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1 IRIT, Université Paul Sabatier, 118 route de Narbonne, 31062 Toulouse, France
asher@irit.fr

2 Telindus, 18 rue du Puits Romain, L-8070 Bertrange, Luxembourg
soumya.paul@telindus.lu

3 Amazon Research, Tübingen, Germany
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Abstract. Recent efforts have uncovered various methods for providing
explanations that can help interpret the behavior of machine learning
programs. Exact explanations with a rigorous logical foundation pro-
vide valid and complete explanations, but they have an epistemological
problem: they may be too complex for humans to understand and too
expensive to compute even with automated reasoning methods. Inter-
pretability requires good explanations that humans can grasp and can
compute.
We take an important step toward specifying what good explanations
are by analyzing the epistemically accessible and pragmatic aspects of
explanations. We characterize sufficiently good, or fair and adequate,
explanations in terms of counterfactuals and what we call the conundra
of the explainee, the agent that requested the explanation. We provide a
correspondence between logical and mathematical formulations for coun-
terfactuals to examine the partiality of counterfactual explanations that
can hide biases; we define fair and adequate explanations in such a set-
ting. We then provide formal results about the algorithmic complexity
of fair and adequate explanations.

1 Introduction

Explaining the predictions of sophisticated machine-learning algorithms is an im-
portant issue for the foundations of AI. Recent efforts [34,35,38,19,4] have shown
various methods for providing explanations. Among these, model-based, logical
approaches that completely characterise one aspect of the decision promise com-
plete and valid explanations.

Such logical methods are thus a priori desirable, but they have an epistemo-
logical problem: they may be too complex for humans to understand or even to
write down in human-readable form. Interpretability requires epistemically ac-
cessible explanations, explanations humans can grasp and compute. Yet what is
a sufficiently complete and adequate epistemically accessible explanation, a good
explanation still needs analysis [30]. We propose to characterize sufficiently good,
or fair and adequate, explanations in terms of counterfactuals—explanations,
that is that are framed in terms of what would have happened had certain con-
ditions (that do not obtain) been the case—and what we call the conundrum and



fairness requirements of the explainee, the person who requested the explanation
or for whom the explanation is intended). It is this conundrum that makes the
explainee request an explanation. Counterfactual explanations, as we argue be-
low, are a good place to start for finding accessible explanations, because they
are typically more compact than other forms of explanation.

We argue that a fair and adequate explanation is relative to the cognitive
constraints and fairness requirements of an explainee E [5,1,28]. E asks for an
explanation for why π when she wasn’t expecting π. Her not expecting π follows
from beliefs that must now be revised—how to specify this revision is the co-
nundrum of E . An adequate explanation is a pragmatic act that should solve the
conundrum that gave rise to the request for explanation; solving the conundrum
makes the explanation useful to E [15]. In addition, an adequate explanation must
lay bare biases that might be unfair or injurious to E (the fairness constraint).
In effect, this pragmatic act is naturally modelled in a game theoretic setting
in which the explainer must understand explainee E’s conundrum and respond
so as to resolve it. A cooperative explainer will provide an explanation in terms
of the type he assigns to E, as the type will encode the relevant portions of E’s
cognitive state. On the other hand the explainee will need to interpret the puta-
tive explanation in light of her model of the explainer’s view of his type. Thus,
both explainer and explainee have strategies that exploit information about the
other—naturally suggesting a game theoretic framework for analysis.

In developing our view of fair and adequate explanations, we will exploit
both the logical theory of counterfactuals [26] and mathematical approaches for
adversarial perturbation techniques [24,40,33,23,9,4]. We provide a correspon-
dence between logical and mathematical formulations for counterfactuals, and
we analyze how counterfactual explanations can hide biases. We then formalize
conundra and fair and adequate explanations, and we develop a game theoretic
setting for proving computational complexity results for finding fair and ade-
quate explanations in non cooperative settings.

2 Background on explanations

Following [5,1], we take explanations to be answers to why questions. Consider
the case where a bank, perhaps using a machine learning program, judges E ’s
application for a bank loan and E is turned down. E is in a position to ask a why
question like,

(1) why was I turned down for a loan?

when her beliefs would not have predicted this. Her beliefs might not have been
sufficient to infer that she wouldn’t get a loan; or her beliefs might have been
mistaken—they might have led her to conclude that she would get the loan. In
any case, E must now revise her beliefs to accord with reality. Counterfactual
explanations, explanations expressed with counterfactual statements, help E do
this by offering an incomplete list of relevant factors that together with unstated
properties of E entail the explanandum—the thing E needs explained, in this case



her not getting the loan. For instance, the bank might return the following answer
to (1):

(2) Your income is e50K per year.

(3) If your income had been e100K per year, you would have gotten the loan.

The counterfactual statement (3) states what given all of E ’s other qualities
would have been sufficient to get the loan. But since her income is in fact not
e100K per year, the semantics of counterfactuals entails that E does not get the
loan. (3) also proposes to E how to revise her beliefs to make them accord with
reality, in that it suggests that she mistakenly thought that her actual salary
was sufficient for getting the loan and that the correct salary level is e100K per
year.4

Counterfactual explanations, we have seen, are partial, because they do not
explicitly specify logically sufficient conditions for the prediction. They are also
local, because their reliance on properties of a particular sample makes them
valid typically only for that sample. Had we considered a different individual,
say D, the bank’s explanation for their treatment of D might have differed. D
might have had different, relevant properties from E ; for instance, D might be
just starting out on a promising career with a salary of e50K per year, while E
is a retiree with a fixed income.

