
HAL Id: hal-03454215
https://hal.science/hal-03454215v1

Submitted on 29 Nov 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

INFERENCE FROM VISIBLE INFORMATION AND
BACKGROUND KNOWLEDGE

Michael Benedikt, Pierre Bourhis, Balder ten Cate, Gabriele Puppis, Michael
Vanden Boom

To cite this version:
Michael Benedikt, Pierre Bourhis, Balder ten Cate, Gabriele Puppis, Michael Vanden Boom. INFER-
ENCE FROM VISIBLE INFORMATION AND BACKGROUND KNOWLEDGE. ACM Transactions
on Computational Logic, 2021. �hal-03454215�

https://hal.science/hal-03454215v1
https://hal.archives-ouvertes.fr

ar
X

iv
:1

50
9.

01
68

3v
4

 [
cs

.L
O

]
 1

1
M

ay
 2

01
8

INFERENCE FROM VISIBLE INFORMATION AND BACKGROUND

KNOWLEDGE

MICHAEL BENEDIKT, PIERRE BOURHIS, BALDER TEN CATE, GABRIELE PUPPIS,
AND MICHAEL VANDEN BOOM

Department of Computer Science, Oxford University, Parks Rd, Oxford OX1 3QD, UK

CNRS/CRIStAL, Parc scientifique de la Haute Borne 40, avenue Halley. Bat. B, Park Plaza 59650
Villeneuve d’Ascq

Google Inc., Mountainview CA

CNRS / LaBRI, 351 Cours de la Libération, Talence 33405, France

Department of Computer Science, Oxford University, Pars Rd, Oxford OX1 3QD, UK

Abstract. We provide a wide-ranging study of the scenario where a subset of the relations
in a relational vocabulary are visible to a user — that is, their complete contents are
known — while the remaining relations are invisible. We also have a background theory
— invariants given by logical sentences — which may relate the visible relations to invisible
ones, and also may constrain both the visible and invisible relations in isolation. We want
to determine whether some other information, given as a positive existential formula, can
be inferred using only the visible information and the background theory. This formula
whose inference we are concered with is denoted as the query. We consider whether positive
information about the query can be inferred, and also whether negative information – the
sentence does not hold – can be inferred. We further consider both the instance-level
version of the problem, where both the query and the visible instance are given, and the
schema-level version, where we want to know whether truth or falsity of the query can be
inferred in some instance of the schema.

1. Introduction

This paper concerns a setting where there is a collection of relations, but a given user or
class of users has access to only a subset of these relations. This could arise, for example in
a database setting, where a data owner restricts access to a subset of the stored relations for
privacy reasons. Another example comes from information integration, where the integrated
schema exposed to users contains both stored relations and “virtual relations”, whose con-
tents are not directly accessible, but which have a meaning defined by logical relationships
with stored relations. Both of these scenarios can be subsumed by considering a schema
consisting of a set of relations that must satisfy a background theory (invariants specified by
sentences in some logic) with only a subset of the relations visible. A basic computational
problem is to determine what questions can be answered by means of reasoning with the
background theory and access to the visible relations. Can someone use the content of the
visible relations along with background knowledge to answer a given question about the
invisible relations?

LOGICAL METHODS
IN COMPUTER SCIENCE DOI:10.2168/LMCS-???

c© M. Benedikt, P. Bourhis, B. ten Cate, G. Puppis, and M. Vanden Boom
Creative Commons

1

http://arxiv.org/abs/1509.01683v4

2 M. BENEDIKT, P. BOURHIS, B. TEN CATE, G. PUPPIS, AND M. VANDEN BOOM

We study this scenario, where a set of semantically-related relations are hidden while
for another set the complete contents are visible. We will consider background theories
specified in a variety of logical languages that are rich enough to capture complex relation-
ships between relations, including relationships that arise in information integration and
restrictions on a single source that have been studied in the database research community
(“integrity constraints”). The basic analysis problem will be as follows. We are given a re-
lational vocabulary partitioned into visible and invisible relations, a logical sentence Q (the
query, representing information whose inference we want to check), and a background the-
ory Σ, again consisting of logical sentences. Our goal is to determine whether we can infer
using the visible relations and the background theory some properties about the evaluation
of Q. We will be considering variations of the problem in two dimensions:

Instance-level vs. Schema-level Can Q be inferred from Σ and the extensions of the
visible relations in a particular instance, where the extension of visible relations are
given as input to the problem? Can Q be inferred on some instance?

Positive vs. Negative Can it be inferred that Q is true? Can it be inferred that Q is
false?

Example 1. Just in order to give intuition for the problems we study in the paper, we give
an example from logical analysis of information disclosure, in the spirit of prior works such
as [GB14].

Consider a medical datasource with relation Appointment(p, a, . . .) containing patient
names p, appointment ids a, and other information about the appointment, such as the
name d of the doctor. A dataowner makes available one projection of Appointment by
creating a relation Patient(p), defined by the following logical sentences Σ:

∀ p Patient(p) → ∃ a d Appointment(p, a, d)

∀ p a d Appointment(p, a, d) → Patient(p) .

The query Q = ∃ a Appointment(“Smith”, a, “Jones”) asking whether patient Smith made
an appointment with Dr. Jones can not be inferred under this schema in one sense: an
external user with access to Patient will never be sure that the query is true, in any instance.
We say that there can be no Positive Query Implication on any instance for this query,
schema, and background theory. But suppose we consider whether a user can infer the
query to be false? On many instances, such an inference is not possible. But on instances
where the visible relation Patient does not contain the patient name Smith, an external user
will know that the query is false. We say that there is a Negative Query Implication on the
visible instances where Patient does not contain Smith.

Our results. As mentioned above, we will consider the instance-based problems: given a
query and instance, can a user determine that the query is true (Positive Query Implication)
or that the query is false (Negative Query Implication)? We also look at the corresponding
schema-level problem: given a query and a schema, is there some instance where a query
implication of one of the above types occurs?

We start by observing that the instance-level problems, both positive and negative, are
decidable for a very rich logical language for background theories, using the same technique:
a reduction to the guarded negation fragment of first-order logic (see below). However, when
we analyze the complexity of the decision problem as the size of the instance increases,
we see surprisingly different behavior between the positive and negative case. For very
simple background theories the negative query implication problems are well-behaved as
the instance changes, namely, in polynomial time and definable within a well-behaved logic.
For the same class of background theories, the corresponding positive query implication

INFERENCE FROM VISIBLE INFORMATION AND BACKGROUND KNOWLEDGE 3

questions are hard even when the schema and query are fixed. Our most significant hardness
result is that even for simple background theories the positive query inference problem is
ExpTime-hard in data complexity : that is, when everything except the visible instance is
fixed. This is a big jump in complexity for the complexity for special cases of the problem
studied in the description logic [LSW13] and database community [AD98] in the past.

When we turn to the schema-level problems, even decidability is not obvious. We
prove a set of “critical instance” results, showing that whenever there is an instance where
information about the query can be implied, the “obvious instance” witnesses this. Thus,
schema-level problems reduce to special cases of the instance-level problems. Although we
use this technique to obtain decidability and complexity results both for positive and for
negative query implication, the classes of background knowledge to which they apply are
different. We give undecidability results that show that when the classes are even slightly
enlarged, decidability of the existence of an instance with a query implication is lost.

Our techniques. We make use of a number of tools for reasoning on mixtures of complete
and incomplete information.

• Connection to Guarded negation. Our first technique involves showing that a
large class of instance-level problems can be solved by translating them into satisfia-
bility problems for a rich fragment of first-order logic, the guarded negation fragment
(GNFO). In fact, we show that there is a natural connection between these infer-
ence problems and GNFO, in that the “visibility restriction” can be expressed in
GNFO. This allows us to exploit powerful prior decidability results for GNFO “off-
the-shelf”. However, to get tight complexity bounds, we need a new analysis of the
complexity of satisfiability for GNFO. This analysis is of interest outside of these
inference problems, in that we give a self-contained reduction from GNFO satisfia-
bility to tree automata, a reduction which allows us to give a finer-grained analysis
of the sources of complexity in GNFO satisfiability.
• Decidability via canonical counterexamples. The schema-level analysis asks
if there is some instance on which information about the query can be derived.
As mentioned above, we show that whenever there is some instance, this can be
taken to be the “simplest possible instance”. While this idea has been used before
to simplify analysis of undecidability (e.g. [GM14]), and for decidability of Data-
log satisfiability [Shm93], we provide a significant extension of the technique, and
provide new applications of it for decidability.
• Tractability via greatest fixed-point. We show that some of our instance-
level implication problems can be reduced to evaluating a certain query of greatest
fixedpoint Datalog (GFP-Datalog) on the given visible instance. Since GFP-Datalog
queries can be evaluated in polynomial time, this shows tractability in the instance
size. The reduction to GFP-Datalog requires a new analysis of when these inference
problems are “active-domain controllable” (it suffices to see that the query value is
invariant over all hidden instances that lie within the active domain of the visible
instance).
• Relationships between problems. In the paper we explain how the 4 inference
problems we consider (combinations of positive/negative and instance-level/schema-
level) differ from previously-studied problems, such as the “open world query answer-
ing problem”. However, we also provide reductions between open world querying
and some of our schema-level problems. In addition to clarifying the relationship of
the problems, we can use these reductions to derive complexity bounds.

Organization. After a review of related work in Section 2, we formally define the
problem in Section 3. Section 4 presents our results on whether we can infer the truth

4 M. BENEDIKT, P. BOURHIS, B. TEN CATE, G. PUPPIS, AND M. VANDEN BOOM

of a CQ or UCQ: the problems PQI and ∃PQI. Section 5 turns to the problems NQI and
∃NQI, concerning inferring the negation of a CQ or UCQ. Section 6 deals with some small
extensions of the framework, and some special cases of the problems of particular interest.
We close in Section 7 with conclusions.
Acknowledgements. This is a long version of the extended abstract that appeared in
[BBPtC16]. We are quite grateful to the referees of LICS for their helpful comments.

Benedikt’s work was sponsored by the Engineering and Physical Sciences Research
Council of the United Kingdom, grants EP/M005852/1 and EP/L012138/1. Bourhis was
supported by CPER Nord-Pas de Calais/FEDER DATA Advanced data science and tech-
nologies 2015-2020 and ANR Aggreg project ANR-14-CE25-0017.

2. Related Work

Two different communities have studied the problem of determining which information can
be inferred from complete access to data in a subset of the relations, using background
knowledge in the form of logical sentences relating the subset to the full vocabulary.

In the database community, the focus has been on views. The schema is divided into
the “base tables” and “view tables”, with the latter being defined by queries (typically
conjunctive queries) in terms of the former. Given a query over the schema, the basic com-
putational problem is determining which answers can be inferred using only the values of
the views. Abiteboul and Duschka [AD98] isolate the complexity of this problem in the
case where views are defined by conjunctive queries; in their terminology, it is “querying
under the Closed World Assumption”, emphasizing the fact that the possible worlds re-
vealed by the views are those where the view tables have exactly their visible content. In
our terminology, this corresponds exactly to the “Positive Query Implication” (PQI) prob-
lem in the case where the background theory consists entirely of conjunctive query view
definitions. Chirkova and Yu [CY14] extend to the case where conjunctive query views are
supplemented by weakly acyclic dependencies. Another subcase of PQI that has received
considerable attention is the case where the background theory consists only of “complete-
ness assertions” between the invisible and visible portions of the schema. A series of papers
by Fan and Geerts [FG10a, FG10b] isolate the complexity for several variations of the
problem, with particular attention to the case where the completeness assertions are via
inclusion dependencies from the invisible to the visible part.

The PQI problem we study in the first part of this work is also related to research
on instance-based determinacy (see in particular the results of Howe et al. in [KUB+12])
while the “Negative Query Implication” (NQI) problem in the second half of the paper
is examined in the view context by Mendelzon and Zhang [ZM05], under the name of
“conditional emptiness”. As in the other work mentioned above, the emphasis has been on
view definitions rather than more general background knowledge which may restrict both
the visible and invisible instance. In contrast, in our work we deal with logical languages for
the background theory that can restrict the visible and invisible data in ways incomparable
to view definitions (see also the comparison in Section 6).

In the description logic community, the emphasis has not been on views, but on querying
incomplete information in the presence of a logical theory. Our positive query implication
problems relate to work in the description logic community on hybrid closed and open world
query answering or DBoxes, in which the schema is divided into closed-world and open-
world relations. Given a Boolean CQ, we want to find out if it holds in all instances that
can add facts to the open-world relations but do not change the closed-world relations.
In the non-Boolean case, the generalization is to consider which tuples from the initial

INFERENCE FROM VISIBLE INFORMATION AND BACKGROUND KNOWLEDGE 5

instance are in the query answer on all such instances. Thus closed-world and open-world
relations match our notion of visible and invisible, and the hybrid closed and open world
query answering problem matches our notion of positive query implication, except that we
restrict to the case where the open-world/visible relations of the instance are empty. It is
easy to see that this restriction is actually without loss of generality: one can reduce the
general case to the case we study with a simple linear time reduction, making a closed-world
copy R′ of each open-world relation R, and adding an inclusion dependency from R′ to R.
As with the database community, the main distinction between our study of the Positive
Query Implication problem and the prior work in the DL community concerns the classes of
background theories considered. Lutz et al. [LSW12, LSW15, LSW13] study the complexity
of this problem for background knowledge for several description logics. For example, for
the description logics EL and DL-LITE they provide a dichotomy between co-NP-hard and
first-order rewritable theories. They also show that in all the tractable cases, the problem
coincides with the classical open-world query answering problem. Franconi et al. [FIS11]
show co-NP-completeness for a disjunction-free description logic. Our results on the data
complexity of PQI consider the same problem, but for background theories that are more
expressive and, in particular, can handle relations of arbitrary arity, rather than arity at
most 2 as in [LSW13, LSW15, FIS11].

In summary, both the database and DL communities considered the PQI questions ad-
dressed in this paper, but for background theories that are different from those we consider.
The Negative Query Implication problems are not well-studied in the prior literature, and
we know of no work at all dealing with the schema-level questions (asking for the exis-
tence of an instance with a query implication) in prior work. However, in this paper we
show (see Subsection 5.2) that there is a close relation between these schema-level ques-
tions and the works of Lutz et al. that concern conservativity and modularity of ontologies
[LW07, KLWW13].

Note that our schema-level analysis considers the existence of some instance where the
query result can be inferred. The converse problem is to determine whether the query result
can be inferred on all instances. This is exactly the problem of determinacy [NSV10], which
is closely related to the notion of implicit definability in classical logic [Bet53]. Determinacy
has been extensively studied for both views [NSV10, GM15] and for background theories
and visible relations [BtCT16, BtCLT16].

Another contrast is to the work of Miklau and Suciu [MS07] considers whether such an
inference is valid probabilistically, looking asymptotically at the uniform distribution over
models of increasing size.

Recently [BCK17] analyzed the complexity of query implication in the presence of
information disclosure methods based on query answering interfaces — where an external
user can query under the certain answer semantics — rather than the model of disclosure
based on exporting a subset of the data, as in our setting. The analysis in [BCK17] builds
on the techniques presented in this paper.

3. Definitions

We consider partitioned schemas (or simply, schemas) S = Sh ∪ Sv, where the partition
elements Sh and Sv are finite sets of relation names (or simply, relations), each with an
associated arity. These are the hidden and visible relations, respectively. An instance of
a schema maps each relation to a set of tuples of the associated arity. Instances will be
used as inputs to the computational problems that are the focus of this work – in this case
the instances must be finite. Our computational problems also quantify over instances, and

6 M. BENEDIKT, P. BOURHIS, B. TEN CATE, G. PUPPIS, AND M. VANDEN BOOM

they are also well-defined when the quantification is over all (finite or infinite) instances.
For simplicity, by default instances are always finite. However, as we will show, taking any
of the quantification over all instances will never impact our results, and this will allow us
to make use of infinite instances freely in our proofs. The active domain of an instance is
the set of values occurring within the interpretation of some relation in the instance.

As a suggestive notation, we write V (Visible) for instances over Sv and F (Full) for
instances over S. Given an instance F for S, its restriction to the Sv relations will be
referred to as its visible part, denoted Visible(F).

We will look at background theories defined in a number of logics. One class of logical
sentences that we will focus on are Tuple-generating Dependencies (TGDs)m which are
first-order logic sentences of the form

∀x̄ φ(x̄) → ∃ȳ ρ(x̄, ȳ)

where φ and ρ are conjunctions of atoms, which may contain variables and/or constants,
and where all the universally quantified variables x̄ appear in φ(x̄). For all the problems
considered in this work, one can take w.l.o.g. the right-hand side ρ to consist of a single
atom, and we will assume this henceforth. We will often omit the universal quantifiers,
writing just φ(x̄) → ∃ȳ ρ(x̄, ȳ). The main feature of TGDs we will exploit is the lack of
disjunction, which will allow for cleaner characterizations of our query inference problems.

For TGDs we will be able to obtain clean semantic characterizations for our inference
problems. But most inference problems involving TGDs are undecidable [AHV95], including
all those we study here. Thus for our decidability and complexity results we will look at
classes of TGDs that are computationally better behaved:

• Linear TGDs: those where φ consists of a single atom.
• Inclusion Dependencies (IDs), linear TGDs where each of φ and ρ have no constants
and no repeated variables. These correspond to traditional referential integrity
constraints in databases.
• Many of our results on inclusion dependencies will hold for two more general classes.
Frontier-guarded TGDs (FGTGDs) [BLMS09] are TGDs where one of the conjuncts
of φ is an atom that includes every universally quantified variable xi occurring in ρ.
Connected TGDs require only that the co-occurrence graph of φ is connected. The
nodes of this graph are the variables x̄, and variables are connected by an edge if
they co-occur in an atom of φ.

Note that every ID is a linear TGD, and every linear TGD is frontier-guarded. We will also
consider two logical languages that are generalizations of FGTGDs.

• We allow disjunction, by considering Disjunctive Frontier-guarded TGDs, which are
of the form

∀x̄ φ(x̄) → ∃ȳ
∨

i
ρi(x̄, ȳ)

where, for each i, ρi is a conjunction of atoms and there is an atom in φ that includes
all the variables xj occurring in ρi.
• A key role will be played by an even richer logic, one containing Disjunctive FGTGDs
, the Guarded Negation Fragment. GNFO is built up inductively according to the
grammar:

φ ::= R(t̄) | t1 = t2 | ∃x φ | φ ∨ φ | φ ∧ φ |

R(t̄, ȳ) ∧ ¬φ(ȳ)

where R is either a relation symbol or the equality relation x = y, and the ti
represent either variables or constants. Notice that any use of negation must occur
conjoined with an atomic relation that contains all the free variables of the negated

INFERENCE FROM VISIBLE INFORMATION AND BACKGROUND KNOWLEDGE 7

formula – such an atomic relation is a guard of the formula. In database terms,
GNFO is equivalent to relational algebra where the difference operator can only be
used to subtract query results from a relation. The VLDB paper [BtCO12] gives
both Relational algebra and SQL-based syntax for GNFO, and argues that it covers
useful queries and database integrity constraints in practice.

For simplicity (so that all of our sentences are well-defined on instances) we will always
assume that our GNFO formulas are domain-independent; to enforce this we can use the
relational algebra syntax for capturing these queries, mentioned above.

For many of the results in the paper, the reader only needs to know a few facts about
GNFO. The first is that it is quite expressive, so in proving things about GNFO sentences
we immediately get the results for many classes of theories that we have mentioned above.
GNFO contains every positive existential formula, is closed under Boolean combinations of
sentences, and it subsumes disjunctive frontier-guarded TGDs up to equivalence. That is,
by simply writing out a disjunctive frontier-guarded TGD using ∃,¬,∧, one sees that these
are expressible in GNFO.

Secondly, we will use that GNFO is “tame”, encapsulated in the following result from
[BtCS11]:

Theorem 3.1 ([BtCS11]). Satisfiability for GNFO sentences can be tested effectively, and is
2ExpTime-complete. Furthermore, every satisfiable sentence has a finite satisfying model.

Note that GNFO does not subsume the theories corresponding to CQ view definitions
(e.g. A(x, y) ∧ B(y, z) ↔ V (x, z) cannot be expressed in GNFO). However we will cover
this special class of theories in Section 6.

Finally, we will consider Equality-generating Dependencies (EGDs), of the form

∀x̄ φ(x̄) → xi = xj

where φ is a conjunction of atoms and xi, xj are variables. As with TGDs, EGDs generalize
some well-known relational database integrity constraints, such as functional dependencies
and key constraints. EGDs with constants further allow equalities between variables and
constants, e.g. xi = a, in the right-hand side.

Our problems take as input a background theory and also a logical sentence whose
inference we want to study, the query. In this work we will consider queries specified as
conjunctive queries (CQs), first-order formulas built up from relational atoms via conjunc-
tion and existential quantification (equivalently, relational algebra queries built via selection,
projection, join, and rename operations), and also unions of CQs (UCQs), which are dis-
junctions (relational algebra unions) of CQs. Boolean UCQs are simply UCQs with no free
variables. Every CQ Q is associated with a canonical instance CanonInst(Q), where the
domain consists of variables and constants of Q and the facts are the atoms of Q.

We will always assume that we have associated with each value a corresponding con-
stant, and we will identify the constant with its value. Thus distinct constants will always
be forced to denote distinct domain elements – this is often called the “unique name as-
sumption” (UNA) [AHV95]. While the presence or absence of constants will often make no
difference in our results, there are several problems where their presence adds significant
complications. In contrast, it is easy to show that the presence of constants without the
UNA will never make any difference in any of our results. Note that in our background
theories and query languages above, with the exception of IDs, constants are allowed by de-
fault. When we want to restrict to formulas without constants, we add the prefix NoConst;
for example, NoConst-FGTGD denotes the frontier-guarded TGDs that do not contain
constants.

The crucial definition for our work is the following:

8 M. BENEDIKT, P. BOURHIS, B. TEN CATE, G. PUPPIS, AND M. VANDEN BOOM

Definition 3.2. Let Q be a Boolean UCQ over schema S, Σ a logical theory over S, and
V an instance over a visible schema Sv ⊆ S.

• PQI(Q,Σ,S,V) = true if for every finite instance F satisfying Σ, if V = Visible(F)
then Q(F) = true.
• NQI(Q,Σ,S,V) = true if for every finite instance F satisfying Σ, if V = Visible(F)
then Q(F) = false.

We call an Sv-instance V realizable w.r.t. Σ if there is an S-instance F satisfying
Σ such that V = Visible(F). If an instance V is not realizable w.r.t. Σ, then, trivially,
PQI(Q,Σ,S,V) = NQI(Q,Σ,S,V) = true. In practice, realizable instances are the only
Sv-instances we should ever encounter. For simplicity we state our instance-level results for
the PQI and NQI problems that take as input an arbitrary instance of Sv. But since our
lower bound arguments will only involve realizable instances, an alternative definition that
assumes realizable inputs yields the same complexity bounds.

PQI(Q,Σ,S,V) states something about every finite instance, in line with our default
assumption that instances are finite. We can also talk about an “unrestricted version”
where the quantification is over every (finite or infinite) instance. For the logical sentences
we deal with for our background theories, there will be no difference between these notions.
That is, we will show that the finite and unrestricted versions of PQI coincide for a given
class of arguments Q,Σ,S,V. We express this by saying that “PQI(Q,Σ,S,V) is finitely
controllable”, and similarly for NQI.

We need a definition of the size of the input. In our case, an input consists of a query
Q, a set of sentences Σ, a relational schema S, and an instance V, and the size is defined
by taking the length of the binary encoding of such objects. Other intuitive notions of
size (e.g. number of symbols) would also suffice for our results, since they differ from the
bit-encoding notion only up to a polynomial factor.

Often we will be interested in studying the behavior of the PQI and NQI problems when
Q, Σ, and S are fixed, e.g. looking at how the computation time varies in the size of V only.
We refer to this as the data complexity of the PQI (resp. NQI) problem.

The PQI problem contrasts with the usual Open-World Query Answering or Certain
Answer problem, denoted here OWQ(Q,Σ,F), which is studied extensively in databases
and description logics. The latter problem takes as input a Boolean query Q, an instance
I, and a set of sentences Σ, and returns true iff the query holds in any finite instance I ′

containing all facts of I. In PQI (and NQI) we further constrain the instance to be fixed on
the visible part while requiring the invisible part of the input instance to be empty. This
is the mix of “Closed World” and “Open World”, and we will see that this Closed World
restriction can make the complexity significantly higher.

Example 2. Consider a scenario where the background theory consists of inclusion depen-
dencies F1(x) → ∃y U(x, y) and U(x, y) → F2(y). In the schema, the relations F1 and F2

are visible but U is not. Consider the query Q = ∃x U(x, x) and instance consisting only
of facts F1(a), F2(a).

There is a PQI on this instance, since F1(a) implies that U(a, c) holds for some c, but
the other constraint and the fact that F2 must hold only on a means that c = a, and hence
Q holds.

In contrast, one can easily see that Q is not certain in the usual sense, where F1 and
F2 can be freely extended with additional facts.

Our schema-level problems concern determining if there is a realizable instance that
admits a query implication:

INFERENCE FROM VISIBLE INFORMATION AND BACKGROUND KNOWLEDGE 9

Definition 3.3. For Q a Boolean conjunctive query over schema S, and Σ a set of sentences
over S, we let:

• ∃PQI(Q,Σ,S) = true if there is a realizable Sv-instance V such that
PQI(Q,Σ,S,V) = true;
• ∃NQI(Q,Σ,S) = true if there is a realizable Sv-instance V such that
NQI(Q,Σ,S,V) = true.

Note that these problems now quantify over instances twice, and hence there are al-
ternatives depending on whether the instance V is restricted to be finite, and whether the
hidden instances F are restricted to be finite. For a class of input Q,Σ,S, we say that
“∃PQI(Q,Σ,S) is finitely controllable” if in both quantifications, quantification over finite
instances can be freely replaced with quantification over arbitrary instances without chang-
ing the truth value of the statement.

4. Positive Query Implication

4.1. Instance-level problems. Here we study the problem PQI(Q,Σ,S,V). Recall that
this asks whether Q(F) = true for every full instance F satisfying Σ which agrees with V
in the visible part. The section is organized in three parts: in the first part we prove upper
bounds for the PQI problem, establishing a connection to the Guarded Negation Fragment.
In the second part we present a technique tailored to background theories of Horn logic,
showing that instances witnessing the failure of PQI can be taken to be tree-like. In the third
part we use this technique to prove tight lower bounds for the instance-level PQI problem.

Upper bounds and the connection to Guarded Negation. We begin by showing
that PQI is decidable when background theories are in the logic GNFO, the guarded negation
fragment. This is interesting first of all since GNFO is a very expressive logic. It subsumes
the other decidable logics that we consider here, such as guarded TGDs, disjunctive guarded
TGDs, and Boolean combinations of Boolean CQs. Further, it highlights the fact that
GNFO suffices to capture the fact that an instance has a particular restriction to the visible
relations. This is exploited in in the following reduction to the satisfiability problem for
GNFO:

Theorem 4.1. The problem PQI(Q,Σ,S,V), as Q ranges over Boolean UCQs and Σ over
GNFO sentences, is in 2ExpTime.
Furthermore, for such sentences the problem is finitely controllable, that is,
PQI(Q,Σ,S,V) = true iff for every instance F (of any size) satisfying Σ, if V = Visible(F),
then Q(F) = true.

