellow, (b) advected strokes deformed by advection only
(c) or modified by our optimization, here with confidence set to 0
everywhere for illustration purpose.

the previous guide stroke as a starting position. For each intermedi-
ate frame we also compute guide strokes from the next key frame,
using the same process using backward motion vector.

6. Stroke Generation

The stroke generation stage consists in creating the set of stroke of
an intermediate frame given the guide strokes. To do so, we make
three straightforward assumptions:

1. The more an intermediate frame is close in time to key frame,
the more it should look like this key frame.

2. An intermediate frame should reflect the content of the key
frames before and after it.

3. The intermediate frame should have been done by hand, or at
least look likes a hand made drawing.

We propose to generate the strokes of an intermediate frame as
follow: We select a subset of the guide strokes from the two key
frames.

To go from key frame A at time #, to key frame B at time #;, =
t« + N we progressively select guide strokes generated from key
frame B while deselecting stroke generated from key frame A.

To ensure a complete representation of the animated object, we
choose to have at least the guide strokes from one of the key frame
fully selected at each intermediate frame. To this end we define a se-

lection ratio for intermediate frame at time #, +{ as min (17 w

Selected guide strokes generated from key frame A is 100% for in-
termediate frames from time #, to t, + N /2, and decrease to 0% at
time #,. The ratio of guide stroke from key frame B is computed
similarly, but reversed in time. We design this selection scheme to
ensure correct coverage in the intermediate frames.

We tested two strategies to select the guide stroke given the ra-
tio. The first strategy select a random subset of the guide strokes
according to the ratio independently for each intermediate frame.
The second strategy randomize the list of guide stroke once for all,
then selects the strokes according to the ratio following the list or-
der. The artist can test both strategy and pick the one he prefer.

When rendering the intermediate frame, the stroke drawing order
follow the order in the key frames: We assign a scalar value as
draw time between 0 and 1 to each of the strokes of a key frame,
according to the drawing order of the artist. The selected strokes of
both key frames are sorted by this draw time before rendering.

7. Implementation and Results

Our C++/OpenGL prototype use Radium Engine [MRB*21] as
main rendering engine. We use our own implementation of the paint
simulator presented by Baxter et. al. [CBWGI10]. This paint sim-
ulator compute bi-directional paint exchanges between the brush
and the canvas, on the GPU. Strokes advection is done on the
GPU using compute shader. The Levemberg Marquardt optimiza-
tion uses Eigen [GJ*10] implementation. We extract motion fields
through Blender AOV rendering [Com18], we use triangle lib
in python [She96, R*20] and our implementation of bi-harmonic
weight interpolation to obtain the interpolated motion field, as a
pre-process. The time needed to render a frame depends on the
number of guide strokes generated and the number of pixel covered
by the strokes. In practice, the examples shown in the paper and
supplemental videos took less than one second per frame to ren-
der, including advection, optimization and paint simulation. These
render time are suitable for interaction.

8. Conclusion and Discussion

Our method generate intermediate frames in a stroke painterly style
and produce an animation with a traditional hand drawn look and
feel. It takes as input key frames drawn by an artist, and a motion
field to describe how the strokes should move. While we diverge
from the traditional paint under the camera look and feel, we ease
the creation of animation in a stroke based rendering context by
automatically creating intermediate frames.

The main limitation of the approach concern the complexity of
the motion we can depict. For instance, when two moving objects
cross each others on the same layer, some point of the poly-line of
stroke of one object will follow the other object motion. To solve
this issue, we think a better registration of each stroke with the
underlying motion field could be envisioned.

Several improvements are left as future work, for instance dur-
ing the generation of the strokes of an intermediate frame, we can
imagine to add some randomness in the strokes parameters (curve
shape, pressure, brush color). In our current selection scheme, the
intermediate frame at mid-time between two key frames render the
full set of strokes from the two key frames. The resulting image
depict thicker paint on the canvas, which could be perceived as an
artifact. Also, the generation of strokes from guides strokes could
have a target coverage over the image plane to remove this artifact.

We think that the confidence value could convey artistic expres-
sion, so that some strokes keep their original shapes during advec-
tion, while others better follow the underlying motion. To this end
we plan to propose confidence brushes to alter the confidence of
the motion field, either for some regions, or for specific selected
strokes.

The creation of an animated 3D scene to compute the motion
field adds a large amount of work. We see two diverging workflows
here: Either stay in pure 2D animation, and explore new tools to
build the motion field from artist gesture, or take more benefit from
the 3D animation, such as color, surface normal, and lighting, to
make working time profitable.