The partiality and locality of counterfactuals make them simpler and more
epistemically accessible than other forms of explanation. Moreover, the logical
theory of counterfactuals enables us to move from a counterfactual to a complete
and logically valid explanation. So in principle counterfactual explanations can
provide both rigour and epistemic accessibility. But not just any partiality will
do, since partiality makes possible explanations that are misleading, that hide
injurious or unfair biases. To show how the partiality of counterfactual explana-
tions can hide unfair biases, consider the following scenario. The counterfactual
in (2) might be true but it also might be misleading, hiding an unfair bias. (1)-
(2) can be true while another, more morally repugnant explanation that hinges
on E ’s being female is also true. Had E been male, she would have gotten the
loan with her actual salary of e50K per year. A fair and adequate explanation
should expose such biases.

We now move to a more abstract setting. Let f̂ : Xn → Y be a machine
learning algorithm, with Xn an n-dimenstional feature space encoding data and
Y the prediction space. Concretely, we assume that f̂ is some sort of classifier.
When f̂ = π, an explainee may want an explanation, an answer to the ques-
tion,“why π?” We will say that an explanation is an event by an explainer, the
provider of the explanation, directed towards the explainee (the person request-
ing the explanation or to whom the explanation is directed) with a conundrum.
An explanation will consist of of an explanandum, the event or prediction to

4 [10] provide a superficially similar picture to the pragmatic one we present, but their
aim is rather different, to provide a semantics for argumentation frameworks. For
us the pragmatic aspect of explanations is better explained via a game theoretic
framework; see below.



be explained, an explanans, the information that is linked in some way to the
explanandum so as to resolve the explainee’s conundrum. When the explanation
is about a particular individual, we call that individual the focal point of the
explanation.

Explanations have thus several parameters. The first is the scope of the expla-
nation. For a global explanation of f̂ , the explainee wants to know the behavior
of f̂ over the total space Xn. But such an explanation may be practically uncom-
putable; and for many purposes, we might only want to know how f̂ behaves on
a selection of data points of interest or focal points, like E ’s bank profile in our
example.5 Explanations that are restricted to focal points are local explanations.

Explanations of program behavior also differ as to the nature of the ex-
planans. In this paper, we will be concerned with external explanations that
involve an explanatory link between features of input or feature space X and
the output in Y without considering any internal states of the learning mecha-
nism [11]. These are attractive epistemically, because unpacking the algorithms’
internal states and assigning them a meaning can be a very complicated affair.

A third pertinent aspect of explanations concerns the link between explanans
and the explanandum. [14,19,18] postulate a deductive or logical consequence link

between explanans and explanandum. [19] represent f̂ as a set of logic formulas

M(f̂). By assuming features with binary values6, an instance is then a set of
literals that assigns values to every feature in the feature space. An abductive
explanation of why π is a subset minimal set of literals I such that M(f̂), I |=
π. Abductive explanations exploits universal generalizations and a deductive
consequence relation. They explain why any instance x̂ that has I is such that
f̂(x̂) = π and hence are known as global explanations [29].

Counterfactuals offer a natural way to provide epistemically accessible, par-
tial explanations of properties of individuals or focal points. The counterfactual
in (3) gives a sufficient reason for E ’s getting the loan, all other factors of her
situation being equal or being as equal as possible (ceteris paribus) given the
assumption of a different salary for E . Such explanations are often called local
explanations [8,29], as they depend on the nature of the focal point; they are also
partial [38], because the antecedent of a counterfactual are not by themselves log-
ically sufficient to yield the formula in the consequent. Deductive explanations,
on the other hand, are invariant with respect to the choice of focal point. But
because counterfactual explanations exploit ceteris paribus conditions, factors
that deductive explanations must mention can remain implicit in a counterfac-
tual explanation. Thus, counterfactual explanations are typically more compact
and thus in principle easier to understand.7 Counterfactuals are also intuitive
vehicles for explanations as they also encode an analysis of causation [26].

5 We are implicitly assuming that f̂ is too complex or opaque for its behaviour to be
analyzed statically.

6 By increasing the number of literals we can simulate non binary values, so this is
not really a limitation as long as the features are finite.

7 See [18] for some experimental evidence of this.



2.1 Counterfactual explanations for learning algorithms

The canonical semantics for a counterfactual language L, which is a propositional
language to which a two place modal operator �→ is added, as outlined in [26]
exploits a possible worlds model for propositional logic, A = 〈W,≤, [[.]]〉, where:
W is a non-empty set (of worlds), ≤ is a ternary similarity relation (w′ ≤w w′′),
and [[.]] : P →W → {0, 1} assigns to elements in P , the set of proposition letters
or atomic formulas of the logic, a function from worlds to truth values or set
of possible worlds. Then, where |= represents truth in such a model, we define
truth recursively as usual for formulas of ordinary propositional logic and for
counterfactuals ψ �→ φ, we have:

Definition 1. A, w |= ψ �→ φ just in case: ∀w′, if A, w′ |= ψ and ∀w′′(A, w′′ |=
ψ → w′ ≤w w′′), then: A, w′ |= φ

What motivates this semantics with a similarity relation? We can find both
epistemic and metaphysical motivations. Epistemically, finding a closest or most
similar world in which the antecedent φ of the counterfactual φ �→ ψ is true
to evaluate its consequent ψ follows a principle of belief revision [12], according
to which it is rational to make minimal revisions to one’s epistemic state upon
acquiring new conflicting information. A metaphysical motivation comes from
the link Lewis saw between counterfactuals and causation; ¬φ�→ ¬ψ implies
that if φ hadn’t been the case, ψ wouldn’t have been the case, capturing much
of the semantics of the statement φ caused ψ. The truth of such intuitive causal
statements, however, relies on the presence of a host of secondary or enabling
conditions. Intuitively the statement that if I had dropped this glass on the
floor, it would have broken is true; but in order for the consequent to hold
after dropping the glass, there are many elements that have to be the same
in that counterfactual situation as in the actual world—the floor needs to be
hard, there needs to be a gravitational field around the strength of the Earth’s
that accelerates the glass towards the floor, and many other conditions. In other
words, in order for such ordinary statements to be true, the situation in which
one evaluates the consequent of a counterfactual has to resemble very closely the
actual world.