Proof. One easily sees that PQI(Q,Σ,S,V) translates to unsatisfiability of the following
formula:

φPQItoGNF
Q,Σ,S,V = ¬Q ∧ Σ ∧

∧

R∈Sv

(

∧

R(ā)∈V

R(ā) ∧ ∀x̄
(

R(x̄)→
∨

R(ā)∈V

x̄ = ā
)

)

Intuitively, the formulas requires that the instance on which it is evaluated (which includes
visible and hidden relations) satisfies the background theory, but not the query, and in
addition the visible part of the instance agrees with V. Note that the formula has size
linear in the inputs to PQI, and thus this gives a polynomial time reduction.

If the sentences in the background theory are in GNFO, then the formula above is also
in GNFO. Indeed, the only places where negation is used, either explicitly or implicitly,

10 M. BENEDIKT, P. BOURHIS, B. TEN CATE, G. PUPPIS, AND M. VANDEN BOOM

are ¬Q, which is guarded since Q has no free variables, and the universal quantification
∀x̄ (R(x̄)→ . . .), which translates to ¬∃x̄ (R(x̄) ∧ ¬ . . .), with the inner negation guarded
by R(x̄) and the outer negation involving no free variables.

The finite controllability of PQI(Q,Σ,S,V) comes from the finite controllability of
GNFO formulas (Theorem 3.1).

Above we are using results on satisfiability of GNFO as a “black-box”. Satisfiability
tests for GNFO work by translating a satisfiability problem for a formula into a tree au-
tomaton which must be tested for non-emptiness. By a finer analysis of this translation of
GNFO formulas to automata, we can see that the data complexity of the problem is only
singly-exponential.

Theorem 4.2. If Q is a Boolean UCQ and Σ is a conjunction of GNFO sentences over a
schema S, then the data complexity of PQI(Q,Σ,S,V) (that is, as V varies over instances)
is in ExpTime.

Sketch. In the body of the paper, we provide a proof outline for this. What we omit is a
fine-grained analysis of the translation of GNFO to automata, extending the translation to
automata found in [BCtCV15]. The reader interested in this conversion can find the details
in the appendix.

We start by stating a satisfiability result for GNFO formulas φ in a normal form,
GN-normal form, similar to one introduced in [BCS15].

Formulas in GN-normal form can be generated using the following grammar:

φ ::=
∨

i ∃~x
∧

j ψij

ψ ::=α | α ∧ φ, | α ∧ ¬φ

where α is an atomic formula and free variables of φ are contained in free variables of α. As
with GNFO, in the second production rule we also allow α to be omitted if φ has at most
one free variable (thus allowing free negation of such formulas). The φ are referred to as
UCQ-shaped formulas, with each of the disjuncts being a CQ-shaped formula. UCQ-shaped
formulas are only used to define the normal form and the related notion of CQ-rank below.
They are clearly as expressive as general GNFO formulas.

Note that if φi for i = 1 . . . n are sentences in normal form then their conjunction
∧

i φi
is also in normal form.

The width of φ, denoted width(φ), is the maximum number of free variables of any
subformula of φ.

The CQ-rank of a formula φ in GN-normal form, denoted rankCQ(φ), is the maximum
number of conjuncts ψi in any CQ-shaped subformula ∃~x

∧

i ψi of φ for non-empty ~x. For
the purposes of CQ-rank, α(~x)∧¬φ(~x) and α∧φ are treated as subformulas with 1 conjunct.

Theorem 4.3. For every fixed numbers r, m, and w, there is an ExpTime algorithm that
determines whether a GNFO formula φ in GN-normal form over a schema with relations of
arity at most m, with rankCQ(φ) ≤ r and width(φ) ≤ w is satisfiable.

Theorem 4.3 is proven by creating an alternating two-way parity automaton whose
state set consists of a collection of formulas derived from φ. The automaton runs on a tree
whose nodes represent collections of elements in a tree-like model. If the formula φ were in
the guarded fragment, rather than GNFO, it would suffice to use the subformulas of φ as
states, where the subformulas would have additional annotations associating variables with
elements of a guarded set. The bound on the arity would suffice to keep the number of
annotations low. In the presence of CQ-shaped formulas, the vertices will not be associated
with a guarded set, but with a set whose size is controlled by width(φ). Thus by bounding

INFERENCE FROM VISIBLE INFORMATION AND BACKGROUND KNOWLEDGE 11

width(φ) we keep the number of annotations low. A further problem is that for CQ-shaped
subformulas, one will have to throw in all subformulas, representing guesses as to which of
the conjuncts were true of the elements associated to a given node of a tree-like structure.
The bound on rankCQ(φ) guarantees that this need to throw in subformulas does not blow
up the number of states.

It is important for our application that the result applies to GNFO formulas that have
equality and constants, which are treated by adding additional cases for equality atoms
in the automata, and conjoining with an additional automata that enforces that the facts
involving constants are consistent across the tree. The details of this, as well as other
subtleties in the proof of Theorem 4.3, are given in the appendix.

Now fix a Boolean UCQ Q and a conjunction Σ of GNFO sentences over a schema
S. Without loss of generality, we can assume that the sentences in Σ are already in
GN-normal form. Consider the formula φPSBtoGNF

Q,Σ,S,V in the proof of Theorem 4.1:

¬Q ∧ Σ ∧
∧

R∈Sv

(

∧

R(ā)∈V

R(ā) ∧ ∀x̄
(

R(x̄)→
∨

R(ā)∈V

x̄ = ā
)

)

.

This formula can be rewritten to eliminate the universally-quantified implication, replacing
this subformula with the negation of the sentence

∃x̄ R(x̄) ∧
∧

R(ā)∈V

∨

i

xi 6= ai

We can add equality guards on the formulas xi 6= ai, and guards of the form R(~x)
on the disjunctions

∨

i xi 6= ai. With these changes, which do not impact the size of the
formula, the conditions of GN-normal form are satisfied.

Thus the formula φPSBtoGNF
Q,Σ,S,V can be normalized in polynomial time, and the schema

arity and rankCQ of φPSBtoGNF
Q,Σ,S,V are fixed when Q, Σ, and S are fixed. Applying Theorem

4.3 the bound claimed in Theorem 4.2 now follows.

A characterization of PQI for Horn logics. We have shown above that PQI can
be reduced to satisfiability of a GNFO formula, and it is known that a satisfiable GNFO
formula can always be taken to be “tree-like” — indeed, this is what allows automata-
theoretic techniques to be applied. We can give a more concrete algorithm in the special
case of background theories in a certain family related to the Horn fragment of first order
logic; specifically for EGDs and TGDs. This will not get us better worst-case upper bounds
for the cases we consider in this work: indeed, for general TGDs and EGDs it is not even
effective. But it will prove useful for showing stronger lower bounds on the combined and
data complexity of PQI, since it will allow us to show them when the background theories are
in these restricted classes. It will also be essential for the schema-level problems considered
in Section 4.2.

We show that for TGDs and EGDs, the PQI problem can be characterized using a vari-
ant of the chase procedure [One13, FKMP05]. Our procedure receives as input a relational
schema S, a background theory Σ consisting of TGDs and EGDs, and an initial instance
F0 for the schema S, which does not need to satisfy the background theory Σ. The goal of
the procedure is to produce a collection of instances (not necessarily finite) that satisfy Σ,
extend the initial instance F0, and agree with this instance on the visible part. The goal
is achieved by repeatedly adding new facts to the initial instance F0 so as to satisfy the
sentences in Σ, in a way similar to the classical chase procedure for TGDs. However, non-
deterministic choices are sometimes needed to map the newly generated tuples in a visible

12 M. BENEDIKT, P. BOURHIS, B. TEN CATE, G. PUPPIS, AND M. VANDEN BOOM

relation to some existing facts in F0. Our technique is actually a variant of the “disjunctive
chase” of [DNR08], which produces multiple instances.

We now describe in detail how the variant for the chase procedure works, since we will
need it in the remainder of the paper. We start with an explanation in the case where Σ
contains only TGDs, and later extend it to handle EGDs.

Recall that w.l.o.g. TGDs are assumed to have exactly one atom in the right-hand side.
Due to the unique name assumption (UNA), functions between domain elements are tacitly
assumed to preserve all the constants that appear in the sentences of the background theory
and in the query (i.e. h(a) = a whenever a appears as a constant in Σ or Q). As usual, such
functions are homomorphically extended to relational instances (i.e. h(R(x1, . . . , xn)) =
R(h(x1), . . . , h(xn)) for all relations R). The procedure builds a chase tree of instances,
starting with the singleton tree consisting of the input S-instance F0 and extending the
tree by repeatedly applying the following steps. It chooses an instance K at some leaf of
the current tree, a TGD R1(x̄1) ∧ . . . ∧ Rm(x̄m) → ∃ȳ S(z̄) in Σ, where z̄ is a sequence of
(possibly repeated) variables from x̄1, . . . , x̄m, ȳ, and a homomorphism f that maps R1(x̄1),
. . . , Rm(x̄m) to some facts in K. Then, the procedure constructs a new instance from K
by adding the fact S(f ′(z̄)), where f ′ is an extension of f that maps, in an injective way,
the existentially quantified variables in ȳ to some values that are not in K. In the usual
terminology of the chase, such an added value is called a “null”, and adding this fact is
called “performing a chase step”. Immediately after this step, and only when the relation
S is visible, the procedure replaces the instance K ′ = K ∪

{

S(f ′(z̄))
}

with copies of it of
the form g(K ′) such that Visible(g(K ′)) = Visible(F0), for all possible homomorphisms g
that map the variables z̄ to some values in the active domain {a1, . . . , an} of the visible
instance Visible(F0). Note that the active domain of {a1, . . . , an} of Visible(F0) does not
contain null values. In the language of prior papers on the chase [DNR08], this step would
be a sequence of “disjunctive chase step”, for disjunctive EGDs of the form S(z̄) → zi =
a1 ∨ . . . ∨ zi = an). The resulting instances g(K ′) are then appended as new children of
K in the tree-shaped collection. In the special case where there are no homomorphisms g
such that Visible(g(K ′)) = Visible(F0), we append a “dummy instance” ⊥ as a child of K:
this is used to represent the fact that the chase step from K led to an inconsistency (the
dummy node will never be extended during the subsequent chase steps). If S is not visible,
then the instance K ′ is simply appended as a new child of K.

This process continues iteratively using a strategy that is “fair”, namely, that guarantees
that whenever a dependency is applicable in a node on a maximal path of the chase tree, then
it will be fired at some node (possibly later) on that same maximal path (unless the path
ends with ⊥). In the limit, the process generates a possibly infinite tree-shaped collection
of instances. It remains to complete the collection with “limits” in order to guarantee that
the sentences in the background theory are satisfied. Consider any infinite path K0,K1, . . .
in the tree (if there are any). It follows from the construction of the chase tree that the

instances on the path form a chain of homomorphic embeddings K0
h0−→ K1

h1−→ Such
chains of homomorphic embeddings admit a natural notion of limit, which we denote by
limn∈NKn. We omit the details of this construction here, which can be found, for instance,
in [CK90]. The limit instance limn∈NKn satisfies the background theory Σ. We denote by
Chasesvis(Σ,S,F0) the collection of all non-dummy instances that occur at the leaves of the
chase tree, plus all limit instances of the form limn∈NKn, where K0,K1, . . . is an infinite
path in the chase tree. This is well-defined only once the ordering of steps is chosen, but for
the results below, which order is chosen will not matter, so we abuse notation by referring
to Chasesvis(Σ,S,F0) as a single object.

INFERENCE FROM VISIBLE INFORMATION AND BACKGROUND KNOWLEDGE 13

We now indicate how we can modify the procedure for Chasesvis(Σ,S,V) so as to take
into account also the EGDs in Σ that can be triggered on the instances that emerge in the
chase tree. Formally, chasing an EGD of the form R1(x̄1) ∧ . . . ∧Rm(x̄m)→ x = x′, where
x, x′ are two variables from x̄1, . . . , x̄m, amounts at applying a suitable homomorphism
that identifies the two values h(x) and h(x′) whenever the facts R1(h(x̄1)), . . . , Rm(h(x̄m))
belong to the instance under consideration. Note that this operation leads to a failure (i.e. a
dummy instance) when h(x) and h(x′) are distinct values from the active domain of the
visible part V.

It is clear that every instance in Chasesvis(Σ,S,F0), except the special “failure instance”,
satisfies the sentences in Σ and, in addition, agrees with F0 on the visible part of the schema.
Below, we prove that Chasesvis(Σ,S,F0) satisfies the following property:

Lemma 4.4. Let Σ consist of EGDs and TGDs without constants. Let F0 be an instance
of a schema S and let F be another instance over the same schema that contains F0, agrees
with F0 on the visible part (i.e. Visible(F) = Visible(F0)), and satisfies all sentences of Σ.
Then, there exist an instance K ∈ Chasesvis(Σ,S,F0) and a homomorphism from K to F .

Proof. For brevity we prove the result for TGDs only. We consider the chase tree for
Chasesvis(Σ,S,F0) and, based on the full instance F , we identify inside this chase tree a
suitable path K0,K1, . . . and a corresponding sequence of homomorphisms h0, h1, . . . such
that, for all n ∈ N, hn maps Kn to F . Once these sequences are defined, the lemma will
follow easily by letting K = limn∈NKn and h = limn∈N hn, that is, h(ā) = b̄ if hn(ā) = b̄
for all but finitely many n ∈ N.

The base step is easy, as we simply let K0 be the initial instance F0, which appears at
the root of the chase tree, and let h0 be the identity. As for the inductive step, suppose that
Kn and hn are defined for some step n, and suppose that R1(x̄1)∧ . . .∧Rm(x̄m)→ ∃ȳ S(z̄)
is the dependency that is applied at node Kn, where z̄ is a sequence of variables from
x̄1, . . . , x̄m, ȳ. Let R1

(

f(x̄1)
)

, . . . , Rm
(

f(x̄m)
)

be the facts in the instance Kn that have
triggered the chase step, where f is a homomorphism from the variables in x̄1, . . . , x̄m to the
domain of Kn. Since F satisfies the same dependency and contains the facts R1

(

hn(f(x̄1))
)

,

. . . , Rm
(

hn(f(x̄m))
)

, it must also contain a fact of the form S
(

h′(f ′(z̄))
)

, where f ′ is the
extension of f that is the identity on the existentially quantified variables ȳ and h′ is some
extension of hn that maps the variables ȳ to some values in the domain of F .

Now, to choose the next instance Kn+1, we distinguish two cases, depending on whether
S is visible or not. If S is not visible, then we know that the chase step appends a single
instance K ′ = Kn ∪

{

S(f ′(z̄))
}

as a child of Kn; accordingly, we let Kn+1 = K ′ and
hn+1 = h′ ◦ f ′. Otherwise, if S is visible, then we observe that h′ is a homomorphism from
K ′ = Kn ∪

{

S(f ′(z̄))
}

to F . In particular, h′ maps the variables z̄ to some values in the
active domain of the visible part Visible(F0) and hence h′(K ′) agrees with F0 on the visible
part of the schema. This implies that the chase step adds at least the instance h′(K ′) as
a child of Kn. Accordingly, we can define Kn+1 = h′(K ′) and hn+1 = f ′. Given the above
constructions, it is easy to see that the homomorphism hn+1 maps Kn+1 to F .

Proceeding in this way, we either arrive at a leaf, and in this case we are done, or

we obtain an infinite path of the chase tree K0
h0−→ K1

h1−→ . . ., with homomorphisms
h′i : Ki → F , such that hi ◦h

′
i+1 extends h′i, for all i ∈ N. In the latter case it can be shown

that the limit limn∈NKn also homomorphically maps to F .

The following proposition characterizes the instances of the PQI problem when the
sentences in the background theory are TGDs without constants:

14 M. BENEDIKT, P. BOURHIS, B. TEN CATE, G. PUPPIS, AND M. VANDEN BOOM

Proposition 4.5. If Q is a Boolean UCQ, Σ is a set of TGDs or EGDs without constants
over a schema S, and V is a visible instance, then PQI(Q,Σ,S,V) = true iff every instance
K in Chasesvis(Σ,S,V) satisfies Q.

Proof. Suppose that PQI(Q,Σ,S,V) = true and recall that every instance in
Chasesvis(Σ,S,V) satisfies the sentences in Σ and agrees with V on the visible part. In
particular, this means that every instance in Chasesvis(Σ,S,V) satisfies the query Q.

Conversely, suppose that PQI(Q,Σ,S,V) = false. This means that there is an S-instance
F that has V as visible part, satisfies the sentences in Σ, but not the query Q. By Lemma
4.4, letting F0 = V, we get an instance K ∈ Chasesvis(Σ,S,V) and a homomorphism from
K to F . Since Q is preserved under homomorphisms, K does not satisfy Q.

Lower bounds. Below we show that the data complexity bound in Theorem 4.2 is tight
even for inclusion dependencies (IDs). The proof proceeds by showing that a “universal
machine” for alternating PSpace can be constructed by fixing appropriate Q,Σ,S in a PQI
problem.

Theorem 4.6. There are a Boolean CQ Q and a set Σ of IDs over a schema S for which
the problem PQI(Q,Σ,S,V) is ExpTime-hard in data complexity.

Proof. We first prove the hardness result using a UCQ Q; later, we show how to generalize
this to a CQ. We reduce the acceptance problem for an alternating PSpace Turing machine
M to the negation of PQI(Q,Σ,S,V).

A configuration of M is defined, as usual, by a control state, a position of the head on
the tape, and a finite string representing the content on the tape. The input of the machine
is assumed to be a string of blanks ⊔ · · · ⊔ (thus only its length matters). Moreover, special
symbols ⊢,⊣ are added at the extremities of the input to mark the endpoints of the working
tape. Accordingly, the initial configuration of M has tape content of the form ⊢ ⊔ · · · ⊔ ⊣
and the head on the first position.

The transition function of M describes a set of target configurations on the basis of
the current configuration. We distinguish between existential and universal control states
of M , and we assume that there is a strict alternation between existential and universal
states along every sequence of transitions. Without loss of generality, we also assume that
there are exactly 2 target configurations for each transition that departs from a universal
state. A computation of M is thus represented by a tree of configurations, where the root
represents the initial configuration and every node with an existential (resp., universal)
control state has exactly one (resp., two) successor configuration(s). Furthermore, to make
the coding simpler, we adopt a non-standard acceptance condition. Specifically, we assume
that the Turing machine M never halts, namely, its transition function is defined on every
configuration, and we distinguish two special control states, qacc and qrej. We further assume
that every infinite path in a computation tree of M eventually reaches a configuration with
either qacc or qrej as control state, and from there onwards there is no change of configuration.
Accordingly, we say that M accepts (its input) if it admits a computation tree where the
state qacc appears on all paths; symmetrically, we say that M rejects if every computation
tree has a path leading to qrej.

The general idea of the reduction is to create schema, background theory, and query
that together represent a “universal machine” for alternating PSpace. Then, given an
alternating PSpace machine M encoded in the visible instance, an accepting computation
tree of M will be encoded by an arbitrary full instance that satisfies the background theory
and violates the query — that is, a witness of the failure of PQI. We first devise the schema
with hidden relations that will store the computation tree of a generic alternating PSpace

INFERENCE FROM VISIBLE INFORMATION AND BACKGROUND KNOWLEDGE 15

machine. The background theory and (the negation of) the query will be used to restrict
the hidden relations so as to guarantee that the encoding of the computation tree is correct.
By “generic” we mean that the hidden relations and corresponding background theory
will be independent of the tape size, number of control states, and transition function of
the machine. The visible instance will store the “representation” of an alternating PSpace
machineM — that is, an encoding ofM that can be calculated efficiently onceM is known.
This will include the tape size and an encoding of the transition function. We will then
give the reduction that takes an alternating polynomial space machine M and instantiates
all the visible relations with the encoding. The space bound on M will allow us to create
the tape components in the visible instance efficiently. In contrast, the hidden relations
will store aspects of a computation that can not be computed easily from M . In summary,
below we will be describe each part of the schema S for computation trees of a machine,
along with the polynomial mapping that transforms a machine M into data filling up the
visible parts of the schema.

To begin with, we explain how to encode the tape (devoid of its content) into a binary
relation T . The relation T will be visible, and can be filled efficiently once the length of the
tape of M is known. Given M , it will be filled in the following natural way: it contains all
the facts T (y, y′), where y is the identifier of a cell and y′ is the identifier of the successor
of this cell in the tape. Recall that the Turing machine M works on a tape of polynomial
length, and hence the visible instance for the relation T has also size polynomial in M . We
also add unary visible relations First and Last, that are intended to distinguish the first and
last cells of the tape. Given M , we will instantiate First (resp., Last) with the singleton
consisting of the identifier of the first (resp., last) cell. Moreover, despite the fact that
the tape length is finite, it is convenient to assume that every cell has a successor — this
assumption will be exploited later to ease the instantiation of new tape contents for each
configuration. We will thus add to the visible relation T also the “dummy” pair (y, y),
where y is the identifier of the rightmost cell of the tape.

As for the configurations of the machine, these are described by specifying, for each
configuration and each tape cell, a suitable value that represents the content of that cell,
together with the information on whether the Turing machine has its head on the cell,
to the right, or to the left, and what is the corresponding control state. Formally, the
configurations of the machine are encoded by a hidden ternary relation C, where each fact
C(x, y, z) indicates that, in the configuration identified by x, the cell y has value z. We
will enforce that the cell values range over an appropriate domain, defined by a visible
unary relation V . In our reduction from M , we will fill this relation V with ΣQ ⊎Σ⊳ ⊎Σ⊲,
where Σ is the tape alphabet of M (which includes the markers ⊢ and ⊣), ΣQ = Σ × Q,
Σ⊳ = Σ×{⊳}, Σ⊲ = Σ×{⊲}, Q is the set of its control states, and ⊳,⊲ are fresh symbols.
When a cell has value (a, q), this means that its content is a, the Turing machine stores the
control state q, and the head is precisely on this cell. Similarly, when a cell has value (a,⊳)
(resp., (a,⊲)), this means that its content is a and the cell is to the immediate left (resp.,
immediate right) with respect to the position of the head of the Turing machine.

Because we need to associate the same tape structure with several different configu-
rations, the content of the relations T and First will end up being replicated within new
hidden relations TC and FirstC , where it will be paired with the identifier of a configuration.
For example, a fact TC(x, y, y′) will indicate that, in the configuration identified by x, the
cell y precedes the cell y′. Similarly, a fact FirstC(x, y) will indicate that y is the first cell
of the tape of configuration x. Of course, we will enforce the condition that the relations
TC and FirstC , devoid of the first attribute, are contained in T and First, respectively.

16 M. BENEDIKT, P. BOURHIS, B. TEN CATE, G. PUPPIS, AND M. VANDEN BOOM

We now turn to the encoding of the computation tree. For this, we introduce a visible
unary relation I that contains the identifier of the initial configuration. We also introduce
the hidden binary relations S∃, S∀

1 , and S
∀
2 . We recall that every configuration x with an

existential control state has exactly one successor x′ in the computation tree, so we represent
this with the fact S∃(x, x′). Symmetrically, every configuration x with a universal control
state has exactly two successors x1 and x2 in the computation tree, and we represent this
with the facts S∀

1 (x, x1) and S
∀
2 (x, x2).

So far, we have introduced the visible relations T , First, Last, V , I, and the hidden
relations C, TC , FirstC , S∃, S∀

1 , S
∀
2 . These are sufficient to store an encoding of the compu-

tation tree of the machine. However, the background theories are only allowed to contain
inclusion dependencies, which are not powerful enough to guarantee that these relations in-
deed represent a correct encoding. To overcome this problem, we will later introduce a few
additional relations and exploit a union of CQs to detect those violations of the background
theory that are not captured by inclusion dependencies.

We now list some inclusion dependencies in Σ that enforce basic restrictions on the
relations.

• We begin with some sentences that guarantee that the relations T and TC induce
the same “successor” relation on the cells of the tape:

TC(x, y, y′) → T (y, y′) FirstC(x, y) → ∃ y′ TC(x, y, y′)

FirstC(x, y) → First(y) TC(x, y, y′) → ∃ y′′ TC(x, y′, y′′) .

Note that, while we can easily enforce that T contains the projection of TC onto the
last two attributes, and similar for First and FirstC . It is more difficult, instead, to
enforce that TC contains copies of T annotated with each configuration identifier.
This is done indirectly by requiring that every tuple (x, y) in FirstC is the source of
an infinite chain of successors inside TC , all annotated with the same configuration
identifier. Paired with the previous sentences, this will guarantee that TC contains
the annotated copy {x} × T . Further note that, for this to work, it is crucial to
have assumed that there is a “dummy” successor T (y, y) on the last tape cell y. The
existence of facts of the form FirstC(x, y) for each configuration x will be enforced
later.
• We proceed by enforcing the existence of values associated with each cell in each
configuration:

TC(x, y, y′) → ∃ z C(x, y, z) C(x, y, z) → V (z) .

Note that the sentences in the background theory defined so far may allow a cell to
be associated with multiple values. We will show later how to detect this case using
a suitable query.
• We finally enforce a graph structure representing the evolution of the configurations,
assuming that the machine starts with the existential configuration contained in the
visible relation I:

I(x) → ∃ x′ S∃(x, x′)

S∃(x, x′) → ∃ x1 S
∀
1 (x

′, x1)

S∃(x, x′) → ∃ x2 S
∀
2 (x

′, x2)

S∀
1 (x, x1) → ∃ x′ S∃(x1, x

′)

S∀
2 (x, x2) → ∃ x′ S∃(x2, x

′)

S∃(x, x′) → ∃ y FirstC(x, y)

S∀
1 (x, x1) → ∃ y FirstC(x, y)

S∀
2 (x, x2) → ∃ y FirstC(x, y) .

INFERENCE FROM VISIBLE INFORMATION AND BACKGROUND KNOWLEDGE 17

Note that the rules on the right side above trigger the creation of a first tape cell
for each configuration, which in turn spawns copies of the entire tape.

Next, we explain how to detect badly-formed encodings of the computation tree. For this,
we use additional visible relations ErrC , ErrI,first, ErrI,last, ErrI,adj, ErrC,adj, ErrS∃, ErrS∀

1
, and

ErrS∀
2
, instantiated as follows.

• The relation ErrC is binary and contains all pairs of distinct cell values from V ×V .
This is used to check that every cell, in every configuration, is associated with at
most one value. The CQ below holds precisely when this latter property is violated:

QC = ∃ x y z z′ C(x, y, z) ∧ C(x, y, z′) ∧ ErrC(z, z
′) .

• The relation ErrI,first is also binary, and contains all pairs of values that cannot be
associated with the first two cells in the initial configuration (recall that the first
two cells carry the symbols ⊢ and ⊔, and M starts with state q0 on the first cell).
Formally, ErrI,first contains all the pairs in V × V except (z0, z1), where z0 = (⊢, q0)
and z1 = (⊔,⊲). Accordingly, we can detect whether the values of the first two cells
in the initial configuration are badly-formed using the following CQ:

QI,first = ∃ x y y′ z z′

I(x) ∧ First(y) ∧ T (y, y′) ∧ C(x, y, z) ∧ C(x, y′, z′) ∧ ErrI,first(z, z
′) .

• Similarly, the relation ErrI,last contains pairs of values that cannot be associated
with the last two cells in the initial configuration, i.e., ErrI,last = (V ×V) \ (z1, z−1),
where z1 = (⊔,⊲) is defined as before and z−1 = (⊣,⊲). We can detect whether the
last two values in the initial configuration are inconsistent using the CQ

QI,last = ∃ x y y′ z z′

I(x) ∧ T (y, y′) ∧ Last(y′) ∧ C(x, y, z) ∧ C(x, y′, z′) ∧ ErrI,last(z, z
′) .

• The relation ErrI,adj contains pairs of values that cannot appear on any two con-
secutive cells of the initial configuration, namely, ErrI,adj contains all the pairs in
V × V , but the following ones: (z0, z1), (z1, z1), (z1, z−1). This type of violation is
checked with the CQ

QI,adj = ∃ x y y′ z z′ I(x) ∧ T (y, y′) ∧ C(x, y, z) ∧ C(x, y′, z′) ∧ ErrI,adj(z, z
′) .