Acknowledgement This work has been partially supported by the
Structures JCJC ANR project ANR-19-CE38-0009-01.

© 2021 The Author(s) Journées Francaises de I’Informatique Graphique 2021 .

N. Barroso & A. Fondevilla & D. Vanderhaeghe / Automatic Intermediate Frames for Stroke-based Animation

References

[BBAO9] BAXTER W., BARLA P., ANJYO K.: N-way morphing for 2d
animation. Computer Animation and Virtual Worlds 20, 2-3 (2009), 79—
87. doi:10.1002/cav.310.3

[BBS*13] BASSETT K., BARAN 1., SCHMID J., GROSS M., SUMNER
R. W.: Authoring and animating painterly characters. ACM Trans.
Graph. 32,5 (Oct. 2013). doi:10.1145/2484238.2

[BCK*13] BENARD P., COLE F., KASS M., MORDATCH I., HEGARTY
J., SENN M. S., FLEISCHER K., PESARE D., BREEDEN K.: Stylizing
animation by example. ACM Trans. Graph. 32, 4 (July 2013). doi:
10.1145/2461912.2461929.2

[BKLP16] BAI Y., KAUFMAN D. M., L1u C. K., POPOVIC J.: Artist-
directed dynamics for 2d animation. ACM Trans. Graph. 35, 4 (July
2016). do1:10.1145/2897824.2925884. 2

[CBWG10] CHU N., BAXTER W., WEI L.-Y., GOVINDARAJU N.:
Detail-preserving paint modeling for 3d brushes. In Proceedings of the
8th International Symposium on Non-Photorealistic Animation and Ren-
dering (New York, NY, USA, 2010), NPAR ’10, Association for Com-
puting Machinery, p. 27-34. doi:10.1145/1809939.1809943.
4

[Com18] COMMUNITY B. O.: Blender - a 3D modelling and rendering
package. Blender Foundation, Stichting Blender Foundation, Amster-
dam, 2018. URL: http://www.blender.org. 4

[CZBB20] CHEN J., ZHU X., BENARD P., BARLA P.: Stroke Synthe-
sis for Inbetweening of Rough Line Animations. In Pacific Graphics
Short Papers, Posters, and Work-in-Progress Papers (2020), Lee S.-h.,
Zollmann S., Okabe M., Wuensche B., (Eds.), The Eurographics Asso-
ciation. doi1:10.2312/pg.20201233. 2

[DBB*17] DVOROZNAK M., BENARD P., BARLA P., WANG O.,
SYKORA D.: Example-based expressive animation of 2d rigid bodies.
ACM Trans. Graph. 36, 4 (July 2017). doi:10.1145/3072959.
3073611.2

[DBH19] DELANOY J., BOUSSEAU A., HERTZMANN A.: Video
motion stylization by 2d rigidification. In Proceedings of the Sth
ACM/Eurographics Expressive Symposium on Computational Aesthet-
ics and Sketch Based Interfaces and Modeling and Non-Photorealistic
Animation and Rendering (Goslar, DEU, 2019), Expressive 19, Euro-
graphics Association, p. 11-19. doi:10.2312/exp.20191072. 2

[FIS*17] FISER J., JAMRISKA O., SIMONS D., SHECHTMAN E., LU
J., ASENTE P., LUKAC M., SYKORA D.: Example-based synthesis of
stylized facial animations. ACM Trans. Graph. 36,4 (July 2017). doi :
10.1145/3072959.3073660. 2

[FLI*14] FISER J., LUKAC M., JAMRISKA O., CADIK M., GINGOLD
Y., ASENTE P., SYKORA D.: Color me noisy: Example-based render-
ing of hand-colored animations with temporal noise control. Computer
Graphics Forum 33,4 (2014), 1-10. doi1:10.1111/cgf.12407. 2

[GJ*10] GUENNEBAUD G., JACOB B., ET AL.:
http://eigen.tuxfamily.org, 2010. 4

Eigen v3.

[GM19] GEORGE-MOLLAND A.-L.: Innovation technique dans les
studios d’animation et d’effets visuels : la Recherche et Développe-
ment au service du pipeline. La Création Collective au Cinéma 2
(2019), 101-124. URL: https://hal.archives-ouvertes.
fr/hal-02133118.1

[MRB*21] MOURGLIA C., ROUSSELLET V., BARTHE L., MEL-
LADO N., PAULIN M., VANDERHAEGHE D., ET AL.: Radium-
engine, July 2021. URL: https://storm-irit.github.io/
Radium-Engine/,doi:10.5281/zenodo.5101334. 4

[R*20] RUFAT D., ET AL.: Triangle, 2020. URL: https://rufat.
be/triangle/. 4

[RDB18] RUDER M., DOSOVITSKIY A., BROX T.: Artistic style
transfer for videos and spherical images. International Journal of
Computer Vision 126, 11 (2018), 1199-1219. doi:10.1007/
$11263-018-1089~z. 2

© 2021 The Author(s) Journées Francaises de I’Informatique Graphique 2021 .