Though intuitive, as this logical definition of counterfactuals stands, it is
not immediately obvious how to apply it to explanations of learning algorithm
behavior. We need to adapt it to a more analytical setting. We will do so by
interpreting the similarity relation appealed to in the semantics of counterfac-
tuals as a distance function or norm as in [39] over the feature space Xn, an
n-dimensional space, used to describe data points. To fill out our semantics for
counterfactuals in this application, we identify instances in Xn as the relevant
“worlds” for the semantics of the counterfactuals. We now need to specify a
norm for Xn. A very simple norm assumes that each dimension of Xn is orthog-
onal and has a Boolean set of values; in this case, Xn has a natural L1 norm
or Manhattan or edit distance [36].8 While this assumption commits us to the

8 In fact, we only assume a finite set of finitely valued features, since an n-valued
feature is definable with n Boolean valued features. By complicating the language



fact that the dimensions of Xn capture all the causally relevant factors and that
they are all independent—both of which are false for typical instances of learning
algorithms, it is simple and makes our problem concrete. We will indicate below
when our results depend on this simplifying assumption.

A logic of counterfactuals can now exploit the link between logic formulas,
features of points in Xn, and a learning algorithm f̂ described in [19,22]. Suppose

a focal point x̂ is such that f̂(x̂) = η. A counterfactual A �→ π that is true at
the point x̂, where π is a prediction incompatible with η, has an antecedent that
is a conjunction of literals, each literal defining a feature value, and that provides
a sufficient and minimal shift in the features of x̂ to get the prediction π. Each
counterfactual that explains the behavior of f̂ around a focal point x̂ ∈ Xn thus
defines a minimal transformation of the features of x̂ to change the prediction.
We now define the transformations on Xn that counterfactuals induce.

Definition 2. Let i ⊂ n. A fixed transformation ∆i is a function ∆i : Xn → Xn

such that for x ∈ Xn, if ∆i(x) = y, then x and y differ only in the dimensions
in i. We write x =i x

′ to mean that x and x′ share the same values along
dimensions i. Given x ∈ Xn, and f̂(x) = η and where ‖.‖Xn is a natural norm
on Xn, we shall be interested in the following types of transformations.

(i) ∆i(x) is appropriate if f̂(∆i(x)) = π where η and π are two incompatible
predictions in Y .

(ii) ∆i(x) is minimally appropriate if it is appropriate and in addition, ∀x′ ∈ X
such that ∆i(x) =i x

′ and f̂(x′) = π, ‖x′ − x‖Xn ≥ ‖∆i(x)− x‖Xn .
(iii) ∆i(x) is sufficiently appropriate if it is appropriate and in addition, for any

j ( i, ∆j(x) is not appropriate.
(iv) ∆i(x) is sufficiently minimally appropriate if it is both sufficiently and mini-

mally appropriate.

Note that when X is a space of Boolean features, then conditions (ii) and (iv)
of Def. 2 trivially hold. Given a focal point x̂ in Xn, minimally appropriate
transformations represent the minimal changes necessary to the features of x̂ to
bring about a change in the value predicted by f̂ .

Let f̂ : Xn → Y and consider now a counterfactual language Lf̂ with a set

of formulas Π that describe the predictions in Y of f̂ .

Definition 3. A counterfactual model CXn,f̂ for Lf̂ with f̂ : Xn → Y is a triple

〈W,≤, [[.]]〉 with W a set of worlds W = Xn, ≤ defined by a norm ||.|| on Xn

and [[.]] : P ∪{Π} →W → {0, 1} such that for A ∈ P , [[A]]w = 1 iff w has feature

A and for π ∈ Π, [[π]]w = 1 iff f̂(w) = π.

Given a counterfactual model CXn,f̂ for Lf̂ with norm ||.|| on Xn, we say that

||.|| is Lf̂ definable just in case for worlds w,w1 ∈ Xn, there is a formula φ of Lf̂
that separates w1 from all w2 ∈ Xn such that ‖w2 −w‖ < ‖w1 −w‖—i.e. for all
w2, ‖w2 − w‖ < ‖w1 − w‖, CXn,f̂ , w1 |= φ and CXn,f̂ , w2 6|= φ.

and logic [7], we can have probability estimates on literals and so encode continuous
feature spaces.



Proposition 1. . Let f̂ : Xn → Y and let CXn,f̂ be a counterfactual model for

Lf̂ with an Lf̂ definable norm. Suppose also that f̂(w) = η. Then:

CXn,f̂ , w |= φ �→ π, where π ∈ Π and φ is a separating formula iff there is

a minimally appropriate transformation, ∆i : Xn → Xn, where f̂(∆i(w)) = π,
and CXn,f̂ , ∆i(w) |= A.

Proposition 1 follows easily from Definitions 1, 2 and 3.
Proposition 1 is general and can apply to many different norms and lan-

guages. We will mostly be concerned here with a special and simple case:

Corollary 1 Let Lf̂ be a propositional language with a set P of propositional
letters, where P is the set of Boolean valued features of Xn, and let CXn,f̂ be a
counterfactual model for Lf̂ with an L1 norm. Then:

CXn,f̂ , w |= A �→ π, where π ∈ Π and A is a conjunction of literals in P iff
there is a minimally appropriate transformation over the dimensions i fixed by
A, ∆i : Xn → Xn, where f̂(∆i(w)) = π, and CXn,f̂ , ∆i(w) |= A.