• In a similar way we can check violations of labellings of consecutive cells in every
configuration. This is done with the binary visible relation ErrC,adj, instantiated
with all pairs from V ×V that cannot be adjacent in an arbitrary configuration (for
example, the pair

(

(a,⊳), (b,⊲)
)

), and the CQ

QC,adj = ∃ x y y′ z z′ T (y, y′) ∧ C(x, y, z) ∧ C(x, y′, z′) ∧ ErrC,adj(z, z
′) .

• The relation ErrS∃ is used to check consistency along a transition that departs from
an existential configuration. It contains a quadruple of cell values (z, z′, z′′, z′′′) ∈
V × V × V × V whenever it is not possible to have an existential configuration
where the labels z, z′, z′′ appear on three consecutive positions y, y′, y′′, together
with a successor configuration that carries value z′′′ at position y′. Of course, the
content of this relation depends on the transition function of the Turing machine.

18 M. BENEDIKT, P. BOURHIS, B. TEN CATE, G. PUPPIS, AND M. VANDEN BOOM

A violation of the corresponding constraint is exposed by the following CQ:

QS∃ = ∃ x x′ y y′ y′′ z z′ z′′ z′′′

S∃(x, x′) ∧ T (y, y′) ∧ T (y′, y′′) ∧

C(x, y, z) ∧ C(x, y′, z′) ∧ C(x, y′′, z′′) ∧ C(x′, y′, z′′′) ∧

ErrS∃(z, z′, z′′, z′′′) .

• Similarly, the relation ErrS∀
1
(resp., ErrS∀

2
) contains quadruples of values that cannot

appear on positions y−1, y, y+1 of some universal configuration x, and at position y
of the first (resp., second) successor configuration. The corresponding CQs QS∀

1
, QS∀

2

are defined by

QS∀
i

= ∃ x x′ y y′ y′′ z z′ z′′ z′′′

S∀
i (x, x

′) ∧ T (y, y′) ∧ T (y′, y′′) ∧

C(x, y, z) ∧ C(x, y′, z′) ∧ C(x, y′′, z′′) ∧ C(x1, y
′, z′′′) ∧

ErrS∀
i

(z, z′, z′′, z′′′) .

It remains to check whether the Turing machine M reaches the rejecting state qrej along
some path of the computation tree. This can be done by introducing a last visible relation
Vrej that contains all cell values of the form (a, qrej), for some a ∈ Σ. The CQ that checks
this property is

Qrej = ∃ x y z C(x, y, z) ∧ Vrej(z) .

The final query is thus a disjunction of all the above CQs:

Q = QC ∨QI,first ∨QI,last ∨QI,adj ∨QC,adj ∨QS∃ ∨QS∀
1
∨QS∀

2
∨Qrej .

We are now ready to give the reduction. Denote by VM the instance that captures
the intended semantics of the visible relations T , First, Last, V , I, ErrC , ErrI,first, ErrI,last,
ErrI,adj, ErrC,adj, ErrS∃ , ErrS∀

1
, and ErrS∀

2
. We have described these semantics above, and

argued why they can be created in polynomial time. Below, we prove that the Turing
machine M has a successful computation tree where all paths visit the control state qacc if
and only if PQI(Q,Σ,S,VM) = false.

Suppose thatM has a successful computation tree ρ. On the basis of ρ, and by following
the intended semantics of the hidden relations C, TC , FirstC , S∃, S∀

1 , S
∀
2 , we can easily

construct a full instance F that satisfies all the sentences in Σ, and agrees with VM on the
visible part. Furthermore, because we correctly encode a successful computation tree of M ,
the instance F violates every disjunct of Q, and hence PQI(Q,Σ,S,VM) = false.

Conversely, suppose that PQI(Q,Σ,S,VM) = false. Let F be an S-instance that agrees
with VM on the visible part, satisfies the sentences in Σ, and violates every disjunct of the
UCQ Q. We first construct from F a graph, where every node encodes a configuration
and, depending on whether the configuration is existential or universal, it has either one
or two outgoing edges that represent some transitions of M . We will then argue that the
unfolding of this graph from its initial node correctly represents an accepting computation
tree of M . The nodes of the graph are identified by the values x that appear in facts of F
of the form S∃(x, x′), S∀

1 (x, x
′), or S∀

2 . The initial node is identified by the unique value x0
in the singleton visible relation I.

Thanks to the background theory Σ, every configuration identifier x also appears in
the first column of the hidden relation FirstC , and there exist similar occurrences in TC

and C, one for each cell of the tape. The content of C can then be used to determine the

INFERENCE FROM VISIBLE INFORMATION AND BACKGROUND KNOWLEDGE 19

labeling of the tape cells, the control state, and the head position for each configuration, as
indicated by the intended semantics. For example, we set the content of a tape cell y in some
configuration x to be a whenever there is a fact of the form C(x, y, z), with z among (a, q),
(a,⊳), or (a,⊲). We observe this is well-defined (that is, every tape position y at every
configuration x has exactly one associated value) thanks to the sentences TC(x, y, y′) →
∃ z C(x, y, z) and C(x, y, z)→ V (z), and thanks to the fact that the query QC is violated.
Moreover, because the CQs QI,first, QI,last, and QI,adj are also violated, the configuration
at the initial node x0 is correct, that is, encodes the tape content ⊢ ⊔ · · · ⊔ ⊣, with control
state q0, and head on the first position.

Next, the edges of the graph are constructed using the hidden relations S∃, S∀
1 (x, x1),

and S∀
2 (x, x2) of F . Formally, for every existential node x, the sentences constraining

S∃(x, x′) imply the existence of at least one node x′ forming a fact S∃(x, x′). We can
thus chose any such node x′ and declare (x, x′) to be an edge of the graph. A similar
argument applies to the universal nodes, with the only difference that we now introduce
two edges instead of one, and there is no choice. Moreover, using the assumption that
the CQs QC,adj, QS∃, QS∀

1
, and QS∀

2
are all violated, one can easily verify that the thus

defined edges represent valid transitions between the encoded configurations. The above
arguments imply that the unfolding of the graph from the initial node x0 results in a valid
computation tree of M . Finally, because the CQ Qrej is also violated, the computation tree
must be accepting.

We have just shown the ExpTime-hardness result for the data complexity of the PQI
problem, using a UCQ as query. To finish the proof of Theorem 4.6, we show that PQI
problems for UCQs can be reduced to analogous problems for CQs.

Lemma 4.7. Let Q =
⋃

Qi be a Boolean UCQ, let Σ be a set of sentences over a schema S,
and let V be an instance for the visible part of S. There exist a schema S′, a CQ Q′, a set Σ′

of sentences, and an S′
v-instance V

′, all having polynomial size with respect to the original
objects S, Q, Σ, and V, such that PQI(Q,Σ,S,V) = true iff PQI(Q′,Σ′,S′,V ′) = true.
Moreover, the transformation preserves all logical languages considered for background the-
ories in our results (e.g., inclusion dependencies).

Proof. The general idea is as follows. For every visible (resp., hidden) relation R of S of
arity k, we add to S′ a corresponding visible (resp., hidden) relation R′ of arity k + 1.
The idea is that the additional attribute of R′ represents a truth value, e.g. 0 or 1, which
indicates the presence of a tuple in the original relation R. For example, the fact R′(ā, 1)
indicates the presence of the tuple ā in the relation R, but R′(ā, 0) does not. The sentences
Σ will be rewritten accordingly, so as to propagate these truth values. We can then simulate
the disjunctions in the query Q by using conjunctions and an appropriate look-up table Or.
This technique has been used in a number of previous works, for example [GP03], and will
also be used later in this paper. However, due to the nature of the PQI problem, we also
need to add dummy facts R′(⊥, . . . ,⊥, 0) in order to correctly transfer the validity from the
UCQ Q to the CQ Q′. We give below the full details.

As mentioned, the new schema S′ contains a copy R′ of each relation R in S, where R′

is visible iff R is visible, and R′ has arity k+1 iff R has arity k. In addition, the schema S′

contains the visible relations Or, Zero, One of arities 3, 0, 0, respectively, and some other
visible relations Bottomk of arity k + 1, for all k ranging from 0 to the maximal arity in S.

Let us now describe the visible instance V ′ constructed from V. We choose some fresh
values 0, 1, and ⊥ that do not belong to the active domain of V. First, we include in V ′

the facts Or(1, 1, 1), Or(1, 0, 1), Or(0, 1, 1), Zero(0), One(1), and Bottomk(⊥, . . . ,⊥, 0) for

20 M. BENEDIKT, P. BOURHIS, B. TEN CATE, G. PUPPIS, AND M. VANDEN BOOM

all arities k. Then, for each visible relation R of S, we add to V ′ the fact R(ā, 1) whenever
R(ā) is a fact in V.

As for the sentences in the background theory, we proceed as follows. If

R(x̄) → ∃ȳ S1(z̄1) ∧ . . . ∧ Sm(z̄m)

is a sentence in Σ, with z̄1, . . . , z̄m sequences of variables or constants from x̄, ȳ, then we
add to Σ′ a corresponding sentence

R′(x̄, b) → ∃ȳ S′
1(z̄1, b) ∧ . . . ∧ S

′
m(z̄m, b) .

Furthermore, for each relation R of arity k in S, we introduce the ID

Bottomk+1(x1, . . . , xk, y) → R′(x1, . . . , xk, y) .

Recall that Bottomk+1 is a visible relation of S′ that contains the single fact (⊥, . . . ,⊥, 0).
Therefore, the effect of the above sentence is to introduce dummy facts R′(⊥, . . . ,⊥, 0) for
each (visible or hidden) relation R′.

It now remains to transform the UCQ Q into a CQ Q′. Let Q1, . . . , Qn be the disjuncts
(CQs) in Q. We define

Q′ = ∃ b1 . . . bn b
′
0 b

′
1 . . . b′n

∧

i

Q′
i(bi) ∧ Zero(b′0) ∧ One(b′n) ∧

∧

i

Or(b′i−1, bi, b
′
i)

where each Q′
i is obtained from the i-th disjunct Qi = ∃ȳ S1(z̄1) ∧ . . . ∧ Sm(z̄m) of

Q by letting Q′
i(bi) = ∃ȳ S′

1(z̄1, bi) ∧ . . . ∧ S′
m(z̄m, bi). Note that the presence of the

facts R′(⊥, . . . ,⊥, 0) in every instance that extends V ′ and satisfies Σ′ guarantees that the
rewritten CQs Q′

i(bi) can always be satisfied by letting bi = 0. In particular, the sub-query
∧

iQ
′
i(bi) holds at least with all the bi’s set to 0. The remaining part of the query Q′

precisely requires that at least one of those bi’s is set to 1.
We are now ready to prove that PQI(Q,Σ,S,V) = true iff PQI(Q′,Σ′,S′,V ′) = true.

Suppose that PQI(Q′,Σ′,S′,V ′) = true and consider an S-instance F that satisfies the
sentences in Σ and such that Visible(F) = V. Without loss of generality, we can assume
that the active domain of F does not contain the values 0, 1, and ⊥. We can easily transform
F into an S′-instance F ′ by expanding all facts with the additional attributed value 1 and
by adding new facts of the form R′(⊥, . . . ,⊥, 0), for all relations R′ ∈ S′, together with the
visible facts Or(1, 1, 1), Or(1, 0, 1), Or(0, 1, 1), Zero(0), One(1), and Bottomk(⊥, . . . ,⊥, 0) for
all arities k. One easily verifies that F ′ satisfies the sentences in Σ′ and agrees with V ′ on
the visible part. Since PQI(Q′,Σ′,S′,V ′) = true, we know that F ′ also satisfies the query
Q′ and, in particular, it satisfies one of the conjuncts Q′

i(bi) of Q
′ with bi = 1. This implies

that F satisfies the corresponding Boolean CQ Qi, and hence Q as well.
Conversely, suppose that PQI(Q,Σ,S,V) = true and consider an S′-instance F ′ that

satisfies the sentences in Σ′ and such that Visible(F ′) = V ′. By selecting from F ′ only
the facts of the form R′(ā, 1), with R ∈ S, and by projecting away the last attribute, we
obtain an S-instance F that satisfies the sentences in Σ and such that Visible(F) = V.
Since PQI(Q,Σ,S,V) = true, we know that F satisfies at least one of the disjuncts Qi of Q.
This immediately implies that F ′ satisfies the CQ Q′

i(bi) with bi = 1. As for the remaining
conjuncts of the query Q′, we recall that F ′ must contain facts of the form R′(⊥, . . . ,⊥, 0)
for all relations R′. Thanks to these facts, the CQs Q′

j(bj) hold on F ′ with bj = 0, for all

j 6= i, and hence Q′ holds on F ′ as well.

Applying the lemma above, we have proven Theorem 4.6.

INFERENCE FROM VISIBLE INFORMATION AND BACKGROUND KNOWLEDGE 21

We note that the above lower bound for data complexity makes use of a schema with
arity above 2, even for CQs. See, for example, the ternary relation C. We do not know
whether our lower bound still holds for the arity 2 case. Our results contrasts with results
of Franconi et al. [FIS11], which show that the data complexity lies in co-NP (and can be
co-NP-hard) for certain description logics over arity 2.

We now turn to the combined complexity and show that the 2ExpTime upper bound
of Theorem 4.1 is tight even for IDs.

Theorem 4.8. Checking PQI(Q,Σ,S,V), where Q ranges over CQs and Σ over sets of
inclusion dependencies, is 2ExpTime-hard for combined complexity.

Proof. This proof builds up on ideas from the previous proof for Theorem 4.6. Specifically,
we reduce the acceptance problem for an alternating ExpSpace Turing machine M to
the negation of PQI(Q,Σ,S,V), where Q is a Boolean UCQ and Σ consists of inclusion
dependencies. Note that to further reduce the problem to a Positive Query Implication
problem with a Boolean CQ, one can exploit Lemma 4.7.

The additional technical difficulty here is to encode a tape of exponential size. Of
course, this cannot be done succinctly using an instance with visible relations. However,
we can represent the exponential tape by a set of tuples of bits. More precisely, given an
alternating ExpSpace Turing machine M and an input for M of length n, we identify each
cell of the tape of M by an n-tuple of bits. Note that, differently from the reduction in
Theorem 4.6, here we can let the schema, the sentences, and the query depend on M and
n, since the goal here is to prove a lower bound for combined complexity.

For the sake of simplicity, we first explain how to create a single tape of exponential
length, without being concerned about the content of the cells and the different configura-
tions that can be reached byM . For this, we introduce three visible relations Zero, One, and
Bit, instantiated with {0}, {1}, and {0, 1}, respectively. We also introduce hidden relations
Ti, Ti,zero, Ti,one of arity i, for all i = 1, . . . , n, and an additional hidden relation T0 of arity
0. Intuitively, the intended semantics of each relation Ti is to contain all i-tuples of bits,
while Ti,zero (resp., Ti,one) is the restriction of Ti to the tuples ending with 0 (resp., 1). We
enforce this semantics using a simple induction on i = 1, . . . , n and the following inclusion
dependencies:

true → T0()

(∀j ≤ i) Ti(y1, . . . , yi) → Bit(yj)

Ti−1(y1, . . . , yi−1) → ∃yi Ti,zero(y1, . . . , yi)

Ti−1(y1, . . . , yi−1) → ∃yi Ti,one(y1, . . . , yi)

Ti,zero(y1, . . . , yi) → Zero(yi)

Ti,one(y1, . . . , yi) → One(yi)

Ti,zero(y1, . . . , yi) → Ti(y1, . . . , yi)

Ti,one(y1, . . . , yi) → Ti(y1, . . . , yi) .

It is clear that every instance satisfying the above sentences will have Tn = Bitn, so the
tuples in Tn can be used to represent the cells of a tape of exponential length.

Cells are naturally ordered in the tape, and so must be the tuples in Tn. We use the
lexicographic order on n-tuples of bits, and show how to access this order by means of a
formula. Formally, we need to write a UCQ that checks whether two cells, identified by
some n-tuples ȳ = (y1, . . . , yn) and ȳ′ = (y′1, . . . , y

′
n) in Tn, are adjacent according to the

lexicographic ordering. A well-known technique consists in determining the smallest index
1 ≤ i ≤ n such that yi 6= y′i. Then, given such i, one verifies that yi = 0, y′i = 1, yj = 1,
and y′j = 0 for all j > i. We give beforehand the formula that checks these conditions. The
formula is the disjunction over all i = 1, . . . , n of the following CQs:

Qadj,i(ȳ, ȳ
′) =

∧

1≤j<i

(yj = y′j) ∧ Zero(yi) ∧ One(y′i) ∧
∧

i<j≤n

One(yj) ∧
∧

i<j≤n

Zero(y′j) .

22 M. BENEDIKT, P. BOURHIS, B. TEN CATE, G. PUPPIS, AND M. VANDEN BOOM

Here for convenience of description we allow equalities in a CQ, but they can be replaced in
favor of an explicit substitution. It is not difficult to see that the UCQ

∨

1≤i≤nQadj,i defines
precisely those pairs of tuples that are consecutive in the lexicographic order. Moreover, we
will need to easily identify the first and the last cell of the tape. For this we introduce two
visible relations First and Last, both of arity n, and instantiate them with the singletons
{(0, . . . , 0)} and {(1, . . . , 1)}, respectively.

Now that we know how to represent exponentially many cells in the tape and check their
adjacency, we proceed as in the proof of Theorem 4.6. We begin by encoding configurations
of M . Intuitively, the goal is to create a copy C of the relation Tn, expanded with config-
uration identifiers and cell values, in such a way that a fact of the form C(x, y1, . . . , yn, z)
denotes the existence of a configuration identified by x, where the tape cell represented by
ȳ = (y1, . . . , yn) carries the value z. As usual (cf. proof of Theorem 4.6), we define cell values
as elements from a visible unary relation V = ΣQ ⊎ Σ⊳ ⊎ Σ⊲, where Σ is the alphabet of
the Turing machine, ΣQ = Σ×Q. Σ⊳ = Σ×{⊳}, Σ⊲ = Σ×{⊲}, Q is the set of its control
states, and ⊳,⊲ are fresh symbols. To correctly instantiate the relation C, we create also
copies of the relations Ti, Ti,zero, Ti,one, expanded with configuration identifiers, and enforce
constraints analogous to the ones introduced in the sentences above. More precisely, we
have the following hidden relations: C of arity n+ 2, TCi of arity i+ 1, for all i = 0, . . . , n,
TCi,zero and TCi,one of arity i + 1, for all i = 1, . . . , n. We have the following sentences for all
i = 1, . . . , n:

(∀j ≤ i) TCi (x, y1, . . . , yi) → Bit(yj)

TCn (x, y1, . . . , yn)→ ∃z C(x, y1, . . . , yn, z) TCi,zero(x, y1, . . . , yi)→ Zero(yi)

C(x, y1, . . . , yn, z)→ V (z) TCi,one(x, y1, . . . , yi)→ One(yi)

TCi−1(x, y1, . . . , yi−1)→ ∃yi T
C
i,zero(x, y1, . . . , yi) TCi,zero(x, y1, . . . , yi)→ TCi (x, y1, . . . , yi)

TCi−1(x, y1, . . . , yi−1)→ ∃yi T
C
i,one(x, y1, . . . , yi) TCi,one(x, y1, . . . , yi)→ TCi (x, y1, . . . , yi).

Note that the analog of the sentence true → T0() is missing here. This will be given later,
when we will explain how new configurations are created to simulate a computation tree of
M . For the moment it suffices to observe that, in every instance that satisfies the above
sentences, as soon as TC0 contains a configuration identifier x, then TCn contains all tuples
of the form (x, y1, . . . , yn), with (y1, . . . , yn) ∈ Bitn, and C specifies at least one value z for
each configuration identifier x and each cell (y1, . . . , yn).

We now turn towards the encoding of the computation tree of M . This is almost
the same as in the proof of Theorem 4.6. We introduce a visible unary relation I, which
contains the identifier x0 of the initial existential configuration, and three hidden binary
relations S∃, S∀

1 , and S
∀
2 . A fact of the form S∃(x, x′) (resp., S∀

1 (x, x1), S
∀
2 (x, x1)) represents

a transition from an existential (resp., universal) configuration x to a universal (resp.,
existential) configuration x′ (resp., x1, x2). We then include the following sentences in the
background theory:

I(x) → ∃ x′ S∃(x, x′)

S∃(x, x′) → ∃ x1 S
∀
1 (x

′, x1)

S∃(x, x′) → ∃ x2 S
∀
2 (x

′, x2)

S∀
1 (x, x1) → ∃ x′ S∃(x1, x

′)

S∀
2 (x, x2) → ∃ x′ S∃(x2, x

′)

S∃(x, x′) → TC0 (x)

S∀
1 (x, x1) → TC0 (x)

S∀
2 (x, x2) → TC0 (x) .

INFERENCE FROM VISIBLE INFORMATION AND BACKGROUND KNOWLEDGE 23

Intuitively, the rules on the left enforce the existence of a transition graph where x0 ∈ I is
the initial node and every node has one or two outgoing edges, depending on whether it is
existential or universal. The rules on the right trigger the instantiation of the tables TCn
and C, with the intended goal of representing the content of the tape associated with each
node/configuration. As usual, the unfolding of the transition graph from the initial node
yields a tree, which should represent a computation of M .

It remains to describe how we detect badly-formed encodings of computations of M .
For this, we introduce new visible relations ErrC , ErrI,first, ErrI,last, ErrI,adj, ErrC,adj, ErrS∃ ,
ErrS∀

1
, and ErrS∀

2
, whose instances are defined exactly as in the proof of Theorem 4.6.

• The relation ErrC is binary and contains all pairs of distinct values from V × V .
This is used to detect multiple values associated with the same cell:

QC = ∃ x ȳ z z′ C(x, ȳ, z) ∧ C(x, ȳ, z′) ∧ ErrC(z, z
′) .

• The relation ErrI,first contains all pairs in V × V but (z0, z1), where z0 = (⊢, q0) and
z1 = (⊔,⊲). This is used to detect wrong values associated with the first two cells
of the initial configuration:

QI,first = ∃ x ȳ ȳ′ z z′

I(x) ∧ First(ȳ) ∧
∨

1≤i≤n
Qadj,i(ȳ, ȳ

′) ∧

C(x, ȳ, z) ∧ C(x, ȳ′, z′) ∧ ErrI,first(z, z
′) .

Note that, strictly speaking, the above query is not a UCQ, but can be easily
normalized into a UCQ of polynomial size. The same remark applies to all remaining
queries.
• Similar visible relations ErrI,last, ErrI,adj, ErrC,adj and UCQs QI,last, QI,adj, QC,adj
are used to detect wrong values, respectively, for the last two cells of the initial
configuration, for any two adjacent cells of the initial configuration, and for any two
adjacent cells of an arbitrary configuration.
• To detect the violations that involve values associated with the same position of the
tape but in two consecutive configurations, we use the following UCQs:

QS∃ = ∃ x x′ ȳ ȳ′ ȳ′′ z z′ z′′ z′′′

S∃(x, x′) ∧
∨

1≤i≤n
Qadj,i(ȳ, ȳ

′) ∧
∨

1≤i≤n
Qadj,i(ȳ

′, ȳ′′) ∧

C(x, ȳ, z) ∧ C(x, ȳ′, z′) ∧ C(x, ȳ′′, z′′) ∧ C(x′, ȳ′, z′′′) ∧ ErrS∃(z, z′, z′′, z′′′)

QS∀
1

= ∃ x x1 ȳ ȳ
′ ȳ′′ z z′ z′′ z′′′

S∀
1 (x, x1) ∧

∨

1≤i≤n
Qadj,i(ȳ, ȳ

′) ∧
∨

1≤i≤n
Qadj,i(ȳ

′, ȳ′′) ∧

C(x, ȳ, z) ∧ C(x, ȳ′, z′) ∧ C(x, ȳ′′, z′′) ∧ C(x1, ȳ
′, z′′′) ∧ ErrS∀

1
(z, z′, z′′, z′′′)

QS∀
2

= ∃ x x2 ȳ ȳ
′ ȳ′′ z z′ z′′ z′′′

S∀
2 (x, x2) ∧

∨

1≤i≤n
Qadj,i(ȳ, ȳ

′) ∧
∨

1≤i≤n
Qadj,i(ȳ

′, ȳ′′) ∧

C(x, ȳ, z) ∧ C(x, ȳ′, z′) ∧ C(x, ȳ′′, z′′) ∧ C(x2, ȳ
′, z′′′) ∧ ErrS∀

2
(z, z′, z′′, z′′′)

where ErrS∃ , ErrS∀
1
, and ErrS∀

2
are defined exactly as in the proof of Theorem 4.6.

24 M. BENEDIKT, P. BOURHIS, B. TEN CATE, G. PUPPIS, AND M. VANDEN BOOM

In addition, we check whether the Turing machine M reaches the rejecting state qrej along
some path in its computation tree. This is done with the CQ

Qrej = ∃ x ȳ z C(x, ȳ, z) ∧ Vrej(z)

where Vrej is the visible relation that contains all cell values of the form (a, qrej), for some
a ∈ Σ.

Let Q be the disjunction of all the previous UCQs and let V be the instance that
captures the intended semantics of the visible relations Zero, One, Bit, V , ErrC , ErrI,first,
ErrI,last, ErrI,adj, ErrC,adj, ErrS∃ , ErrS∀

1
, and ErrS∀

2
. We can argue along the same lines of the

proof of Theorem 4.6 thatM has a successful computation tree iff PQI(Q,Σ,S,V) = false.

4.2. Schema-level problem. In this section we focus on the schema-level problem ∃PQI,
namely, the problem of deciding the existence of a instance V such that PQI(Q,Σ,S,V) =
true.

Let a be an arbitrary domain element. Further let V{a} be a fixed instance for the visible
part of a schema S whose domain contains the single value a and whose visible relations
are singleton relations of the form {(a, . . . , a)}. We will show that, for certain languages for
the background theories, if ∃PQI(Q,Σ,S) = true, then the witnessing instance can be taken
to be V{a}. This can be viewed as an extension of the “critical instance” method which
has been applied previously to chase termination problems: Proposition 3.7 of Marnette
and Geerts [MG10] states a related result for disjunctive TGDs in isolation; Gogacz and
Marcincowski [GM14] call such an instance a “well of positivity”. The following result shows
that the technique applies to TGDs and EGDs without constants.

Theorem 4.9. For every Boolean UCQ Q without constants, and every set Σ of TGDs
and EGDs without constants, ∃PQI(Q,Σ,S) = true iff PQI(Q,Σ,S,V{a}) = true.

First, we prove the theorem for background theories consisting only of TGDs without
constants. Then we will show how to generalize the proof in the additional presence of
EGDs without constants.

We recall that the visible instance V{a} is constructed over a singleton active domain
and the sentences in the background theory Σ have no constants. This implies that there
are no disjunctive choices to perform while chasing with the dependencies starting from the
initial instance V{a}. Moreover, it is easy to see that this chase always succeeds. That is,
it returns a collection Chasesvis(Σ,S,V{a}) with exactly one instance — in particular, V{a}
is a realizable instance. By a slight abuse of notation, we denote by chasevis(Σ,S,V{a}) the
unique instance in the collection Chasesvis(Σ,S,V{a}).

Lemma 4.10. If Σ is a set of TGDs without constants over a schema S and V is an instance
of the visible part of S, then every instance K ∈ Chasesvis(Σ,S,V) maps homomorphically
to chasevis(S,Σ,V{a}), that is, h(K) ⊆ chasevis(S,Σ,V{a}) for some homomorphism h.