[SDC09] SYKORA D., DINGLIANA J., COLLINS S.: As-rigid-as-
possible image registration for hand-drawn cartoon animations. In Pro-
ceedings of the 7th International Symposium on Non-Photorealistic Ani-
mation and Rendering (New York, NY, USA, 2009), NPAR ’09, Associa-
tion for Computing Machinery, p. 25-33. do1:10.1145/1572614.
1572619.2

[She96] SHEWCHUK J. R.: Triangle: Engineering a 2D Quality Mesh
Generator and Delaunay Triangulator. In Applied Computational Geom-
etry: Towards Geometric Engineering, Lin M. C., Manocha D., (Eds.),
vol. 1148 of Lecture Notes in Computer Science. Springer-Verlag, May
1996, pp. 203-222. From the First ACM Workshop on Applied Compu-
tational Geometry. 4

[SSGS11] ScHMID J., SENN M. S., GROSS M., SUMNER R. W.: Over-
coat: An implicit canvas for 3d painting. In ACM SIGGRAPH 2011
Papers (New York, NY, USA, 2011), SIGGRAPH ’11, Association for
Computing Machinery. doi:10.1145/1964921.1964923.2

[VC12] VANDERHAEGHE D., COLLOMOSSE J.: Stroke Based
Painterly Rendering. In Image and Video-Based Artistic Stylisation,
Rosin P., Collomosse J., (Eds.), vol. 42 of Computational Imaging
and Vision. Springer, London, 2012, pp. 3-21. doi:10.1007/
978-1-4471-4519-6_1.2

[WDK*12] WHITED B., DANIELS E., KASCHALK M., OSBORNE P.,
ODERMATT K.: Computer-assisted animation of line and paint in dis-
ney’s paperman. In ACM SIGGRAPH 2012 Talks (New York, NY,
USA, 2012), SIGGRAPH ’12, Association for Computing Machinery.
doi:10.1145/2343045.2343071. 2

[WNS*10] WHITED B., NORIS G., SIMMONS M., SUMNER R. W.,
GROSS M., ROSSIGNAC J.: Betweenit: An interactive tool for tight in-
betweening. Computer Graphics Forum 29, 2 (2010), 605-614. doi:
10.1111/5.1467-8659.2009.01630.x.2

http://dx.doi.org/10.1002/cav.310
http://dx.doi.org/10.1145/2484238
http://dx.doi.org/10.1145/2461912.2461929
http://dx.doi.org/10.1145/2461912.2461929
http://dx.doi.org/10.1145/2897824.2925884
http://dx.doi.org/10.1145/1809939.1809943
http://www.blender.org
http://dx.doi.org/10.2312/pg.20201233
http://dx.doi.org/10.1145/3072959.3073611
http://dx.doi.org/10.1145/3072959.3073611
http://dx.doi.org/10.2312/exp.20191072
http://dx.doi.org/10.1145/3072959.3073660
http://dx.doi.org/10.1145/3072959.3073660
http://dx.doi.org/10.1111/cgf.12407
https://hal.archives-ouvertes.fr/hal-02133118
https://hal.archives-ouvertes.fr/hal-02133118
https://storm-irit.github.io/Radium-Engine/
https://storm-irit.github.io/Radium-Engine/
http://dx.doi.org/10.5281/zenodo.5101334
https://rufat.be/triangle/
https://rufat.be/triangle/
http://dx.doi.org/10.1007/s11263-018-1089-z
http://dx.doi.org/10.1007/s11263-018-1089-z
http://dx.doi.org/10.1145/1572614.1572619
http://dx.doi.org/10.1145/1572614.1572619
http://dx.doi.org/10.1145/1964921.1964923
http://dx.doi.org/10.1007/978-1-4471-4519-6_1
http://dx.doi.org/10.1007/978-1-4471-4519-6_1
http://dx.doi.org/10.1145/2343045.2343071
http://dx.doi.org/10.1111/j.1467-8659.2009.01630.x
http://dx.doi.org/10.1111/j.1467-8659.2009.01630.x