We can generate minimally appropriate transformations via efficient (poly-
time) techniques like optimal transport or diffeomorphic deformations [40,33,23,9,4]
for computing adversarial perturbations [24]. In effect all of these diverse meth-
ods yield counterfactuals or sets of counterfactuals given Proposition 1. A typical
definition of an adversarial perturbation of an instance x, given a classifier, is
that it is a smallest change to x such that the classification changes. Essentially,
this is a counterfactual by a different name. Finding a closest possible world
to x such that the classification changes is, under the right choice of distance
function, the same as finding the smallest change to x to get the classifier to
make a different prediction.9

The great advantage of Proposition 1 is that marries efficient techniques to
generate counterfactual explanations with the logical semantics of counterfac-
tuals that provides logically valid (LV) explanations from counterfactual expla-
nations, unlike heuristic methods [35,27,35]. Thus, counterfactual explanations
build a bridge between logical rigour and computational feasibility.

Proposition 2. A counterfactual explanation given by a minimally appropriate
∆i(x̂) in CXn,f̂ , with an L1 norm and Xn with Boolean valued features, yields a
minimal, LV explanation in at worst a linear number of calls to an NP oracle.

Proof sketch. The atomic diagram [6] of CXn,f̂ in which each world is encoded as

a conjunction of literals (Boolean values of the features P of Xn together with

predictions from Y ), encodes M(f̂). Further, given Corollary 1 and Definition
3, each minimally appropriate ∆i defines a set of literals L∆i

describing ∆i(x̂)

such that ∆i(x̂),M(f̂) |= π. [19,18] provide an algorithm for finding a subset

minimal set of literals E ⊆ L∆i
with E ,M(f̂) |= π in a linear number relative to

|L∆i | of calls to an NP oracle [21]. ut

9 Such minimal perturbations may not reflect the ground truth, the causal facts that
our machine learning algorithm is supposed to capture with its predictions, as noted
by [25]. We deal with this in Section 4.



3 From partial to more complete explanations

We have observed that counterfactual explanations are intuitively simpler than
deductive ones, as they typically offer only a partial explanation. In fact there
are three sorts of partiality in a counterfactual explanation. First, a counterfac-
tual explanation is deductively incomplete; it doesn’t specify the ceteris paribus
conditions and so doesn’t specify what is necessary for a proof of the prediction π
for a particular focal point. Second, counterfactual explanations are also partial
in the sense that they don’t specify all the sufficient conditions that lead to π;
they are hence globally incomplete. Finally, counterfactuals are partial in a third
sense; they are also locally incomplete. To explain this sense, we need a notion
of overdetermination.

Definition 4. A prediction π ∈ Y by f̂ : X → Y is overdetermined for a focal
point x̂ ∈ X if the set of minimally sufficiently appropriate transformations of x̂

O(x̂, π, f̂) = {∆i : ∆i(x̂) is minimally sufficiently appropriate}

contains at least two elements.

Locally incomplete explanations via counterfactuals can occur whenever f̂ ’s
counterfactual decisions are over-determined for a given focal point. Many real
world applications like our bank loan example will have this feature.

Locally incomplete explanations can, given a particular ML modelMf̂ , hide

implicitly defined properties that show f̂ to be unacceptably biased in some way
and so pose a problem for fair and adequate explanations. Local incompleteness
allows for several explanatory counterfactuals with very different explanans to
be simultaneously true. This means that even with an explanation, f̂ may act
in ways unknown to the agent E or the public that is biased or unfair. Worse,
the constructor or owner of f̂ will be able to conceal this fact if the decision for
E is overdetermined, by offering counterfactual explanations using maps ∆ that
don’t mention the biased feature.

Definition 5. A prejudicial factor P is a map, P : Xn → Xn and f̂ exhibits a
biased dependency on prejudicial factor P just in case for some i 6= 0, ∆i, and
for some incompatible predictions η and π,

f̂(x̂) = f̂(∆i(x̂)) = η and f̂(P (x̂)) = f̂(P (∆i(x̂))) = π

Dimensions of the feature space that are atomic formulas in Lf̂ can provide ex-
amples of a prejudicial factor P . But prejudical factors P may be also implicitly
definable in Mf̂ . Assume that .̂ is a map from real individuals x to their repre-

sentation as data points x̂ ∈ X̂. Then: P is Mf̂ implicitly definable just in case:

for all x such that x̂ ∈ X̂, x ∈ ‖P‖ iff for some boolean combination E of atoms
of Lf̂ , Mf̂ |= E(x̂).

We’ve just described some pitfalls of locally incomplete counterfactual expla-
nations. We now show how to move from a partial picture of the behavior of f̂
to a more complete one using counterfactuals. Imagine that at a focal point x̂,
f̂(x̂) = η and we want to know why not π.



Definition 6. In a counterfactual model CXn,f̂ with a set of Boolean valued

features P , the collection of counterfactuals SC,x̂,π = {φ �→ π : CXn,f̂ , x̂ |=
φ �→ π with φ a Boolean combination of values for atoms in P} true at x̂ gives
the complete explanation for why π would have occurred at x̂.

Appropriate transformations ∆i on Xn in a counterfactual model CXn,f̂ to
produce π associated with counterfactuals via Proposition 1 can capture SC,x̂,π
and permit us to plot the local complete explanation of f̂ around a focal point
x̂ with regard to prediction π.

Definition 7. BC,x̂,π = {∆i(x̂) : ∆i is a minimal appropriate transformation
for some i ⊂ n}

Proposition 3. In a counterfactual model CXn,f̂ , BC,x̂,π = {y ∈ Xn : ∃ (φ �→
ψ) ∈ SC,x̂,π such that y is a closest φ world to x̂ where CXn,f̂ , y |= ψ}.