Proof. Recall that the instances in Chasesvis(Σ,S,V) are either leaves or limits of infinite
paths of the chase tree. Below, we prove that every instance K in the chase tree for
Chasesvis(S,Σ,V) maps to chasevis(S,Σ,V{a}) via some homomorphism h. In addition, we
ensure that, if K ′ is a descendant of K in the same chase tree, then the corresponding
homomorphism h′ is obtained by composing some homomorphism with an extension of h.
This way of constructing homomorphisms is compatible with limits in the following sense:
if h0, h1, . . . are homomorphisms mapping instances K0,K1, . . . along an infinite path of the
chase tree, then there is a homomorphism limn∈N hn that maps the limit instance limn∈NKn

to F .

INFERENCE FROM VISIBLE INFORMATION AND BACKGROUND KNOWLEDGE 25

For the base case of the induction, we consider the initial instance V at the root of the
chase tree, which clearly maps homomorphically to V{a} (recall that there are no constants
in the query or sentences of the background theory, and homomorphisms are free to map
all domain elements to a). For the inductive case, we consider an instance K in the chase
tree and suppose that it maps to chasevis(S,Σ,V{a}) via a homomorphism h. We also
consider an instance K ′ that is a child of K and is obtained by chasing some dependency
R1(x̄1) ∧ . . . ∧ Rm(x̄m) → ∃ȳ S(z̄), where z̄ is a sequence of variables from x̄1, . . . , x̄m, ȳ.
This means that there exist two homomorphisms f and g such that

(1) f maps the variables x̄1, . . . , x̄m to some values in K and maps injectively the
variables ȳ to fresh values;

(2) g either maps f(z̄) to values in the active domain of V or is the identity on f(z̄),
depending on whether S is visible or not;

(3) Rj
(

f(x̄j)
)

∈ K for all 1 ≤ j ≤ m;

(4) K ′ = g
(

K ∪
{

S(f(z̄))
})

.

Note that h maps each fact Rj
(

f(x̄j)
)

in K to Rj
(

h(f(x̄j))
)

in chasevis(S,Σ,V{a}). Since
chasevis(S,Σ,V{a}) satisfies the chased dependency, it must also contain a fact of the form

S
(

h′(f(z̄))
)

, where h′ is a homomorphism that extends h on the fresh values f(ȳ). Moreover,
if S is visible, then h′ maps all values f(z̄) to the same value a, which is the only element
of the active domain of V{a}.

We can now define a homomorphism that maps the instance K ′ = g
(

K ∪
{

S(f(z̄))
})

to chasevis(S,Σ,V{a}). If S is not visible, then we recall that g is the identity on f(z̄), and

hence h′ already maps K ′ = g
(

K ∪
{

S(f(z̄))
})

= K ∪
{

S(f(z̄))
}

to chasevis(S,Σ,V{a}).
Otherwise, if S is visible, then we recall that g maps f(z̄) to values in the active domain of
V, we let g′ be the function that maps all values of the active domain of V to a, and finally
we define h′′ = h′ ◦g′. In this way h′′ maps K ′ = g

(

K∪
{

S(f(z̄))
})

to chasevis(S,Σ,V{a}).

Now that we established the key lemmas, we can easily reduce the existence problem
to an instance-based problem (recall that for the moment we assume that the background
theory consists only of TGDs):

Proof of Theorem 4.9 (with TGDs only). One of the two directions is trivial: if
PQI(Q,Σ,S,V{a}) = true, then clearly ∃PQI(Q,Σ,S) = true.

For the converse direction, suppose that ∃PQI(Q,Σ,S) = true. This implies the ex-
istence of a realizable instance V such that PQI(Q,Σ,S,V) = true. By Proposition 4.5,
every instance in Chasesvis(S,Σ,V) satisfies the query Q. Moreover, by Lemma 4.10, ev-
ery instance in Chasesvis(S,Σ,V) maps homomorphically to chasevis(S,Σ,V{a}). Hence the
unique instance in Chasesvis(S,Σ,V{a}), i.e. chasevis(S,Σ,V{a}), also satisfiesQ. By applying
Proposition 4.5 again, we conclude that PQI(Q,Σ,S,V{a}) = true.

Finally, the second statement of the theorem follows from the fact that the previous
proofs are independent of the assumption that relational instances are finite.

Now, we explain how to generalize the proof of Theorem 4.9 to combinations of
TGDs and EGDs (still without constants). Recall that we can modify the procedure for
Chasesvis(S,Σ,V) so as to also take into account the EGDs in Σ that can be triggered on the
instances that emerge in the chase tree. Using this extended definition of Chasesvis(S,Σ,V)
at hand, the proof of Lemma 4.10 does not pose particular problems, as one just needs
to handle the standard case of an EGD dependency. Finally, the proof of Theorem 4.9
directly uses Proposition 4.5 and Lemma 4.10 as black boxes, and so carries over without
any modification.

26 M. BENEDIKT, P. BOURHIS, B. TEN CATE, G. PUPPIS, AND M. VANDEN BOOM

It is worth remarking that, by pairing Theorem 4.9 with the upper bound and the
finite controllability for instance-level problems (Theorem 4.1), one immediately obtains
the following:

Corollary 4.11. ∃PQI(Q,Σ,S) with Q ranging over Boolean UCQs and Σ over sets of
frontier-guarded TGDs without constants, is decidable in 2ExpTime, and is finitely con-
trollable.

In contrast, we show that allowing disjunctions or constants in the background theory
sentences leads to undecidability. We first prove this in the case where the sentences include
disjunctions. This shows that the interaction of disjunctive linear TGDs and linear EGDs
(implicit in the requirement that in a possible world for an instance F , each fact of a visible
relation R world must be one of the R-facts of F) causes the “critical instance” reduction
to fail.

Theorem 4.12. The problem ∃PQI(Q,Σ,S) is undecidable as Q ranges over Boolean UCQs
and Σ over sets of disjunctive linear TGDs.

The proof uses a technique that will be exploited for many of our schema-level undecid-
ability arguments. We will reduce the existence of a tiling to the ∃PQI problem. The tiling
itself will correspond to the visible instance that has a PQI. The invisible relations will store
“challenges” to the correctness of the tiling. The UCQ Q will have disjuncts that return
true exactly when the challenge to correctness is passed. There will be challenges to the
labelling of adjacent cells, challenges to the correctness of the initial tile, and challenges to
the correct shape of the adjacency relationship – that is, challenges that the tiling is really
grid-like. A correct tiling corresponds to every challenge being passed, and thus corresponds
to a visible instance where every extension satisfies Q. The undecidability argument also
applies to the “unrestricted version” of ∃PQI, in which both quantifications over instances
consider arbitrary instances. This will also be true for all other undecidability results in
this work, which always concern the schema-level problems.

Proof of Theorem 4.12. For simplicity, we deal with the “unrestricted variant” of the prob-
lem, which asks if there is an arbitrary instance of the visible schema such that every
superinstance satisfying the sentences in Σ also satisfies Q. Later we will show to modify
the proof for dealing with finite instances.

We reduce the problem of tiling the infinite grid, which is known to be undecidable, to
the problem ∃PQI. Recall that an instance of the tiling problem consists of a finite set T of
available tiles, some horizontal and vertical constraints, given by two relations H,V ⊆ T×T ,
and an initial tile t⊥ ∈ T for the lower-left corner. The problem consists of deciding whether
there is a tiling function f : N×N→ T such that

(1) f(0, 0) = t⊥,
(2) (f(i, j), f(i + 1, j)) ∈ H for all i, j ∈ N,
(3) (f(i, j), f(i, j + 1)) ∈ V for all i, j ∈ N.

Given an instance (T,H, V, t⊥) of the tiling problem, we show how to construct a schema
S, a query Q, and a set of disjunctive linear TGDs over S such that ∃PQI(Q,Σ,S) = true
if and only if there is a tiling function for (T,H, V, t⊥).

The basic idea is that the visible instance that witnesses ∃PQI should represent a can-
didate tiling, and the invisible instances represent challenges to the correctness of the tiling.
Every cell of the grid is identified with some value, and we use two visible binary relations
EH , EV to represent the horizontal and vertical edges of the grid. We also introduce a unary
visible relation Ut, for each tile t ∈ T , to represent a candidate tiling function on the grid.

INFERENCE FROM VISIBLE INFORMATION AND BACKGROUND KNOWLEDGE 27

We begin by enforcing the existence of an initial node with the associated tile t⊥. For
this, we introduce another visible relation Init, of arity 0, and linear TGD

Init → ∃x Ut⊥(x) .

It is also easy to guarantee that every node is connected to at least another node in the
relation EH (resp., EV), and that this latter node has an associated tile that satisfies the
horizontal constraints H (resp., the vertical constraints V). To do so we use the following
disjunctive linear TGDs:

Ut(x) → ∃y EH(x, y) ∧
∨

(t,t′)∈H
Ut′(y) (for all tiles t ∈ T)

Ut(x) → ∃z EV (x, z) ∧
∨

(t,t′)∈V
Ut′(z) (for all tiles t ∈ T)

We now explain how to enforce a grid structure on the relations EH and EV , and how
to guarantee that each node has exactly one tile associated with it. Of course, we cannot
directly use disjunctive TGDs in order to guarantee that EH and EV correctly represent
the horizontal and vertical edges of the grid. However, we can introduce additional hidden
relations that make it possible to mark certain nodes so as to expose the possible violations.
We first show how to expose violations to the fact that the horizontal edge relation is a
function. The idea is to select nodes in EH in order to challenge functionality. Formally,
the horizontal challenge is captured by a hidden ternary relation HChallengefunct, by the
linear TGDs

Init → ∃ x y y′ HChallenge(x, y, y′)

HChallenge(x, y, y′) → EH(x, y) ∧ EH(x, y
′)

and by the CQ
QH = ∃ x y HChallengefunct(x, y, y) .

Note that if the visible fact Init is present and the relation EH correctly describes the
horizontal edges of the grid, then the above query QH is necessarily satisfied by any instance
of HChallengefunct that satisfies the above sentences: the only way to give a non-empty
instance for HChallengefunct is to use triples of the form (x, y, y). Conversely, if the relation
EH is not a function, namely, if there exist nodes x, y, y′ such that (x, y), (x, y′) ∈ EH and
y 6= y′, then the singleton instance {(x, y, y′)} for the hidden relation HChallengefunct will
satisfy the associated setennces of the background theory and violate the query QH . Note
that we do not require that the relation EH is injective (this could be still done, but is
not necessary for the reduction). Similarly, we can use a hidden relation VChallenge and
analogous background theory sentences and query QV in order to challenge the functionality
of EV .

In the same way, we can challenge the confluence of the relations EH and EV . For
this, we introduce a hidden relation CChallenge of arity 5, which is associated with the
background theory sentences

Init → ∃ x y z w w′ CChallenge(x, y, z, w,w′)

CChallenge(x, y, z, w,w′) → EH(x, y) ∧ EV (x, z) ∧ EV (y,w) ∧ EH(z, w
′)

and the CQ
QC = ∃ x y z w CChallenge(x, y, z, w,w) .

As before, we can argue that there is a positive query implication for QC iff the horizontal
and vertical edge relations are confluent, that is, (x,w) ∈ EH ◦ EV and (x,w′) ∈ EV ◦ EH
imply w = w′.

28 M. BENEDIKT, P. BOURHIS, B. TEN CATE, G. PUPPIS, AND M. VANDEN BOOM

We need now to ensure that every node is labeled with at most one tile, or equally
that there are no relations Ut and Ut′ , for distinct tiles t 6= t′ ∈ T , that have non-empty
intersection. For that we add the two following sentences, where A and B are hidden
relations

Init → ∃ x A(x) ∨B(x)

B(x) →
∨

t6=t′
(Ut(x) ∧ Ut′(x))

Finally, we add the CQ
QA = ∃ x A(x)

Now that we described all the visible and hidden relations of the schema S, and the
associated sentences Σ, we define the query for the ∃PQI problem as the conjunction of
the atom Init and all previous UCQs (for this we distribute the disjunctions and existential
quantifications over the conjunctions):

Q = Init ∧ QA ∧ QH ∧ QV ∧ QC .

It remains to show that ∃PQI(Q,Σ,S) = true iff there is a correct tiling of the infinite grid,
namely, a function f : N×N→ T that satisfies the conditions 1), 2), and 3) above.

Suppose there is a correct tiling f : N ×N → T . We construct the visible instance V
that contains the fact Init and the relations EH , EV , and Ut with the intended semantics:
EH =

{(

(i, j), (i + 1, j)
) ∣

∣ i, j ∈ N
}

, EV =
{(

(i, j), (i, j + 1)
) ∣

∣ i, j ∈ N
}

, and Ut =
{

(i, j)
∣

∣ f(i, j) = t
}

for all t ∈ T . Since no error can be exposed on the relations EH , EV ,
and Ut, no matter how we construct a full instance F that agrees with V on the visible
part and satisfies the sentences in Σ, we will have that F satisfies all the components of
the query Q, other than QA. In addition, in any such F , B must be empty, since otherwise
tiling predicates for distinct tiles would overlap, which is not the case. Since Init holds, we
can conclude via the first sentence above that QA must hold.

Conversely, suppose that ∃PQI(Q,Σ,S) = true and let V be the witnessing visible
instance. Clearly, V contains the fact Init (otherwise, the query would be immediately
violated). We can use the content of V and the knowledge that ∃PQI(Q,Σ,S) = true to
inductively construct a correct tiling of the infinite grid. More precisely, by the first sentence
in Σ, we know that V contains the fact Ut⊥(x), for some node x. Accordingly, we define
ix = 0, jx = 0, and f(ix, jx) = t⊥. For the induction step, suppose that f(ix, jx) is defined
for a node x with the associated coordinates ix and jx. The sentences in Σ enforce the
existence of two cells y and z and two tiles t and t′ for which the following facts are in
the visible instance: EH(x, y), EV (x, z), Ut(y), and Ut′(z). Accordingly, we let iy = ix + 1,
jy = jx, iz = ix, jz = jy + 1, f(iy, jy) = t, and f(iz, jz) = t′. By the initial sentences in
Σ, we know that the tiles associated with the new cells (iy, jy) and (iz, jz) are consistent
with the tile in (ix, jx) and with the horizontal and vertical constraints H and V . We now
argue that there is a unique choice for the nodes y and z. Indeed, suppose this is not the
case; for instance, suppose that there exist two distinct nodes y, y′ that are connected to x
via EH . Then, we could construct a full instance in which the relation HChallenge contains
the single triple (x, y, y′). This will immediately violate the CQ QH , and hence Q. Similar
arguments apply to the vertical successor z.

We now argue that there are unique choices for the tile t associated with a node y.
Suppose not. Then we can let A be empty and B the set of all nodes with multiple tiles.
All the sentences in Σ are satisfied, but the queryQA is not. This contradicts the assumption
that we have a PQI.

INFERENCE FROM VISIBLE INFORMATION AND BACKGROUND KNOWLEDGE 29

Finally, we can argue along the same lines that, during the next steps of the induction,
the EV -successor of y and the EH -successor of z coincide. The above properties are sufficient
to conclude that the constructed function f is a correct tiling of the infinite grid.

The variant for finite instances is done by observing that the same reduction produces
a periodic grid, which can be represented as a finite instance.

Perhaps even more surprisingly, we show that disjunction can be simulated using con-
stants (under UNA). The proof works by applying the technique of “coding Boolean op-
erations and truth values in the schema” which has been used to eliminate the need for
disjunction in hardness proofs in several past works (e.g. [GP03]). It is also similar to the
proof idea used in Lemma 4.7 from earlier in this paper.

Proposition 4.13. There is a polynomial time reduction from ∃PQI(Q,Σ,S), where Q
ranges over Boolean UCQs and Σ over sets of disjunctive linear TGDs, to ∃PQI(Q′,Σ′,S′),
where Q′ ranges over Boolean UCQs and Σ′ over sets of linear TGDs (with constants).

Proof. We transform the schema S to a new schema S′ as follows. For every visible (resp.,
hidden) relation R of S of arity k, we add to S′ a corresponding visible (resp., hidden)
relation R′ of arity k + 1. The idea is that the additional attribute of R′ represents a
truth value, i.e. either the constant 0 or the constant 1, which indicates the presence of a
tuple in the original relation R. For example, the fact R′(ā, 1) indicates the presence of the
tuple ā in the relation R. We can then simulate the disjunctions in the sentences of Σ by
using conjunctions and an appropriate look-up table, which we denote by Or. Formally, we
introduce three additional relations Or, Check, and Init, of arities 2, 1, and 0, respectively,
and we let Or and Init be visible and Check be hidden in S′. Then, for every disjunctive
linear TGD in Σ of the form

R(x̄) → ∃ȳ S(z̄) ∨ T (z̄′)

we add to Σ′ the linear TGD with constants

R′(x̄, 1) → ∃ȳ b1 b2 S
′(z̄, b1) ∧ T

′(z̄′, b2) ∧ Or(b1, b2) .

We further add to Σ′ the following sentences:

Init → Or(0, 1) ∧Or(1, 0) ∧ Or(1, 1)

Init → ∃b1 b2 Or(b1, b2) ∧ Check(b1) ∧ Check(b2) .

Finally, we transform every CQ of Q of the form ∃ȳ S(ȳ) to a corresponding CQ of Q′ of
the form

∃ȳ S′(ȳ, 1) ∧ Check(1) ∧ Init

Note that if needed, we can even rewrite the CQ above so as to avoid constants: we introduce
another hidden unary relation One and the sentence Init → One(1), and we replace the
conjunct Check(1) with ∃b Check(b) ∧ One(b). Below, we prove that ∃PQI(Q,Σ,S) = true
iff ∃PQI(Q′,Σ′,S′) = true.

For the easier direction, we consider a realizable Sv-instance V such that
PQI(Q,Σ,S,V) = true. We can easily transform V into a realizable S′

v-instance V
′ that

satisfies PQI(Q′,Σ′,S′,V ′) = true. For this it suffices to copy the content of the visible rela-
tions of V into V ′, by properly expanding the tuples with the constant 1, and then adding
the facts Init, Or(0, 1), Or(1, 0), and Or(1, 1).

As for the converse direction, we consider a realizable S′
v-instance V

′ such that
PQI(Q′,Σ′,S′,V ′) = true. By the definition of Q′ it is clear that V ′ contains the fact
Init, and hence also the facts Or(0, 1), Or(1, 0), and Or(1, 1). We first claim that it suf-
fices to show that for every fact Or(b1, b2) in V ′, we have b1 = 1 or b2 = 1. If this were

30 M. BENEDIKT, P. BOURHIS, B. TEN CATE, G. PUPPIS, AND M. VANDEN BOOM

the case, then we could easily transform V ′ into a realizable Sv-instance V that satisfies
PQI(Q,Σ,S,V) = true. For this we simply select the facts R′(ā, 1) in V ′, where R is a
visible relation of S, and project away the constant 1.

Thus it remains to show that for every fact Or(b1, b2) in V
′, we have b1 = 1 or b2 = 1.

For the sake of contradiction, suppose that V ′ contains a fact of the form Or(b1, b2), with
b1 6= 1 and b2 6= 1. Since V ′ is realizable, there is a full S′-instance F ′ such that F ′ |= Σ′ and
Visible(F ′) = V ′. Note that F ′ may satisfy Q′ and, in particular, the conjunct Check(1).
However, removing the single fact Check(1) from F ′ gives a new instance F ′′ that still
satisfies the sentences in Σ′, agrees with F ′ on the visible part, and violates the query Q′.
This contradicts the fact that PQI(Q′,Σ′,S′,V ′) = true.

From the previous two results we immediately see that the addition of (distinct) con-
stants leads to undecidability:

Corollary 4.14. The problem ∃PQI(Q,Σ,S) is undecidable as Q ranges over Boolean CQs
and Σ over sets of linear TGDs (with constants).

We now turn to analysing how the complexity scales with less powerful background
theories, e.g. linear TGDs without constants. As before, we reduce ∃PQI(Q,Σ,S) to
PQI(Q,Σ,S,V{a}). We can then reuse some ideas from [JK84] to solve the latter prob-
lem in polynomial space:

Theorem 4.15. The problem PQI(Q,Σ,S,V{a}) asQ ranges over Boolean UCQs and Σ over
sets of linear TGDs without constants, is in PSpace, and the same is true for ∃PQI(Q,Σ,S).

Proof. By Proposition 4.5, PQI(Q,Σ,S,V{a}) = true is equivalent to checking that
there is a homomorphism h from CanonInst(Qi) of some CQ Qi of Q to the instance
chasevis(Σ,S,V{a}). We can easily guess in NP a CQ Qi of Q, some homomorphism h
from CanonInst(Qi), and the corresponding image I of CanonInst(Qi) under h. Then, it
remains to decide whether I is contained in chasevis(Σ,S,V{a}). Below, we explain how to
decide this in polynomial space.

Recall that the instance chasevis(Σ,S,V{a}) is obtained as the limit of a series of op-
erations that consist of alternatively adding new facts according to the TGDs in Σ and
identifying the values that appear in some visible relation with the constant a. Note that
the second type of operation may also affect tuples that belong to hidden relations (this
happens when the values are shared with facts in the visible instance). Also note that the
affected tuples could have been inferred during previous steps of the chase. Nonetheless, at
the exact moment when a new fact R(b1, . . . , bk) is inferred by chasing a linear TGD, we can
detect whether a certain value bi needs to be eventually identified with the constant a, and
in this case we can safely replace the fact R(b1, . . . , bk) with R(b1, . . . , bi−1, a, bi+1, . . . , bk).
More precisely, to decide whether the i-th attribute of R(b̄) needs to be instantiated with
the constant a, we test whether Σ entails a dependency of the form R(x̄) → ∃ȳ S(z̄), where
x̄ is a sequence of (possibly repeated) variables that has the same equality type as b̄ (i.e.
x̄(j) = x̄(j′) iff b̄(j) = b̄(j′)), S is a visible relation, z̄ is a sequence of variables among x̄, ȳ,
and x̄(i) = z̄(j) for some 1 ≤ j ≤ |z̄|. Note that the above entailment can be rephrased
as a containment problem between two CQs – i.e. R(x̄) and ∃ȳ S(z̄) – under a given set
of linear TGDs Σ, and we know from [JK84] that the latter problem is in PSpace. We
also observe that, in order to discover all the values in R(b̄) that need to be identified with
the constant a, it is not sufficient to execute the above analysis only once on each position
1 ≤ i ≤ ar(R), as identifying some values with the constant a may change the equality type
of the fact and thus trigger new dependencies from Σ (notably, this may happen when the
linear TGDs are not IDs). We thus repeat the above analysis on all positions of R and until

INFERENCE FROM VISIBLE INFORMATION AND BACKGROUND KNOWLEDGE 31

the corresponding equality type stabilizes – this can be still be done in polynomial space.
After this, we add the resulting fact to the chase.

What we have just described is an alternative construction of chasevis(Σ,S,V{a}) in
which every chase step can be done using a PSpace sub-procedure. We omit the routine
details showing that this alternative construction gives the same result, in the limit, as the
version of the chase that we introduced at the beginning of Section 4.2 (the arguments are
similar to the proof of Lemma 4.4).

Below, we explain how to adapt the techniques from [JK84] to this alternative variant
of the chase, in order to decide whether the homomorphic image I of some CQ of Q is
contained in chasevis(Σ,S,V{a}). For this, it is convenient to think of chasevis(Σ,S,V{a}) as
a directed graph, where the nodes represent the facts in chasevis(Σ,S,V{a}) and the edges
describe the inference steps that derive new facts from existing facts and sentences in Σ.
Note that, because the background theory sentences are linear TGDs, each inference step
depends on at most one fact. In particular, the nodes of this graph that have no incoming
edge (we call them roots) are precisely the facts from the instance V{a}, and all the other
nodes are reachable from some root. Moreover, by the previous arguments, one can check
in polynomial space whether an edge exists between two given nodes.

Now, we focus on the minimal set of edges that connects all the facts of I to some
roots in the graph. The graph restricted to this set of edges is a forest, namely, every
node in it has at most one incoming edge. Moreover, the height of this forest is at most
exponential in |I|, and each level in it contains at most |I| nodes. Thus, the restricted
graph can be explored by a non-deterministic polynomial-space algorithm that guesses the
nodes at a level on the basis of the nodes at the previous level and the linear TGDs in Σ.
The algorithm terminates successfully once it has visited all the facts in I, witnessing that
I is contained in chasevis(Σ,S,V{a}). Otherwise, the computation is rejected after seeing
exponentially many levels.

We can derive matching lower bounds by reducing Open-World Query Answering
(OWQ) to ∃PQI:

Proposition 4.16. For any class of sentences containing linear TGDs, OWQ reduces to
∃PQI.

Proof. Let Q be a query, Σ a set of sentences over a schema S, and F an instance of the
schema S. We show how to reduce the Open-World Query Answering problem for Q, Σ, S,
and F to a problem ∃PQI(Q′,Σ′,S′). The idea is to create a copy of the instance F in the
hidden part of the schema, which can then be extended arbitrarily.

Formally, we let the transformed schema S′ consist of all the relations in S, which
are assumed to be hidden, plus an additional visible relation Good of arity 0. We then
introduce a variable yb for each value in the active domain of F , and we let Σ′ contain all
the sentences from Σ, plus the sentence Good → ∃ȳ QF , where ȳ contains one variable yb
for each value b in the active domain of F and QF is the conjunction of the atoms of the
form A(yb1 , . . . , ybk), for all facts A(b1, . . . , bk) in F . Note that the visible instance VGood
that contains the atom Good is realizable, since it can be completed (using the chase) to
an S′-instance F ′ that satisfies the sentences in Σ′. Let Q′ = Q ∧ Good. We claim that
∃PQI(Q′,Σ′,S′) = true if and only if Q is certain with respect to Σ on F . In one direction,
suppose ∃PQI(Q′,Σ′,S′) = true holds. The witness visible instance having PQI can only be
the instance VGood. Consider an instance F ′ containing all facts of F and satisfying the
original sentences Σ. By setting Good to true in F ′, we have an instance satisfying Σ′, and
since VGood has a PQI then we know that this instance must satisfy Q′ and hence Q. Thus
Q is certain with respect to Σ on F as required. Conversely, suppose Q is certain with

32 M. BENEDIKT, P. BOURHIS, B. TEN CATE, G. PUPPIS, AND M. VANDEN BOOM

respect to Σ on F . Letting CF be the chase of F with respect to Σ, we see that CF satisfies
Q. We will show there is a PQI for Q′,Σ′,S on VGood. Thus fix an instance F ′ where Good
and Σ′ holds. The additional sentence implies that F ′ contains the image of F under some
homomorphism h. But h extends to a homomorphism of CF into F ′. Thus F ′ satisfies Q,
and therefore satisfies Q′. Thus there is a PQI on VGood as required.

Thus we have reduced the Open-World Query Answering problem for Q, Σ, and S to
the problem ∃PQI(Q′,Σ′,S′).

From this and existing lower bounds on the Open-World Query Answering ([CFP84]
coupled with a reduction from implication to OWQ for linear TGDs, [CGK13] for FGTGDs),
we see that the prior upper bounds from Theorem 4.15 and Corollary 4.11 are tight:

Corollary 4.17. The problem ∃PQI(Q,Σ,S), where Q ranges over CQs and Σ over sets of
linear TGDs, is PSpace-hard.

Corollary 4.18. The problem ∃PQI(Q,Σ,S), where Q ranges over CQs and Σ over sets of
FGTGDs without constants, is 2ExpTime-hard.

4.3. Summary for Positive Query Implication. The main results on positive query
implication are highlighted in the table below.

Background Theory Σ PQI data complexity PQI combined complexity ∃PQI

NoConst ExpTime-cmp 2ExpTime-cmp PSpace-cmp
Linear TGD Thm. 4.2 / Thm 4.6 Thm. 4.1 / Thm 4.8 Thm. 4.15 / Cor 4.17

NoConst ExpTime-cmp 2ExpTime-cmp 2ExpTime-cmp
FGTGD Thm. 4.2 / Thm 4.6 Thm. 4.1 / Thm 4.8 Cor. 4.11/Cor 4.18

NoConst Disj. ExpTime-cmp 2ExpTime-cmp undecidable
Linear TGD Thm. 4.2 / Thm 4.6 Thm. 4.1 / Thm 4.8 Thm. 4.12

Linear TGD ExpTime-cmp 2ExpTime-cmp undecidable
& FGTGD Thm. 4.2 / Thm. 4.6 Thm. 4.1 / Thm. 4.8 Cor. 4.14
& GNFO

5. Negative Query Implication

5.1. Instance-level problems. Here we analyze the complexity of the problem
NQI(Q,Σ,S,V). As in the positive case, we begin with an upper bound that holds for
a very rich class of background theories, which go far beyond referential constraints (and
FGTGDs).

Theorem 5.1. The problem NQI(Q,Σ,S,V), as Q ranges over Boolean UCQs and Σ over
sets of GNFO sentences, has 2ExpTime combined complexity, ExpTime data complexity,
and it is finitely controllable.

Proof. As in the positive case, we reduce to unsatisfiability of a GNFO formula. We use a
variation of the same formula, where ¬Q is now replaced by Q:

φNQItoGNF
Q,Σ,S,V = Q ∧ Σ ∧

∧

R∈Sv

(

∧

R(ā)∈V

R(ā) ∧ ∀x̄
(

R(x̄)→
∨

R(ā)∈V

x̄ = ā
)

)

The data complexity analysis is as in Theorem 4.2, since the formulas agree on the part
that varies with the instance.

INFERENCE FROM VISIBLE INFORMATION AND BACKGROUND KNOWLEDGE 33

We can show that this bound is tight if the class of background theories is rich enough.
This will follow from our lower bounds for positive query implication problems, since we
can show that NQI is at least as difficult as PQI for sentences in a powerful logical language.

Theorem 5.2. For any class of sentences that include connected FGTGDs and for any
UCQ Q, PQI(Q,Σ,S,V) reduces in polynomial time to NQI(Q′,Σ′,S′,V ′). When Q,Σ,S
are fixed in the input to this reduction, then Q′,Σ′,S′ are fixed in the output.
Thus, for these background theories, the lower bounds for combined and data complexity
given in Theorems 4.6 and 4.8 apply to negative query implications as well.

Proof. We first provide a reduction that works with any class of TGDs allowing arbitrary
conjunctions in the left-hand sides (e.g. frontier-guarded TGDs). Subsequently, we show
how to modify the constructions in order to preserve connectedness.

The schema S′ is obtained by copying both the visible and the hidden relations from
S and by adding the following relations: a visible relation Error of arity 0 and a hidden
relation Good of arity 0. The sentences Σ′ will contain the sentences from Σ, plus one
frontier-guarded TGD of the form

Qi(ȳ) ∧ Good → Error

for each disjunct ∃ȳ Qi(ȳ) of the UCQ Q. Finally, the query and the visible instance for
NQI are defined as follows: Q′ = Good and V ′ = V (in particular, we initialize the visible
relation Error with the empty set).

We now verify that PQI(Q,Σ,S,V) = false iff NQI(Q′,Σ′,S′,V ′) = false. Suppose that
PQI(Q,Σ,S,V) = false, namely, that there is an S-instance F such that F 6|= Q, F |= Σ, and
Visible(F) = V. Let F ′ be the S′-instance obtained from F by adding the single hidden fact
Good. Clearly, F ′ satisfies the queryQ′ and also the sentences in Σ′. In particular, it satisfies
every sentence Qi(ȳ) ∧ Good→ Error because F violates every disjunct ∃ȳ Qi of Q. Hence,
we have NQI(Q′,Σ′,S′,V ′) = false. Conversely, suppose that NQI(Q′,Σ′,S′,V ′) = false,
namely, that there is an S′-instance F ′ such that F ′ |= Q′, F ′ |= Σ′, and Visible(F ′) = V ′.
By copying the content of F ′ for those relations belong to the schema S, we obtain an
S-instance F that satisfies the sentences Σ. Moreover, because F ′ contains the fact Good
but not the fact Error, F ′ violates every conjunct ∃ȳ Qi(ȳ) of Q, and so F does. This shows
that PQI(Q,Σ,S,V) = false.

We observe that the sentences in the above reduction use left-hand sides that are not
connected. In order to preserve connectedness, it is sufficient to modify the above con-
structions by adding a dummy variable that is shared among all atoms. More precisely,
we expand the relations of the schema S and the relation Good with a new attribute, and
we introduce a new visible relation Check of arity 1. The dummy variable will be used
to enforce connectedness in the left-hand sides, and the relation Check will gather all the
values associated with the dummy attribute. Using the visible instance, we can also check
that the relation Check contains exactly one value. The sentences in the background theory
are thus modified as follows. Every sentence R1(x̄1) ∧ . . . ∧ Rm(x̄m) → ∃ȳ S(z̄) in Σ′ is
transformed into R1(x̄1, w) ∧ . . . ∧ Rm(x̄m, w) → ∃ȳ S(z̄, w). In particular, note that the
sentence Qi(ȳ) ∧ Good → Error becomes Qi(ȳ, w) ∧ Good(w) → Error(w), which is now a
connected frontier-guarded TGD. Furthermore, for every relation R(x̄) in S, we add the
sentence

R(x̄, w) → Check(w)

and we do the same for the relation Good:

Good(w) → Check(w) .

34 M. BENEDIKT, P. BOURHIS, B. TEN CATE, G. PUPPIS, AND M. VANDEN BOOM

Finally, the query is transformed into Q′ = ∃w Good(w) and the visible instance V ′ is
expanded with a fresh dummy value a on the additional attribute and with the visible fact
Check(a).

As mentioned above, combining the above reduction with Theorems 4.6 and 4.8, we get
the following hardness results for instance-based NQI.

Corollary 5.3. There are a Boolean UCQ Q and a set Σ of IDs over a schema S for which
the problem NQI(Q,Σ,S,V) is ExpTime-hard in data complexity (that is, as V varies over
instances).

Corollary 5.4. The problem NQI(Q,Σ,S,V), as Σ ranges over sets of connected frontier-
guarded TGDs, S over schemas, Q over conjunctive queries and V over instances, is
2ExpTime-hard.

Thus far, the negative query implication results have been similar to the positive ones.
We will now show a strong contrast in the case of IDs and linear TGDs. Recall that the PQI
problems were highly intractable even for fixed schema, query, and background theory. We
begin by showing that NQI(Q,Σ,S,V) can be solved easily by looking only at full instances
that agree with V on the visible part and whose active domains are almost the same as that
of V:

Definition 5.5. The problem NQI(Q,Σ,S,V) is said to be active domain controllable if it
is equivalent to asking that for every instance F over the active domain of V, if F satisfies
Σ and V = Visible(F), then Q(F) = false.

It is clear that the the problem NQI(Q,Σ,S,V) is simpler when it is active domain
controllable, as in this case we could guess a full instance F over the active domain of V
and then reduce the problem to checking whether Q holds on F .

We give a simple argument that NQI under IDs is active domain controllable. Let
Σ be a set of IDs over a schema S, Q be a UCQ, and V be a visible instance such that
NQI(Q,Σ,S,V) = false. Without loss of generality — that is, by adding a dummy visible
fact over a visible relation that does not occur in the sentences of the background theory
— we can assume that the active domain adom(V) of V contains at least one element.
The fact that NQI(Q,Σ,S,V) = false implies the existence of a full instance F such that
F |= Σ, Visible(F) = V, and F |= Q. Now take any element a ∈ adom(V) and let h
be the homomorphism that is the identity over adom(V) and maps any other value from
adom(F) \ adom(V) to a. Since the sentences Σ are IDs (in particular, since the left-hand
side atoms do not have constants or repeated occurrences of the same variable), we know
that h(J) |= Σ. Similarly, we have h(J) |= Q. Hence, h(J) is an instance over the active
domain of V that equally witnesses NQI(Q,Σ,S,V) = false.

Note that our hardness results for PQI (in particular, Theorem 4.8), imply that PQI is
not active domain controllable even for IDs, since such a result would easily give membership
in co-NP.

The following example shows that linear TGDs are not always active domain control-
lable.

Example 3. Let S be the schema with a hidden relation R of arity 2, with two visible
relations S, T of arities 1, 0, respectively, and with the sentences:

R(x, y) → S(x) R(x, x) → T .

Note that the sentences are linear TGDs and they are even full – no existential quantifiers
on the right. The conjunctive query is Q = ∃x y R(x, y). Further let the visible instance V

INFERENCE FROM VISIBLE INFORMATION AND BACKGROUND KNOWLEDGE 35

consist of the single fact S(a). Clearly, every full instance F over the active domain {a} that
satisfies both Σ and Q must also contain the facts R(a, a) and T , and so such an instance
cannot agree with V in the visible part. On the other hand, the instance that contains the
facts S(a) and R(a, b), for a fresh value b, satisfies both Σ and Q and moreover agrees with
V. This shows that NQI(Q,Σ,S,V) is not active domain controllable.

The example shows that we need to weaken the notion of active domain controllability
to allow some elements outside of the active domain. The following definition allows a fixed
number of exceptions.

Definition 5.6. For a number k, the problem NQI(Q,Σ,S,V) is said to be active domain
controllable modulo k if it is equivalent to asking that for every instance F whose active
domain contains at most k elements outside of the active domain of V, if F satisfies Σ and
V = Visible(F), then Q(F) = false.

Theorem 5.7. For any collection Σ of Linear TGDs, the problem NQI(Q,Σ,S,V) is active
domain controllable modulo k, where k is the maximal arity of any relation in the schema.

Proof. Let k be the maximal arity of any relation in the schema. The main idea is to
compress an arbitrary counterexample instance to NQI by one with at most k elements
outside the active domain, by taking k “representative elements” outside the active domain
and replacing arbitrary tuples outside the active domain with these k elements. In doing
this replacement, we should take into account equalities within each tuple.

Formally, we say that two tuples ~t and ~t′ of the same length are equality equivalent if:
ti = tj if and only if t′i = t′j and for every schema constant c, ti = c if and only if t′i = c.

Suppose that NQI(Q,Σ,S,V) = false, namely, that there is an S-instance F such that
F |= Σ, F |= Q, and Visible(F) = V. We need to give a instance F ′ whose active domain
has only k elements outside the active domain of V that witnesses NQI(Q,Σ,S,V) = false.

We fix an extension D of the active domain of V that contains k additional fresh values.
For each fact R(ā) in F and each tuple b̄ ∈ Dar(R), if b̄ and ā are equality-equivalent and
agree on each position whose value is in the active domain of V, we add the fact R(b̄) to F ′.
By definition, the instance F ′ agrees with F on the visible part, and has only k elements
outside the active domain of V.

Below we show that F ′ satisfies the sentences of Σ and the query Q. Consider any
linear TGD τ of Σ of the form

R(x̄) → ∃ȳ S(z̄)

and any fact R(ā) that is the image under some homomorphism h of the left-hand side atom
R(x̄). Let I be the set of positions i ∈ {1, . . . , ar(R)} such that ā(i) ∈ adom(V). We know
that there is ū such that R(ū) holds in F such that ā|I = ū|I and ā is equality-equivalent
to ū. Since F satisfies τ , and ū is equality-equivalent to ā, we know that there is a fact
S(v̄) in F agreeing with ū on the positions corresponding to exported variables of τ . Let

b̄ be any tuple in Dar(R) equality-equivalent to b̄ and agreeing with v̄ on all the positions
corresponding to exported variables of τ . Since k is at least the arity of R, such a b̄ must
exist. Then b̄ witnesses that τ holds for ā. This completes the proof that the sentences of
Σ hold.

A similar argument shows that Q holds in F ′. Thus F ′ witnesses that NQI(Q,Σ,S,V)
is active domain controllable modulo k.

Example 4. As an example of the prior argument, consider a TGD τ

R(x, y, y)→ ∃z S(y, z, z)

and suppose the instance F has a tuple R(a, b, b) where a1 is in the active domain of the
visible instance and b is outside of the active domain of the visible instance. Thus there is

36 M. BENEDIKT, P. BOURHIS, B. TEN CATE, G. PUPPIS, AND M. VANDEN BOOM

a homomorphism from the left side of τ to R(a, b, b). Since F satisfies τ , it must contain
S(b, c, c) for some value c.

The instance F ′ produced by the prior argument will replace R(a, b, b) by R(a, c1, c1),
where c1 is one of the k additional constants. We explain why this replacement will not
break the satisfaction of τ . There is a homomorphism h′ of the left hand side of τ to
R(a, c1, c1). If the witness c of S(b, c, c) is in the active domain of the visible instance, then
F ′ has S(c1, c, c), and thus we have the witness we need for τ with respect to h′. If c is
not in the active domain of the visible instance, then F ′ will also have S(c1, c2, c2), for c2
another of the additional constants. Either way the required value is present.

Now we show how to exploit active domain controllability to prove that NQI problems
can be solved not only efficiently, but “definably” using well-behaved query languages.
For this, we introduce a variant of Datalog programs, called GFP-Datalog programs, whose
semantics is given by greatest fixpoints. GFP-Datalog programs are defined syntactically in
the same way as Datalog programs [AHV95], that is, as finite sets of rules of the form U(x̄)←
Q(x̄) where the variables in x̄ are implicitly universally quantified and Q is a conjunctive
query whose free variables are exactly x̄. As for Datalog programs, we distinguish between
extensional (i.e., input) predicates and intensional (i.e., output) predicates. In the above
rules we restrict the left-hand sides to contain only intensional predicates. Given a GFP-
Datalog program P , the immediate consequence operator for P is the function that, given
an instance M consisting of both extensional and intensional relations, returns the instance
M ′ where the extensional relations are as in M and the tuples of each intensional relation
U are those satisfying Q(M), where Q is any query appearing on the right of a rule with
U . The immediate consequence operator is monotone, and the semantics of the GFP-
Datalog program on instance I for the extensional relations is defined as the greatest fixpoint
of this operator starting at the instance I+ that extends I by setting each intensional
relation “maximally” — that is, to the tuples of values from the active domain of I plus
the constants appearing in the GFP-Datalog program. A program may also include a
distinguished intensional predicate, the goal predicate G, in which case it defines the query
that maps every instance to the set of tuples satisfying G in the greatest fixpoint. We
now show that under active domain controllability, we can use GFP-Datalog to decide
NQI(Q,Σ,S,V):

Theorem 5.8. If Q is a Boolean UCQ, Σ a set of linear TGDs (with constants), and
NQI(Q,Σ,S,V) is active domain controllable, then ¬NQI(Q,Σ,S,V), viewed as a Boolean
query over the visible part V, is definable by a GFP-Datalog program that can be con-
structed in PTime from Q, Σ, and S.

Proof. First observe that NQI(Q,Σ,S,−) can be seen as a Boolean function that takes as
input an instance V for the visible relations of S and returns true iff the query Q does
not hold on every instance F that satisfies the sentences Σ and such that Visible(F) = V.
Accordingly, ¬NQI(Q,Σ,S,−) is the negation of the function NQI(Q,Σ,S,−), and thus
maps an instance V to true when Q does hold on some instance F that satisfies Σ and
agrees with V on the visible relations.

Below, we implement the function ¬NQI(Q,Σ,S,−) by means of a GFP-Datalog pro-
gram. Thanks to active domain controllability, it is sufficient to consider only full instances
constructed over the active domain of V. More precisely, it is sufficient to show that a
witnessing instance F can be obtained as a greatest fixpoint starting from the values in
the active domain of V. Below, we describe the GFP-Datalog program that computes F
starting from V.

The extensional relations are the ones in the visible part V, while the intensional rela-
tions are the ones in the hidden part of the schema S, plus an extra intensional relation A

INFERENCE FROM VISIBLE INFORMATION AND BACKGROUND KNOWLEDGE 37

that collects the values in the active domain of V. For each extensional (i.e. visible) relation
R and each position i ∈ {1, . . . , ar(R)}, we add the rule A(xi) ← R(x̄), which collects
all the values of the active domain into the relation A. In addition, for each intensional
(i.e. hidden) relation R, we have the rule

R(x̄) ←
∧

i

A(xi) ∧
∧

linear TGD in Σ of the
form R(x̄)→∃ȳ S(z̄)

S(z̄) .

Intuitively, the above rule permits the existence of a fact R(ā) only when ā consists of values
from the active domain and every linear TGD R(x̄) → ∃ȳ S(z̄) of Σ is satisfied by some
fact S(b̄) when substituting x̄ for ā. This semantics is consistent with the goal of finding
the biggest instance F over the active domain of V that satisfies the UCQ Q — so as to
have NQI(Q,Σ,S,V) = false — while guaranteeing that the linear TGDs remain valid.

We finally add the rule

Goal ← S1(z̄1) ∧ . . . ∧ Sn(z̄n)

for each CQ ∃ȳ S1(z̄1) ∧ . . . ∧ Sn(z̄n) of Q, and take Goal to be the final output of our
program.

Let us now prove that the Datalog program does compute the function ¬NQI(Q,Σ,S,−)
under the greatest fixpoint semantics. Consider an instance F computed by the GFP-
Datalog program starting from input V. Clearly, the extensional (visible) part of F agrees
with V. We claim that F also satisfies the sentences in Σ. Indeed, if R(x̄) → ∃ȳ S(z̄) is a
linear TGD in Σ andR(ā) is a fact of F , withR(ā) image of R(x̄) via some homomorphism h,
then F contains a fact of the form S(b̄), where b̄ is the image of S(z̄) via some homomorphism
h′ that extends h. To conclude, we observe that the predicate Goal holds iff F satisfies some
disjunct S1(z̄1) ∧ . . . ∧ Sn(z̄n) of the UCQ Q, namely, iff NQI(Q,Σ,S,V) = false.

In the case of Linear TGDs that are active domain controllable modulo k, we can
similarly use a GFP Datalog program, but first pre-processing the active domain to contain
the k additional constants. The extension of Theorem 5.8 clearly holds:

Theorem 5.9. If Q is a Boolean UCQ, Σ a set of linear TGDs (with constants), and
NQI(Q,Σ,S,V) is active domain controllable modulo k, then ¬NQI(Q,Σ,S,V), viewed as a
Boolean query over the visible part V, is definable by a GFP-Datalog program that can be
constructed in PTime from Q, Σ, and S.

Recall that the näıve fixpoint algorithm for a GFP-Datalog program takes exponential
time in the maximum arity of the intensional relations, but only polynomial time in the size
of the extensional relations and the number of rules. This is true even if one extends the
active domain by k elements, where k is the maximal arity. Thus we can get bounds on the
NQI problem for IDs using the simple argument for active domain controllability for IDs
given above along with Theorem 5.8. We can likewise get bounds for linear TGDs using
Theorem 5.7 and Theorem 5.9.

Corollary 5.10. When Σ ranges over sets of linear TGDs and Q over Boolean UCQs,
NQI(Q,Σ,S,V) has data complexity in PTime and combined complexity in ExpTime.

Example 5. Returning to the medical example from the introduction, Example 1, we see
that the GFP-Datalog program is quite intuitive: since we have a referential constraint from
Appointment into Patient and the visible instance does not contain the fact Patient(Smith),
all tuples of the form (Smith, a, d) are removed from the relation Appointment. The program
then simply evaluates the query on the resulting instance, which returns false, indicating
that an NQI does hold on the original visible instance.

38 M. BENEDIKT, P. BOURHIS, B. TEN CATE, G. PUPPIS, AND M. VANDEN BOOM

We give a tight ExpTime lower bound for the combined complexity of NQI with linear
TGDs (and even IDs):

Theorem 5.11. The combined complexity of NQI(Q,Σ,S,V), where Q ranges over UCQs
and Σ ranges over IDs, is ExpTime-hard.

Proof. We reduce the acceptance problem for an alternating PSpace Turing machine M to
NQI(Q,Σ,S,V). As in the proof of Theorem 4.6, we assume that the transition function of
M maps each universal configuration to a set of exactly 2 target configurations. Moreover,
we assume that there is at least one target configuration for each existential configuration.
In particular, M never halts. The computation begins with the head on the second position
and never visits the first and last position of the tape. The acceptance condition of M is
defined by distinguishing two special control states, qacc and qrej, that once reached will
‘freeze’ M in its current configuration. We say that M accepts (the empty input) if for all
paths in the computation tree, the state qacc is eventually reached; otherwise, we say that
M rejects.

Differently from the proofs of Theorem 4.6 and Theorem 4.8, the configurations of M
can be described by simply specifying the label of each cell of the tape, the position of the
head, and the control state of the Turing machineM . We thus define cell values as elements
of V = (Σ×Q) ⊎Σ, where Σ is the alphabet of M and Q is the set of its control states. If
a cell has value (a, q), this means that the associated letter is a, the control state of M is q,
and the head is on this cell. Otherwise, if a cell has value a, this means that the associated
letter is a and the head of M is not on this cell.

Now, let n be the size of the tape ofM . We begin by describing the initial configuration
of M . This is encoded by a visible relation C0 of arity n+1, where the first attribute gives
the identifier of the initial configuration and the remaining n attributes give the values
of the tape cells. As the relation C0 is visible, we can immediately fix its content to be a
singleton consisting of the tuple (x0, y1, y2, y3, . . . , yn), where x0 is the identifier of the initial
configuration, y1 = ⊥, y2 = (⊥, q0), y3 = . . . = yn = ⊥. As for the other configurations of
M , we store them into two distinct hidden relations C∃ and C∀, depending on whether the
control states are existential or universal. Each fact in one of these two relation consists
of n + 1 attributes, where the first attribute specifies an identifier and the remaining n
attributes specify the cell values. We can immediately give the first sentence, which requires
the initial configuration to be existential and stored also in the relation C∃:

C0(x, y1, . . . , yn) → C∃(x, y1, . . . , yn) .

To represent the computation tree of M , we encode pairs of subsequent configurations.
In doing so, we not only store the identifiers of the configurations, but also their contents,
in such a way that we can later check the correctness of the transitions using inclusion
dependencies. We use different relations to record whether the current configuration is
existential or universal and, in the latter case, whether the successor configuration is the first
or the second one in the transition set (recall that the transition rules of M define exactly
two successor configurations from each universal configuration). Formally, we introduce
three hidden relations S∃, S∀

1 , and S∀
2 , all of arity 2n + 2. We can easily enforce that

the first n + 1 and the last n + 1 attributes in every tuple of S∃, S∀
1 , and S∀

2 describe
configurations in C∃ and C∀:

S∃(x, ȳ, x′, ȳ′) → C∃(x, ȳ) S∃(x, ȳ, x′, ȳ′) → C∃(x′, ȳ′)

S∀
1 (x, ȳ, x

′, ȳ′) → C∀(x, ȳ) S∀
1 (x, ȳ, x

′, ȳ′) → C∀(x′, ȳ′)

S∀
2 (x, ȳ, x

′, ȳ′) → C∀(x, ȳ) S∀
2 (x, ȳ, x

′, ȳ′) → C∀(x′, ȳ′) .

INFERENCE FROM VISIBLE INFORMATION AND BACKGROUND KNOWLEDGE 39

Similarly, we guarantee that every existential (resp., universal) configuration has one (resp.,
two) successor configuration(s) in S∃ (resp., S∀

1 and S∀
2):

C∃(x, ȳ) → ∃ x′ ȳ′ S∃(x, ȳ, x′, ȳ′)

C∀(x, ȳ) → ∃ x′ ȳ′ S∀
1 (x, ȳ, x

′, ȳ′)

C∀(x, ȳ) → ∃ x′ ȳ′ S∀
2 (x, ȳ, x

′, ȳ′) .

We now turn to explaining how we can enforce the correctness of the transitions rep-
resented in the relations S∃, S∀

1 , and S
∀
2 . Compared to the proof of Theorem 4.6, the goal

is simpler in this setting, as we can simply compare the values z−1, z0, z+1 for the cells at
positions i − 1, i, i + 1 in a configuration with the value z′ for the cell at position i in the
successor configuration. We thus introduce new visible relations N∃, N∀

1 , and N
∀
2 of arity 4.

Each of these relations is initialized with the possible quadruples of cell values z−1, z0, z+1, z
′

that are allowed by the transition function of M . Consider, for example, the case where
the transition function specifies that, when M is in the universal control state q and reads
the letter a, then the first of the two subcomputations spawned by M begins by rewriting
a with a′, moving the head to the left, and switching to control state q′. In this case we
add to N∀

1 all the tuples of the form
(

a−1, (a, q), a+1, a
′
)

or
(

a−2, a−1, (a, q), (a−1, q
′)
)

, with
a−2, a−1, a+1 ∈ Σ. Accordingly, we introduce the following IDs, for all 1 < i < n:

S∃(x, ȳ, x′, ȳ′) → N∃(yi−1, yi, yi+1, y
′
i)

S∀
1 (x, ȳ, x

′, ȳ′) → N∀
1 (yi−1, yi, yi+1, y

′
i)

S∀
2 (x, ȳ, x

′, ȳ′) → N∀
2 (yi−1, yi, yi+1, y

′
i) .

Furthermore, we constrain the values of the extremal cells to never change:

S∃(x, ȳ, x′, ȳ′) → E(y1, y
′
1) S∃(x, ȳ, x′, ȳ′) → E(yn, y

′
n)

S∀
1 (x, ȳ, x

′, ȳ′) → E(y1, y
′
1) S∀

1 (x, ȳ, x
′, ȳ′) → E(yn, y

′
n)

S∀
2 (x, ȳ, x

′, ȳ′) → E(y1, y
′
1) S∀

2 (x, ȳ, x
′, ȳ′) → E(yn, y

′
n)

where E is another visible binary relation interpreted by the singleton instance {(⊥,⊥)}.
It remains to specify the query that checks that the Turing machine M reaches the

rejecting state qrej along some path of its computation tree. For this, we introduce a last
visible relation Vrej that contains all cell values of the form (a, qrej), with a ∈ Σ. The query
that checks this property is

Q =
∨

1<i<n

∃ x ȳ
(

C∃(x, ȳ) ∧ Vrej(yi)
)

.

Let V be the instance that captures the intended semantics of the visible relations V ,
C0, N

∃, N∀
1 , N

∀
2 , E, and Vrej, The proof that NQI(Q,Σ,S,V) = true iff M accepts (namely,

has a computation tree where all paths visit the control state qacc) goes along the same lines
of the proof of Theorem 4.6.

5.2. Existence problems. Here we consider the complexity of the schema-level question,
∃NQI(Q,Σ,S). We first show that when the background theories are preserved under dis-
joint unions (e.g., connected frontier guarded TGDs), the existence of an NQI can be checked
by considering a single “negative critical instance”, namely the empty visible instance ∅.
This instance is easily seen to be realizable: the variant of the chase procedure that we
introduced in Section 4.2 terminates immediately when initialized with the empty instance

40 M. BENEDIKT, P. BOURHIS, B. TEN CATE, G. PUPPIS, AND M. VANDEN BOOM

F0 = ∅ and returns the singleton collection Chasesvis(Σ,S, ∅) consisting of the empty S-
instance satisfying Σ.

Theorem 5.12. If the query Q is monotone and the background theory Σ is preserved
under disjoint unions of instances, then ∃NQI(Q,Σ,S) = true iff NQI(Q,Σ,S, ∅) = true.

Proof. It is immediate to see that NQI(Q,Σ,S, ∅) = true implies ∃NQI(Q,Σ,S) = true. We
prove the converse implication by contraposition.