For the remainder of this section we will fix a counterfactual model CXn,f̂ to
simplify notation.

We are interested in the space Nf̂ ,x̂,π around x̂ with boundary Bx̂,π.

Definition 8. 1. Nf̂ ,x̂,π is the subspace of Xn such that (i) x̂ ∈ Nf̂ ,x̂,π and

(ii) Nf̂ ,π,x̂ includes in its interior all those points z for which f̂(z) = f̂(x̂)

and (iii) the boundary of Nf̂ ,x̂,π is given by Bx̂,π.

2. N d
f̂,π,x̂

is a subspace of Nf̂ ,x̂,π with boundary Bd
x̂,π, where Bd

x̂,π = Bx̂,π ∩
Bd(x̂), where Bd(x̂) = {y ∈ Xn : ‖y − x̂‖ ≤ d}.

3. Sdx̂,π = {y : ∃(φ �→ ψ) ∈ Sx̂,π ∧ CXn,f̂ , y |= ψ ∧ ‖y − x̂‖ ≤ d}.

The set Sx̂,π can have a complex structure in virtue of the presence of ceteris
paribus assumptions. Because strengthening of the antecedent fails in semantics
for counterfactuals, the counterfactuals in (4) relevant to our example of Section
2 are all satisfiable at a world without forcing the antecedents of (4)b or (4)c to
be inconsistent:

(4) a. If I were making e100K euro, I would have gotten the loan.
b. If I were making e100K or more but were convicted of a serious

financial fraud, I would not get the loan.
c. If I were making e100K or more and were convicted of a serious

financial fraud but then the conviction was overturned and I was
awarded a medal, I would get the loan.

The closest worlds in which I make e100k do not include a world w in which
I make e100k but am also convicted of fraud. Counterfactuals share this prop-
erty with other conditionals that have been studied in nonmonotonic reasoning
[13,32]. However, if the actual world turns out to be like w, then by weak cen-
tering (4)a turns out to be false, because the ceteris paribus assumption in (4)a
is that the actual world is one in which I’m not convicted of fraud.

In Sx̂,π we can count how many times the value of the consequent changes
as we move from one antecedent to a logically more specific one (e.g., does the



prediction flip from A to A∧C or from A∧C to A∧C ∧D). For generality, we
will also include in the number of flips, the flips that happen when we change
the Boolean value of a feature—going from A to ¬A for example. We will call
the number of flips the flip degree of Sx̂,π.

There is an important connection between the flip degree of Sx̂,π and the
geometry of Nf̂ ,x̂,π. In a counterfactual model, the move from one antecedent
φ1 of a counterfactual c1 a to logically more specific antecedent φ2 of c2, with
c1, c2 ∈ Sx̂,π will, given certain assumptions about the underlying norm yield
x̂ < y < z, with y being a closest to x̂ point verifying φ1 and z a closest point
verifying φ2. In fact we generalize this property of norms.

Definition 9. A norm ||.|| in a counterfactual model CXn,f̂ respects the log-

ical specificity of the model iff for any z ∈ Xn such that CXn,f̂ , z |= ψ and
for counterfactual antecedents φ1, φ2, . . . , φn describing features of Xn such that
CXn,f̂ , z |= φ1�→ ¬ψ, φ2�→ ψ, . . . , φn�→ ¬ψ such that φi+1 |= φi and

φi 6|= φi+1, there are collinear x1, ...xn ∈ Xn such that for each i, xi is a closest
point to z such that CXn,f̂ , xi |= φi and ||xi+1 − z|| > ||xi − z||.

Remark 1 An L1 norm for a counterfactual model is a logical specificity re-
specting norm.

In addition, a flip (move from a point verifying φ1 to a point verifying φ2
corresponds to a move from a transformation ∆i to a transformation ∆j with i ⊂
j. Thus, flips determine a partial ordering under ⊆ over the shifted dimensions
i: thus ∆i ≤ ∆j , if i ⊆ j. We are interested in the behavior of f̂ with respect to
the partial ordering on ∆i.

Definition 10. f̂ is nearly constant around x̂, if for every sufficiently minimally
appropriate ∆ifor all ∆j ⊃ ∆i, f̂(∆j(x̂)) = f̂(∆i(x̂)).

A nearly constant f̂ changes values only once for each combination of fea-
tures/dimensions di moving out from a focal point x̂. So at some distance d,

nearly constant f̂ becomes constant f̂ . For a nearly constant f̂ around x̂, Sx̂,π,

has flip degree 1. A complete local explanation for f̂ ’s prediction of π within d,
Sdx̂,π, is a global explanation f̂ ’s behavior with respect to π.

We can generalize this notion to define an n-shifting f̂ . If f̂ flips values n
times moving out from x̂, Sx̂,π has flip degree n.

Proposition 4. Suppose A counterfactual model has a logical specificity respect-
ing norm, then: Sx̂,π, has a flip degree ≤ 2 iff Nf̂ ,x̂,π forms a convex subspace

of f̂ [X].