Suppose that NQI(Q,Σ,S, ∅) = false, namely, that there is an S-instance F satisfying
Σ and Q and such that Visible(F) = ∅. We aim at proving that NQI(Q,Σ,S,V) = false
for all realizable visible instances V. Let V be such a realizable instance and let F ′ be
an S-instance that satisfies Σ and such that Visible(F ′) = V. We define the new instance
F ′′ as a disjoint union of F and F ′. Since the background theory Σ is preserved under
disjoint unions, F ′′ satisfies Σ. Moreover, F ′′ satisfies the query Q, by monotonicity. Since
V = Visible(F ′) = Visible(F ′′), we have NQI(Q,Σ,S,V) = false. Finally, since V was chosen
in an arbitrary way, this proves that ∃NQI(Q,Σ,S) = false.

Using the “negative critical instance” result above and Theorem 5.1, we immediately
see that ∃NQI(Q,Σ,S) is decidable in 2ExpTime for GNFO sentences that are closed under
disjoint unions, and in particular for connected frontier-guarded TGDs. Combining with
Corollary 5.10 also gives an ExpTime bound for linear TGDs. In fact, we can improve this
upper bound by observing that the NQI problem over the empty visible instance reduces to
classical Open-World Query answering:

Proposition 5.13. For any Boolean CQ Q, NQI(Q,Σ,S, ∅) holds iff
OWQ(Q′,Σ,CanonInst(Q)) holds, where

Q′ =
∨

R∈Sv

∃x̄ R(x̄)

and CanonInst(Q) is the canonical instance of the CQ Q.

Proof. Suppose that NQI(Q,Σ,S, ∅) = true. This means that every S-instance that satisfies
the sentences in Σ and has empty visible part, must violate the query Q. By contraposition,
every S-instance that satisfies the sentences Σ and contains CanonInst(Q) (i.e., satisfies
Q), must contain some visible facts, and hence satisfy the UCQ Q′. This implies that
OWQ(Q′,Σ,CanonInst(Q)) = true.

The proof that OWQ(Q′,Σ,CanonInst(Q)) = true implies ∃NQI(Q,Σ,S, ∅) = true follows
symmetric arguments.

We know from previous results [BGO10] that OWQ for Boolean UCQs and linear
TGDs is in PSpace. From the above reduction, we immediately get that the problem
NQI(Q,Σ,S, ∅), and hence (by Theorem 5.12) the problem ∃NQI(Q,Σ,S), for a set of linear
TGDs is also in PSpace.

Corollary 5.14. The problem ∃NQI(Q,Σ,S), as Q ranges over Boolean UCQ and Σ over
sets of linear TGDs, is in PSpace.

Matching lower bounds for ∃NQI come by a converse reduction from Open-World Query
answering.

To prove this reduction, we first provide a characterization of the NQI problem over the
empty visible instance, which is based, like Proposition 4.5, on our chase procedure:

Proposition 5.15. If Q is a Boolean CQ and Σ is a set of TGDs and EGDs without
constants over a schema S, then NQI(Q,Σ,S, ∅) = true iff either Q contains a visible atom,
or it does not and in this case Chasesvis(Σ,S,CanonInst(Q)) = ∅.

INFERENCE FROM VISIBLE INFORMATION AND BACKGROUND KNOWLEDGE 41

Proof. Suppose that Q does not contain visible atoms and Chasesvis(Σ,S,CanonInst(Q)) is
non-empty. Let K be some instance in Chasesvis(Σ,S,CanonInst(Q)) and observe that, by
construction, K satisfies the sentences in Σ and the query Q, and has the same visible
part as CanonInst(Q), which is empty. This means that K is a witness of the fact that
NQI(Q,Σ,S, ∅) = false.

Conversely, suppose that NQI(Q,Σ,S, ∅) = false. This means that there is an S-instance
F with no visible facts that satisfies the sentences in Σ and the query Q. Since F |= Q, there
is a homomorphism g from CanonInst(Q) to F . Moreover, since Q contains no visible atoms,
the two instances F and CanonInst(Q) agree on the visible part. By Lemma 4.4, letting
F0 = CanonInst(Q), we get the existence of an instance K in Chasesvis(Σ,S,CanonInst(Q)).

As in the positive case, the upper bounds are tight:

Theorem 5.16. ∃NQI(Q,Σ,S) is 2ExpTime-hard as Q ranges over Boolean CQs and Σ
over sets of connected FGTGDs.

Theorem 5.17. ∃NQI(Q,Σ,S) is PSpace-hard as Q ranges over Boolean CQs and Σ over
sets of linear TGDs.

The first theorem will be proven by reducing the open-world query answering problem
to ∃NQI, and then applying a prior 2ExpTime-hardness result from Cal̀ı et al. [CGK13].
The PSpace lower bound will be shown by a reduction from the implication problem for
IDs, shown PSpace-hard by Casanova et al. [CFP84].

We begin with the reduction from Open-World Query answering:

Proposition 5.18. There is a polynomial time reduction from the Open-World Query
answering problem over a set of connected FGTGDs without constants and a connected
Boolean CQ to an ∃NQI problem over a set of connected FGTGDs without constants and
a Boolean CQ.

Proof. Consider the Open-World Query answering problem over a schema S, a set Σ of
sentences without constants and closed under disjoint union, a Boolean CQ Q, and an S-
instance F . We reduce this problem to an ∃NQI problem over a new schema S′, a new set
of sentences Σ′, and a new Boolean CQ Q′. The schema S′ is obtained from S by adding a
relation Good of arity 0, which is assumed to be the only visible relation in S′. The set of
sentences Σ′ is equal to Σ unioned with the sentence

S1(x̄1) ∧ . . . ∧ Sm(x̄m) → Good

where S1(x̄1), . . . , Sm(x̄m) are the atoms in the CQ Q. The query Q′ is defined as the
canonical query of the instance F , obtained by replacing each value v with a variable yv and
by quantifying existentially over all these variables. Note that CanonInst(Q′) is isomorphic
to the input instance F .

Now, assume that the original sentences in Σ were connected FGTGDs and the CQ
Q was also connected. By construction, the sentences in Σ′ turn out to be also connected
FGTGDs. In particular, the satisfiability of these sentences are preserved under disjoint
unions, and hence from Theorem 5.12, ∃NQI(Q′,Σ′,S′) = true iff NQI(Q′,Σ′,S′, ∅) = true.
Thus, it remains to show that NQI(Q′,Σ′,S′, ∅) = true iff OWQ(Q,Σ,F) = true.

By contraposition, suppose that OWQ(Q,Σ,F) = false. This means that there is a
S-instance F ′ that contains F , satisfies the sentences in Σ, and violates the query Q. In
particular, F ′, seen as an instance of the new schema S′, without the visible fact Good,
satisfies the query Q′ and the sentences in Σ′ (including the sentence that derives Good from

42 M. BENEDIKT, P. BOURHIS, B. TEN CATE, G. PUPPIS, AND M. VANDEN BOOM

the satisfiability of Q). The S′-instance F ′ thus witnesses the fact that NQI(Q′,Σ′,S′, ∅) =
false.

Conversely, suppose that NQI(Q′,Σ′,S′, ∅) = false. Recall that the sentences in Σ′

do not use constants and Q′ contains no visible facts. We can thus apply Proposi-
tion 5.15 and derive Chasesvis(Σ

′,S′,CanonInst(Q′)) 6= ∅. Note that CanonInst(Q′) is
clearly isomorphic to the original instance F . In particular, there is an instance K in
Chasesvis(Σ

′,S′,CanonInst(Q′)) that contains the original instance F , satisfies the sentences
in Σ′, and does not contain the visible fact Good. From the latter property, we derive that
K violates the query Q. Thus K, seen as an instance of the schema S, witnesses the fact
that OWQ(Q,Σ,F) = false.

We note that there are two variants of OWQ, corresponding to finite and infinite in-
stances. However, by finite-controllability of FGTGDs, inherited from the finite model
property of GNFO (see Theorem 3.1) these two variants agree. Hence we do not distinguish
them. Similar remarks hold for other uses of OWQ within proofs in the paper.

We are now ready to prove Theorem 5.16, namely, the 2ExpTime-hardness of the prob-
lem ∃NQI(Q,Σ,S), where Q ranges over Boolean CQs and Σ ranges over sets of connected
FGTGDs.

Proof of Theorem 5.16. Theorem 6.2 of Cal̀ı et al. [CGK13] shows 2ExpTime-hardness of
open-world query answering for FGTGDs. An inspection of the proof shows that only
connected FGTGDs are required. Thus, the theorem follows immediately from Proposi-
tion 5.18.

We now turn towards proving Theorem 5.17, namely, the PSpace lower bound for ∃NQI
under linear TGDs. Recall that the reduction in Proposition 5.18 does not preserve smaller
classes of sentences, such as linear TGDs. We thus prove the theorem using a separate
reduction.

Proof of Theorem 5.17. We reduce from the implication problem for inclusion dependencies
(IDs), which is known to be PSpace-hard from Casanova et al. [CFP84]. Consider a set of
IDs Σ and an additional ID δ = S⋆(x̄⋆) → ∃ȳ T⋆(z̄⋆), where x̄⋆, ȳ are sequences of pairwise
distinct variables and z̄⋆ is a sequence of variables from x̄⋆ and ȳ. We denote by F (δ) the
sequence of variables shared between x̄⋆ and z̄⋆ and m the length of this vector. Note that
we annotated relations and variables in δ with the subscript ⋆ in order to make it clear when
refer later to these particular objects.

We create a new schema S′ that contains, for each relation R of arity k in the original
schema S, a relation R′ of arity k+m. We also add to S′ a copy of each relation R from S,
without changing the arity. Furthermore, we add a 0-ary relation Good, which is the only
visible relation of S′. For each ID in Σ of the form

R(x̄) → ∃ȳ S(z̄)

we introduce a corresponding ID in Σ′ of the form

R′(x̄, x̄′) → ∃ȳ S′(z̄, x̄′)

where the variables in x̄′ are distinct from the variables in x̄. We also add the sentences

S⋆(x̄⋆) → S′
⋆(x̄⋆, F (δ))

T ′
⋆(z̄⋆, F (δ)) → Good

where the elements of z̄⋆ are arranged as in the atom T⋆(z̄⋆) that appears on the right-hand
side of the ID δ. Note that the sentence that copies the content from R to R′ and duplicates

INFERENCE FROM VISIBLE INFORMATION AND BACKGROUND KNOWLEDGE 43

the attributes is not an ID, but is still a linear TGD. The query of our ∃NQI problem is
defined as

Q′ = ∃x̄ S⋆(x̄) .

The sentences that we just defined are preserved under disjoint unions. Thus, by
Theorem 5.12, we know that ∃NQI(Q′,Σ′,S′) = true iff NQI(Q′,Σ′,S′, ∅) = true. Below, we
prove that the latter holds iff the ID δ is implied by the set of IDs in Σ.

In one direction, suppose that the implication holds. From this, we can easily infer that
in the schema S′ the following dependency holds:

S′
⋆(x̄⋆, F (δ)) → ∃ȳ T ′

⋆(z̄⋆, F (δ))

Consider now a full S′-instance F ′ with empty visible part. We show that the query Q′

is not satisfied, namely, F ′ cannot satisfy ∃x̄⋆ S⋆(x̄⋆). If it did, then, by the copy of the
sentences on the primed relations, this would yield ∃x̄⋆ S

′
⋆(c̄, F (δ)). Hence, by the sentences

in the background theory, we infer that ∃z̄⋆ T
′
⋆(z̄⋆, F (δ)) holds, and thus that Good holds.

This however would contradict the hypothesis that F ′ has empty visible part.
In the other direction, suppose that the implication fails and consider a witness S-

instance F that contains the fact S⋆(x̄⋆) but not the corresponding T⋆ fact. We cre-
ate a full S′-instance F ′ with empty visible part where Q′ holds, thus showing that
∃NQI(Q′,Σ′,S′, ∅) = false. We first copy in F ′ the content of all relations R from F .
In particular, F ′ contains the fact S⋆(x̄⋆), but no T⋆ fact. The primed relations R′ in F ′

are set to contain all and only the facts of the form R′(x̄, F (δ)), where R(x̄) is a fact in F .
Finally, we set Good to be the empty relation in F ′. Clearly, Q′ holds in F ′ and the visible
part is the empty instance. It is also easy to verify that all the sentences in Σ′ are satisfied
by F ′, and this completes the proof.

Note that the reduction above does not create a schema with IDs, but rather with
general linear TGDs (variables can be repeated on the right). We do not know whether
∃NQI(Q,Σ,S) is PSpace-hard even for background theories consisting of IDs.

We can show that the connectedness requirement is critical for decidability:

Theorem 5.19. The problem ∃NQI(Q,Σ,S) is undecidable as Q ranges over Boolean CQs
and Σ over sets of FGTGDs.

Proof. We give a reduction from the model conservativity problem for EL TBoxes, which is
shown undecidable in [LW07]. Intuitively, EL is a logic that defines FGTGDs over relations
of arity 2, called “TBoxes”. Given some TBoxes φ1 and φ2 over two schemas S1 and S2,
respectively, with S1 ⊆ S2, we say that φ2 is a model conservative extension of φ1 if every
S1-instance V that satisfies φ1 can be extended to an S2-instance that satisfies φ2 without
changing the interpretation of the predicates in S1, that is, by only adding an interpretation
for the relations that are in S2 but not in S1. The model conservativity problem consists
of deciding whether φ2 is a model conservative extension of φ1. The proof in [LW07] shows
that this problem is undecidable for both finite instances and arbitrary instances.

We reduce the above problem to the complement of ∃NQI(Q,Σ,S), for suitable Q, Σ,
and S, as follows. Given some TBoxes φ1 and φ2 over the schemas S1 ⊆ S2, let S be the
schema obtained from S2 by adding a new predicate Good of arity 0 and by letting the visible
part be S1 (in particular, the relation Good is hidden). Further let Σ = {φ1,Good → φ2},
where Good→ φ2 is shorthand for the collection of FGTGDs obtained by adding Good as a
conjunct to the left-hand side of each dependency of φ2 (note that this makes the dependency
unconnected). Finally, consider the query Q = Good. We have that ∃NQI(Q,Σ,S) = true
iff there is an S1-instance V satisfying φ1, none of whose S2-expansions satisfies φ2.

44 M. BENEDIKT, P. BOURHIS, B. TEN CATE, G. PUPPIS, AND M. VANDEN BOOM

5.3. Summary for Negative Query Implication. A summary of results on negative
implication is below. We notice that the decidable cases are orthogonal to those for positive
implications. Note also that unlike in the positive cases, we have tractable cases for data
complexity.

background theory Σ NQI data complexity NQI combined complexity ∃NQI

Linear In PTime ExpTime-cmp PSpace-cmp
TGD Cor. 5.10 Cor. 5.10 / Thm. 5.11 Cor. 5.14 / Thm. 5.17

Conn. Disj. ExpTime-cmp 2ExpTime-cmp 2ExpTime-cmp
FGTGD Thm. 5.1 / Thm. 5.2 Thm. 5.1 / Thm. 5.2 Thm. 5.12/Thm. 5.16

FGTGD ExpTime-cmp 2ExpTime-cmp undecidable
& GNFO Thm. 5.1 / Thm. 5.2 Thm. 5.1 / Thm. 5.2 Thm. 5.19

6. Extensions and special cases

We present some results concerning natural extensions of the framework.

Non-Boolean queries. Throughout this work we have restricted to queries to be given as
sentence. The natural extension of the notion of query implication for non-Boolean queries
is to consider inference of information concerning membership of any visible tuple in the
query output. E.g. PQI(Q,Σ,S,V) would hold if there is a tuple t̄ over the active domain of
V such that t̄ ∈ Q(F) for all instances F of S satisfying the background theory Σ and having
visible part V. As usual, the schema-level problem ∃PQI(Q,Σ,S) (resp. ∃NQI(Q,Σ,S)) for
a non-Boolean query Q amounts at deciding whether there is a realizable visible instance
V witnessing PQI(Q,Σ,S,V) (resp. NQI(Q,Σ,S,V)).

We show that all of our results carry over to the non-Boolean case. Since the lower-
bounds for Boolean problems are clearly inherited by the non-Boolean ones, we focus on
arguing that the upper bounds carry over.

All the complexity upper bounds for the instance-level problem carry over in a rather
simple way. For example, given S, Σ, V as usual, and given a non-Boolean query Q and
a visible tuple t̄, the problem of deciding whether t̄ appears in every potential output
Q(F), for any instance F satisfying Σ and having visible part V, reduces to the problem
PQI(Qt̄,Σ,S,V), where Qt̄ is the Boolean query obtained by substituting the i-th free
variable of Q with the i-th constant in t̄, for all i’s. A similar reduction holds for negative
implication. Thus the instance-level problem in the non-Boolean case reduces to a series of
instance-level problems in the Boolean case, one for each choice of a tuple t̄ over the active
domain of V. Our upper bounds can be applied to the latter problems, since they hold in
the presence of constants in the query. Moreover, the iteration over the tuples t̄ can be
absorbed in the complexity classes of our upper bounds: for data complexity the iteration
is polynomial, while for combined complexity the number of tuples can be exponential,
but our bounds are at least exponential. Further, GFP-Datalog definability for negative
implications also extends straightforwardly to the non-Boolean case: Theorem 5.7 extends
with the same statement and proof, while the argument in Theorem 5.8 is easily extended
to show that there is a GFP-Datalog program that returns the complement of NQI(Q,Σ,S)
within the active domain.

The complexity results for ∃PQI also generalize to the non-Boolean case: we can revise
Theorem 4.9 to state ∃PQI(Q,Σ,S) = true iff there is a positive query implication for the
tuple (a, . . . , a) and the instance V{a}. For ∃NQI, we can extend Theorem 5.12 to show that
for logical sentences preserved under disjoint union, if there is a positive query implication

INFERENCE FROM VISIBLE INFORMATION AND BACKGROUND KNOWLEDGE 45

involving some visible instance V and a tuple t̄, then there is one involving the empty
instance and the same tuple t̄. From this it follows that the complexity bounds for ∃NQI
carry over to the non-Boolean case.

Beyond unions of conjunctive queries. So far we have considered only the case where
the query Q does not contain negation or universal quantification. It is natural to extend
the query language even further, to Boolean combinations of Boolean conjunctive queries
(BCCQs). We note that the problem PQI(Q,Σ,S,V), as Q ranges over BCCQs, subsumes
both PQI(Q,Σ,S,V) and NQI(Q,Σ,S,V) for Q a UCQ. Thus all lower bounds for either of
these two problems are inherited by the BCCQ problem. The corresponding instance level
problems are still decidable. Indeed, this holds even when Q is a GNFO sentence, since
we can use the same translation to GNFO satisfiability applied in Theorems 4.1 and 5.1.
However, for the schema-level problems ∃PQI and ∃NQI we immediately run into problems:

Theorem 6.1. The problem ∃PQI(Q,Σ,S) for a Boolean combination Q of Boolean CQs
is undecidable, even when the sentences in the background theory are IDs. The same holds
for ∃NQI(Q,Σ,S).

Proof. As in the previous undecidability results, we reduce a tiling problem with tiles T ,
initial tile t⊥ ∈ T and horizontal and vertical constraints H,V ⊆ T × T to the problem
∃PQI(Q,Σ,S). Again, for convenience we deal with the infinite variant of the problem. The
idea will be that the visible instance witnessing ∃PQI represents the tiling, and invisible
instances represent challenges to the correctness of the tiling.

We model the infinite grid to be tiled by visible relations EH and EV , and the tiling
function by a collection of unary visible relations Ut, for all tiles t ∈ T .

The invisible relations represent markings of the grid for possible errors. There are sev-
eral kinds of challenges. We focus on the horizontal consistency challenge, which selects two
nodes in the EH relation, to challenge whether the nodes satisfy the horizontal constraint.
Formally, the challenge is captured by a binary invisible predicate HorChallenge(x, y), with
an associated sentence in the background theory

HorChallenge(x, y) → EH(x, y) .

The query Q will be satisfied only when the following negated CQs hold, for all pairs
(t, t′) 6∈ H:

¬∃ x y HorChallenge(x, y) ∧ Ut(x) ∧ Ut′(y) .

Note that this can only happen if the relation HorChallenge has selected two horizontally
adjacent nodes whose tiles violate the horizontal constraints. The vertical constraints are
enforced in a similar way using an invisible relation VertChallenge and another negated CQ.

Recall that in the infinite grid, we have unique vertical and horizontal successors of
each node, and the horizontal and vertical successor functions commute. Thus far we have
not enforced that EV and EH have this property. We will use additional hidden relations
and IDs to enforce that every element is related to at least one other via EH and EV .

We first show how to enforce that every element has at most one horizontal successor
(“functionality challenge”). We introduce a hidden relation HorFuncChallenge(x, y, y′) and
a background theory sentence

HorFuncChallenge(x, y, y′) → EH(x, y)

HorFuncChallenge(x, y, y′) → EH(x, y
′) .

We also add to the query Q the conjunct:
(

¬∃ x y y′ HorFuncChallenge(x, y, y′)
)

∨
(

∃ x y HorFuncChallenge(x, y, y)
)

.

46 M. BENEDIKT, P. BOURHIS, B. TEN CATE, G. PUPPIS, AND M. VANDEN BOOM

We claim that if there is a visible instance witnessing ∃PQI, then EH is functional. Indeed,
if EH were not functional in the visible instance, then we could choose a node x with
two distinct EH -successors y and y′, add only the tuple (x, y, y′) to HorFuncChallenge, and
obtain a full instance that satisfies the sentences of the background theory but not the
query Q. Conversely, suppose that EH is functional in a visible instance V, and consider
any full instance F that satisfies the background theory and agrees with V on the visible
part. If there are no tuples in HorFuncChallenge, the conjunct above is clearly satisfied by its
first disjunct. If there is some tuple (x, y, y′) in HorFuncChallenge, then by the background
theory, we must have EH(x, y) and EH(x, y

′), and hence, by functionality, y = y′. In this
case, the conjunct above holds via the second disjunct. The functionality of the vertical
relation EV is enforced in an analogous way.

Commutativity of EH and EV can be also enforced using a similar technique. We add
a hidden relation ConfChallenge(x, y, z, u, v) with the following sentences in the background
theory:

ConfChallenge(x, y, z, u, v) → EH(x, y)

ConfChallenge(x, y, z, u, v) → EV (y, u)

ConfChallenge(x, y, z, u, v) → EV (x, z)

ConfChallenge(x, y, z, u, v) → EH(z, v) .

A potential tuple in ConfChallenge(x, y, z, u, v) represents the join of a triple of nodes moving
first horizontally and then vertically from x (i.e., x, y, u) and a triple going first vertically
and then horizontally from x (i.e., x, z, v). For the relations to commute, we must satisfy
the query
(

¬∃ x y z u v ConfChallenge(x, y, z, u, v)
)

∨
(

∃ x y z u ConfChallenge(x, y, z, u, u)
)

in the full instance. Thus, we add the above conjunct to Q.
Putting the various components of Q for different challenges together as a Boolean

combination of CQ, completes the proof of the theorem.

The case of conjunctive query views. As mentioned earlier, the database community
has studied the PQI problem in the case where the background theory consist exactly of CQ-
view definitions that determine each visible relation in terms of invisible relations. Formally,
a CQ-view based scenario consists of a schema S = Sv ∪Sh, namely, the union of a schema
for the visible relations and a schema for the hidden relations, and a set of sentences Σ
between visible and hidden relations that must be of a particular form. For each visible
relation R ∈ Sv, Σ must contain two dependencies of the form

R(x̄) → ∃ȳ φR(x̄, ȳ)

φR(x̄, ȳ) → R(x̄)

where φR is a conjunction of atoms over the hidden schema Sh, Furthermore, all sentences
in Σ must be of the above forms. Note that this CQ-view scenario is incomparable in
expressiveness to GNFO sentences.

The instance-level problems are still well-behaved, because given a visible instance V,
the sentences can be rewritten as Σ1∧Σ2, where Σ1 consists of TGDs from the view relations
to the base relations, and Σ2 consists of sentences of the form V (~x)→

∨

~a∈V (V) ~x = ~a. Thus

the “disjunctive chase” of V with these dependencies will terminate, since after the first
round (where we fire Σ1 dependencies), no new elements will be created.

The decidability of the ∃PQI problem follows immediately from these observations and
Theorem 4.9, which applies to background theories capturing CQ-view definitions. In con-
trast, for the ∃NQI problem we prove that

INFERENCE FROM VISIBLE INFORMATION AND BACKGROUND KNOWLEDGE 47

Theorem 6.2. The ∃NQI problem under background knowledge given as CQ-view defini-
tions is undecidable.

Proof. As in earlier undecidability results, such as Theorem 4.12, we will give the proof for
the unrestricted version of the problem, which asserts the existence of an instance with a
NQI, finite or infinite.

We give a reduction from a tiling problem that is specified by a set of tiles T , an initial
tile t⊥ ∈ T , and horizontal and vertical constraints H,V ⊆ T × T . In order to match the
unrestricted version of ∃NQI, we will deal with the infinite tiling variant, thus considering
the problem of tiling the infinite grid N×N.

As before, we will have visible relations EH and EV representing the horizontal and
vertical edges of the grid. Recall that every visible relation must be associated with a CQ-
view definition on a subset of hidden relations. In particular, for the relations EH , EV it is
sufficient to introduce hidden copies E′

H , E
′
V and enforce the trivial dependencies:

EH(x, y) ⇐⇒ E′
H(x, y)

EV (x, y) ⇐⇒ E′
V (x, y) .

Similarly, each node of the grid has to be associated with a tile in T , and this will be
represented by some visible unary relations Ut, together with the corresponding hidden
copies U ′

t . We have associated sentences in the background theory: Ut(x) ⇐⇒ U ′
t(x), for

all t ∈ T .

As in earlier undecidability results, such as Theorem 6.1, the first goal is to ensure
that for each node, there exists at most one predecessor and at most one successor for the
relations EH and EV . We explain how to ensure this for the successor case and the relation
EH , but similar constructions work for the other cases. We introduce a hidden relation
HorFuncChallenge of arity 4, and a visible relation ErrHorFun of arity 3 with the associated
CQ-view definition

ErrHorFun(x, y, x′) ⇐⇒ HorFuncChallenge(x, y, x′, y) .

Our query Q will contain as a conjunct the following UCQ:

QHorFuncChallenge =
(

∃ x y y′ ErrHorFun(x, y, y′)
)

∨
(

∃ x y y′ HorFuncChallenge(x, y, x, y′) ∧ EH(x, y) ∧ EH(x, y
′)
)

.

We explain how the subquery QHorFuncChallenge enforces that every element has at most one
successor in the relation EH .

Suppose that ∃NQI(QHorFuncChallenge ,Σ,S) = true, namely, that there exists an Sv-
instance V such that NQI(QHorFuncChallenge,Σ,S,V) = true. The visible relation ErrHorFun
must be empty in V, as otherwise the query QHorFuncChallenge would be satisfied in every
full instance that agrees with V on the visible part (note that V is clearly realizable).
Moreover, as ErrHorFun is empty in V, every full instance that satisfies the background
theory and agrees with V does not contain a fact of the form HorFuncChallenge(x, y, x′, y).
Now, suppose, by way of contradiction, that there is an element x with two distinct EH -
successors y and y′. We can construct a full instance that extends V with the single fact
HorFuncChallenge(x, y, x, y′). This full instance satisfies all the sentences in Σ and also the
query QHorFuncChallenge, thus contradicting NQI(QHorFuncChallenge,Σ,S,V) = true.