Proof sketch. Assume Sx̂,π has flip degree ≥ 3. Then Sx̂,π will contain coun-
terfactuals with antecedents φ, χ, δ such that φ |= χ |= δ but, say, φ and δ
counterfactually support π but not χ. As the underlying norm respects |=, there
are collinear points x, y, and z, where x is a closest point to x̂ where φ is true,



y is a closest χ world, and z is a closest δ world such that x̂ < z < y < x.
But x̂, yχ ∈ Nf̂ ,x̂,π, while xφ, zδ ∈ Bx̂,π and 6∈ Nf̂ ,x̂,π, which makes Nf̂ ,x̂,π
non convex. Conversely, suppose Nf̂ ,x̂,π is non convex. Using the construction
of counterfactuals from the boundary Bx̂,π of Nf̂ ,x̂,π will yield a set with flip
degree 3 or higher. ut

The flip degree of Sx̂,π gives a measure of the degree of non-convexity of

Nf̂ ,x̂,π, and a measure of the complexity of an explanation of f̂ ’s behavior. A

low flip degree for Sdx̂,π with minimal overdeterminations provides a more general
and comprehensive explanation. With Proposition 4, a low flip degree converts
a local complete explanation into a global explanation, which is a priori prefer-
able. It is also arguably closer to our prior beliefs about basic causal processes.
The size of Sdx̂,π gives us a measure to evaluate f̂ itself; a large Sdx̂,π doesn’t
approximate very well a good scientific theory or the causal structures postu-
lated by science. Such a f̂ lacks generality; it has neither captured the sufficient
nor the necessary conditions for its predictions in a clear way. This could be
due to a bad choice of features determining f̂ ’s input Xn [9]; too low level or
unintuitive features could lead to lack of generality with high flip degrees and
numerous overdeterminations. Thus, we can use Sdx̂,π to evaluate f̂ and its input
representation Xn.

The flip degree of Sx̂,π and the topology of Nf̂ ,x̂,π can also tell us about the
relation between counterfactual explanations based on some element in X and
ground truth instances provided during training. Our learning algorithm f̂ is
trying to approximate or learn some phenomenon, which we can represent as a
function f : X → Y ; the observed pairs (z, f(z)) are ground truth points for f̂ .

Ideally, f̂ should fit and converge to f—i.e., with the number of data points N
f̂ is trained on limN→∞f̂

N → f ; in the limit explanations of the behavior of f̂
will explain f , the phenomenon we want to understand. Given that we generate
counterfactual situations using techniques used to find adversarial examples,
however, counterfactual explanations may also be based on adversarial examples
that have little to no intuitive connection with the ground truth instances f̂ was
trained on. While these can serve to explain the behavior of f̂ and as such
can be valuable, they typically aren’t good explanations of the phenomenon
f that f̂ is trying to model. [25] seek to isolate good explanations of f from

the behavior of f̂ and propose a criterion of topological connectedness for good
counterfactual explanations. This idea readily be implemented as a constraint
on Nf̂ ,x̂,π: roughly, f̂ as an approximation of f will yield good counterfactual
explanations relative to a focal point x̂ only if for any point y outside of Nf̂ ,x̂,π,

there is a region C where f̂ returns the same value and a path of points y1, ...yn ∈
C between y and a ground truth data point p such that f(p) = f̂(p) = f̂(yi) =

f̂(y).10

10 We note that our discussion and constraint make clear the distinction between f
and f̂ which is implicit in [25,15].



4 Pragmatic constraints on explanations

While we have clarified the partiality of counterfactual explanations, AI ap-
plications can encode data via hundreds even thousands of features. Even for
our simple running example of a bank loan program, the number of parameters
might provide a substantial set of counterfactuals in the complete local expla-
nation given by Sx̂,π. This complete local explanation might very well involve
too many counterfactuals for humans to grasp. We still to understand what
counterfactual explanations are pragmatically relevant in a given case.

Pragmatic relevance relies on two observations. First, once we move out a
certain distance from the focal point, then the counterfactual shifts intuitively
cease to be about the focal point; they cease to be counterparts of x̂ and become
a different case. Exactly what that distance is, however, will depend on a variety
of factors about the explainee E and what the explainer believes about E . Second,
appropriate explanations must respond to the particular conundrum or cognitive
problem that led E to ask for the explanation [5,1,28]. On our view, the explainee
E requires an explanation when her beliefs do not lead her to expect the observed
prediction π. When E ’s beliefs suffice to predict f̂(x̂) = π, she has a priori an

answer to the question Why did f̂(x) = π? In our bank example from Section
2, had E ’s beliefs been such that she did not expect a loan from the bank, she
wouldn’t have needed to ask, why did the bank not give me a loan?11

The conundrum comes from a mismatch between E ’s understanding of what
f̂ was supposed to model (our function f) and f̂ ’s actual predictions. So E , in

requesting an explanation of f̂ ’s behavior, might also want an explanation of f
itself (see the previous section for a discussion). Either E is mistaken about the

nature of f̂ , or her grasp of f̂ is incomplete..12 More often than not, E will have
certain preconceptions about f̂ , and then many if not most of the counterfactuals
in Sx̂,π may be irrelevant to E . A relevant or fair and adequate explanation for E
should provide a set CdE of appropriate ∆i with ‖∆i(x̂)− x̂‖ ≤ d showing which
of E ’s assumptions were faulty or incomplete, thus solving her conundrum.

Suppose that the explainee E requests an explanation why f̂(x̂) = η, and
that x̂ is decomposed into 〈xd1 , xd2〉.

CI Suppose E ’s conundrum based on incompleteness; i.e., the conundrum arises
from the fact that for E f̂ only pays attention to the values of dimensions
d1 in the sense that for her f̂(〈xd1 , xd2〉) = f̂(〈xd1 , x

′
d2
〉), for any values

x′d2
. Then there is a ∆ ∈ CdE such that ∆(〈xd1 , xd2〉) = 〈xd1 , yd2〉 and

f̂(∆(x̂)) = f̂(〈xd1 , yd2〉) = π while f̂(x̂) = f̂(〈xd1 , xd2〉) = η.
CM Suppose E ’s conundrum is based on a mistake. Then there is a ∆ ∈ CdE such

that ∆(〈xd1 , xd2〉) = 〈yd1 , xd2〉 such that f̂(〈yd1 , xd2〉) = f̂(∆(x̂)) = π. I.e.,

11 Of course E might want to know whether her beliefs matched the bank’s reasons for
denying her a loan, but that’s a different question—and in particular it’s not a why
question.

12 Perhaps E is also mistaken about or has an incomplete grasph of f or if not, she is
mistaken about how f̂ differs from f). But we will not pursue this here.



∆ must resolve E ’s conundrum by providing the values for the dimensions
d2 of x̂ on which E is mistaken.

A fair and adequate explanation must not only contain counterfactuals that
resolve the explainee’s conundrum. It must make clear the biases of the system
which may account for 0’s incomplete understanding of f̂ ; it must lay bare any
prejudicial factors P that affect the explainee and thus in effect all overdeter-
mining factors as in Definition 4. An explainee might reasonably want to know
whether such biases resulted in a prediction concerning her. E.g., the explanation
in (3) might satisfy CM or CI, but still be misleading. Thus:

CB ∀ prejudicial factors P , there is a ∆ ∈ CdE such that f̂(∆(x̂)) = π and
P (∆(x̂)) = ∆(x̂).

In our bank loan example, if the bank is constrained to provide an explanation
obeying CB, then it must provide an explanation according to which being white
and having E ’s salary would have sufficed to get the loan.

Definition 11. A set of counterfactuals provides a fair and adequate explana-
tion of f̂ for E at x̂ just in case they together satisfy CM, CI and CB within a
certain distance d of x̂.

The counterfactuals in CdE jointly provide a fair and adequate explanation of f̂ for
E , though individually they may not satisfy all of the constraints. We investigate
how hard it is to find an adequate local explanation in the next section.

5 The algorithmic complexity of finding fair and adequate
explanations

In this section, we examine the computational complexity of finding a fair and
adequate explanation. To find an appropriate explanation, we imagine a game
played, say, between the bank and the would-be loan taker E in our example
from Section 2, in which E can ask questions of the bank (or owner/ developer
of the algorithm) about the algorithm’s decisions. We propose to use a two player
game, an explanation game to get appropriate explanations for the explainee.

The pragmatic nature of explanations already motivates the use of a game
theoretic framework. We have argued fair and adequate explanations must obey
pragmatic constraints; and in order to satisfy these in a cooperative game the
explainer must understand explainee E ’s conundrum and respond so as to re-
solve it. Providing an explanation is a pragmatic act that takes into account an
explainee’s cognitive state and the conundrum it engenders for the particular
fact that needs explaining. A cooperative explainer will provide an explanation
in terms of the type he assigns to E , as the type will encode the relevant portions
of E ’s cognitive state. On the other hand the explainee will need to interpret the
putative explanation in light of her model of the explainer’s view of his type.
Thus, both explainer and explainee naturally have strategies that exploit infor-
mation about the other. Signaling games [37] are a well-understood and natural



formal framework in which to explore the interactions between explainer and ex-
plainee; the game theoretic machinery we develop below can be easily adapted
into a signaling game between explainer and explainee where explanations suc-
ceed when their strategies coordinate on the same outcome.

Rather than develop signaling games however for coordinating on successful
explanations, we look at non-cooperative scenarios where the explainer f̂ may
attempt to hide a good explanation. For instance, the bank in our running exam-
ple might have encoded directly or indirectly biases into its loan program that
are prejudicial to E , and it might not want to expose these biases. The games
below provide a formal account of the difficulty our explainee has in finding a
winning strategy in such a setting.

To define an explanation game, we first fix a set of two players {E ,A}.
The moves or actions VE for explainee E are: playing an ACCEPT move—in

which E accepts a proposed ∆i if it partially solves her conundrum; playing an
N-REQUEST move—i.e. requesting a ∆j where j differs from all i such that
∆i has been proposed by A in prior play; playing a P-REQUEST move—i.e.
for some particular i, requesting ∆i. E may also play a CHALLENGE move, in
which E claims that a set of features A1, . . . An of the focal point that entails
π in the counterfactual model associated with f̂ . We distinguish three types of
ME explanation games for E based on the types of moves she is allowed: the
Forcing ME explanation games, in which E may play ACCEPT, N-REQUEST,
P-REQUEST; the more restrictive Restriction ME explanation games, in which
E may only play ACCEPT, N-REQUEST; and finally Challenge ME explanation
games in which CHALLENGE moves are allowed.

Adversary A’s moves VA consists of the following: producing ∆i and com-
puting f̂(∆i(x̂)) in response to N-REQUEST or P-REQUEST by E ; if G is a
forcing game, A must play ∆i at move m in ρ, if E has played P-REQUEST
∆i at m − 1. In reacting to a N-REQUEST, player A may offer any new ∆i;
if he is noncooperative, he will offer a new ∆i that is not relevant to E ’s co-
nundrum, unless he has no other choice. On the other hand, A must react to a
CHALLENGE move by E by playing a ∆i that either completes or corrects the
Challenge assumption. A CHALLENGE demands a cooperative response; and
since it can involve any implicitly definable prejudicial factor as in Definition 5,
it can also establish CB, as well as remedy CI or CM.

We now specify a win-lose, generic explanation game.

Definition 12. An Explanation game, G, concerning a polynomially computable
function f̂ : Xn → Y , where Xn is a space of boolean valued features for the
data and Y a set of predictions, is a tuple ((VE ∪VA)∗, E ,A, f̂ : Xn → Y, x̂, d,CdE)
where:

i. CdE ⊆ Bd
x̂,π resolves E’s conundrum and obeys CB.

ii. x̂ ∈ Xn is the starting position, d is the antecedently fixed distance parameter.
iii. A, but not E has access to the behavior of f̂ and a fortiori CdE .
iv. E opens G with a REQUEST or CHALLENGE move
v. A responds to E’s requests by playing some ∆i, i ≤ d.



vi. E may either play ACCEPT, in which case the game ends or again play a
REQUEST or CHALLENGE move.