For the converse direction, we aim at proving that there is a negative query impli-
cation on QHorFuncChallenge for those instances that encode valid tilings and are realizable.
More precisely, we consider a visible instance V in which the relation EH is a function
and the relation ErrHorFun is empty (note that the latter condition on ErrHorFun is safe,
in the sense that the considered instance V could be obtained from a valid tiling and,

48 M. BENEDIKT, P. BOURHIS, B. TEN CATE, G. PUPPIS, AND M. VANDEN BOOM

being realizable, could be used to witness a negative query implication). We claim that
NQI(QHorFuncChallenge,Σ,S,V) = true. Consider an arbitrary full instance F that agrees with
V on the visible part and satisfies the sentences in Σ, and suppose by way of contradiction
that QHorFuncChallenge holds on F . Then, F would contain the following facts, for a triple of
nodes x, y, y′: HorFuncChallenge(x, y, x, y′), EH(x, y), EV (x, y

′). On the other hand, F can-
not contain the fact HorFuncChallenge(x, y, x′, y), as otherwise this would imply the presence
of the visible fact ErrHorFun(x, y, x′). From this we conclude that y 6= y′, which contradicts
the functionality of EH .

Very similar constructions and arguments can be used to enforce single successors in
EV , single predecessors in EH and EV , as well as confluence of EH and EV .

We now explain how we enforce the existential properties of the grid, such as EH being
non-empty. We introduce two nullary relations HorEmptyError and HorEmptyHiddenError,
where the former is visible and the latter is hidden, and we constrain them via the CQ-view
definition

HorEmptyError ⇐⇒ ∃ x y
(

EH(x, y) ∧ HorEmptyHiddenError
)

.

We add as a conjunct of our query the following UCQ:

QHorEmptyError = HorEmptyError ∨ HorEmptyHiddenError .

Below, we show how this enforces non-emptiness of EH .
Suppose that V is an Sv-instance such that NQI(QHorEmptyError,Σ,S,V) = true. We show

that in this case the relation EH is non-empty. First, note that the fact HorEmptyError
must not appear in V, since otherwise all full instances extending V would satisfy
QHorEmptyError (as V is realizable, there is at least one such full instance). If EH were
empty, we could set HorEmptyHiddenError to non-empty and thus get a contradiction of
NQI(QHorEmptyError,Σ,S,V) = true.

For the converse direction, we consider a visible instance V in which the relation EH
is non-empty and HorEmptyError is empty (again, such an instance can be obtained from a
valid tiling of the infinite grid and thus can be used to witness a negative query implication).
In any full instance that agrees with V on the visible part, HorEmptyHiddenError must agree
with HorEmptyError, and hence must be empty. This implies that the query QHorEmptyError

is violated, whence NQI(QHorEmptyError ,Σ,S,V) = true.

Besides requiring that EH and EV are non-empty, we must also guarantee that for
every pair (x, y) ∈ EH (resp., (x, y) ∈ EV), there is a pair (y, z) ∈ EV (resp., (y, z) ∈ EH).
Note that once we have performed this, functionality and confluence will ensure that EH
and EV correctly encode the horizontal and vertical edges of the grid. We explain how to
enforce that every pair (x, y) ∈ EH has a successor pair (y, z) ∈ EV – a similar construction
can be given for the symmetric property. We add to our schema another visible relation
HorSuccError of arity 0, and a hidden relation HorSuccHiddenError of arity 1. The associated
CQ-view definition is

HorSuccError → ∃ x y z EH(x, y) ∧ HorSuccHiddenError(y) ∧ EV (y, z) .

Moreover, we add as a conjunct of our query the following UCQ:

QHorSuccError = HorSuccError ∨
(

∃ x y EH(x, y) ∧ HorSuccHiddenError(y)
)

.

We show how this enforces the desired property.
Suppose that there is a visible instance V such that NQI(QHorSuccError ,Σ,S,V) = true.

First, observe that the visible relation HorSuccError must be empty, as otherwise all exten-
sions of V would satisfy QHorSuccError. Now, suppose, by way of contradiction, that there is
a pair (x, y) ∈ EH that has no successor pair (y, z) ∈ EV . In this case, we can construct

INFERENCE FROM VISIBLE INFORMATION AND BACKGROUND KNOWLEDGE 49

a full instance that extends V with the hidden fact HorLabelHiddenError(y). This full in-
stance has V as visible part and satisfies the sentences in the background theory and the
query QHorSuccError . As this contradicts the hypothesis NQI(QHorSuccError ,Σ,S,V) = true, we
conclude that for every pair (x, y) ∈ EH , there is a successor pair (y, z) ∈ EV .

Conversely, consider a visible instance V that represents a correct encoding of the
infinite grid and where the visible relation HorSuccError is empty. In any full in-
stance that agrees with V on the visible part, HorSuccError must be the same as
∃ x y z EH(x, y) ∧ HorSuccHiddenError(y) ∧ EV (y, z). In particular, because every node
has both a successor in EH and a successor in EV , this implies that the hidden relation
HorSuccHiddenError cannot contain the node y, for any pair (x, y) ∈ EH . Hence the query
QHorSuccError is necessarily violated, and this proves that NQI(QHorSuccError ,Σ,S,V) = true.

Now that we have enforced a grid-like structure on the relations EH and EV , we consider
the relations Ut that encode a candidate tiling function. Using similar techniques, we can
ensure that every node of the grid has an associated tile. More precisely, we enforce that,
for every pair (x, y) ∈ EH , the element x must also appear in Ut, for some tile t ∈ T We
add a visible relation HorLabelErrort of arity 0 for each tile t ∈ T and a hidden relation
HorLabelHiddenError of arity 1. The associated CQ-view definitions are of the form

HorLabelErrort ⇐⇒ ∃ x y EH(x, y) ∧ HorLabelHiddenError(x) ∧ Ut(x) .

We add as conjunct of our query the following UCQ:

QHorLabelError =
∨

t∈T

∃ x y
(

HorLabelErrort(x, y)
)

∨
(

EH(x, y)∧HorLabelHiddenError(x)
)

.

We prove that the above definitions enforce that all nodes that appear in the first column
of the relation EH have at least one associated tile.

Consider a visible instance V such that NQI(QHorLabelError,Σ,S,V) = true. For each tile
t, the visible relation HorLabelErrort must be empty, as otherwise all extensions of V would
satisfy QHorLabelError. Suppose, by way of contradiction, that there is a node x that appears
in the first column of the visible relation EH , but does not appear in any relation Ut, with
t ∈ T . We can construct a full instance where the relation HorLabelHiddenError contains
the element x. This instance would then satisfy the query QHorLabelError , thus contradicting
NQI(QHorLabelError,Σ,S,V) = true.

For the converse, consider a visible instance V in which the relation EH is non-empty
(as enforced in the previous steps) and, for all pairs (x, y) ∈ EH , there is a tile t ∈ T
such that x ∈ Ut. Furthermore, assume that all the relations HorLabelErrort, with t ∈ T ,
in this visible instance are empty. Note that such an instance V is realizable and hence
can be obtained from a valid tiling (if there is any) and used as a witness of a negative
query implication. In every full instance that agrees with V and satisfies the background
theory, HorLabelErrort must be the same as ∃ x y HorLabelHiddenError(x)∧EH (x, y)∧Ut(x).
In particular, because every node is associated with some tile, this implies that the hidden
relation HorLabelHiddenError cannot contain the node x, for any pair (x, y) ∈ EH . Hence the
query QHorLabelError is necessarily violated, and this proves that NQI(QHorLabelError ,Σ,S,V) =
true.

We also need to guarantee that each node has at most one associated tile. This property
can be easily enforced by the subquery

QTwoLabelsError =
∨

t6=t′

∃x Ut(x) ∧ Ut′(x) .

50 M. BENEDIKT, P. BOURHIS, B. TEN CATE, G. PUPPIS, AND M. VANDEN BOOM

Finally, we enforce that the encoded tiling function respects the horizontal and vertical
constraints using the following UCQ:

QConstraintError =
∨

(t,t′)6∈H

(

∃ x y EH(x, y) ∧ Ut(x) ∧ Ut′(y)
)

∨
∨

(t,t′)6∈V

(

∃ x y EV (x, y) ∧ Ut(x) ∧ Ut′(y)
)

.

Summing up, if we let Q be the disjunction of all previous queries, we know that
∃NQI(Q,Σ,S) = true if and only if there exists a valid tiling of the infinite grid N×N.

7. Conclusions

This work gives a detailed examination of inference of information from complete knowledge
about a subset of the signature coupled with background knowledge about the full signature.
Both the information and the background knowledge are expressed by logical sentences. In
future work we will look at mechanisms for “restricted access” that are finer-grained than
just exposing the full contents of a subset of the schema relations. One such mechanism
consists language-based restrictions – the ability to evaluate open formulas over the schemas
in a fragment of the logic. Another mechanism consists of functional interfaces – for example,
the “access method” interfaces studied in works such as [BtCLT16, BtCT16].

References

[AD98] S. Abiteboul and O. Duschka. Complexity of answering queries using materialized views. In
PODS, 1998.

[AHV95] S. Abiteboul, R. Hull, and V. Vianu. Foundations of Databases. Addison-Wesley, 1995.
[BBPtC16] M. Benedikt, P. Bourhis, G. Puppis, and B. ten Cate. Querying visible and invisible information.

In LICS, 2016.
[BBV17] Michael Benedikt, Pierre Bourhis, and Michael Vanden Boom. Characterizing definability in

decidable fixpoint logics. In ICALP, 2017.
[BCK17] Michael Benedikt, Bernardo Cuenca Grau, and Egor V. Kostylev. Source information disclosure

in ontology-based data integration. In AAAI, 2017.
[BCS15] Vince Bárány, Balder Ten Cate, and Luc Segoufin. Guarded negation. J. ACM, 62(3), 2015.
[BCtCV15] Michael Benedikt, Thomas Colcombet, Balder ten Cate, and Michael Vanden Boom. The com-

plexity of boundedness for guarded logics. In LICS, 2015.
[Bet53] E. W. Beth. On Padoa’s method in the theory of definitions. Indagationes Mathematicae, 15,

1953.
[BGO10] V. Bárány, G. Gottlob, and M. Otto. Querying the guarded fragment. In LICS, 2010.
[BLMS09] J.-F. Baget, M. Leclère, M.-L. Mugnier, and E. Salvat. Extending decidable cases for rules with

existential variables. In IJCAI, 2009.
[BtCLT16] Michael Benedikt, Balden ten Cate, Julien Leblay, and Efthymia Tsamoura. Generating plans

from proofs: the interpolation-based approach to query reformulation. Morgan Claypool, 2016.
[BtCO12] V. Bárány, B. ten Cate, and M. Otto. Queries with guarded negation. In VLDB, 2012.
[BtCS11] V. Bárány, B. ten Cate, and L. Segoufin. Guarded negation. In ICALP, 2011.
[BtCT16] Michael Benedikt, Balder ten Cate, and Efi Tsamoura. Generating plans from proofs. In TODS,

2016.
[BtCV14] Michael Benedikt, Balder ten Cate, and Michael Vanden Boom. Effective interpolation and

preservation in guarded logics. In CSL-LICS, 2014.
[CFP84] M. Casanova, R. Fagin, and C. Papadimitriou. Inclusion dependencies and their interaction with

functional dependencies. JCSS, 28(1):29–59, 1984.
[CGK13] A. Cal̀ı, G. Gottlob, and M. Kifer. Taming the infinite chase: Query answering under expressive

relational constraints. JAIR, 48:115–174, 2013.
[CK90] C.C. Chang and H.J. Keisler. Model Theory. North-Holland, 1990.
[CY14] R. Chirkova and T. Yu. Obtaining information about queries behind views and dependencies.

CoRR, abs/1403.5199, 2014.

INFERENCE FROM VISIBLE INFORMATION AND BACKGROUND KNOWLEDGE 51

[DNR08] Alin Deutsch, Alan Nash, and Jeff Remmel. The chase revisited. In PODS, 2008.
[FG10a] W. Fan and F. Geerts. Capturing missing tuples and missing values. In PODS, 2010.
[FG10b] W. Fan and F. Geerts. Relative information completeness. ACM TODS, 35(4):27, 2010.
[FIS11] E. Franconi, Y. Ibáñez-Garćıa, and I. Seylan. Query answering with DBoxes is hard. ENTCS,

278:71–84, 2011.
[FKMP05] Ronald Fagin, Phokion G. Kolaitis, Renee J. Miller, and Lucian Popa. Data exchange: Semantics

and query answering. Theoretical Computer Science, 336(1):89–124, 2005.
[GB14] M. Guarnieri and D. A. Basin. Optimal security-aware query processing. PVLDB, 7(12), 2014.
[GM14] T. Gogacz and J. Marcinkowski. All-instances termination of chase is undecidable. In ICALP,

2014.
[GM15] Tomasz Gogacz and Jerzy Marcinkowski. The hunt for a red spider: Conjunctive query deter-

minacy is undecidable. In LICS, 2015.
[GP03] G. Gottlob and C. Papadimitriou. On the complexity of single-rule datalog queries. Inf. Comp.,

183, 2003.
[JK84] D. S. Johnson and A. C. Klug. Testing Containment of Conjunctive Queries under Functional

and Inclusion Dependencies. JCSS, 28(1):167–189, 1984.
[KLWW13] B. Konev, C. Lutz, D. Walther, and F. Wolter. Model-theoretic inseparability and modularity

of description logic ontologies. Artif. Intell., 203:66–103, 2013.
[KUB+12] P. Koutris, P. Upadhyaya, M. Balazinska, B. Howe, and D. Suciu. Query-based data pricing. In

PODS, 2012.
[LSW12] C. Lutz, I. Seylan, and F. Wolter. Mixing open and closed world assumption in ontology-based

data access: Non-uniform data complexity. In Description Logics, 2012.
[LSW13] C. Lutz, I. Seylan, and F. Wolter. Ontology-based data access with closed predicates is inherently

intractable (sometimes). In IJCAI, 2013.
[LSW15] C. Lutz, I. Seylan, and F. Wolter. Ontology-mediated queries with closed predicates. In IJCAI,

2015.
[LW07] C. Lutz and F. Wolter. Conservative extensions in the lightweight description logic EL. In

CADE, 2007.
[MG10] B. Marnette and F. Geerts. Static analysis of schema-mappings ensuring oblivious termination.

In ICDT, 2010.
[MS07] G. Miklau and D. Suciu. A formal analysis of information disclosure in data exchange. JCSS,

73(3):507–534, 2007.
[NSV10] A. Nash, L. Segoufin, and V. Vianu. Views and queries: Determinacy and rewriting. TODS,

35(3), 2010.
[One13] Adrian Onet. The chase procedure and its applications in data exchange. In Data Exchange

Intregation and Streams, 2013.
[Shm93] Oded Shmueli. Equivalence of datalog queries is undecidable. The Journal of Logic Programming,

15(3):231 – 241, 1993.
[Var98] M. Y. Vardi. Reasoning about the past with two-way automata. In ICALP, 1998.
[ZM05] Z. Zhang and A. O. Mendelzon. Authorization views and conditional query containment. In

ICDT, 2005.

Appendix A. Proof of exponential time satisfiability for GNFO with fixed
width, fixed CQ-rank, and fixed arity of schema

In this appendix, we give details of the following result:

Satisfiability of GNFO sentences is decidable in exponential time if the arity of the
relations used in the sentence is fixed, and further certain parameters of the sentence are
fixed: the width, and the CQ-rank.

A doubly-exponential bound on satisfiability of GNFO was proven in the papers where
GNFO was introduced [BtCS11, BCS15]. However the argument was by reduction to
satisfiability of the guarded fragment. Conversions of GNFO formulas to automata, and
comments about what controls their complexity, are implicit in a number of other works
[BCtCV15, BtCV14, BBV17]. But the conversions are performed for richer logics than
GNFO. This means firstly that they introduce many complications that are unnecessary

52 M. BENEDIKT, P. BOURHIS, B. TEN CATE, G. PUPPIS, AND M. VANDEN BOOM

for GNFO, and secondly that they do not provide the precise statements for GNFO that
we require in our analysis of inference problems.

Here we give a direct reduction of satisfiability of GNFO to emptiness testing for a tree
automaton. The translation allows us to track the complexity of satisfiability in a more
fine-grained way, including the collapse to exponential time when the arity of the relations,
the width, and the CQ-rank is fixed.

We will start in Subsection A.1 explaining the tree-like model property, and in Subsec-
tion A.2 giving background on the automaton formalism we use. In Subsection A.3 we show
decidability for the case of GNFO without equality and constants, restricting to sentences
of a special kind (“normal form”). Finally in Subsection A.4 we extend to full GNFO, with
equalities and constants. We close in Subsection A.5 with some remarks relating the results
here with the bounds in the absence of any normal form restriction.

A.1. Tree-like models and automata. The first step in showing decidability of GNFO
satisfiability is to show that for any sentence ϕ there is a number k, easily computed from
ϕ, such that: if ϕ is satisfiable, it is satisfiable over structures that are “k-tree-like”: that
is a structure that is coded by a tree, where each vertex in the tree represents at most k
elements in the structure.

In this section, we will explain the tree-like model property. In doing so we will restrict
to GNFO sentences that do not have equality or constants. The extension to equality and
constants will be given in Subsection A.4.

We start by describing what these tree codes look like in detail.
For a number k we let Nk = {1, . . . , 2 · k}. This is a finite set of names that will be

used to describe the elements represented in a given node in the tree.
Given a relational signature σ and a number k, the k-code signature, Σcode

σ,k contains:

• a unary predicate Da for all a ∈ Nk

• unary predicates R~a for all R ∈ σ of arity j and all ~a ∈ N j
k

Informally, Da(v) indicates that a is a name in the node v in the tree code, while R~a(v)
indicates that R holds for the elements represented by the names ~a at v.

Neighboring nodes may describe overlapping pieces of the structure. This will be im-
plicitly coded based on repeated use of names: if some name appears in two neighboring
nodes, then the same element is being described in both nodes. This is why Nk has 2k
names, even though at most k names are used in a single node.

For a vertex v in a Σcode
σ,k tree T , let names(v) := {a ∈ Nk : Da holds of v}. This denotes

the set of names used for elements in node v.
A consistent Σcode

σ,k -tree is a Σcode
σ,k -tree such that every node v satisfies

• |names(v)| ≤ k
• for all R~a ∈ Σcode

σ,k , if R~a(v) then ~a ⊆ names(v);
When σ is clear from context, such a tree will also be called a k-code.

We now describe the structure coded by a k-code formally. Given a consistent tree T
and a local name a, we say nodes u and v are a-connected if there is a sequence of nodes
u = w0, w1, . . . , wj = v such that wi+1 is a parent or child of wi, and a ∈ names(wi) for
all i ∈ {0, . . . , j}. We write [v, a] for the equivalence class of a-connected nodes of v. For
~a = a1 . . . an, we often abuse notation and write [v,~a] for the tuple [v, a1], . . . , [v, an]

The decoding of T is the σ-structure decode(T) with universe

{[v, a] : v ∈ dom(T) and a ∈ names(v)}

INFERENCE FROM VISIBLE INFORMATION AND BACKGROUND KNOWLEDGE 53

such that for each relation R, we have Rdecode(T)([v1, a1], . . . , [vj , aj]) iff there is w ∈ dom(T)
such that R~a(w) holds and [w, ai] = [vi, ai] for all i.

We are now ready to state the result that satisfiable GNFO sentences have k-tree-like
models. The original papers on GNFO [BtCS11, BCS15] show that every satisfiable GNFO
sentence (even with equality and constants) has a satisfying model with a tree decomposition
in which each vertex of the tree is associated with k elements of the model. We will not
need the definition of tree decomposition here, but it is easy to see (and explained in other
works, such as [BBV17]) that structures with such a decomposition have codes of the type
given above. Hence we have:

Proposition A.1. [BCS15] Suppose ϕ is a GNFO sentence without equality and constants
having width k. If ϕ is satisfiable, then it is satisfiable in a structure that is the decoding
of some k-code.

Tree codes like this can generally have unbounded (possibly infinite) degree. It is well-
known that if a first-order sentence ϕ is satisfiable, there is a structure M that is countable
such that M |= ϕ – this follows from the Lowenheim-Skolem theorem [CK90]. Using this
fact, one can refine the proof of Proposition A.1 to show thatM is satisfiable in a countable
model that has a k-tree code where the branching degree is countable.

For technical reasons, it is more convenient to use full binary trees for our encodings.
Any tree code T where each node has at most countably many children can be converted
to a binary tree code in the following way. First, for each node u, we add infinitely many
new children to u, each child being the root of an infinite full binary tree where each node
has the same label as u in T . This ensures that each node of T now has infinitely many
(but still countably many) children. Second, we convert T into a full binary tree: starting
from the root, each node u with children (vi)i∈N is replaced by the subtree consisting of
v1, v2, . . . and new nodes u1, u2, . . . such that the label at each ui is the same as the label
at u, the left child of ui is vi and the right child of ui is ui+1. In other words, instead of
having a node u with infinitely many children (vi)i∈N, we create an infinite spine of nodes
with the same label as u, and attach each vi to a different copy ui of u on this spine.

A.2. Automata background.

A.2.1. Alternating Büchi automata. We will consider infinite full binary trees: that is infi-
nite trees in which the outdegree of every vertex is two. We assume a set of unary predicates
A1 . . . An for such trees, and let Σ be {A1 . . . An}.

We will look at automata that can move up and down in such trees. Let Direction2 be
the set of (movement) directions: Stay, Down1, Down2, and Up.

For any set J , let B+(J) be the set of positive Boolean combinations of propositions in
J . Given a set I of elements from J and a formula ϕ ∈ B+(J), the notion of ϕ holding in I
(I |= ϕ) is defined as usual in propositional logic: a single element j ∈ J holds in I if j ∈ I,
a disjunction holds in I if one of its disjuncts holds, while a conjunction holds if all of its
conjuncts hold. We will be interested in positive Boolean combinations over Direction2×Q;
these formulas will be used to describe possible moves of the automaton.

We will translate GNFO sentences to a two-way alternating automaton over infinite
trees. Such an automaton is specified as (Q,Σ, q0, δ,Ω), where

• Q is a finite set of states
• Σ is as above
• q0 ∈ Q is the initial state
• δ ∈ Q× P(Σ)→ B+(Direction2 ×Q) is the transition relation

54 M. BENEDIKT, P. BOURHIS, B. TEN CATE, G. PUPPIS, AND M. VANDEN BOOM

• Ω is an acceptance condition, which we discuss below.

A run of the automaton starting at vertex v of a tree T , is another tree t′ whose labelling
function λt′ labels vertices n with a vertex of T and a state q ∈ Q. We now describe further
properties that are required for the run to be accepting.

First we require that the root of t′ is assigned to (v, q0). That is, the computation starts
at the initial state with the specified vertex v.

Second, we require that the relationship between parent and children labels in t′ be
consistent with the transition function δ. Suppose a vertex n′ of t′ is associated by λt′ to a
vertex n of T whose predicates correspond to subset Sn, and also to a state q′, and let Cn′

be the children of n′ in t′. Then we require that λt′ associate each c′ ∈ Cn′ with a vertex of
T that is either n, a parent of n, or child of n.

Given the above requirement we can associate each child c′i ∈ Cn′ with a direction
d′i ∈ Direction2 as well as a state q′i ∈ Q. Let Pn′ be the set of pairs (d′i, q

′
i) associated with

some child of n′. We require that Pn′ |= δ(q, S).
Finally, we require that every branch of t′ obeys the acceptance condition Ω. There

are a number of different acceptance conditions defined for automata over infinite trees.
We will make use of the Büchi acceptance condition. This is specified by a set Ω ⊆ Q of
accepting states. The requirement is that along each branch in t′, there is a state in Ω that
occurs infinitely often. Let 2ABTω denote 2-way alternating tree automata equipped with
this Büchi acceptance condition.

Given an automaton A the language of A, denoted L(A), is the set of trees T such A
has an accepting run starting at the root of T . The non-emptiness problem for a class of
automata is the analog of the satisfiability problem for a logic: given an automaton A in
the class, determine if L(A) 6= ∅.

Vardi [Var98] showed that non-emptiness is decidable for 2ABTω in ExpTime (in fact,
this was shown for parity automata, which includes Büchi automata).

Theorem A.2 ([Var98]). If A is a 2ABTω automaton A, then it is decidable in ExpTime if

L(A) 6= ∅. More specifically, the running time is f(|A|)f(s) where s is the number of states
of A and f is a polynomial independent of A.

Thus if we can convert our satisfiability problem into an emptiness check for a 2ABTω

automaton with size doubly exponential in the size of the formula and number of states
exponential in the size of the formula, we will obtain a doubly-exponential bound on sat-
isfiability. Similarly, if we can construct a 2ABTω automaton with size exponential in the
formula and number of states polynomial in the formula, we will obtain a singly-exponential
bound on satisfiability.

A.3. Decision procedure for normal-form GNFO without equality and constants.

In giving the automata constructions in this section, we will start by working with GNFO
formulas ϕ in a normal form, GN-normal form, similar to one introduced in [BCS15].
Throughout this section, we also assume that the formulas do not use equality or constants.

A.3.1. Normal form for GNF. We present the normal form that we use.

INFERENCE FROM VISIBLE INFORMATION AND BACKGROUND KNOWLEDGE 55

Formulas ϕ in GN-normal form can be generated using the following grammar:

ϕ ::=
∨

i ∃~x
∧

j ψij

ψ ::=α | α ∧ ϕ | α ∧ ¬ϕ |

ϕ if ϕ has at most one free variable |

¬ϕ if ϕ has at most one free variable

where α is an atomic formula, and in the case of α∧¬ϕ and α∧ϕ, Free(α) ⊇ Free(ϕ). The
ϕ are referred to as UCQ-shaped formulas, with each of the disjuncts being a CQ-shaped
formula.

Note that if ϕi for i = 1 . . . n are sentences in normal form then their conjunction
∧

i ϕi
is also in normal form.

A formula is answer-guarded if it has at most one free variable or is of the form α ∧ χ
where α is an atom that contains all the free variables of χ. The idea of the normal form
is that the grammar generates UCQ-shaped formulas where each conjunct is an answer-
guarded subformula.

Later we will see that we can convert arbitrary GNFO formulas to this normal form.
The width of a GNFO formula ϕ in the normal form above is the maximum number of

free variables in any subformula.
The CQ-rank of a formula ϕ in GN-normal form, denoted rankCQ(ϕ), is the maximum

number of conjuncts ψi in any CQ-shaped subformula ∃~x
∧

i ψi of ϕ where ~x is non-empty.
Recall that the ψi in such a CQ-shaped formula are of the form α, α ∧ ¬ϕ′′, or α ∧ ϕ′′,
but for the purposes of counting conjuncts for the CQ-rank, each ψi is treated as a single
conjunct.

A.3.2. Automata for GNFO. We now explain how to construct an automaton for a GNFO
sentence ϕ in normal form without equality.
Specializations. The rough idea will be that an automaton has states for all subformulas
of ϕ – the “subformula closure of ϕ”. The automaton being in a state corresponding to
subformula ψ at a vertex v of a tree T will indicate that it is verifying that ψ holds at v
in T . The statement above is not precise because in GNFO, the notion of “subformula”
needs to be more expansive than the usual one in order to be able to correctly verify the
CQ-shaped formulas.

Before we define the relevant closure, we need to think more carefully about CQ-shaped
formulas, and how they can be satisfied in a tree-like structure. For this, we need to describe
specializations.

Consider a CQ-shaped normal form GNFO formula

ρ(~x) = ∃~y
∧

j∈{1,...,r}

ψj(~x, ~y).