E wins G just in case in G she can determine CdE . The game terminates when (a)
0 has determined CdE (resolved her conundra) or gives up.

E always has a winning strategy in an explanation game. The real question
is how quickly E can compute her winning condition. An answer depends on
what moves we allow for E in the Explanation game; we can restrict E to play-
ing a Restriction explanation game, a Forcing game or a Forcing game with
CHALLENGE moves.

Proposition 5. Suppose G is a forcing explanation game. Then the computation
of E’s winning strategy in G is Polynomial Local Search complete (PLS) [20,31].
On the other hand if G is only a Restriction game, then the worst case complexity
for finding her strategy is exponential.

Proof sketch. Finding CdE is a search problem using f̂ . CdE is finite with, say, m
elements. These elements need not be unique; they just need jointly to solve the
conundrum. This search problem is PLS just in case every solution element is
polynomially bounded in the size of the input instance, f̂ is poly-time, the cost
of the solution is poly-time and it is possible to find the neighbors of any solution
in poly-time. Let x̂ be the input instance. By assumption, f̂ is polynomial; and
given the bound d, the solutions y for f̂(y) = π and y ∈ CdE are polynomially
bounded in the size of the description of x̂. Now, finding a point y ∈ CdE that
solves at least part of E ’s conundrum, as well as finding neighbors of y is poly-
time, since E can use P-REQUEST moves to direct the search. To determine the
cost c of finding CdE for |CdE | = m in poly-time: we set for y ∈ CdE the jth element
of C computed as c(y) = m − j; if y 6∈ C, c(y) = m. Finding CdE thus involves
determining m local minima and is PLS. In addition, determining CdE encodes
the PLS complete problem FLIP [20]: the solutions y in G have the same edit

distance as the solutions in FLIP, f̂ encodes a starting position, and our cost
function can be recoded over the values of the Boolean features defining y to
encode the cost function of FLIP and the function that compares solutions in
FLIP is also needed and constructible in G. So finding CdE is PLS complete in G
as it encodes FLIP.

The fact that forcing explanation games are PLS complete makes getting an
appropriate explanation computationally difficult. Worse, if G is a Restriction
Explanation game,then A can force E to enumerate all possible ∆i within radius
d of x̂ to find CdE . ut

Proposition 6. Suppose G is a Challenge explanation game. Then E has a win-
ning strategy in G that is linear time computable.

Proof sketch. A must respond to E ’s CHALLENGE moves by correcting or
completing E ’s proposed list of features. E can determine CdE in a number of
moves that is linear in the size of CdE . ut



A Challenge explanation game mimics a coordination game where A has
perfect information about CdE , because it forces cooperativity and coordination
on the part of A. Suppose E in our bank example claims that her salary should
be sufficient for a loan. In response to the challenge, the bank could claim the
salary is not sufficient; but that’s not true—the salary is sufficient provided other
conditions hold. That is, E ’s conundrum is an instance of CI. Because of the
constraint on CHALLENGE answers by the opponent, the bank must complete
the missing element: if you were white with a salary of e50K,... Proposition 6
shows that when investigating an f̂ in a challenge game, exploiting a conundrum
is a highly efficient strategy.

The flip degree of Sdx̂,π and the number of overdetermining factors O(x, π)
(Definition 4) typically affect the size of C and thus the complexity of the co-
nundrum and search for fair and adequate explanations and their logical valid
associates. More particularly, when |O(π, x̂)| = n and the cost of the prediction
is as in the proof of Proposition 5, E ’s conundrum and the explanations resolving
it may require n local minima. When the flip degree of Sdx̂,π is m, E may need
to compute m local minima.

To develop practical algorithms for fair and adequate explanations for AI
systems, we need to isolate E ’s conundrum. This will enable us to exploit the ef-
ficiencies of Challenge explanation games. Extending the framework to discover
E ’s conundrum behind her request for an explanation is something we plan to do
using epistemic games from [3] with more developed linguistic moves. In a more
restricted setting where Challenge games are not available, our game framework
shows that clever search algorithms and heuristics for PLS problems will be
essential to providing users with relevant, and provably fair and adequate coun-
terfactual explanations. This is something current techniques like enumeration
or finding closest counterparts, which may not be relevant [19,18,22]—do not do.

6 Conclusion

We have shown that counterfactual explanations can deliver partial, but epis-
temically accessible and adequate explanations. We have also shown that any
counterfactual explanation can be extended to a valid deductive one. We have
shown that pragmatic factors dramatically affect the complexity of finding ade-
quate explanations, and we introduced Explanation Games, which provided to
represent finding fair and adequate counterfactual explanations as a PLS com-
plete search problem. In addition, we explored how the complexity of the set
of counterfactuals describing a local neighborhood around the focal point can
affect both the complexity of fair and adequate explanations and our evaluation
of the learning algorithm as a model.

Our paper fills in part of the gap for finding fair and adequate explanations
in a computationally reasonable way. Nevertheless moving from an explanation
provided by an explanation game to a proof from a minimal set of sufficient
premises as in Proposition 2 is still computationally difficult. In future work we
will look at efficient heuristics for this step. In future work, we will alo look at how
explanation games help us to formally explore interactive machine learning, in



particular “human in the loop” or interactive explainability for machine learning
function behavior [2,17]. Such game theoretic investigations may have special
relevance in medical domains [16].
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