A specialization of ρ is a formula ρ′ obtained from ρ by the following operations:

• select a subset ~y0 of ~y (call variables from ~x ∪ ~y0 the inside variables and variables
from ~y \ ~y0 the outside variables);
• select a partition ~y1, . . . , ~ys of the outside variables, with the property that for every
ψj, either ψj has no outside variables or all of its outside variables are contained in
the partition element ~yj;
• let χ0 be the conjunction of the ψj using only inside variables, and let χi for
i ∈ {1, . . . , s} be the conjunction of the ψj using outside variables and satisfying
Free(ψj) ⊆ ~x ∪ ~y0 ∪ ~yi;

56 M. BENEDIKT, P. BOURHIS, B. TEN CATE, G. PUPPIS, AND M. VANDEN BOOM

• set ρ′(~x, ~y0) to be

χ0(~x, ~y0) ∧
∧

i∈{1,...,s}

∃~yi χi(~x, ~y0, ~yi).

Roughly speaking, each specialization of ρ describes a different way that a CQ-shaped
formula could be satisfied by elements ~x represented in a node of a tree code. The inside
variables represent witnesses for the existential quantifiers that are found in the node itself.
The partition of the outside variables represent the different directions from the node where
the additional non-local witnesses are to be found: moving either to an ancestor or to one
of the children. Since each atom of the CQ shape formula must be realized in a single node,
the atoms must be “homogeneous” with respect to the partition, as captured in the second
item above.

It is easy to see that if a specialization is realized, then so is the original formula, since
the realization of the specialization gives witnesses for all the existential quantifiers:

Lemma A.3. Let ρ(~x) ∈ GNFO be a CQ-shaped formula ∃~y
∧

j ψj(~x, ~y). For all structures

M and for all specializations ρ′(~x, ~y0) of ρ, if M |= ρ′(~a,~b), then M |= ρ(~a).

Since a formula is vacuously a specialization of itself, the converse direction is vacuously
true. What is more useful is that whenever a formula is realized, it is realized by a special-
ization that is “simpler” than the original formula it specializes. We say a specialization is
non-trivial if either χ0 is non-empty or the partition of the outside variables is non-trivial
(s > 1). The following result captures the idea that in realizing a formula we need to realize
some simpler specialization:

Lemma A.4. Let ρ(~x) ∈ GNFO be a CQ-shaped formula ∃~y
∧

j ψj(~x, ~y). Given a structure

M and its tree code T , if there exists a vertex v ∈ T that includes names ~a andM |= ρ([v,~a]),
then there is a non-trivial specialization ρ′(~x, ~y0) of ρ and a vertex w ∈ T with ~a and

additional names ~b0 in its domain such that [w,~a] = [v,~a] and M |= ρ′([w,~a], [w,~b0]).

The idea behind the lemma is that if the formula holds at a node with certain witnesses
for the free variables, we can traverse the nodes of the tree codes preserving all those
witnesses, until we arrive at a node w where either some of the witnesses are found locally
in w or the witnesses are found in different directions from w. In the first case we have
realized a specialization in which χ0 is non-empty, and in the second case we have realized
a specialization in which the partition of the outside variables is non-trivial.

Let ∃~y η(~x, ~y) be any CQ-shaped GN-normal form formula and ∃~y η(~a, ~y) be formed
by substituting elements ai from Nk for each free variable xi in ∃~y η(~x, ~y). We will write
Spec(∃~y η(~a, ~y), Nk) for the set of all specializations of ∃~y η(~a, ~y) with elements from Nk

substituted for any new inside variables. For convenience in the construction below, each
specialization S ∈ Spec(∃~y

∧

j ψj(~a, ~y), Nk) will be represented as a set: that is, the spe-

cialization χ0(~a,~b0) ∧
∧

i∈{1,...,s} ∃~yi χi(~a,
~b0, ~yi) of ∃~y

∧

j∈{1,...,r} ψj(~a, ~y) is represented as

the set:

{ψj(~a,~b0) : j ∈ {1, . . . , r} , ψj(~a,~b0) in χ0} ∪ {∃~yi χi(~a,~b0, ~yi) : i ∈ {1, . . . , s}}.

Again, each formula in the set describes how a piece of the CQ-shaped formula is satisfied.
We are now ready to define the notion of subformula we are interested in. Fix some

GNFO sentence ϕ in normal form. The closure clGN(ϕ,Nk) that is relevant for the automa-
ton construction to decide satisfiability of ϕ consists of the subformulas of ϕ along with
formulas that are part of the specializations of the CQ-shaped formulas. Formally, elements
of clGN(ϕ,Nk) will be written in the form 〈ψ, p〉 where ψ is a formula and p ∈ {+,−} is a

INFERENCE FROM VISIBLE INFORMATION AND BACKGROUND KNOWLEDGE 57

polarity to indicate whether ψ comes from a positive or negative part of ϕ (that is, a part
under an even or odd number of negations).

Let clGN(ϕ,Nk) be the smallest set of formulas containing 〈ϕ,+〉, 〈true,+〉, 〈true,−〉,
〈false,+〉, 〈false,−〉 and satisfying the following closure conditions:

• if 〈α ∧ ¬ψ,+〉 ∈ clGN(ϕ,Nk), then 〈α,+〉, 〈ψ,−〉 ∈ clGN(ϕ,Nk);
• if 〈α ∧ ¬ψ,−〉 ∈ clGN(ϕ,Nk), then 〈α,−〉, 〈ψ,+〉 ∈ clGN(ϕ,Nk);
• if 〈¬ψ,+〉 ∈ clGN(ϕ,Nk), then 〈ψ,−〉 ∈ clGN(ϕ,Nk);
• if 〈¬ψ,−〉 ∈ clGN(ϕ,Nk), then 〈ψ,+〉 ∈ clGN(ϕ,Nk);
• if 〈α ∧ ψ,+〉 ∈ clGN(ϕ,Nk), then 〈α,+〉, 〈ψ,+〉 ∈ clGN(ϕ,Nk);
• if 〈α ∧ ψ,−〉 ∈ clGN(ϕ,Nk), then 〈α,−〉, 〈ψ,−〉 ∈ clGN(ϕ,Nk);
• if 〈

∨

i ψi,+〉 ∈ clGN(ϕ,Nk), then 〈ψi,+〉 ∈ clGN(ϕ,Nk) for all i;
• if 〈

∨

i ψi,−〉 ∈ clGN(ϕ,Nk), then 〈ψi,−〉 ∈ clGN(ϕ,Nk) for all i;
• if 〈∃~y η(~a, ~y),+〉 ∈ clGN(ϕ,Nk), then 〈ψ′,+〉 ∈ clGN(ϕ,Nk) for all S ∈
Spec(∃~y η(~a, ~y), Nk) and ψ

′ ∈ S;
• if 〈∃~y η(~a, ~y),−〉 ∈ clGN(ϕ,Nk), then 〈ψ′,−〉 ∈ clGN(ϕ,Nk) for all S ∈
Spec(∃~y η(~a, ~y), Nk) and ψ

′ ∈ S.

We are now ready to give a translation of GNFO sentences into automata, and show
that size is controlled by the size of the subformula closure.

Proposition A.5. For every GNFO sentence ϕ in GN-normal form, signature σ containing
relations of ϕ, and k ∈ N, there is a 2ABTω Aϕ on Σcode

σ,k -trees such that Aϕ accepts a

consistent Σcode
σ,k -tree T iff the decoding decode(T) satisfies ϕ. Moreover, the number of

states of the automaton is bounded by the size of clGN(ϕ,Nk), while the overall size and the

time needed to construct the automaton is at most f(|ϕ|·|P(Σcode
σ,k)|)·|Nk|

f(width(ϕ) rankCQ(ϕ))

for some polynomial f independent of ϕ and k.

The 2ABTω automaton Aϕ for ϕ is defined as follows:

• The state set is clGN(ϕ,Nk).
• The initial state is 〈ϕ,+〉.
• The transition function δ is defined below.
• The set of accepting states consists of all states of the form 〈true,+〉, 〈false,−〉,
〈R(~a),−〉, or 〈∃~y η(~a, ~y),−〉.

We now describe the transition function. For τ a collection of symbols in Σcode
σ,k and ~a

a collection of names in Nk, we say that ~a is represented in τ if τ includes Dai for each ai
in ~a; thus a vertex v labelled with τ that represents ~a has each ai in ~a as one of its local
names.

58 M. BENEDIKT, P. BOURHIS, B. TEN CATE, G. PUPPIS, AND M. VANDEN BOOM

δ(〈R(~a),+〉, τ) :=

(Stay, 〈false,+〉) if ~a not represented in τ

(Stay, 〈true,+〉) if R~a ∈ τ
∨

d∈Direction2
(d, 〈R(~a),+〉) otherwise

δ(〈R(~a),−〉, τ) :=

(Stay, 〈true,+〉) if ~a not represented in τ

(Stay, 〈false,+〉) if R~a ∈ τ
∧

d∈Direction2
(d, 〈R(~a),−〉) otherwise

δ(〈true,+〉, τ) := (Stay, 〈true,+〉)

δ(〈false,−〉, τ) := (Stay, 〈false,−〉)

δ(〈true,−〉, τ) := (Stay, 〈true,−〉)

δ(〈false,+〉, τ) := (Stay, 〈false,+〉)

δ(〈
∨

i

ψi,+〉, τ) :=
∨

i(Stay, 〈ψi,+〉)

δ(〈
∨

i

ψi,−〉, τ) :=
∧

i(Stay, 〈ψi,−〉)

δ(〈α ∧ ¬ψ,+〉, τ) := (Stay, 〈α,+〉) ∧ (Stay, 〈ψ,−〉)

δ(〈α ∧ ¬ψ,−〉, τ) := (Stay, 〈α,−〉) ∨ (Stay, 〈ψ,+〉)

δ(〈¬ψ,+〉, τ) := (Stay, 〈ψ,−〉)

δ(〈¬ψ,−〉, τ) := (Stay, 〈ψ,+〉)

δ(〈α ∧ ψ,+〉, τ) := (Stay, 〈α,+〉) ∧ (Stay, 〈ψ,+〉)

δ(〈α ∧ ψ,−〉, τ) := (Stay, 〈α,−〉) ∨ (Stay, 〈ψ,−〉)

δ(〈∃~y η(~a, ~y),+〉, τ) :=

(Stay, 〈false,+〉) if ~a not represented in τ
∨

S∈Spec(∃~y η(~a,~y),names(τ))

∧

ψ∈S(Stay, 〈ψ,+〉) ∨
∨

d∈Direction2
(d, 〈∃~y η(~a, ~y),+〉) otherwise

δ(〈∃~y η(~a, ~y),−〉, τ) :=

(Stay, 〈true,+〉) if ~a not represented in τ
∧

S∈Spec(∃~y η(~a,~y),names(τ))

∨

ψ∈S(Stay, 〈ψ,−〉) ∧
∧

d∈Direction2
(d, 〈∃~y η(~a, ~y),−〉) otherwise

The correctness of the automaton construction is captured in the following result:

Lemma A.6. For each 〈ψ(~a),+〉 ∈ clGN(ϕ,Nk), ψ(~x) holds in decode(T) with valuation
[v,~a] for ~x if and only if the automaton above accepts when launched in T from vertex v
with initial state 〈ψ(~a),+〉.

Likewise, for each 〈ψ(~a),−〉 ∈ clGN(ϕ,Nk), ψ(~x) does not hold in decode(T) with
valuation [v,~a] for ~x if and only if the automaton above accepts when launched in T from
vertex v with initial state 〈ψ(~a),−〉.

Proof. The lemma is proven by structural induction. The base cases are simple to observe
by construction. Lemmas A.3 and A.4 are utilized in the inductive case for CQ-shaped
formulas.

We now calculate the size of clGN(ϕ,Nk).

INFERENCE FROM VISIBLE INFORMATION AND BACKGROUND KNOWLEDGE 59

Lemma A.7. Let ϕ ∈ GNFO in normal form, and let k ∈ N. Then |clGN(ϕ,Nk)| ≤
f(|ϕ|) · |Nk|

f(width(ϕ) rankCQ(ϕ)) for some polynomial function f independent of ϕ and k.

Proof. Let w = width(ϕ) and r = rankCQ(ϕ).
Note that in the definition of the closure set, the only formulas that appear are either

actual subformulas of ϕ (with names from Nk substituted for free variables), or are formulas
that come from specializations of CQ-shaped formulas (again, with names from Nk).

Specializations of CQ-shaped subformulas that do not begin with existential quantifi-
cation (i.e. a CQ-shaped formula without projection) only contribute actual subformulas
of ϕ to the closure set. However, the specializations of a CQ-shaped subformula η with
existential quantification contribute up to 2r additional CQ-shaped formulas that are based
on taking some subset of the (at most) r conjuncts of η.

Since each of these formulas has at most w free variables taking names from Nk, this
means that the overall size of the closure set is at most |ϕ| · 2r · |Nk|

w.

Let w = width(ϕ) and r = rankCQ(ϕ). Since the width and CQ-rank are bound by the
size of the formula, this means that the size of the closure set clGN(ϕ,Nk), and hence the
number of states of the automaton Aϕ, is at most exponential in the size of the formula.
But it is polynomial when the maximal arity, width, and CQ-rank are fixed.

The size of P(Σcode
σ,k) is at most 2|σ|·|Nk|

arσ

, which is doubly exponential in general, but
singly exponential when the maximal arity is fixed.

The size of each transition function formula is at most linear in 2w · |Nk|
w · ww ·

|clGN(ϕ,Nk)|. In particular, note that the transition function formula for a CQ-shaped
formula ψ respects this bound since |Spec(ψ,Nk)| is at most 2w · |Nk|

w ·ww (the maximum
number of ways to choose the inside variables, names for these inside variables, and the par-
tition of the outside variables), and each S ∈ Spec(ψ,Nk) is of size at most |clGN(ϕ,Nk)|.

This means that the size of the transition function is linear in |Q| · |P(Σcode
σ,k)| ·2w · |Nk|

w ·

ww · |Q|. This is doubly exponential in general, but singly exponential when the maximal
arity, width, and CQ-rank are fixed.

Therefore, the overall size of Aϕ and the time taken to construct it is of size at most
doubly exponential in the size of ϕ, but singly exponential when the maximal arity, width,
and CQ-rank is fixed.
From an automaton to decidability. We are now almost done with our satisfiability
procedure. Combining Proposition A.5 with Proposition A.1, we see that ϕ is satisfiable if
and only if there is a consistent k-tree code that satisfies Aϕ, where k = width(ϕ).

Recall that a consistent Σcode
σ,k -tree is just an arbitrary Σcode

σ,k -tree such that every node

v satisfies |names(v)| ≤ k and for all R~a ∈ Σcode
σ,k , if R~a(v) then ~a ⊆ names(v). It is

straightforward to see that there is a 2ABTω automaton Aconsistent that accepts exactly the
trees that are consistent in the above sense. The size of Aconsistent is doubly-exponential
(due to the size of the alphabet) and singly-exponential if the maximal arity of each relation
is fixed. The running time needed to form the automaton is likewise doubly-exponential
in general and singly-exponential when the arity of relations is fixed. Further the number
of states is just two — an initial state and a “rejection” state representing a violation of
consistency.

By the closure properties of 2ABTω, we know that we can form an automaton
Aϕ,consistent that accepts the intersection L(Aϕ) ∩ L(Aconsistent) in time proportional to
the sum of the sizes of Aϕ and Aconsistent. The number of states of this automata is just
the sum of the number states of Aϕ and Aconsistent. Hence, by applying Theorem A.2, we
can conclude:

60 M. BENEDIKT, P. BOURHIS, B. TEN CATE, G. PUPPIS, AND M. VANDEN BOOM

Theorem A.8. There is a 2ExpTime satisfiability testing algorithm for GNFO sentences
in normal form without equality and constants. When the width, CQ-rank and maximal
arity of the relations are fixed, it shrinks to ExpTime.

A.4. Handling equality and constants. The extension to handle equalities, in the ab-
sence of constants, is not difficult. We consider the same tree codes as before.

We claim again that if a sentence ϕ in GNFO with width bounded by k is satisfiable,
then it is satisfied in a structure with a k-code.

The conversion to normal form is the same, treating equality like any other relation.
In the automaton construction, we need additional cases for equality.

δ(〈a = b,+〉, τ) :=

{

(Stay, 〈true,+〉) if a is the same as b

(Stay, 〈false,+〉) if a is not the same as b

δ(〈a = b,−〉, τ) :=

{

(Stay, 〈false,+〉) if a is the same as b

(Stay, 〈true,+〉) if a is not the same as b

The size bounds and running time of the construction remain the same.
Constants. To handle constants requires more effort, since constants may have non-trivial
equalities. One route to decidability, taken in [BCS15], is to reduce satisfiability of GNFO
with equality and constants to satisfiability without constants. The idea of the reduction
in [BCS15] is to extend the signature with additional predicates that hold the constants.
However, using such a reduction as a black-box does not give us the fine-grained bounds we
desire in terms of parameters like CQ-rank. We thus provide a more direct argument.

We consider k-tree codes in which the constants Const(σ) are represented in each node,
along with at most k local names. The codes will also now include some equality facts, but
with the following restrictions:

• There are no equality facts relating non-constants to each other, and no equality
facts relating constants to non-constants.
• The equality facts on constants are identical across vertices of the tree. They satisfy
transitivity and reflexivity, as well as congruence: if we have a fact R(. . . c . . .)
holding in a vertex, where c is a constant, and we also have an equality fact c = d
then we have the fact R(. . . d . . .).

We can extend Aconsistent to check whether a tree is a code satisfying these additional
restrictions.

We must change the notion of decoding of a tree to account for equalities. For a
consistent tree T using local names and constants Const(σ), we let Const(σ)=,T be the
equivalence classes of constants under the equality relation in T . The decoding decode(T)
is now the σ-structure with universe

{[v, a] : v ∈ dom(T) and a ∈ names(v)} ∪ Const(σ)=T

such that for each relation R, we have Rdecode(T)([v1, a1], . . . , [vj , aj], e1 . . . el), where ai are
local names and ei are equivalence classes of constants, iff there is w ∈ dom(T) such that
R~a,c1...cl(w) holds, [w, ai] = [vi, ai] for all i ≤ j and ci is in class ei for each i ≤ l.

We further claim the following extension of Proposition A.1

Proposition A.9. If a GNFO sentence ϕ of width k, possibly using equality and constants,
is satisfiable, then ϕ is satisfiable in a structure that is the decoding of some k-code.

INFERENCE FROM VISIBLE INFORMATION AND BACKGROUND KNOWLEDGE 61

Proof. Consider an expanded signature where for each relation R of arity n and partial
function h from the positions of R into constants, we have have a relation Rh of arity
n − |dom(h)|. We can rewrite ϕ to a ϕ′ in this signature that does not contain constants,
replacing atoms R(x1 . . . xn) by a disjunction of atoms over Rh where h varies over every
partial function, and replacing subformulas with negation guarded by an R-atom with a
disjunction of subformulas guarded by an Rh-atom. Note that ϕ′ will be larger than ϕ, but
its width will still be k. Thus applying Proposition A.1 we see that ϕ has a model M ′ with
a k-code in the expanded signature. But then we can reverse this process on M , replacing
atoms Rh in M with an atom R but using the additional constants as arguments. We can
similarly add the equality facts to the codes. Since equality in M ′ must satisfy congruence,
reflexivity, and transitivity, we will obtain a structure satisfying the additional properties.

The closure is now defined as before, but based on Nk ∪ Const(σ) rather than Nk.
In the automaton construction, we need a few modifications:
We need a base case for equality atoms.

• For a non-negated equality of a local name with a constant, the automaton should
ensure rejection: it does this by switching to state 〈false,+〉, since there are no
accepting runs from such states. Similarly for a negated equality of a local name
with a constant, the automaton should ensure acceptance by switching to state
〈true,+〉.
• for an equality between constants, the automaton simply checks whether the equality
is present in the vertex; if this is true the automaton should ensure acceptance. It
does this by switching to state 〈true,+〉. Otherwise it ensures rejection by switching
to state 〈false,+〉.

That is, for a name a ∈ Nk and for constants c, d ∈ Const(σ), we have transitions:

δ(〈a = c,+〉, τ) := (Stay, 〈false,+〉)

δ(〈a = c,−〉, τ) := (Stay, 〈true,+〉)

δ(〈c = d,+〉, τ) :=

{

(Stay, 〈true,+〉) if c = d ∈ τ

(Stay, 〈false,+〉) if c = d /∈ τ

δ(〈c = d,−〉, τ) :=

{

(Stay, 〈false,+〉) if c = d ∈ τ

(Stay, 〈true,+〉) if c = d /∈ τ

We also modify the CQ-shaped formula case, to allow the automaton to draw witnesses
from the constants:

δ(〈∃~y η(~a, ~y),+〉, τ) :=

(Stay, 〈false,+〉) if ~a not represented in τ
∨

S∈Spec(∃~y η(~a,~y),names(τ)∪Const(σ))

∧

ψ∈S(Stay, 〈ψ,+〉) ∨
∨

d∈Direction2
(d, 〈∃~y η(~a, ~y),+〉) otherwise

δ(〈∃~y η(~a, ~y),−〉, τ) :=

(Stay, 〈true,+〉) if ~a not represented in τ
∧

S∈Spec(∃~y η(~a,~y),names(τ)∪Const(σ))

∨

ψ∈S(Stay, 〈ψ,−〉) ∧
∧

d∈Direction2
(d, 〈∃~y η(~a, ~y),−〉) otherwise

Using these modifications, we can now extend Lemma A.6:

Lemma A.10. For each 〈ψ(~a,~c),+〉 ∈ clGN(ϕ,Nk), ψ(~x, ~y) holds in decode(T) at vertex v
with valuation [v,~a] for ~x and constants c1 . . . cl for ~y if and only if the automaton above
accepts when launched in T from vertex v with initial state 〈ψ(~a,~c),+〉.

62 M. BENEDIKT, P. BOURHIS, B. TEN CATE, G. PUPPIS, AND M. VANDEN BOOM

Likewise, for each 〈ψ(~a,~c),−〉 ∈ clGN(ϕ,Nk), ψ(~x, ~y) does not hold in decode(T) at
vertex v with the valuation above if and only if the automaton above accepts when launched
in T from vertex v with initial state 〈ψ(~a,~c),−〉.

Recall that the proof of Lemma A.6 worked by induction on ψ. In the proof we first
need to consider base cases for equality. For example, suppose x1 = x2 holds in decode(T)
with valuation x1 = [v, a1] x2 = [v, a2] for local names a1, a2. The only way the equality
can hold is if a1 is actually the same name as a2. Thus the automaton run from 〈a = b,+〉
will transition to 〈true,+〉, and will accept. The converse direction is similar.

On the other hand, suppose x1 = x2 holds in decode(T) with valuation x1 = [c]=,T ,
x2 = [d]=,T for constants c, d. This holds exactly when the equality fact c = d is present in
the label of v. But then looking at the transition function for 〈c = d,+〉 we see that the
automaton accepts.

We must also reconsider the base cases for atomic relations. Suppose
R(x1, . . . xj , y1 . . . yl) holds in decode(T) with valuation xi = [v, ai], yi = [ci]=,T }] for lo-
cal names ~a and constants ~c. By definition of our decoding, along with the congruence
closure of the codes, this means that we must have a fact R([v,~a],~c) holding in some node
v′ in the tree. We now argue as in the case without constants that iterating the transition
function for an atom, the automaton will accept from v.

Proposition A.11. ϕ is satisfiable if and only if the modified automaton Aϕ accepts a
consistent tree. This in turn can be checked by taking the automaton Aconsistent for checking
consistency, forming an automaton A′

ϕ accepting the intersection of Aconsistent with Aϕ, and
checking non-emptiness of A′

ϕ.

Thus we obtain the main result, which immediately implies Theorem 4.3 n the body of
the paper:

Theorem A.12. There is a 2ExpTime algorithm for deciding satisfiability of sentences
in GNFO, even allowing equality and constants. For a sentence in normal form with fixed
width, CQ-rank and fixed arity of relations, we get an ExpTime algorithm for satisfiability.

A.5. Additional remarks: relationship to bounds for general GNFO. We note that
the previous result to allows us to re-prove the bounds for satisfiability of GNFO sentences
that are not in normal form from [BtCS11, BCS15]. We include this only because it might
be useful to have a self-contained presentation of the GNFO to automate translation. The
idea is that general GNFO sentences can be converted to normal form in such a way that we
blow up the size of the formula, but the size of the closure set remains at most exponential
in the size of the original formula.

Proposition A.13. Let ψ be a GNFO formula with m = |ψ|. We can construct a sentence
convert(ψ) in GN-normal form equivalent to ψ such that

• |convert(ψ)| ≤ 2f(m) ,
• width(convert(ψ)) ≤ m,
• rankCQ(convert(ψ)) ≤ m,

• |clGN(convert(ψ), Nm)| ≤ 2f(m).
where f is a polynomial function independent of ψ.

Proof. We proceed by induction on ψ. The output convert(ψ) is a UCQ-shaped formula in
normal form, with the same free variables as ψ.

• If ψ is atomic, then convert(ψ) := ψ.

INFERENCE FROM VISIBLE INFORMATION AND BACKGROUND KNOWLEDGE 63

• Suppose ψ = α ∧ ¬ψ′ where α is a guard for Free(ψ′). Then convert(ψ) := α ∧
¬convert(ψ′).

Similarly for the case of ¬ψ where ψ has at most one free variable.
• Suppose ψ = ∃y ψ′. If convert(ψ′) is a UCQ-shaped formula

∨

i ∃~zi
∧

j ψij , then

convert(ψ) :=
∨

i ∃y~zi
∧

j ψij .

• Suppose ψ = ψ1 ∨ ψ2. Then convert(ψ) is the UCQ-shaped formula convert(ψ1) ∨
convert(ψ2).
• Suppose ψ = ψ1 ∧ ψ2. If ψ1 and ψ2 are answer-guarded, e.g., ψ1 = α1 ∧ ψ

′
1 and

ψ2 = α2 ∧ ψ
′
2 with Free(α1) ⊇ Free(ψ′

1) and Free(α2) ⊇ Free(ψ′
2), then convert(ψ) =

(α1∧convert(ψ
′
1))∧ (α2∧convert(ψ

′
2)). The other cases where ψ1 or ψ2 have at most

one free variable are handled similarly.
Otherwise, let convert(ψ) :=

∨

i,i′ ∃~yi~y
′
i′ (χi[~yi/~xi] ∧ χ′

i′ [~y
′
i′/~x

′
i′]) where

convert(ψ1) =
∨

i ∃~xi χi, convert(ψ2) =
∨

i′ ∃~x
′
i′ χ

′
i′ , and the variables in every

~yi and ~y
′
i′ are fresh.

By Lemma A.7, the size of clGN(convert(ψ), Nm) is exponential in the size m of ψ.

Now when we apply the automaton construction of Proposition A.5 to the output, we
will get an automaton with state set clGN(convert(ψ), N|ψ|). By the above, the size of this is
bounded by an exponential in the size of the original formula ψ. The size of the automaton
alphabet is unaffected by this transformation. Thus again we can apply Theorem A.2 to
get a doubly-exponential algorithm for testing satisfiability:

Corollary A.14. [BCS15] There is a 2ExpTime satisfiability testing algorithm for GNFO
sentences without equality.

	1. Introduction
	2. Related Work
	3. Definitions
	4. Positive Query Implication
	4.1. Instance-level problems
	4.2. Schema-level problem
	4.3. Summary for Positive Query Implication

	5. Negative Query Implication
	5.1. Instance-level problems
	5.2. Existence problems
	5.3. Summary for Negative Query Implication

	6. Extensions and special cases
	7. Conclusions
	References
	Appendix A. Proof of exponential time satisfiability for GNFO with fixed width, fixed CQ-rank, and fixed arity of schema
	A.1. Tree-like models and automata
	A.2. Automata background
	A.3. Decision procedure for normal-form GNFO without equality and constants
	A.4. Handling equality and constants
	A.5. Additional remarks: relationship to bounds for general GNFO

